1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Transforms/InstCombine/InstCombiner.h" 39 #include <cassert> 40 #include <cstdint> 41 #include <iterator> 42 #include <utility> 43 44 #define DEBUG_TYPE "instcombine" 45 #include "llvm/Transforms/Utils/InstructionWorklist.h" 46 47 using namespace llvm; 48 using namespace PatternMatch; 49 50 STATISTIC(NumAggregateReconstructionsSimplified, 51 "Number of aggregate reconstructions turned into reuse of the " 52 "original aggregate"); 53 54 /// Return true if the value is cheaper to scalarize than it is to leave as a 55 /// vector operation. If the extract index \p EI is a constant integer then 56 /// some operations may be cheap to scalarize. 57 /// 58 /// FIXME: It's possible to create more instructions than previously existed. 59 static bool cheapToScalarize(Value *V, Value *EI) { 60 ConstantInt *CEI = dyn_cast<ConstantInt>(EI); 61 62 // If we can pick a scalar constant value out of a vector, that is free. 63 if (auto *C = dyn_cast<Constant>(V)) 64 return CEI || C->getSplatValue(); 65 66 if (CEI && match(V, m_Intrinsic<Intrinsic::experimental_stepvector>())) { 67 ElementCount EC = cast<VectorType>(V->getType())->getElementCount(); 68 // Index needs to be lower than the minimum size of the vector, because 69 // for scalable vector, the vector size is known at run time. 70 return CEI->getValue().ult(EC.getKnownMinValue()); 71 } 72 73 // An insertelement to the same constant index as our extract will simplify 74 // to the scalar inserted element. An insertelement to a different constant 75 // index is irrelevant to our extract. 76 if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt()))) 77 return CEI; 78 79 if (match(V, m_OneUse(m_Load(m_Value())))) 80 return true; 81 82 if (match(V, m_OneUse(m_UnOp()))) 83 return true; 84 85 Value *V0, *V1; 86 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 87 if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI)) 88 return true; 89 90 CmpInst::Predicate UnusedPred; 91 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 92 if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI)) 93 return true; 94 95 return false; 96 } 97 98 // If we have a PHI node with a vector type that is only used to feed 99 // itself and be an operand of extractelement at a constant location, 100 // try to replace the PHI of the vector type with a PHI of a scalar type. 101 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI, 102 PHINode *PN) { 103 SmallVector<Instruction *, 2> Extracts; 104 // The users we want the PHI to have are: 105 // 1) The EI ExtractElement (we already know this) 106 // 2) Possibly more ExtractElements with the same index. 107 // 3) Another operand, which will feed back into the PHI. 108 Instruction *PHIUser = nullptr; 109 for (auto U : PN->users()) { 110 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 111 if (EI.getIndexOperand() == EU->getIndexOperand()) 112 Extracts.push_back(EU); 113 else 114 return nullptr; 115 } else if (!PHIUser) { 116 PHIUser = cast<Instruction>(U); 117 } else { 118 return nullptr; 119 } 120 } 121 122 if (!PHIUser) 123 return nullptr; 124 125 // Verify that this PHI user has one use, which is the PHI itself, 126 // and that it is a binary operation which is cheap to scalarize. 127 // otherwise return nullptr. 128 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 129 !(isa<BinaryOperator>(PHIUser)) || 130 !cheapToScalarize(PHIUser, EI.getIndexOperand())) 131 return nullptr; 132 133 // Create a scalar PHI node that will replace the vector PHI node 134 // just before the current PHI node. 135 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 136 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 137 // Scalarize each PHI operand. 138 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 139 Value *PHIInVal = PN->getIncomingValue(i); 140 BasicBlock *inBB = PN->getIncomingBlock(i); 141 Value *Elt = EI.getIndexOperand(); 142 // If the operand is the PHI induction variable: 143 if (PHIInVal == PHIUser) { 144 // Scalarize the binary operation. Its first operand is the 145 // scalar PHI, and the second operand is extracted from the other 146 // vector operand. 147 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 148 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 149 Value *Op = InsertNewInstWith( 150 ExtractElementInst::Create(B0->getOperand(opId), Elt, 151 B0->getOperand(opId)->getName() + ".Elt"), 152 *B0); 153 Value *newPHIUser = InsertNewInstWith( 154 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 155 scalarPHI, Op, B0), *B0); 156 scalarPHI->addIncoming(newPHIUser, inBB); 157 } else { 158 // Scalarize PHI input: 159 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 160 // Insert the new instruction into the predecessor basic block. 161 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 162 BasicBlock::iterator InsertPos; 163 if (pos && !isa<PHINode>(pos)) { 164 InsertPos = ++pos->getIterator(); 165 } else { 166 InsertPos = inBB->getFirstInsertionPt(); 167 } 168 169 InsertNewInstWith(newEI, *InsertPos); 170 171 scalarPHI->addIncoming(newEI, inBB); 172 } 173 } 174 175 for (auto E : Extracts) 176 replaceInstUsesWith(*E, scalarPHI); 177 178 return &EI; 179 } 180 181 Instruction *InstCombinerImpl::foldBitcastExtElt(ExtractElementInst &Ext) { 182 Value *X; 183 uint64_t ExtIndexC; 184 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 185 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 186 return nullptr; 187 188 ElementCount NumElts = 189 cast<VectorType>(Ext.getVectorOperandType())->getElementCount(); 190 Type *DestTy = Ext.getType(); 191 bool IsBigEndian = DL.isBigEndian(); 192 193 // If we are casting an integer to vector and extracting a portion, that is 194 // a shift-right and truncate. 195 // TODO: Allow FP dest type by casting the trunc to FP? 196 if (X->getType()->isIntegerTy() && DestTy->isIntegerTy() && 197 isDesirableIntType(X->getType()->getPrimitiveSizeInBits())) { 198 assert(isa<FixedVectorType>(Ext.getVectorOperand()->getType()) && 199 "Expected fixed vector type for bitcast from scalar integer"); 200 201 // Big endian requires adjusting the extract index since MSB is at index 0. 202 // LittleEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 X to i8 203 // BigEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 (X >> 24) to i8 204 if (IsBigEndian) 205 ExtIndexC = NumElts.getKnownMinValue() - 1 - ExtIndexC; 206 unsigned ShiftAmountC = ExtIndexC * DestTy->getPrimitiveSizeInBits(); 207 if (!ShiftAmountC || Ext.getVectorOperand()->hasOneUse()) { 208 Value *Lshr = Builder.CreateLShr(X, ShiftAmountC, "extelt.offset"); 209 return new TruncInst(Lshr, DestTy); 210 } 211 } 212 213 if (!X->getType()->isVectorTy()) 214 return nullptr; 215 216 // If this extractelement is using a bitcast from a vector of the same number 217 // of elements, see if we can find the source element from the source vector: 218 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 219 auto *SrcTy = cast<VectorType>(X->getType()); 220 ElementCount NumSrcElts = SrcTy->getElementCount(); 221 if (NumSrcElts == NumElts) 222 if (Value *Elt = findScalarElement(X, ExtIndexC)) 223 return new BitCastInst(Elt, DestTy); 224 225 assert(NumSrcElts.isScalable() == NumElts.isScalable() && 226 "Src and Dst must be the same sort of vector type"); 227 228 // If the source elements are wider than the destination, try to shift and 229 // truncate a subset of scalar bits of an insert op. 230 if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) { 231 Value *Scalar; 232 uint64_t InsIndexC; 233 if (!match(X, m_InsertElt(m_Value(), m_Value(Scalar), 234 m_ConstantInt(InsIndexC)))) 235 return nullptr; 236 237 // The extract must be from the subset of vector elements that we inserted 238 // into. Example: if we inserted element 1 of a <2 x i64> and we are 239 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 240 // of elements 4-7 of the bitcasted vector. 241 unsigned NarrowingRatio = 242 NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue(); 243 if (ExtIndexC / NarrowingRatio != InsIndexC) 244 return nullptr; 245 246 // We are extracting part of the original scalar. How that scalar is 247 // inserted into the vector depends on the endian-ness. Example: 248 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 249 // +--+--+--+--+--+--+--+--+ 250 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 251 // extelt <4 x i16> V', 3: | |S2|S3| 252 // +--+--+--+--+--+--+--+--+ 253 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 254 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 255 // In this example, we must right-shift little-endian. Big-endian is just a 256 // truncate. 257 unsigned Chunk = ExtIndexC % NarrowingRatio; 258 if (IsBigEndian) 259 Chunk = NarrowingRatio - 1 - Chunk; 260 261 // Bail out if this is an FP vector to FP vector sequence. That would take 262 // more instructions than we started with unless there is no shift, and it 263 // may not be handled as well in the backend. 264 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 265 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 266 if (NeedSrcBitcast && NeedDestBitcast) 267 return nullptr; 268 269 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 270 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 271 unsigned ShAmt = Chunk * DestWidth; 272 273 // TODO: This limitation is more strict than necessary. We could sum the 274 // number of new instructions and subtract the number eliminated to know if 275 // we can proceed. 276 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 277 if (NeedSrcBitcast || NeedDestBitcast) 278 return nullptr; 279 280 if (NeedSrcBitcast) { 281 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 282 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 283 } 284 285 if (ShAmt) { 286 // Bail out if we could end with more instructions than we started with. 287 if (!Ext.getVectorOperand()->hasOneUse()) 288 return nullptr; 289 Scalar = Builder.CreateLShr(Scalar, ShAmt); 290 } 291 292 if (NeedDestBitcast) { 293 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 294 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 295 } 296 return new TruncInst(Scalar, DestTy); 297 } 298 299 return nullptr; 300 } 301 302 /// Find elements of V demanded by UserInstr. 303 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 304 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 305 306 // Conservatively assume that all elements are needed. 307 APInt UsedElts(APInt::getAllOnes(VWidth)); 308 309 switch (UserInstr->getOpcode()) { 310 case Instruction::ExtractElement: { 311 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 312 assert(EEI->getVectorOperand() == V); 313 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 314 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 315 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 316 } 317 break; 318 } 319 case Instruction::ShuffleVector: { 320 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 321 unsigned MaskNumElts = 322 cast<FixedVectorType>(UserInstr->getType())->getNumElements(); 323 324 UsedElts = APInt(VWidth, 0); 325 for (unsigned i = 0; i < MaskNumElts; i++) { 326 unsigned MaskVal = Shuffle->getMaskValue(i); 327 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 328 continue; 329 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 330 UsedElts.setBit(MaskVal); 331 if (Shuffle->getOperand(1) == V && 332 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 333 UsedElts.setBit(MaskVal - VWidth); 334 } 335 break; 336 } 337 default: 338 break; 339 } 340 return UsedElts; 341 } 342 343 /// Find union of elements of V demanded by all its users. 344 /// If it is known by querying findDemandedEltsBySingleUser that 345 /// no user demands an element of V, then the corresponding bit 346 /// remains unset in the returned value. 347 static APInt findDemandedEltsByAllUsers(Value *V) { 348 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 349 350 APInt UnionUsedElts(VWidth, 0); 351 for (const Use &U : V->uses()) { 352 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 353 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 354 } else { 355 UnionUsedElts = APInt::getAllOnes(VWidth); 356 break; 357 } 358 359 if (UnionUsedElts.isAllOnes()) 360 break; 361 } 362 363 return UnionUsedElts; 364 } 365 366 /// Given a constant index for a extractelement or insertelement instruction, 367 /// return it with the canonical type if it isn't already canonical. We 368 /// arbitrarily pick 64 bit as our canonical type. The actual bitwidth doesn't 369 /// matter, we just want a consistent type to simplify CSE. 370 ConstantInt *getPreferredVectorIndex(ConstantInt *IndexC) { 371 const unsigned IndexBW = IndexC->getType()->getBitWidth(); 372 if (IndexBW == 64 || IndexC->getValue().getActiveBits() > 64) 373 return nullptr; 374 return ConstantInt::get(IndexC->getContext(), 375 IndexC->getValue().zextOrTrunc(64)); 376 } 377 378 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) { 379 Value *SrcVec = EI.getVectorOperand(); 380 Value *Index = EI.getIndexOperand(); 381 if (Value *V = SimplifyExtractElementInst(SrcVec, Index, 382 SQ.getWithInstruction(&EI))) 383 return replaceInstUsesWith(EI, V); 384 385 // If extracting a specified index from the vector, see if we can recursively 386 // find a previously computed scalar that was inserted into the vector. 387 auto *IndexC = dyn_cast<ConstantInt>(Index); 388 if (IndexC) { 389 // Canonicalize type of constant indices to i64 to simplify CSE 390 if (auto *NewIdx = getPreferredVectorIndex(IndexC)) 391 return replaceOperand(EI, 1, NewIdx); 392 393 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 394 unsigned NumElts = EC.getKnownMinValue(); 395 396 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) { 397 Intrinsic::ID IID = II->getIntrinsicID(); 398 // Index needs to be lower than the minimum size of the vector, because 399 // for scalable vector, the vector size is known at run time. 400 if (IID == Intrinsic::experimental_stepvector && 401 IndexC->getValue().ult(NumElts)) { 402 Type *Ty = EI.getType(); 403 unsigned BitWidth = Ty->getIntegerBitWidth(); 404 Value *Idx; 405 // Return index when its value does not exceed the allowed limit 406 // for the element type of the vector, otherwise return undefined. 