1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/IR/GetElementPtrTypeIterator.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 #include "llvm/Transforms/InstCombine/InstCombiner.h" 21 22 using namespace llvm; 23 using namespace llvm::PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 /// Check to see if the specified operand of the specified instruction is a 28 /// constant integer. If so, check to see if there are any bits set in the 29 /// constant that are not demanded. If so, shrink the constant and return true. 30 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 31 const APInt &Demanded) { 32 assert(I && "No instruction?"); 33 assert(OpNo < I->getNumOperands() && "Operand index too large"); 34 35 // The operand must be a constant integer or splat integer. 36 Value *Op = I->getOperand(OpNo); 37 const APInt *C; 38 if (!match(Op, m_APInt(C))) 39 return false; 40 41 // If there are no bits set that aren't demanded, nothing to do. 42 if (C->isSubsetOf(Demanded)) 43 return false; 44 45 // This instruction is producing bits that are not demanded. Shrink the RHS. 46 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 47 48 return true; 49 } 50 51 52 53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 54 /// the instruction has any properties that allow us to simplify its operands. 55 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) { 56 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 57 KnownBits Known(BitWidth); 58 APInt DemandedMask(APInt::getAllOnes(BitWidth)); 59 60 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 61 0, &Inst); 62 if (!V) return false; 63 if (V == &Inst) return true; 64 replaceInstUsesWith(Inst, V); 65 return true; 66 } 67 68 /// This form of SimplifyDemandedBits simplifies the specified instruction 69 /// operand if possible, updating it in place. It returns true if it made any 70 /// change and false otherwise. 71 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 72 const APInt &DemandedMask, 73 KnownBits &Known, unsigned Depth) { 74 Use &U = I->getOperandUse(OpNo); 75 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 76 Depth, I); 77 if (!NewVal) return false; 78 if (Instruction* OpInst = dyn_cast<Instruction>(U)) 79 salvageDebugInfo(*OpInst); 80 81 replaceUse(U, NewVal); 82 return true; 83 } 84 85 /// This function attempts to replace V with a simpler value based on the 86 /// demanded bits. When this function is called, it is known that only the bits 87 /// set in DemandedMask of the result of V are ever used downstream. 88 /// Consequently, depending on the mask and V, it may be possible to replace V 89 /// with a constant or one of its operands. In such cases, this function does 90 /// the replacement and returns true. In all other cases, it returns false after 91 /// analyzing the expression and setting KnownOne and known to be one in the 92 /// expression. Known.Zero contains all the bits that are known to be zero in 93 /// the expression. These are provided to potentially allow the caller (which 94 /// might recursively be SimplifyDemandedBits itself) to simplify the 95 /// expression. 96 /// Known.One and Known.Zero always follow the invariant that: 97 /// Known.One & Known.Zero == 0. 98 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 99 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 100 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 101 /// be the same. 102 /// 103 /// This returns null if it did not change anything and it permits no 104 /// simplification. This returns V itself if it did some simplification of V's 105 /// operands based on the information about what bits are demanded. This returns 106 /// some other non-null value if it found out that V is equal to another value 107 /// in the context where the specified bits are demanded, but not for all users. 108 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 109 KnownBits &Known, 110 unsigned Depth, 111 Instruction *CxtI) { 112 assert(V != nullptr && "Null pointer of Value???"); 113 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 114 uint32_t BitWidth = DemandedMask.getBitWidth(); 115 Type *VTy = V->getType(); 116 assert( 117 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 118 Known.getBitWidth() == BitWidth && 119 "Value *V, DemandedMask and Known must have same BitWidth"); 120 121 if (isa<Constant>(V)) { 122 computeKnownBits(V, Known, Depth, CxtI); 123 return nullptr; 124 } 125 126 Known.resetAll(); 127 if (DemandedMask.isZero()) // Not demanding any bits from V. 128 return UndefValue::get(VTy); 129 130 if (Depth == MaxAnalysisRecursionDepth) 131 return nullptr; 132 133 Instruction *I = dyn_cast<Instruction>(V); 134 if (!I) { 135 computeKnownBits(V, Known, Depth, CxtI); 136 return nullptr; // Only analyze instructions. 137 } 138 139 // If there are multiple uses of this value and we aren't at the root, then 140 // we can't do any simplifications of the operands, because DemandedMask 141 // only reflects the bits demanded by *one* of the users. 142 if (Depth != 0 && !I->hasOneUse()) 143 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 144 145 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 146 147 // If this is the root being simplified, allow it to have multiple uses, 148 // just set the DemandedMask to all bits so that we can try to simplify the 149 // operands. This allows visitTruncInst (for example) to simplify the 150 // operand of a trunc without duplicating all the logic below. 151 if (Depth == 0 && !V->hasOneUse()) 152 DemandedMask.setAllBits(); 153 154 // Update flags after simplifying an operand based on the fact that some high 155 // order bits are not demanded. 156 auto disableWrapFlagsBasedOnUnusedHighBits = [](Instruction *I, 157 unsigned NLZ) { 158 if (NLZ > 0) { 159 // Disable the nsw and nuw flags here: We can no longer guarantee that 160 // we won't wrap after simplification. Removing the nsw/nuw flags is 161 // legal here because the top bit is not demanded. 