407 if (IndexC->getValue().getActiveBits() <= BitWidth) 408 Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth)); 409 else 410 Idx = UndefValue::get(Ty); 411 return replaceInstUsesWith(EI, Idx); 412 } 413 } 414 415 // InstSimplify should handle cases where the index is invalid. 416 // For fixed-length vector, it's invalid to extract out-of-range element. 417 if (!EC.isScalable() && IndexC->getValue().uge(NumElts)) 418 return nullptr; 419 420 if (Instruction *I = foldBitcastExtElt(EI)) 421 return I; 422 423 // If there's a vector PHI feeding a scalar use through this extractelement 424 // instruction, try to scalarize the PHI. 425 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 426 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 427 return ScalarPHI; 428 } 429 430 // TODO come up with a n-ary matcher that subsumes both unary and 431 // binary matchers. 432 UnaryOperator *UO; 433 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, Index)) { 434 // extelt (unop X), Index --> unop (extelt X, Index) 435 Value *X = UO->getOperand(0); 436 Value *E = Builder.CreateExtractElement(X, Index); 437 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); 438 } 439 440 BinaryOperator *BO; 441 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, Index)) { 442 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 443 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 444 Value *E0 = Builder.CreateExtractElement(X, Index); 445 Value *E1 = Builder.CreateExtractElement(Y, Index); 446 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 447 } 448 449 Value *X, *Y; 450 CmpInst::Predicate Pred; 451 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 452 cheapToScalarize(SrcVec, Index)) { 453 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 454 Value *E0 = Builder.CreateExtractElement(X, Index); 455 Value *E1 = Builder.CreateExtractElement(Y, Index); 456 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 457 } 458 459 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 460 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 461 // instsimplify already handled the case where the indices are constants 462 // and equal by value, if both are constants, they must not be the same 463 // value, extract from the pre-inserted value instead. 464 if (isa<Constant>(IE->getOperand(2)) && IndexC) 465 return replaceOperand(EI, 0, IE->getOperand(0)); 466 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 467 auto *VecType = cast<VectorType>(GEP->getType()); 468 ElementCount EC = VecType->getElementCount(); 469 uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0; 470 if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) { 471 // Find out why we have a vector result - these are a few examples: 472 // 1. We have a scalar pointer and a vector of indices, or 473 // 2. We have a vector of pointers and a scalar index, or 474 // 3. We have a vector of pointers and a vector of indices, etc. 475 // Here we only consider combining when there is exactly one vector 476 // operand, since the optimization is less obviously a win due to 477 // needing more than one extractelements. 478 479 unsigned VectorOps = 480 llvm::count_if(GEP->operands(), [](const Value *V) { 481 return isa<VectorType>(V->getType()); 482 }); 483 if (VectorOps == 1) { 484 Value *NewPtr = GEP->getPointerOperand(); 485 if (isa<VectorType>(NewPtr->getType())) 486 NewPtr = Builder.CreateExtractElement(NewPtr, IndexC); 487 488 SmallVector<Value *> NewOps; 489 for (unsigned I = 1; I != GEP->getNumOperands(); ++I) { 490 Value *Op = GEP->getOperand(I); 491 if (isa<VectorType>(Op->getType())) 492 NewOps.push_back(Builder.CreateExtractElement(Op, IndexC)); 493 else 494 NewOps.push_back(Op); 495 } 496 497 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 498 GEP->getSourceElementType(), NewPtr, NewOps); 499 NewGEP->setIsInBounds(GEP->isInBounds()); 500 return NewGEP; 501 } 502 } 503 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 504 // If this is extracting an element from a shufflevector, figure out where 505 // it came from and extract from the appropriate input element instead. 506 // Restrict the following transformation to fixed-length vector. 507 if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) { 508 int SrcIdx = 509 SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue()); 510 Value *Src; 511 unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType()) 512 ->getNumElements(); 513 514 if (SrcIdx < 0) 515 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 516 if (SrcIdx < (int)LHSWidth) 517 Src = SVI->getOperand(0); 518 else { 519 SrcIdx -= LHSWidth; 520 Src = SVI->getOperand(1); 521 } 522 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 523 return ExtractElementInst::Create( 524 Src, ConstantInt::get(Int32Ty, SrcIdx, false)); 525 } 526 } else if (auto *CI = dyn_cast<CastInst>(I)) { 527 // Canonicalize extractelement(cast) -> cast(extractelement). 528 // Bitcasts can change the number of vector elements, and they cost 529 // nothing. 530 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 531 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 532 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 533 } 534 } 535 } 536 537 // Run demanded elements after other transforms as this can drop flags on 538 // binops. If there's two paths to the same final result, we prefer the 539 // one which doesn't force us to drop flags. 540 if (IndexC) { 541 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 542 unsigned NumElts = EC.getKnownMinValue(); 543 // This instruction only demands the single element from the input vector. 544 // Skip for scalable type, the number of elements is unknown at 545 // compile-time. 546 if (!EC.isScalable() && NumElts != 1) { 547 // If the input vector has a single use, simplify it based on this use 548 // property. 549 if (SrcVec->hasOneUse()) { 550 APInt UndefElts(NumElts, 0); 551 APInt DemandedElts(NumElts, 0); 552 DemandedElts.setBit(IndexC->getZExtValue()); 553 if (Value *V = 554 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) 555 return replaceOperand(EI, 0, V); 556 } else { 557 // If the input vector has multiple uses, simplify it based on a union 558 // of all elements used. 559 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 560 if (!DemandedElts.isAllOnes()) { 561 APInt UndefElts(NumElts, 0); 562 if (Value *V = SimplifyDemandedVectorElts( 563 SrcVec, DemandedElts, UndefElts, 0 /* Depth */, 564 true /* AllowMultipleUsers */)) { 565 if (V != SrcVec) { 566 SrcVec->replaceAllUsesWith(V); 567 return &EI; 568 } 569 } 570 } 571 } 572 } 573 } 574 return nullptr; 575 } 576 577 /// If V is a shuffle of values that ONLY returns elements from either LHS or 578 /// RHS, return the shuffle mask and true. Otherwise, return false. 579 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 580 SmallVectorImpl<int> &Mask) { 581 assert(LHS->getType() == RHS->getType() && 582 "Invalid CollectSingleShuffleElements"); 583 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 584 585 if (match(V, m_Undef())) { 586 Mask.assign(NumElts, -1); 587 return true; 588 } 589 590 if (V == LHS) { 591 for (unsigned i = 0; i != NumElts; ++i) 592 Mask.push_back(i); 593 return true; 594 } 595 596 if (V == RHS) { 597 for (unsigned i = 0; i != NumElts; ++i) 598 Mask.push_back(i + NumElts); 599 return true; 600 } 601 602 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 603 // If this is an insert of an extract from some other vector, include it. 604 Value *VecOp = IEI->getOperand(0); 605 Value *ScalarOp = IEI->getOperand(1); 606 Value *IdxOp = IEI->getOperand(2); 607 608 if (!isa<ConstantInt>(IdxOp)) 609 return false; 610 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 611 612 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 613 // We can handle this if the vector we are inserting into is 614 // transitively ok. 615 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 616 // If so, update the mask to reflect the inserted undef. 617 Mask[InsertedIdx] = -1; 618 return true; 619 } 620 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 621 if (isa<ConstantInt>(EI->getOperand(1))) { 622 unsigned ExtractedIdx = 623 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 624 unsigned NumLHSElts = 625 cast<FixedVectorType>(LHS->getType())->getNumElements(); 626 627 // This must be extracting from either LHS or RHS. 628 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 629 // We can handle this if the vector we are inserting into is 630 // transitively ok. 631 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 632 // If so, update the mask to reflect the inserted value. 633 if (EI->getOperand(0) == LHS) { 634 Mask[InsertedIdx % NumElts] = ExtractedIdx; 635 } else { 636 assert(EI->getOperand(0) == RHS); 637 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts; 638 } 639 return true; 640 } 641 } 642 } 643 } 644 } 645 646 return false; 647 } 648 649 /// If we have insertion into a vector that is wider than the vector that we 650 /// are extracting from, try to widen the source vector to allow a single 651 /// shufflevector to replace one or more insert/extract pairs. 652 static void replaceExtractElements(InsertElementInst *InsElt, 653 ExtractElementInst *ExtElt, 654 InstCombinerImpl &IC) { 655 auto *InsVecType = cast<FixedVectorType>(InsElt->getType()); 656 auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType()); 657 unsigned NumInsElts = InsVecType->getNumElements(); 658 unsigned NumExtElts = ExtVecType->getNumElements(); 659 660 // The inserted-to vector must be wider than the extracted-from vector. 661 if (InsVecType->getElementType() != ExtVecType->getElementType() || 662 NumExtElts >= NumInsElts) 663 return; 664 665 // Create a shuffle mask to widen the extended-from vector using poison 666 // values. The mask selects all of the values of the original vector followed 667 // by as many poison values as needed to create a vector of the same length 668 // as the inserted-to vector. 669 SmallVector<int, 16> ExtendMask; 670 for (unsigned i = 0; i < NumExtElts; ++i) 671 ExtendMask.push_back(i); 672 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 673 ExtendMask.push_back(-1); 674 675 Value *ExtVecOp = ExtElt->getVectorOperand(); 676 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 677 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 678 ? ExtVecOpInst->getParent() 679 : ExtElt->getParent(); 680 681 // TODO: This restriction matches the basic block check below when creating 682 // new extractelement instructions. If that limitation is removed, this one 683 // could also be removed. But for now, we just bail out to ensure that we 684 // will replace the extractelement instruction that is feeding our 685 // insertelement instruction. This allows the insertelement to then be 686 // replaced by a shufflevector. If the insertelement is not replaced, we can 687 // induce infinite looping because there's an optimization for extractelement 688 // that will delete our widening shuffle. This would trigger another attempt 689 // here to create that shuffle, and we spin forever. 690 if (InsertionBlock != InsElt->getParent()) 691 return; 692 693 // TODO: This restriction matches the check in visitInsertElementInst() and 694 // prevents an infinite loop caused by not turning the extract/insert pair 695 // into a shuffle. We really should not need either check, but we're lacking 696 // folds for shufflevectors because we're afraid to generate shuffle masks 697 // that the backend can't handle. 698 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 699 return; 700 701 auto *WideVec = new ShuffleVectorInst(ExtVecOp, ExtendMask); 702 703 // Insert the new shuffle after the vector operand of the extract is defined 704 // (as long as it's not a PHI) or at the start of the basic block of the 705 // extract, so any subsequent extracts in the same basic block can use it. 706 // TODO: Insert before the earliest ExtractElementInst that is replaced. 707 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 708 WideVec->insertAfter(ExtVecOpInst); 709 else 710 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 711 712 // Replace extracts from the original narrow vector with extracts from the new 713 // wide vector. 714 for (User *U : ExtVecOp->users()) { 715 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 716 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 717 continue; 718 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 719 NewExt->insertAfter(OldExt); 720 IC.replaceInstUsesWith(*OldExt, NewExt); 721 } 722 } 723 724 /// We are building a shuffle to create V, which is a sequence of insertelement, 725 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 726 /// not rely on the second vector source. Return a std::pair containing the 727 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 728 /// parameter as required. 729 /// 730 /// Note: we intentionally don't try to fold earlier shuffles since they have 731 /// often been chosen carefully to be efficiently implementable on the target. 732 using ShuffleOps = std::pair<Value *, Value *>; 733 734 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask, 735 Value *PermittedRHS, 736 InstCombinerImpl &IC) { 737 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 738 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 739 740 if (match(V, m_Undef())) { 741 Mask.assign(NumElts, -1); 742 return std::make_pair( 743 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 744 } 745 746 if (isa<ConstantAggregateZero>(V)) { 747 Mask.assign(NumElts, 0); 748 return std::make_pair(V, nullptr); 749 } 750 751 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 752 // If this is an insert of an extract from some other vector, include it. 753 Value *VecOp = IEI->getOperand(0); 754 Value *ScalarOp = IEI->getOperand(1); 755 Value *IdxOp = IEI->getOperand(2); 756 757 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 758 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 759 unsigned ExtractedIdx = 760 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 761 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 762 763 // Either the extracted from or inserted into vector must be RHSVec, 764 // otherwise we'd end up with a shuffle of three inputs. 765 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 766 Value *RHS = EI->getOperand(0); 767 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 768 assert(LR.second == nullptr || LR.second == RHS); 769 770 if (LR.first->getType() != RHS->getType()) { 771 // Although we are giving up for now, see if we can create extracts 772 // that match the inserts for another round of combining. 773 replaceExtractElements(IEI, EI, IC); 774 775 // We tried our best, but we can't find anything compatible with RHS 776 // further up the chain. Return a trivial shuffle. 777 for (unsigned i = 0; i < NumElts; ++i) 778 Mask[i] = i; 779 return std::make_pair(V, nullptr); 780 } 781 782 unsigned NumLHSElts = 783 cast<FixedVectorType>(RHS->getType())->getNumElements(); 784 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx; 785 return std::make_pair(LR.first, RHS); 786 } 787 788 if (VecOp == PermittedRHS) { 789 // We've gone as far as we can: anything on the other side of the 790 // extractelement will already have been converted into a shuffle. 791 unsigned NumLHSElts = 792 cast<FixedVectorType>(EI->getOperand(0)->getType()) 793 ->getNumElements(); 794 for (unsigned i = 0; i != NumElts; ++i) 795 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i); 796 return std::make_pair(EI->getOperand(0), PermittedRHS); 797 } 798 799 // If this insertelement is a chain that comes from exactly these two 800 // vectors, return the vector and the effective shuffle. 801 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 802 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 803 Mask)) 804 return std::make_pair(EI->getOperand(0), PermittedRHS); 805 } 806 } 807 } 808 809 // Otherwise, we can't do anything fancy. Return an identity vector. 810 for (unsigned i = 0; i != NumElts; ++i) 811 Mask.push_back(i); 812 return std::make_pair(V, nullptr); 813 } 814 815 /// Look for chain of insertvalue's that fully define an aggregate, and trace 816 /// back the values inserted, see if they are all were extractvalue'd from 817 /// the same source aggregate from the exact same element indexes. 818 /// If they were, just reuse the source aggregate. 819 /// This potentially deals with PHI indirections. 820 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse( 821 InsertValueInst &OrigIVI) { 822 Type *AggTy = OrigIVI.getType(); 823 unsigned NumAggElts; 824 switch (AggTy->getTypeID()) { 825 case Type::StructTyID: 826 NumAggElts = AggTy->getStructNumElements(); 827 break; 828 case Type::ArrayTyID: 829 NumAggElts = AggTy->getArrayNumElements(); 830 break; 831 default: 832 llvm_unreachable("Unhandled aggregate type?"); 833 } 834 835 // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able 836 // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}), 837 // FIXME: any interesting patterns to be caught with larger limit? 838 assert(NumAggElts > 0 && "Aggregate should have elements."); 839 if (NumAggElts > 2) 840 return nullptr; 841 842 static constexpr auto NotFound = None; 843 static constexpr auto FoundMismatch = nullptr; 844 845 // Try to find a value of each element of an aggregate. 846 // FIXME: deal with more complex, not one-dimensional, aggregate types 847 SmallVector<Optional<Instruction *>, 2> AggElts(NumAggElts, NotFound); 848 849 // Do we know values for each element of the aggregate? 850 auto KnowAllElts = [&AggElts]() { 851 return all_of(AggElts, 852 [](Optional<Instruction *> Elt) { return Elt != NotFound; }); 853 }; 854 855 int Depth = 0; 856 857 // Arbitrary `insertvalue` visitation depth limit. Let's be okay with 858 // every element being overwritten twice, which should never happen. 859 static const int DepthLimit = 2 * NumAggElts; 860 861 // Recurse up the chain of `insertvalue` aggregate operands until either we've 862 // reconstructed full initializer or can't visit any more `insertvalue`'s. 863 for (InsertValueInst *CurrIVI = &OrigIVI; 864 Depth < DepthLimit && CurrIVI && !KnowAllElts(); 865 CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()), 866 ++Depth) { 867 auto *InsertedValue = 868 dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand()); 869 if (!InsertedValue) 870 return nullptr; // Inserted value must be produced by an instruction. 871 872 ArrayRef<unsigned int> Indices = CurrIVI->getIndices(); 873 874 // Don't bother with more than single-level aggregates. 875 if (Indices.size() != 1) 876 return nullptr; // FIXME: deal with more complex aggregates? 877 878 // Now, we may have already previously recorded the value for this element 879 // of an aggregate. If we did, that means the CurrIVI will later be 880 // overwritten with the already-recorded value. But if not, let's record it! 881 Optional<Instruction *> &Elt = AggElts[Indices.front()]; 882 Elt = Elt.getValueOr(InsertedValue); 883 884 // FIXME: should we handle chain-terminating undef base operand? 885 } 886 887 // Was that sufficient to deduce the full initializer for the aggregate? 888 if (!KnowAllElts()) 889 return nullptr; // Give up then. 890 891 // We now want to find the source[s] of the aggregate elements we've found. 892 // And with "source" we mean the original aggregate[s] from which 893 // the inserted elements were extracted. This may require PHI translation. 894 895 enum class AggregateDescription { 896 /// When analyzing the value that was inserted into an aggregate, we did 897 /// not manage to find defining `extractvalue` instruction to analyze. 898 NotFound, 899 /// When analyzing the value that was inserted into an aggregate, we did 900 /// manage to find defining `extractvalue` instruction[s], and everything 901 /// matched perfectly - aggregate type, element insertion/extraction index. 902 Found, 903 /// When analyzing the value that was inserted into an aggregate, we did 904 /// manage to find defining `extractvalue` instruction, but there was 905 /// a mismatch: either the source type from which the extraction was didn't 906 /// match the aggregate type into which the insertion was, 907 /// or the extraction/insertion channels mismatched, 908 /// or different elements had different source aggregates. 909 FoundMismatch 910 }; 911 auto Describe = [](Optional<Value *> SourceAggregate) { 912 if (SourceAggregate == NotFound) 913 return AggregateDescription::NotFound; 914 if (*SourceAggregate == FoundMismatch) 915 return AggregateDescription::FoundMismatch; 916 return AggregateDescription::Found; 917 }; 918 919 // Given the value \p Elt that was being inserted into element \p EltIdx of an 920 // aggregate AggTy, see if \p Elt was originally defined by an 921 // appropriate extractvalue (same element index, same aggregate type). 922 // If found, return the source aggregate from which the extraction was. 923 // If \p PredBB is provided, does PHI translation of an \p Elt first. 924 auto FindSourceAggregate = 925 [&](Instruction *Elt, unsigned EltIdx, Optional<BasicBlock *> UseBB, 926 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 927 // For now(?), only deal with, at most, a single level of PHI indirection. 928 if (UseBB && PredBB) 929 Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB)); 930 // FIXME: deal with multiple levels of PHI indirection? 931 932 // Did we find an extraction? 933 auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt); 934 if (!EVI) 935 return NotFound; 936 937 Value *SourceAggregate = EVI->getAggregateOperand(); 938 939 // Is the extraction from the same type into which the insertion was? 940 if (SourceAggregate->getType() != AggTy) 941 return FoundMismatch; 942 // And the element index doesn't change between extraction and insertion? 943 if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front()) 944 return FoundMismatch; 945 946 return SourceAggregate; // AggregateDescription::Found 947 }; 948 949 // Given elements AggElts that were constructing an aggregate OrigIVI, 950 // see if we can find appropriate source aggregate for each of the elements, 951 // and see it's the same aggregate for each element. If so, return it. 952 auto FindCommonSourceAggregate = 953 [&](Optional<BasicBlock *> UseBB, 954 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 955 Optional<Value *> SourceAggregate; 956 957 for (auto I : enumerate(AggElts)) { 958 assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch && 959 "We don't store nullptr in SourceAggregate!"); 960 assert((Describe(SourceAggregate) == AggregateDescription::Found) == 961 (I.index() != 0) && 962 "SourceAggregate should be valid after the first element,"); 963 964 // For this element, is there a plausible source aggregate? 965 // FIXME: we could special-case undef element, IFF we know that in the 966 // source aggregate said element isn't poison. 967 Optional<Value *> SourceAggregateForElement = 968 FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB); 969 970 // Okay, what have we found? Does that correlate with previous findings? 971 972 // Regardless of whether or not we have previously found source 973 // aggregate for previous elements (if any), if we didn't find one for 974 // this element, passthrough whatever we have just found. 975 if (Describe(SourceAggregateForElement) != AggregateDescription::Found) 976 return SourceAggregateForElement; 977 978 // Okay, we have found source aggregate for this element. 979 // Let's see what we already know from previous elements, if any. 980 switch (Describe(SourceAggregate)) { 981 case AggregateDescription::NotFound: 982 // This is apparently the first element that we have examined. 983 SourceAggregate = SourceAggregateForElement; // Record the aggregate! 984 continue; // Great, now look at next element. 985 case AggregateDescription::Found: 986 // We have previously already successfully examined other elements. 987 // Is this the same source aggregate we've found for other elements? 988 if (*SourceAggregateForElement != *SourceAggregate) 989 return FoundMismatch; 990 continue; // Still the same aggregate, look at next element. 991 case AggregateDescription::FoundMismatch: 992 llvm_unreachable("Can't happen. We would have early-exited then."); 993 }; 994 } 995 996 assert(Describe(SourceAggregate) == AggregateDescription::Found && 997 "Must be a valid Value"); 998 return *SourceAggregate; 999 }; 1000 1001 Optional<Value *> SourceAggregate; 1002 1003 // Can we find the source aggregate without looking at predecessors? 1004 SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/None, /*PredBB=*/None); 1005 if (Describe(SourceAggregate) != AggregateDescription::NotFound) { 1006 if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch) 1007 return nullptr; // Conflicting source aggregates! 1008 ++NumAggregateReconstructionsSimplified; 1009 return replaceInstUsesWith(OrigIVI, *SourceAggregate); 1010 } 1011 1012 // Okay, apparently we need to look at predecessors. 1013 1014 // We should be smart about picking the "use" basic block, which will be the 1015 // merge point for aggregate, where we'll insert the final PHI that will be 1016 // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice. 1017 // We should look in which blocks each of the AggElts is being defined, 1018 // they all should be defined in the same basic block. 1019 BasicBlock *UseBB = nullptr; 1020 1021 for (const Optional<Instruction *> &I : AggElts) { 1022 BasicBlock *BB = (*I)->getParent(); 1023 // If it's the first instruction we've encountered, record the basic block. 1024 if (!UseBB) { 1025 UseBB = BB; 1026 continue; 1027 } 1028 // Otherwise, this must be the same basic block we've seen previously. 1029 if (UseBB != BB) 1030 return nullptr; 1031 } 1032 1033 // If *all* of the elements are basic-block-independent, meaning they are 1034 // either function arguments, or constant expressions, then if we didn't 1035 // handle them without predecessor-aware handling, we won't handle them now. 1036 if (!UseBB) 1037 return nullptr; 1038 1039 // If we didn't manage to find source aggregate without looking at 1040 // predecessors, and there are no predecessors to look at, then we're done. 1041 if (pred_empty(UseBB)) 1042 return nullptr; 1043 1044 // Arbitrary predecessor count limit. 1045 static const int PredCountLimit = 64; 1046 1047 // Cache the (non-uniqified!) list of predecessors in a vector, 1048 // checking the limit at the same time for efficiency. 1049 SmallVector<BasicBlock *, 4> Preds; // May have duplicates! 1050 for (BasicBlock *Pred : predecessors(UseBB)) { 1051 // Don't bother if there are too many predecessors. 1052 if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once? 1053 return nullptr; 1054 Preds.emplace_back(Pred); 1055 } 1056 1057 // For each predecessor, what is the source aggregate, 1058 // from which all the elements were originally extracted from? 1059 // Note that we want for the map to have stable iteration order! 1060 SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates; 1061 for (BasicBlock *Pred : Preds) { 1062 std::pair<decltype(SourceAggregates)::iterator, bool> IV = 1063 SourceAggregates.insert({Pred, nullptr}); 1064 // Did we already evaluate this predecessor? 1065 if (!IV.second) 1066 continue; 1067 1068 // Let's hope that when coming from predecessor Pred, all elements of the 1069 // aggregate produced by OrigIVI must have been originally extracted from 1070 // the same aggregate. Is that so? Can we find said original aggregate? 1071 SourceAggregate = FindCommonSourceAggregate(UseBB, Pred); 1072 if (Describe(SourceAggregate) != AggregateDescription::Found) 1073 return nullptr; // Give up. 1074 IV.first->second = *SourceAggregate; 1075 } 1076 1077 // All good! Now we just need to thread the source aggregates here. 1078 // Note that we have to insert the new PHI here, ourselves, because we can't 1079 // rely on InstCombinerImpl::run() inserting it into the right basic block. 1080 // Note that the same block can be a predecessor more than once, 1081 // and we need to preserve that invariant for the PHI node. 1082 BuilderTy::InsertPointGuard Guard(Builder); 1083 Builder.SetInsertPoint(UseBB->getFirstNonPHI()); 1084 auto *PHI = 1085 Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged"); 1086 for (BasicBlock *Pred : Preds) 1087 PHI->addIncoming(SourceAggregates[Pred], Pred); 1088 1089 ++NumAggregateReconstructionsSimplified; 1090 return replaceInstUsesWith(OrigIVI, PHI); 1091 } 1092 1093 /// Try to find redundant insertvalue instructions, like the following ones: 1094 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 1095 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 1096 /// Here the second instruction inserts values at the same indices, as the 1097 /// first one, making the first one redundant. 1098 /// It should be transformed to: 1099 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 1100 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) { 1101 bool IsRedundant = false; 1102 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 1103 1104 // If there is a chain of insertvalue instructions (each of them except the 1105 // last one has only one use and it's another insertvalue insn from this 1106 // chain), check if any of the 'children' uses the same indices as the first 1107 // instruction. In this case, the first one is redundant. 1108 Value *V = &I; 1109 unsigned Depth = 0; 1110 while (V->hasOneUse() && Depth < 10) { 1111 User *U = V->user_back(); 1112 auto UserInsInst = dyn_cast<InsertValueInst>(U); 1113 if (!UserInsInst || U->getOperand(0) != V) 1114 break; 1115 if (UserInsInst->getIndices() == FirstIndices) { 1116 IsRedundant = true; 1117 break; 1118 } 1119 V = UserInsInst; 1120 Depth++; 1121 } 1122 1123 if (IsRedundant) 1124 return replaceInstUsesWith(I, I.getOperand(0)); 1125 1126 if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I)) 1127 return NewI; 1128 1129 return nullptr; 1130 } 1131 1132 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 1133 // Can not analyze scalable type, the number of elements is not a compile-time 1134 // constant. 1135 if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType())) 1136 return false; 1137 1138 int MaskSize = Shuf.getShuffleMask().size(); 1139 int VecSize = 1140 cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements(); 1141 1142 // A vector select does not change the size of the operands. 1143 if (MaskSize != VecSize) 1144 return false; 1145 1146 // Each mask element must be undefined or choose a vector element from one of 1147 // the source operands without crossing vector lanes. 1148 for (int i = 0; i != MaskSize; ++i) { 1149 int Elt = Shuf.getMaskValue(i); 1150 if (Elt != -1 && Elt != i && Elt != i + VecSize) 1151 return false; 1152 } 1153 1154 return true; 1155 } 1156 1157 /// Turn a chain of inserts that splats a value into an insert + shuffle: 1158 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 1159 /// shufflevector(insertelt(X, %k, 0), poison, zero) 1160 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 1161 // We are interested in the last insert in a chain. So if this insert has a 1162 // single user and that user is an insert, bail. 1163 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 1164 return nullptr; 1165 1166 VectorType *VecTy = InsElt.getType(); 1167 // Can not handle scalable type, the number of elements is not a compile-time 1168 // constant. 1169 if (isa<ScalableVectorType>(VecTy)) 1170 return nullptr; 1171 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1172 1173 // Do not try to do this for a one-element vector, since that's a nop, 1174 // and will cause an inf-loop. 1175 if (NumElements == 1) 1176 return nullptr; 1177 1178 Value *SplatVal = InsElt.getOperand(1); 1179 InsertElementInst *CurrIE = &InsElt; 1180 SmallBitVector ElementPresent(NumElements, false); 1181 InsertElementInst *FirstIE = nullptr; 1182 1183 // Walk the chain backwards, keeping track of which indices we inserted into, 1184 // until we hit something that isn't an insert of the splatted value. 1185 while (CurrIE) { 1186 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 1187 if (!Idx || CurrIE->getOperand(1) != SplatVal) 1188 return nullptr; 1189 1190 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 1191 // Check none of the intermediate steps have any additional uses, except 1192 // for the root insertelement instruction, which can be re-used, if it 1193 // inserts at position 0. 1194 if (CurrIE != &InsElt && 1195 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 1196 return nullptr; 1197 1198 ElementPresent[Idx->getZExtValue()] = true; 1199 FirstIE = CurrIE; 1200 CurrIE = NextIE; 1201 } 1202 1203 // If this is just a single insertelement (not a sequence), we are done. 1204 if (FirstIE == &InsElt) 1205 return nullptr; 1206 1207 // If we are not inserting into an undef vector, make sure we've seen an 1208 // insert into every element. 1209 // TODO: If the base vector is not undef, it might be better to create a splat 1210 // and then a select-shuffle (blend) with the base vector. 1211 if (!match(FirstIE->getOperand(0), m_Undef())) 1212 if (!ElementPresent.all()) 1213 return nullptr; 1214 1215 // Create the insert + shuffle. 1216 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); 1217 PoisonValue *PoisonVec = PoisonValue::get(VecTy); 1218 Constant *Zero = ConstantInt::get(Int32Ty, 0); 1219 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 1220 FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "", &InsElt); 1221 1222 // Splat from element 0, but replace absent elements with undef in the mask. 1223 SmallVector<int, 16> Mask(NumElements, 0); 1224 for (unsigned i = 0; i != NumElements; ++i) 1225 if (!ElementPresent[i]) 1226 Mask[i] = -1; 1227 1228 return new ShuffleVectorInst(FirstIE, Mask); 1229 } 1230 1231 /// Try to fold an insert element into an existing splat shuffle by changing 1232 /// the shuffle's mask to include the index of this insert element. 1233 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 1234 // Check if the vector operand of this insert is a canonical splat shuffle. 1235 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1236 if (!Shuf || !Shuf->isZeroEltSplat()) 1237 return nullptr; 1238 1239 // Bail out early if shuffle is scalable type. The number of elements in 1240 // shuffle mask is unknown at compile-time. 1241 if (isa<ScalableVectorType>(Shuf->getType())) 1242 return nullptr; 1243 1244 // Check for a constant insertion index. 1245 uint64_t IdxC; 1246 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1247 return nullptr; 1248 1249 // Check if the splat shuffle's input is the same as this insert's scalar op. 1250 Value *X = InsElt.getOperand(1); 1251 Value *Op0 = Shuf->getOperand(0); 1252 if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt()))) 1253 return nullptr; 1254 1255 // Replace the shuffle mask element at the index of this insert with a zero. 1256 // For example: 1257 // inselt (shuf (inselt undef, X, 0), _, <0,undef,0,undef>), X, 1 1258 // --> shuf (inselt undef, X, 0), poison, <0,0,0,undef> 1259 unsigned NumMaskElts = 1260 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1261 SmallVector<int, 16> NewMask(NumMaskElts); 1262 for (unsigned i = 0; i != NumMaskElts; ++i) 1263 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); 1264 1265 return new ShuffleVectorInst(Op0, NewMask); 1266 } 1267 1268 /// Try to fold an extract+insert element into an existing identity shuffle by 1269 /// changing the shuffle's mask to include the index of this insert element. 1270 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 1271 // Check if the vector operand of this insert is an identity shuffle. 1272 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1273 if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) || 1274 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 1275 return nullptr; 1276 1277 // Bail out early if shuffle is scalable type. The number of elements in 1278 // shuffle mask is unknown at compile-time. 1279 if (isa<ScalableVectorType>(Shuf->getType())) 1280 return nullptr; 1281 1282 // Check for a constant insertion index. 1283 uint64_t IdxC; 1284 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1285 return nullptr; 1286 1287 // Check if this insert's scalar op is extracted from the identity shuffle's 1288 // input vector. 1289 Value *Scalar = InsElt.getOperand(1); 1290 Value *X = Shuf->getOperand(0); 1291 if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC)))) 1292 return nullptr; 1293 1294 // Replace the shuffle mask element at the index of this extract+insert with 1295 // that same index value. 1296 // For example: 1297 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 1298 unsigned NumMaskElts = 1299 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1300 SmallVector<int, 16> NewMask(NumMaskElts); 1301 ArrayRef<int> OldMask = Shuf->getShuffleMask(); 1302 for (unsigned i = 0; i != NumMaskElts; ++i) { 1303 if (i != IdxC) { 1304 // All mask elements besides the inserted element remain the same. 1305 NewMask[i] = OldMask[i]; 1306 } else if (OldMask[i] == (int)IdxC) { 1307 // If the mask element was already set, there's nothing to do 1308 // (demanded elements analysis may unset it later). 1309 return nullptr; 1310 } else { 1311 assert(OldMask[i] == UndefMaskElem && 1312 "Unexpected shuffle mask element for identity shuffle"); 1313 NewMask[i] = IdxC; 1314 } 1315 } 1316 1317 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 1318 } 1319 1320 /// If we have an insertelement instruction feeding into another insertelement 1321 /// and the 2nd is inserting a constant into the vector, canonicalize that 1322 /// constant insertion before the insertion of a variable: 1323 /// 1324 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 1325 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 1326 /// 1327 /// This has the potential of eliminating the 2nd insertelement instruction 1328 /// via constant folding of the scalar constant into a vector constant. 1329 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 1330 InstCombiner::BuilderTy &Builder) { 1331 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 1332 if (!InsElt1 || !InsElt1->hasOneUse()) 1333 return nullptr; 1334 1335 Value *X, *Y; 1336 Constant *ScalarC; 1337 ConstantInt *IdxC1, *IdxC2; 1338 if (match(InsElt1->getOperand(0), m_Value(X)) && 1339 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 1340 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 1341 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 1342 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 1343 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 1344 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 1345 } 1346 1347 return nullptr; 1348 } 1349 1350 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 1351 /// --> shufflevector X, CVec', Mask' 1352 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 1353 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 1354 // Bail out if the parent has more than one use. In that case, we'd be 1355 // replacing the insertelt with a shuffle, and that's not a clear win. 1356 if (!Inst || !Inst->hasOneUse()) 1357 return nullptr; 1358 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 1359 // The shuffle must have a constant vector operand. The insertelt must have 1360 // a constant scalar being inserted at a constant position in the vector. 1361 Constant *ShufConstVec, *InsEltScalar; 1362 uint64_t InsEltIndex; 1363 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 1364 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 1365 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 1366 return nullptr; 1367 1368 // Adding an element to an arbitrary shuffle could be expensive, but a 1369 // shuffle that selects elements from vectors without crossing lanes is 1370 // assumed cheap. 1371 // If we're just adding a constant into that shuffle, it will still be 1372 // cheap. 1373 if (!isShuffleEquivalentToSelect(*Shuf)) 1374 return nullptr; 1375 1376 // From the above 'select' check, we know that the mask has the same number 1377 // of elements as the vector input operands. We also know that each constant 1378 // input element is used in its lane and can not be used more than once by 1379 // the shuffle. Therefore, replace the constant in the shuffle's constant 1380 // vector with the insertelt constant. Replace the constant in the shuffle's 1381 // mask vector with the insertelt index plus the length of the vector 1382 // (because the constant vector operand of a shuffle is always the 2nd 1383 // operand). 1384 ArrayRef<int> Mask = Shuf->getShuffleMask(); 1385 unsigned NumElts = Mask.size(); 1386 SmallVector<Constant *, 16> NewShufElts(NumElts); 1387 SmallVector<int, 16> NewMaskElts(NumElts); 1388 for (unsigned I = 0; I != NumElts; ++I) { 1389 if (I == InsEltIndex) { 1390 NewShufElts[I] = InsEltScalar; 1391 NewMaskElts[I] = InsEltIndex + NumElts; 1392 } else { 1393 // Copy over the existing values. 1394 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 1395 NewMaskElts[I] = Mask[I]; 1396 } 1397 1398 // Bail if we failed to find an element. 1399 if (!NewShufElts[I]) 1400 return nullptr; 1401 } 1402 1403 // Create new operands for a shuffle that includes the constant of the 1404 // original insertelt. The old shuffle will be dead now. 1405 return new ShuffleVectorInst(Shuf->getOperand(0), 1406 ConstantVector::get(NewShufElts), NewMaskElts); 1407 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 1408 // Transform sequences of insertelements ops with constant data/indexes into 1409 // a single shuffle op. 1410 // Can not handle scalable type, the number of elements needed to create 1411 // shuffle mask is not a compile-time constant. 1412 if (isa<ScalableVectorType>(InsElt.getType())) 1413 return nullptr; 1414 unsigned NumElts = 1415 cast<FixedVectorType>(InsElt.getType())->getNumElements(); 1416 1417 uint64_t InsertIdx[2]; 1418 Constant *Val[2]; 1419 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 1420 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 1421 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 1422 !match(IEI->getOperand(1), m_Constant(Val[1]))) 1423 return nullptr; 1424 SmallVector<Constant *, 16> Values(NumElts); 1425 SmallVector<int, 16> Mask(NumElts); 1426 auto ValI = std::begin(Val); 1427 // Generate new constant vector and mask. 1428 // We have 2 values/masks from the insertelements instructions. Insert them 1429 // into new value/mask vectors. 1430 for (uint64_t I : InsertIdx) { 1431 if (!Values[I]) { 1432 Values[I] = *ValI; 1433 Mask[I] = NumElts + I; 1434 } 1435 ++ValI; 1436 } 1437 // Remaining values are filled with 'undef' values. 1438 for (unsigned I = 0; I < NumElts; ++I) { 1439 if (!Values[I]) { 1440 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 1441 Mask[I] = I; 1442 } 1443 } 1444 // Create new operands for a shuffle that includes the constant of the 1445 // original insertelt. 1446 return new ShuffleVectorInst(IEI->getOperand(0), 1447 ConstantVector::get(Values), Mask); 1448 } 1449 return nullptr; 1450 } 1451 1452 /// If both the base vector and the inserted element are extended from the same 1453 /// type, do the insert element in the narrow source type followed by extend. 1454 /// TODO: This can be extended to include other cast opcodes, but particularly 1455 /// if we create a wider insertelement, make sure codegen is not harmed. 1456 static Instruction *narrowInsElt(InsertElementInst &InsElt, 1457 InstCombiner::BuilderTy &Builder) { 1458 // We are creating a vector extend. If the original vector extend has another 1459 // use, that would mean we end up with 2 vector extends, so avoid that. 1460 // TODO: We could ease the use-clause to "if at least one op has one use" 1461 // (assuming that the source types match - see next TODO comment). 1462 Value *Vec = InsElt.getOperand(0); 1463 if (!Vec->hasOneUse()) 1464 return nullptr; 1465 1466 Value *Scalar = InsElt.getOperand(1); 1467 Value *X, *Y; 1468 CastInst::CastOps CastOpcode; 1469 if (match(Vec, m_FPExt(m_Value(X))) && match(Scalar, m_FPExt(m_Value(Y)))) 1470 CastOpcode = Instruction::FPExt; 1471 else if (match(Vec, m_SExt(m_Value(X))) && match(Scalar, m_SExt(m_Value(Y)))) 1472 CastOpcode = Instruction::SExt; 1473 else if (match(Vec, m_ZExt(m_Value(X))) && match(Scalar, m_ZExt(m_Value(Y)))) 1474 CastOpcode = Instruction::ZExt; 1475 else 1476 return nullptr; 1477 1478 // TODO: We can allow mismatched types by creating an intermediate cast. 1479 if (X->getType()->getScalarType() != Y->getType()) 1480 return nullptr; 1481 1482 // inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index) 1483 Value *NewInsElt = Builder.CreateInsertElement(X, Y, InsElt.getOperand(2)); 1484 return CastInst::Create(CastOpcode, NewInsElt, InsElt.getType()); 1485 } 1486 1487 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) { 1488 Value *VecOp = IE.getOperand(0); 1489 Value *ScalarOp = IE.getOperand(1); 1490 Value *IdxOp = IE.getOperand(2); 1491 1492 if (auto *V = SimplifyInsertElementInst( 1493 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1494 return replaceInstUsesWith(IE, V); 1495 1496 // Canonicalize type of constant indices to i64 to simplify CSE 1497 if (auto *IndexC = dyn_cast<ConstantInt>(IdxOp)) 1498 if (auto *NewIdx = getPreferredVectorIndex(IndexC)) 1499 return replaceOperand(IE, 2, NewIdx); 1500 1501 // If the scalar is bitcast and inserted into undef, do the insert in the 1502 // source type followed by bitcast. 1503 // TODO: Generalize for insert into any constant, not just undef? 1504 Value *ScalarSrc; 1505 if (match(VecOp, m_Undef()) && 1506 match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) && 1507 (ScalarSrc->getType()->isIntegerTy() || 1508 ScalarSrc->getType()->isFloatingPointTy())) { 1509 // inselt undef, (bitcast ScalarSrc), IdxOp --> 1510 // bitcast (inselt undef, ScalarSrc, IdxOp) 1511 Type *ScalarTy = ScalarSrc->getType(); 1512 Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount()); 1513 UndefValue *NewUndef = UndefValue::get(VecTy); 1514 Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp); 1515 return new BitCastInst(NewInsElt, IE.getType()); 1516 } 1517 1518 // If the vector and scalar are both bitcast from the same element type, do 1519 // the insert in that source type followed by bitcast. 1520 Value *VecSrc; 1521 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1522 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1523 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1524 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1525 cast<VectorType>(VecSrc->getType())->getElementType() == 1526 ScalarSrc->getType()) { 1527 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1528 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1529 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1530 return new BitCastInst(NewInsElt, IE.getType()); 1531 } 1532 1533 // If the inserted element was extracted from some other fixed-length vector 1534 // and both indexes are valid constants, try to turn this into a shuffle. 1535 // Can not handle scalable vector type, the number of elements needed to 1536 // create shuffle mask is not a compile-time constant. 1537 uint64_t InsertedIdx, ExtractedIdx; 1538 Value *ExtVecOp; 1539 if (isa<FixedVectorType>(IE.getType()) && 1540 match(IdxOp, m_ConstantInt(InsertedIdx)) && 1541 match(ScalarOp, 1542 m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) && 1543 isa<FixedVectorType>(ExtVecOp->getType()) && 1544 ExtractedIdx < 1545 cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) { 1546 // TODO: Looking at the user(s) to determine if this insert is a 1547 // fold-to-shuffle opportunity does not match the usual instcombine 1548 // constraints. We should decide if the transform is worthy based only 1549 // on this instruction and its operands, but that may not work currently. 1550 // 1551 // Here, we are trying to avoid creating shuffles before reaching 1552 // the end of a chain of extract-insert pairs. This is complicated because 1553 // we do not generally form arbitrary shuffle masks in instcombine 1554 // (because those may codegen poorly), but collectShuffleElements() does 1555 // exactly that. 1556 // 1557 // The rules for determining what is an acceptable target-independent 1558 // shuffle mask are fuzzy because they evolve based on the backend's 1559 // capabilities and real-world impact. 1560 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1561 if (!Insert.hasOneUse()) 1562 return true; 1563 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1564 if (!InsertUser) 1565 return true; 1566 return false; 1567 }; 1568 1569 // Try to form a shuffle from a chain of extract-insert ops. 1570 if (isShuffleRootCandidate(IE)) { 1571 SmallVector<int, 16> Mask; 1572 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 1573 1574 // The proposed shuffle may be trivial, in which case we shouldn't 1575 // perform the combine. 1576 if (LR.first != &IE && LR.second != &IE) { 1577 // We now have a shuffle of LHS, RHS, Mask. 1578 if (LR.second == nullptr) 1579 LR.second = UndefValue::get(LR.first->getType()); 1580 return new ShuffleVectorInst(LR.first, LR.second, Mask); 1581 } 1582 } 1583 } 1584 1585 if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) { 1586 unsigned VWidth = VecTy->getNumElements(); 1587 APInt UndefElts(VWidth, 0); 1588 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 1589 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 1590 if (V != &IE) 1591 return replaceInstUsesWith(IE, V); 1592 return &IE; 1593 } 1594 } 1595 1596 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1597 return Shuf; 1598 1599 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1600 return NewInsElt; 1601 1602 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1603 return Broadcast; 1604 1605 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1606 return Splat; 1607 1608 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1609 return IdentityShuf; 1610 1611 if (Instruction *Ext = narrowInsElt(IE, Builder)) 1612 return Ext; 1613 1614 return nullptr; 1615 } 1616 1617 /// Return true if we can evaluate the specified expression tree if the vector 1618 /// elements were shuffled in a different order. 1619 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1620 unsigned Depth = 5) { 1621 // We can always reorder the elements of a constant. 1622 if (isa<Constant>(V)) 1623 return true; 1624 1625 // We won't reorder vector arguments. No IPO here. 1626 Instruction *I = dyn_cast<Instruction>(V); 1627 if (!I) return false; 1628 1629 // Two users may expect different orders of the elements. Don't try it. 1630 if (!I->hasOneUse()) 1631 return false; 1632 1633 if (Depth == 0) return false; 1634 1635 switch (I->getOpcode()) { 1636 case Instruction::UDiv: 1637 case Instruction::SDiv: 1638 case Instruction::URem: 1639 case Instruction::SRem: 1640 // Propagating an undefined shuffle mask element to integer div/rem is not 1641 // allowed because those opcodes can create immediate undefined behavior 1642 // from an undefined element in an operand. 1643 if (llvm::is_contained(Mask, -1)) 1644 return false; 1645 LLVM_FALLTHROUGH; 1646 case Instruction::Add: 1647 case Instruction::FAdd: 1648 case Instruction::Sub: 1649 case Instruction::FSub: 1650 case Instruction::Mul: 1651 case Instruction::FMul: 1652 case Instruction::FDiv: 1653 case Instruction::FRem: 1654 case Instruction::Shl: 1655 case Instruction::LShr: 1656 case Instruction::AShr: 1657 case Instruction::And: 1658 case Instruction::Or: 1659 case Instruction::Xor: 1660 case Instruction::ICmp: 1661 case Instruction::FCmp: 1662 case Instruction::Trunc: 1663 case Instruction::ZExt: 1664 case Instruction::SExt: 1665 case Instruction::FPToUI: 1666 case Instruction::FPToSI: 1667 case Instruction::UIToFP: 1668 case Instruction::SIToFP: 1669 case Instruction::FPTrunc: 1670 case Instruction::FPExt: 1671 case Instruction::GetElementPtr: { 1672 // Bail out if we would create longer vector ops. We could allow creating 1673 // longer vector ops, but that may result in more expensive codegen. 1674 Type *ITy = I->getType(); 1675 if (ITy->isVectorTy() && 1676 Mask.size() > cast<FixedVectorType>(ITy)->getNumElements()) 1677 return false; 1678 for (Value *Operand : I->operands()) { 1679 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1680 return false; 1681 } 1682 return true; 1683 } 1684 case Instruction::InsertElement: { 1685 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1686 if (!CI) return false; 1687 int ElementNumber = CI->getLimitedValue(); 1688 1689 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1690 // can't put an element into multiple indices. 1691 bool SeenOnce = false; 1692 for (int i = 0, e = Mask.size(); i != e; ++i) { 1693 if (Mask[i] == ElementNumber) { 1694 if (SeenOnce) 1695 return false; 1696 SeenOnce = true; 1697 } 1698 } 1699 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1700 } 1701 } 1702 return false; 1703 } 1704 1705 /// Rebuild a new instruction just like 'I' but with the new operands given. 1706 /// In the event of type mismatch, the type of the operands is correct. 1707 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 1708 // We don't want to use the IRBuilder here because we want the replacement 1709 // instructions to appear next to 'I', not the builder's insertion point. 1710 switch (I->getOpcode()) { 1711 case Instruction::Add: 1712 case Instruction::FAdd: 1713 case Instruction::Sub: 1714 case Instruction::FSub: 1715 case Instruction::Mul: 1716 case Instruction::FMul: 1717 case Instruction::UDiv: 1718 case Instruction::SDiv: 1719 case Instruction::FDiv: 1720 case Instruction::URem: 1721 case Instruction::SRem: 1722 case Instruction::FRem: 1723 case Instruction::Shl: 1724 case Instruction::LShr: 1725 case Instruction::AShr: 1726 case Instruction::And: 1727 case Instruction::Or: 1728 case Instruction::Xor: { 1729 BinaryOperator *BO = cast<BinaryOperator>(I); 1730 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1731 BinaryOperator *New = 1732 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 1733 NewOps[0], NewOps[1], "", BO); 1734 if (isa<OverflowingBinaryOperator>(BO)) { 1735 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1736 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1737 } 1738 if (isa<PossiblyExactOperator>(BO)) { 1739 New->setIsExact(BO->isExact()); 1740 } 1741 if (isa<FPMathOperator>(BO)) 1742 New->copyFastMathFlags(I); 1743 return New; 1744 } 1745 case Instruction::ICmp: 1746 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1747 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 1748 NewOps[0], NewOps[1]); 1749 case Instruction::FCmp: 1750 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1751 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 1752 NewOps[0], NewOps[1]); 1753 case Instruction::Trunc: 1754 case Instruction::ZExt: 1755 case Instruction::SExt: 1756 case Instruction::FPToUI: 1757 case Instruction::FPToSI: 1758 case Instruction::UIToFP: 1759 case Instruction::SIToFP: 1760 case Instruction::FPTrunc: 1761 case Instruction::FPExt: { 1762 // It's possible that the mask has a different number of elements from 1763 // the original cast. We recompute the destination type to match the mask. 1764 Type *DestTy = VectorType::get( 1765 I->getType()->getScalarType(), 1766 cast<VectorType>(NewOps[0]->getType())->getElementCount()); 1767 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1768 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 1769 "", I); 1770 } 1771 case Instruction::GetElementPtr: { 1772 Value *Ptr = NewOps[0]; 1773 ArrayRef<Value*> Idx = NewOps.slice(1); 1774 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1775 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 1776 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 1777 return GEP; 1778 } 1779 } 1780 llvm_unreachable("failed to rebuild vector instructions"); 1781 } 1782 1783 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1784 // Mask.size() does not need to be equal to the number of vector elements. 1785 1786 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1787 Type *EltTy = V->getType()->getScalarType(); 1788 Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); 1789 if (match(V, m_Undef())) 1790 return UndefValue::get(FixedVectorType::get(EltTy, Mask.size())); 1791 1792 if (isa<ConstantAggregateZero>(V)) 1793 return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size())); 1794 1795 if (Constant *C = dyn_cast<Constant>(V)) 1796 return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()), 1797 Mask); 1798 1799 Instruction *I = cast<Instruction>(V); 1800 switch (I->getOpcode()) { 1801 case Instruction::Add: 1802 case Instruction::FAdd: 1803 case Instruction::Sub: 1804 case Instruction::FSub: 1805 case Instruction::Mul: 1806 case Instruction::FMul: 1807 case Instruction::UDiv: 1808 case Instruction::SDiv: 1809 case Instruction::FDiv: 1810 case Instruction::URem: 1811 case Instruction::SRem: 1812 case Instruction::FRem: 1813 case Instruction::Shl: 1814 case Instruction::LShr: 1815 case Instruction::AShr: 1816 case Instruction::And: 1817 case Instruction::Or: 1818 case Instruction::Xor: 1819 case Instruction::ICmp: 1820 case Instruction::FCmp: 1821 case Instruction::Trunc: 1822 case Instruction::ZExt: 1823 case Instruction::SExt: 1824 case Instruction::FPToUI: 1825 case Instruction::FPToSI: 1826 case Instruction::UIToFP: 1827 case Instruction::SIToFP: 1828 case Instruction::FPTrunc: 1829 case Instruction::FPExt: 1830 case Instruction::Select: 1831 case Instruction::GetElementPtr: { 1832 SmallVector<Value*, 8> NewOps; 1833 bool NeedsRebuild = 1834 (Mask.size() != 1835 cast<FixedVectorType>(I->getType())->getNumElements()); 1836 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1837 Value *V; 1838 // Recursively call evaluateInDifferentElementOrder on vector arguments 1839 // as well. E.g. GetElementPtr may have scalar operands even if the 1840 // return value is a vector, so we need to examine the operand type. 1841 if (I->getOperand(i)->getType()->isVectorTy()) 1842 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); 1843 else 1844 V = I->getOperand(i); 1845 NewOps.push_back(V); 1846 NeedsRebuild |= (V != I->getOperand(i)); 1847 } 1848 if (NeedsRebuild) { 1849 return buildNew(I, NewOps); 1850 } 1851 return I; 1852 } 1853 case Instruction::InsertElement: { 1854 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1855 1856 // The insertelement was inserting at Element. Figure out which element 1857 // that becomes after shuffling. The answer is guaranteed to be unique 1858 // by CanEvaluateShuffled. 1859 bool Found = false; 1860 int Index = 0; 1861 for (int e = Mask.size(); Index != e; ++Index) { 1862 if (Mask[Index] == Element) { 1863 Found = true; 1864 break; 1865 } 1866 } 1867 1868 // If element is not in Mask, no need to handle the operand 1 (element to 1869 // be inserted). Just evaluate values in operand 0 according to Mask. 1870 if (!Found) 1871 return evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1872 1873 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1874 return InsertElementInst::Create(V, I->getOperand(1), 1875 ConstantInt::get(I32Ty, Index), "", I); 1876 } 1877 } 1878 llvm_unreachable("failed to reorder elements of vector instruction!"); 1879 } 1880 1881 // Returns true if the shuffle is extracting a contiguous range of values from 1882 // LHS, for example: 1883 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1884 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1885 // Shuffles to: |EE|FF|GG|HH| 1886 // +--+--+--+--+ 1887 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1888 ArrayRef<int> Mask) { 1889 unsigned LHSElems = 1890 cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements(); 1891 unsigned MaskElems = Mask.size(); 1892 unsigned BegIdx = Mask.front(); 1893 unsigned EndIdx = Mask.back(); 1894 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1895 return false; 1896 for (unsigned I = 0; I != MaskElems; ++I) 1897 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1898 return false; 1899 return true; 1900 } 1901 1902 /// These are the ingredients in an alternate form binary operator as described 1903 /// below. 1904 struct BinopElts { 1905 BinaryOperator::BinaryOps Opcode; 1906 Value *Op0; 1907 Value *Op1; 1908 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 1909 Value *V0 = nullptr, Value *V1 = nullptr) : 1910 Opcode(Opc), Op0(V0), Op1(V1) {} 1911 operator bool() const { return Opcode != 0; } 1912 }; 1913 1914 /// Binops may be transformed into binops with different opcodes and operands. 1915 /// Reverse the usual canonicalization to enable folds with the non-canonical 1916 /// form of the binop. If a transform is possible, return the elements of the 1917 /// new binop. If not, return invalid elements. 1918 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 1919 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 1920 Type *Ty = BO->getType(); 1921 switch (BO->getOpcode()) { 1922 case Instruction::Shl: { 1923 // shl X, C --> mul X, (1 << C) 1924 Constant *C; 1925 if (match(BO1, m_Constant(C))) { 1926 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 1927 return { Instruction::Mul, BO0, ShlOne }; 1928 } 1929 break; 1930 } 1931 case Instruction::Or: { 1932 // or X, C --> add X, C (when X and C have no common bits set) 1933 const APInt *C; 1934 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 1935 return { Instruction::Add, BO0, BO1 }; 1936 break; 1937 } 1938 default: 1939 break; 1940 } 1941 return {}; 1942 } 1943 1944 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 1945 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 1946 1947 // Are we shuffling together some value and that same value after it has been 1948 // modified by a binop with a constant? 1949 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1950 Constant *C; 1951 bool Op0IsBinop; 1952 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 1953 Op0IsBinop = true; 1954 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 1955 Op0IsBinop = false; 1956 else 1957 return nullptr; 1958 1959 // The identity constant for a binop leaves a variable operand unchanged. For 1960 // a vector, this is a splat of something like 0, -1, or 1. 1961 // If there's no identity constant for this binop, we're done. 1962 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 1963 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 1964 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 1965 if (!IdC) 1966 return nullptr; 1967 1968 // Shuffle identity constants into the lanes that return the original value. 1969 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 1970 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 1971 // The existing binop constant vector remains in the same operand position. 1972 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1973 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 1974 ConstantExpr::getShuffleVector(IdC, C, Mask); 1975 1976 bool MightCreatePoisonOrUB = 1977 is_contained(Mask, UndefMaskElem) && 1978 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 1979 if (MightCreatePoisonOrUB) 1980 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true); 1981 1982 // shuf (bop X, C), X, M --> bop X, C' 1983 // shuf X, (bop X, C), M --> bop X, C' 1984 Value *X = Op0IsBinop ? Op1 : Op0; 1985 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 1986 NewBO->copyIRFlags(BO); 1987 1988 // An undef shuffle mask element may propagate as an undef constant element in 1989 // the new binop. That would produce poison where the original code might not. 1990 // If we already made a safe constant, then there's no danger. 1991 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1992 NewBO->dropPoisonGeneratingFlags(); 1993 return NewBO; 1994 } 1995 1996 /// If we have an insert of a scalar to a non-zero element of an undefined 1997 /// vector and then shuffle that value, that's the same as inserting to the zero 1998 /// element and shuffling. Splatting from the zero element is recognized as the 1999 /// canonical form of splat. 2000 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 2001 InstCombiner::BuilderTy &Builder) { 2002 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2003 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2004 Value *X; 2005 uint64_t IndexC; 2006 2007 // Match a shuffle that is a splat to a non-zero element. 2008 if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X), 2009 m_ConstantInt(IndexC)))) || 2010 !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0) 2011 return nullptr; 2012 2013 // Insert into element 0 of an undef vector. 2014 UndefValue *UndefVec = UndefValue::get(Shuf.getType()); 2015 Constant *Zero = Builder.getInt32(0); 2016 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); 2017 2018 // Splat from element 0. Any mask element that is undefined remains undefined. 2019 // For example: 2020 // shuf (inselt undef, X, 2), _, <2,2,undef> 2021 // --> shuf (inselt undef, X, 0), poison, <0,0,undef> 2022 unsigned NumMaskElts = 2023 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2024 SmallVector<int, 16> NewMask(NumMaskElts, 0); 2025 for (unsigned i = 0; i != NumMaskElts; ++i) 2026 if (Mask[i] == UndefMaskElem) 2027 NewMask[i] = Mask[i]; 2028 2029 return new ShuffleVectorInst(NewIns, NewMask); 2030 } 2031 2032 /// Try to fold shuffles that are the equivalent of a vector select. 2033 Instruction *InstCombinerImpl::foldSelectShuffle(ShuffleVectorInst &Shuf) { 2034 if (!Shuf.isSelect()) 2035 return nullptr; 2036 2037 // Canonicalize to choose from operand 0 first unless operand 1 is undefined. 2038 // Commuting undef to operand 0 conflicts with another canonicalization. 2039 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2040 if (!match(Shuf.getOperand(1), m_Undef()) && 2041 Shuf.getMaskValue(0) >= (int)NumElts) { 2042 // TODO: Can we assert that both operands of a shuffle-select are not undef 2043 // (otherwise, it would have been folded by instsimplify? 2044 Shuf.commute(); 2045 return &Shuf; 2046 } 2047 2048 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 2049 return I; 2050 2051 BinaryOperator *B0, *B1; 2052 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 2053 !match(Shuf.getOperand(1), m_BinOp(B1))) 2054 return nullptr; 2055 2056 Value *X, *Y; 2057 Constant *C0, *C1; 2058 bool ConstantsAreOp1; 2059 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) && 2060 match(B1, m_BinOp(m_Value(Y), m_Constant(C1)))) 2061 ConstantsAreOp1 = true; 2062 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 2063 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 2064 ConstantsAreOp1 = false; 2065 else 2066 return nullptr; 2067 2068 // We need matching binops to fold the lanes together. 2069 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 2070 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 2071 bool DropNSW = false; 2072 if (ConstantsAreOp1 && Opc0 != Opc1) { 2073 // TODO: We drop "nsw" if shift is converted into multiply because it may 2074 // not be correct when the shift amount is BitWidth - 1. We could examine 2075 // each vector element to determine if it is safe to keep that flag. 2076 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 2077 DropNSW = true; 2078 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 2079 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 2080 Opc0 = AltB0.Opcode; 2081 C0 = cast<Constant>(AltB0.Op1); 2082 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 2083 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 2084 Opc1 = AltB1.Opcode; 2085 C1 = cast<Constant>(AltB1.Op1); 2086 } 2087 } 2088 2089 if (Opc0 != Opc1) 2090 return nullptr; 2091 2092 // The opcodes must be the same. Use a new name to make that clear. 2093 BinaryOperator::BinaryOps BOpc = Opc0; 2094 2095 // Select the constant elements needed for the single binop. 2096 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2097 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 2098 2099 // We are moving a binop after a shuffle. When a shuffle has an undefined 2100 // mask element, the result is undefined, but it is not poison or undefined 2101 // behavior. That is not necessarily true for div/rem/shift. 2102 bool MightCreatePoisonOrUB = 2103 is_contained(Mask, UndefMaskElem) && 2104 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 2105 if (MightCreatePoisonOrUB) 2106 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC, 2107 ConstantsAreOp1); 2108 2109 Value *V; 2110 if (X == Y) { 2111 // Remove a binop and the shuffle by rearranging the constant: 2112 // shuffle (op V, C0), (op V, C1), M --> op V, C' 2113 // shuffle (op C0, V), (op C1, V), M --> op C', V 2114 V = X; 2115 } else { 2116 // If there are 2 different variable operands, we must create a new shuffle 2117 // (select) first, so check uses to ensure that we don't end up with more 2118 // instructions than we started with. 2119 if (!B0->hasOneUse() && !B1->hasOneUse()) 2120 return nullptr; 2121 2122 // If we use the original shuffle mask and op1 is *variable*, we would be 2123 // putting an undef into operand 1 of div/rem/shift. This is either UB or 2124 // poison. We do not have to guard against UB when *constants* are op1 2125 // because safe constants guarantee that we do not overflow sdiv/srem (and 2126 // there's no danger for other opcodes). 2127 // TODO: To allow this case, create a new shuffle mask with no undefs. 2128 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 2129 return nullptr; 2130 2131 // Note: In general, we do not create new shuffles in InstCombine because we 2132 // do not know if a target can lower an arbitrary shuffle optimally. In this 2133 // case, the shuffle uses the existing mask, so there is no additional risk. 2134 2135 // Select the variable vectors first, then perform the binop: 2136 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 2137 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 2138 V = Builder.CreateShuffleVector(X, Y, Mask); 2139 } 2140 2141 Value *NewBO = ConstantsAreOp1 ? Builder.CreateBinOp(BOpc, V, NewC) : 2142 Builder.CreateBinOp(BOpc, NewC, V); 2143 2144 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 2145 // 1. If we changed an opcode, poison conditions might have changed. 2146 // 2. If the shuffle had undef mask elements, the new binop might have undefs 2147 // where the original code did not. But if we already made a safe constant, 2148 // then there's no danger. 2149 if (auto *NewI = dyn_cast<Instruction>(NewBO)) { 2150 NewI->copyIRFlags(B0); 2151 NewI->andIRFlags(B1); 2152 if (DropNSW) 2153 NewI->setHasNoSignedWrap(false); 2154 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 2155 NewI->dropPoisonGeneratingFlags(); 2156 } 2157 return replaceInstUsesWith(Shuf, NewBO); 2158 } 2159 2160 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate. 2161 /// Example (little endian): 2162 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8> 2163 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf, 2164 bool IsBigEndian) { 2165 // This must be a bitcasted shuffle of 1 vector integer operand. 2166 Type *DestType = Shuf.getType(); 2167 Value *X; 2168 if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) || 2169 !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy()) 2170 return nullptr; 2171 2172 // The source type must have the same number of elements as the shuffle, 2173 // and the source element type must be larger than the shuffle element type. 2174 Type *SrcType = X->getType(); 2175 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() || 2176 cast<FixedVectorType>(SrcType)->getNumElements() != 2177 cast<FixedVectorType>(DestType)->getNumElements() || 2178 SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0) 2179 return nullptr; 2180 2181 assert(Shuf.changesLength() && !Shuf.increasesLength() && 2182 "Expected a shuffle that decreases length"); 2183 2184 // Last, check that the mask chooses the correct low bits for each narrow 2185 // element in the result. 2186 uint64_t TruncRatio = 2187 SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits(); 2188 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2189 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 2190 if (Mask[i] == UndefMaskElem) 2191 continue; 2192 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio; 2193 assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits"); 2194 if (Mask[i] != (int)LSBIndex) 2195 return nullptr; 2196 } 2197 2198 return new TruncInst(X, DestType); 2199 } 2200 2201 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 2202 /// narrowing (concatenating with undef and extracting back to the original 2203 /// length). This allows replacing the wide select with a narrow select. 2204 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 2205 InstCombiner::BuilderTy &Builder) { 2206 // This must be a narrowing identity shuffle. It extracts the 1st N elements 2207 // of the 1st vector operand of a shuffle. 2208 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 2209 return nullptr; 2210 2211 // The vector being shuffled must be a vector select that we can eliminate. 2212 // TODO: The one-use requirement could be eased if X and/or Y are constants. 2213 Value *Cond, *X, *Y; 2214 if (!match(Shuf.getOperand(0), 2215 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 2216 return nullptr; 2217 2218 // We need a narrow condition value. It must be extended with undef elements 2219 // and have the same number of elements as this shuffle. 2220 unsigned NarrowNumElts = 2221 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2222 Value *NarrowCond; 2223 if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) || 2224 cast<FixedVectorType>(NarrowCond->getType())->getNumElements() != 2225 NarrowNumElts || 2226 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 2227 return nullptr; 2228 2229 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 2230 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 2231 Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask()); 2232 Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask()); 2233 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 2234 } 2235 2236 /// Try to fold an extract subvector operation. 2237 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 2238 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2239 if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Undef())) 2240 return nullptr; 2241 2242 // Check if we are extracting all bits of an inserted scalar: 2243 // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type 2244 Value *X; 2245 if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) && 2246 X->getType()->getPrimitiveSizeInBits() == 2247 Shuf.getType()->getPrimitiveSizeInBits()) 2248 return new BitCastInst(X, Shuf.getType()); 2249 2250 // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 2251 Value *Y; 2252 ArrayRef<int> Mask; 2253 if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) 2254 return nullptr; 2255 2256 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 2257 // then combining may result in worse codegen. 2258 if (!Op0->hasOneUse()) 2259 return nullptr; 2260 2261 // We are extracting a subvector from a shuffle. Remove excess elements from 2262 // the 1st shuffle mask to eliminate the extract. 2263 // 2264 // This transform is conservatively limited to identity extracts because we do 2265 // not allow arbitrary shuffle mask creation as a target-independent transform 2266 // (because we can't guarantee that will lower efficiently). 2267 // 2268 // If the extracting shuffle has an undef mask element, it transfers to the 2269 // new shuffle mask. Otherwise, copy the original mask element. Example: 2270 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 2271 // shuf X, Y, <C0, undef, C2, undef> 2272 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2273 SmallVector<int, 16> NewMask(NumElts); 2274 assert(NumElts < Mask.size() && 2275 "Identity with extract must have less elements than its inputs"); 2276 2277 for (unsigned i = 0; i != NumElts; ++i) { 2278 int ExtractMaskElt = Shuf.getMaskValue(i); 2279 int MaskElt = Mask[i]; 2280 NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt; 2281 } 2282 return new ShuffleVectorInst(X, Y, NewMask); 2283 } 2284 2285 /// Try to replace a shuffle with an insertelement or try to replace a shuffle 2286 /// operand with the operand of an insertelement. 2287 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, 2288 InstCombinerImpl &IC) { 2289 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 2290 SmallVector<int, 16> Mask; 2291 Shuf.getShuffleMask(Mask); 2292 2293 int NumElts = Mask.size(); 2294 int InpNumElts = cast<FixedVectorType>(V0->getType())->getNumElements(); 2295 2296 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may 2297 // not be able to handle it there if the insertelement has >1 use. 2298 // If the shuffle has an insertelement operand but does not choose the 2299 // inserted scalar element from that value, then we can replace that shuffle 2300 // operand with the source vector of the insertelement. 2301 Value *X; 2302 uint64_t IdxC; 2303 if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2304 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask 2305 if (!is_contained(Mask, (int)IdxC)) 2306 return IC.replaceOperand(Shuf, 0, X); 2307 } 2308 if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2309 // Offset the index constant by the vector width because we are checking for 2310 // accesses to the 2nd vector input of the shuffle. 2311 IdxC += InpNumElts; 2312 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask 2313 if (!is_contained(Mask, (int)IdxC)) 2314 return IC.replaceOperand(Shuf, 1, X); 2315 } 2316 // For the rest of the transform, the shuffle must not change vector sizes. 2317 // TODO: This restriction could be removed if the insert has only one use 2318 // (because the transform would require a new length-changing shuffle). 2319 if (NumElts != InpNumElts) 2320 return nullptr; 2321 2322 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 2323 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 2324 // We need an insertelement with a constant index. 2325 if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar), 2326 m_ConstantInt(IndexC)))) 2327 return false; 2328 2329 // Test the shuffle mask to see if it splices the inserted scalar into the 2330 // operand 1 vector of the shuffle. 2331 int NewInsIndex = -1; 2332 for (int i = 0; i != NumElts; ++i) { 2333 // Ignore undef mask elements. 2334 if (Mask[i] == -1) 2335 continue; 2336 2337 // The shuffle takes elements of operand 1 without lane changes. 2338 if (Mask[i] == NumElts + i) 2339 continue; 2340 2341 // The shuffle must choose the inserted scalar exactly once. 2342 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 2343 return false; 2344 2345 // The shuffle is placing the inserted scalar into element i. 2346 NewInsIndex = i; 2347 } 2348 2349 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 2350 2351 // Index is updated to the potentially translated insertion lane. 2352 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 2353 return true; 2354 }; 2355 2356 // If the shuffle is unnecessary, insert the scalar operand directly into 2357 // operand 1 of the shuffle. Example: 2358 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 2359 Value *Scalar; 2360 ConstantInt *IndexC; 2361 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2362 return InsertElementInst::Create(V1, Scalar, IndexC); 2363 2364 // Try again after commuting shuffle. Example: 2365 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 2366 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 2367 std::swap(V0, V1); 2368 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 2369 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2370 return InsertElementInst::Create(V1, Scalar, IndexC); 2371 2372 return nullptr; 2373 } 2374 2375 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 2376 // Match the operands as identity with padding (also known as concatenation 2377 // with undef) shuffles of the same source type. The backend is expected to 2378 // recreate these concatenations from a shuffle of narrow operands. 2379 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 2380 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 2381 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 2382 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 2383 return nullptr; 2384 2385 // We limit this transform to power-of-2 types because we expect that the 2386 // backend can convert the simplified IR patterns to identical nodes as the 2387 // original IR. 2388 // TODO: If we can verify the same behavior for arbitrary types, the 2389 // power-of-2 checks can be removed. 2390 Value *X = Shuffle0->getOperand(0); 2391 Value *Y = Shuffle1->getOperand(0); 2392 if (X->getType() != Y->getType() || 2393 !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) || 2394 !isPowerOf2_32( 2395 cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) || 2396 !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) || 2397 match(X, m_Undef()) || match(Y, m_Undef())) 2398 return nullptr; 2399 assert(match(Shuffle0->getOperand(1), m_Undef()) && 2400 match(Shuffle1->getOperand(1), m_Undef()) && 2401 "Unexpected operand for identity shuffle"); 2402 2403 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 2404 // operands directly by adjusting the shuffle mask to account for the narrower 2405 // types: 2406 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 2407 int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements(); 2408 int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements(); 2409 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 2410 2411 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2412 SmallVector<int, 16> NewMask(Mask.size(), -1); 2413 for (int i = 0, e = Mask.size(); i != e; ++i) { 2414 if (Mask[i] == -1) 2415 continue; 2416 2417 // If this shuffle is choosing an undef element from 1 of the sources, that 2418 // element is undef. 2419 if (Mask[i] < WideElts) { 2420 if (Shuffle0->getMaskValue(Mask[i]) == -1) 2421 continue; 2422 } else { 2423 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 2424 continue; 2425 } 2426 2427 // If this shuffle is choosing from the 1st narrow op, the mask element is 2428 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 2429 // element is offset down to adjust for the narrow vector widths. 2430 if (Mask[i] < WideElts) { 2431 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 2432 NewMask[i] = Mask[i]; 2433 } else { 2434 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 2435 NewMask[i] = Mask[i] - (WideElts - NarrowElts); 2436 } 2437 } 2438 return new ShuffleVectorInst(X, Y, NewMask); 2439 } 2440 2441 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 2442 Value *LHS = SVI.getOperand(0); 2443 Value *RHS = SVI.getOperand(1); 2444 SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI); 2445 if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), 2446 SVI.getType(), ShufQuery)) 2447 return replaceInstUsesWith(SVI, V); 2448 2449 // Bail out for scalable vectors 2450 if (isa<ScalableVectorType>(LHS->getType())) 2451 return nullptr; 2452 2453 unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements(); 2454 unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements(); 2455 2456 // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask) 2457 // 2458 // if X and Y are of the same (vector) type, and the element size is not 2459 // changed by the bitcasts, we can distribute the bitcasts through the 2460 // shuffle, hopefully reducing the number of instructions. We make sure that 2461 // at least one bitcast only has one use, so we don't *increase* the number of 2462 // instructions here. 2463 Value *X, *Y; 2464 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) && 2465 X->getType()->isVectorTy() && X->getType() == Y->getType() && 2466 X->getType()->getScalarSizeInBits() == 2467 SVI.getType()->getScalarSizeInBits() && 2468 (LHS->hasOneUse() || RHS->hasOneUse())) { 2469 Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(), 2470 SVI.getName() + ".uncasted"); 2471 return new BitCastInst(V, SVI.getType()); 2472 } 2473 2474 ArrayRef<int> Mask = SVI.getShuffleMask(); 2475 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 2476 2477 // Peek through a bitcasted shuffle operand by scaling the mask. If the 2478 // simulated shuffle can simplify, then this shuffle is unnecessary: 2479 // shuf (bitcast X), undef, Mask --> bitcast X' 2480 // TODO: This could be extended to allow length-changing shuffles. 2481 // The transform might also be obsoleted if we allowed canonicalization 2482 // of bitcasted shuffles. 2483 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) && 2484 X->getType()->isVectorTy() && VWidth == LHSWidth) { 2485 // Try to create a scaled mask constant. 2486 auto *XType = cast<FixedVectorType>(X->getType()); 2487 unsigned XNumElts = XType->getNumElements(); 2488 SmallVector<int, 16> ScaledMask; 2489 if (XNumElts >= VWidth) { 2490 assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast"); 2491 narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask); 2492 } else { 2493 assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast"); 2494 if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask)) 2495 ScaledMask.clear(); 2496 } 2497 if (!ScaledMask.empty()) { 2498 // If the shuffled source vector simplifies, cast that value to this 2499 // shuffle's type. 2500 if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType), 2501 ScaledMask, XType, ShufQuery)) 2502 return BitCastInst::Create(Instruction::BitCast, V, SVI.getType()); 2503 } 2504 } 2505 2506 // shuffle x, x, mask --> shuffle x, undef, mask' 2507 if (LHS == RHS) { 2508 assert(!match(RHS, m_Undef()) && 2509 "Shuffle with 2 undef ops not simplified?"); 2510 return new ShuffleVectorInst(LHS, createUnaryMask(Mask, LHSWidth)); 2511 } 2512 2513 // shuffle undef, x, mask --> shuffle x, undef, mask' 2514 if (match(LHS, m_Undef())) { 2515 SVI.commute(); 2516 return &SVI; 2517 } 2518 2519 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 2520 return I; 2521 2522 if (Instruction *I = foldSelectShuffle(SVI)) 2523 return I; 2524 2525 if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian())) 2526 return I; 2527 2528 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 2529 return I; 2530 2531 APInt UndefElts(VWidth, 0); 2532 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 2533 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 2534 if (V != &SVI) 2535 return replaceInstUsesWith(SVI, V); 2536 return &SVI; 2537 } 2538 2539 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 2540 return I; 2541 2542 // These transforms have the potential to lose undef knowledge, so they are 2543 // intentionally placed after SimplifyDemandedVectorElts(). 2544 if (Instruction *I = foldShuffleWithInsert(SVI, *this)) 2545 return I; 2546 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 2547 return I; 2548 2549 if (match(RHS, m_Undef()) && canEvaluateShuffled(LHS, Mask)) { 2550 Value *V = evaluateInDifferentElementOrder(LHS, Mask); 2551 return replaceInstUsesWith(SVI, V); 2552 } 2553 2554 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 2555 // a non-vector type. We can instead bitcast the original vector followed by 2556 // an extract of the desired element: 2557 // 2558 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 2559 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 2560 // %1 = bitcast <4 x i8> %sroa to i32 2561 // Becomes: 2562 // %bc = bitcast <16 x i8> %in to <4 x i32> 2563 // %ext = extractelement <4 x i32> %bc, i32 0 2564 // 2565 // If the shuffle is extracting a contiguous range of values from the input 2566 // vector then each use which is a bitcast of the extracted size can be 2567 // replaced. This will work if the vector types are compatible, and the begin 2568 // index is aligned to a value in the casted vector type. If the begin index 2569 // isn't aligned then we can shuffle the original vector (keeping the same 2570 // vector type) before extracting. 2571 // 2572 // This code will bail out if the target type is fundamentally incompatible 2573 // with vectors of the source type. 2574 // 2575 // Example of <16 x i8>, target type i32: 2576 // Index range [4,8): v-----------v Will work. 2577 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 2578 // <16 x i8>: | | | | | | | | | | | | | | | | | 2579 // <4 x i32>: | | | | | 2580 // +-----------+-----------+-----------+-----------+ 2581 // Index range [6,10): ^-----------^ Needs an extra shuffle. 2582 // Target type i40: ^--------------^ Won't work, bail. 2583 bool MadeChange = false; 2584 if (isShuffleExtractingFromLHS(SVI, Mask)) { 2585 Value *V = LHS; 2586 unsigned MaskElems = Mask.size(); 2587 auto *SrcTy = cast<FixedVectorType>(V->getType()); 2588 unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize(); 2589 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 2590 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 2591 unsigned SrcNumElems = SrcTy->getNumElements(); 2592 SmallVector<BitCastInst *, 8> BCs; 2593 DenseMap<Type *, Value *> NewBCs; 2594 for (User *U : SVI.users()) 2595 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 2596 if (!BC->use_empty()) 2597 // Only visit bitcasts that weren't previously handled. 2598 BCs.push_back(BC); 2599 for (BitCastInst *BC : BCs) { 2600 unsigned BegIdx = Mask.front(); 2601 Type *TgtTy = BC->getDestTy(); 2602 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 2603 if (!TgtElemBitWidth) 2604 continue; 2605 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 2606 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 2607 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 2608 if (!VecBitWidthsEqual) 2609 continue; 2610 if (!VectorType::isValidElementType(TgtTy)) 2611 continue; 2612 auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems); 2613 if (!BegIsAligned) { 2614 // Shuffle the input so [0,NumElements) contains the output, and 2615 // [NumElems,SrcNumElems) is undef. 2616 SmallVector<int, 16> ShuffleMask(SrcNumElems, -1); 2617 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 2618 ShuffleMask[I] = Idx; 2619 V = Builder.CreateShuffleVector(V, ShuffleMask, 2620 SVI.getName() + ".extract"); 2621 BegIdx = 0; 2622 } 2623 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 2624 assert(SrcElemsPerTgtElem); 2625 BegIdx /= SrcElemsPerTgtElem; 2626 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 2627 auto *NewBC = 2628 BCAlreadyExists 2629 ? NewBCs[CastSrcTy] 2630 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 2631 if (!BCAlreadyExists) 2632 NewBCs[CastSrcTy] = NewBC; 2633 auto *Ext = Builder.CreateExtractElement( 2634 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 2635 // The shufflevector isn't being replaced: the bitcast that used it 2636 // is. InstCombine will visit the newly-created instructions. 2637 replaceInstUsesWith(*BC, Ext); 2638 MadeChange = true; 2639 } 2640 } 2641 2642 // If the LHS is a shufflevector itself, see if we can combine it with this 2643 // one without producing an unusual shuffle. 2644 // Cases that might be simplified: 2645 // 1. 2646 // x1=shuffle(v1,v2,mask1) 2647 // x=shuffle(x1,undef,mask) 2648 // ==> 2649 // x=shuffle(v1,undef,newMask) 2650 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 2651 // 2. 2652 // x1=shuffle(v1,undef,mask1) 2653 // x=shuffle(x1,x2,mask) 2654 // where v1.size() == mask1.size() 2655 // ==> 2656 // x=shuffle(v1,x2,newMask) 2657 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 2658 // 3. 2659 // x2=shuffle(v2,undef,mask2) 2660 // x=shuffle(x1,x2,mask) 2661 // where v2.size() == mask2.size() 2662 // ==> 2663 // x=shuffle(x1,v2,newMask) 2664 // newMask[i] = (mask[i] < x1.size()) 2665 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 2666 // 4. 2667 // x1=shuffle(v1,undef,mask1) 2668 // x2=shuffle(v2,undef,mask2) 2669 // x=shuffle(x1,x2,mask) 2670 // where v1.size() == v2.size() 2671 // ==> 2672 // x=shuffle(v1,v2,newMask) 2673 // newMask[i] = (mask[i] < x1.size()) 2674 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 2675 // 2676 // Here we are really conservative: 2677 // we are absolutely afraid of producing a shuffle mask not in the input 2678 // program, because the code gen may not be smart enough to turn a merged 2679 // shuffle into two specific shuffles: it may produce worse code. As such, 2680 // we only merge two shuffles if the result is either a splat or one of the 2681 // input shuffle masks. In this case, merging the shuffles just removes 2682 // one instruction, which we know is safe. This is good for things like 2683 // turning: (splat(splat)) -> splat, or 2684 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 2685 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 2686 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 2687 if (LHSShuffle) 2688 if (!match(LHSShuffle->getOperand(1), m_Undef()) && !match(RHS, m_Undef())) 2689 LHSShuffle = nullptr; 2690 if (RHSShuffle) 2691 if (!match(RHSShuffle->getOperand(1), m_Undef())) 2692 RHSShuffle = nullptr; 2693 if (!LHSShuffle && !RHSShuffle) 2694 return MadeChange ? &SVI : nullptr; 2695 2696 Value* LHSOp0 = nullptr; 2697 Value* LHSOp1 = nullptr; 2698 Value* RHSOp0 = nullptr; 2699 unsigned LHSOp0Width = 0; 2700 unsigned RHSOp0Width = 0; 2701 if (LHSShuffle) { 2702 LHSOp0 = LHSShuffle->getOperand(0); 2703 LHSOp1 = LHSShuffle->getOperand(1); 2704 LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements(); 2705 } 2706 if (RHSShuffle) { 2707 RHSOp0 = RHSShuffle->getOperand(0); 2708 RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements(); 2709 } 2710 Value* newLHS = LHS; 2711 Value* newRHS = RHS; 2712 if (LHSShuffle) { 2713 // case 1 2714 if (match(RHS, m_Undef())) { 2715 newLHS = LHSOp0; 2716 newRHS = LHSOp1; 2717 } 2718 // case 2 or 4 2719 else if (LHSOp0Width == LHSWidth) { 2720 newLHS = LHSOp0; 2721 } 2722 } 2723 // case 3 or 4 2724 if (RHSShuffle && RHSOp0Width == LHSWidth) { 2725 newRHS = RHSOp0; 2726 } 2727 // case 4 2728 if (LHSOp0 == RHSOp0) { 2729 newLHS = LHSOp0; 2730 newRHS = nullptr; 2731 } 2732 2733 if (newLHS == LHS && newRHS == RHS) 2734 return MadeChange ? &SVI : nullptr; 2735 2736 ArrayRef<int> LHSMask; 2737 ArrayRef<int> RHSMask; 2738 if (newLHS != LHS) 2739 LHSMask = LHSShuffle->getShuffleMask(); 2740 if (RHSShuffle && newRHS != RHS) 2741 RHSMask = RHSShuffle->getShuffleMask(); 2742 2743 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 2744 SmallVector<int, 16> newMask; 2745 bool isSplat = true; 2746 int SplatElt = -1; 2747 // Create a new mask for the new ShuffleVectorInst so that the new 2748 // ShuffleVectorInst is equivalent to the original one. 2749 for (unsigned i = 0; i < VWidth; ++i) { 2750 int eltMask; 2751 if (Mask[i] < 0) { 2752 // This element is an undef value. 2753 eltMask = -1; 2754 } else if (Mask[i] < (int)LHSWidth) { 2755 // This element is from left hand side vector operand. 2756 // 2757 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 2758 // new mask value for the element. 2759 if (newLHS != LHS) { 2760 eltMask = LHSMask[Mask[i]]; 2761 // If the value selected is an undef value, explicitly specify it 2762 // with a -1 mask value. 2763 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 2764 eltMask = -1; 2765 } else 2766 eltMask = Mask[i]; 2767 } else { 2768 // This element is from right hand side vector operand 2769 // 2770 // If the value selected is an undef value, explicitly specify it 2771 // with a -1 mask value. (case 1) 2772 if (match(RHS, m_Undef())) 2773 eltMask = -1; 2774 // If RHS is going to be replaced (case 3 or 4), calculate the 2775 // new mask value for the element. 2776 else if (newRHS != RHS) { 2777 eltMask = RHSMask[Mask[i]-LHSWidth]; 2778 // If the value selected is an undef value, explicitly specify it 2779 // with a -1 mask value. 2780 if (eltMask >= (int)RHSOp0Width) { 2781 assert(match(RHSShuffle->getOperand(1), m_Undef()) && 2782 "should have been check above"); 2783 eltMask = -1; 2784 } 2785 } else 2786 eltMask = Mask[i]-LHSWidth; 2787 2788 // If LHS's width is changed, shift the mask value accordingly. 2789 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 2790 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 2791 // If newRHS == newLHS, we want to remap any references from newRHS to 2792 // newLHS so that we can properly identify splats that may occur due to 2793 // obfuscation across the two vectors. 2794 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 2795 eltMask += newLHSWidth; 2796 } 2797 2798 // Check if this could still be a splat. 2799 if (eltMask >= 0) { 2800 if (SplatElt >= 0 && SplatElt != eltMask) 2801 isSplat = false; 2802 SplatElt = eltMask; 2803 } 2804 2805 newMask.push_back(eltMask); 2806 } 2807 2808 // If the result mask is equal to one of the original shuffle masks, 2809 // or is a splat, do the replacement. 2810 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 2811 if (!newRHS) 2812 newRHS = UndefValue::get(newLHS->getType()); 2813 return new ShuffleVectorInst(newLHS, newRHS, newMask); 2814 } 2815 2816 return MadeChange ? &SVI : nullptr; 2817 } 2818