162 I->setHasNoSignedWrap(false); 163 I->setHasNoUnsignedWrap(false); 164 } 165 return I; 166 }; 167 168 // If the high-bits of an ADD/SUB/MUL are not demanded, then we do not care 169 // about the high bits of the operands. 170 auto simplifyOperandsBasedOnUnusedHighBits = [&](APInt &DemandedFromOps) { 171 unsigned NLZ = DemandedMask.countLeadingZeros(); 172 // Right fill the mask of bits for the operands to demand the most 173 // significant bit and all those below it. 174 DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ); 175 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 176 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 177 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 178 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 179 disableWrapFlagsBasedOnUnusedHighBits(I, NLZ); 180 return true; 181 } 182 return false; 183 }; 184 185 switch (I->getOpcode()) { 186 default: 187 computeKnownBits(I, Known, Depth, CxtI); 188 break; 189 case Instruction::And: { 190 // If either the LHS or the RHS are Zero, the result is zero. 191 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 192 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 193 Depth + 1)) 194 return I; 195 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 196 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 197 198 Known = LHSKnown & RHSKnown; 199 200 // If the client is only demanding bits that we know, return the known 201 // constant. 202 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 203 return Constant::getIntegerValue(VTy, Known.One); 204 205 // If all of the demanded bits are known 1 on one side, return the other. 206 // These bits cannot contribute to the result of the 'and'. 207 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 208 return I->getOperand(0); 209 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 210 return I->getOperand(1); 211 212 // If the RHS is a constant, see if we can simplify it. 213 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 214 return I; 215 216 break; 217 } 218 case Instruction::Or: { 219 // If either the LHS or the RHS are One, the result is One. 220 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 221 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 222 Depth + 1)) 223 return I; 224 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 225 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 226 227 Known = LHSKnown | RHSKnown; 228 229 // If the client is only demanding bits that we know, return the known 230 // constant. 231 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 232 return Constant::getIntegerValue(VTy, Known.One); 233 234 // If all of the demanded bits are known zero on one side, return the other. 235 // These bits cannot contribute to the result of the 'or'. 236 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 237 return I->getOperand(0); 238 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 239 return I->getOperand(1); 240 241 // If the RHS is a constant, see if we can simplify it. 242 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 243 return I; 244 245 break; 246 } 247 case Instruction::Xor: { 248 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 249 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 250 return I; 251 Value *LHS, *RHS; 252 if (DemandedMask == 1 && 253 match(I->getOperand(0), m_Intrinsic<Intrinsic::ctpop>(m_Value(LHS))) && 254 match(I->getOperand(1), m_Intrinsic<Intrinsic::ctpop>(m_Value(RHS)))) { 255 // (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1 256 IRBuilderBase::InsertPointGuard Guard(Builder); 257 Builder.SetInsertPoint(I); 258 auto *Xor = Builder.CreateXor(LHS, RHS); 259 return Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, Xor); 260 } 261 262 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 263 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 264 265 Known = LHSKnown ^ RHSKnown; 266 267 // If the client is only demanding bits that we know, return the known 268 // constant. 269 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 270 return Constant::getIntegerValue(VTy, Known.One); 271 272 // If all of the demanded bits are known zero on one side, return the other. 273 // These bits cannot contribute to the result of the 'xor'. 274 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 275 return I->getOperand(0); 276 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 277 return I->getOperand(1); 278 279 // If all of the demanded bits are known to be zero on one side or the 280 // other, turn this into an *inclusive* or. 281 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 282 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 283 Instruction *Or = 284 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 285 I->getName()); 286 return InsertNewInstWith(Or, *I); 287 } 288 289 // If all of the demanded bits on one side are known, and all of the set 290 // bits on that side are also known to be set on the other side, turn this 291 // into an AND, as we know the bits will be cleared. 292 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 293 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 294 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 295 Constant *AndC = Constant::getIntegerValue(VTy, 296 ~RHSKnown.One & DemandedMask); 297 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 298 return InsertNewInstWith(And, *I); 299 } 300 301 // If the RHS is a constant, see if we can change it. Don't alter a -1 302 // constant because that's a canonical 'not' op, and that is better for 303 // combining, SCEV, and codegen. 304 const APInt *C; 305 if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnes()) { 306 if ((*C | ~DemandedMask).isAllOnes()) { 307 // Force bits to 1 to create a 'not' op. 308 I->setOperand(1, ConstantInt::getAllOnesValue(VTy)); 309 return I; 310 } 311 // If we can't turn this into a 'not', try to shrink the constant. 312 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 313 return I; 314 } 315 316 // If our LHS is an 'and' and if it has one use, and if any of the bits we 317 // are flipping are known to be set, then the xor is just resetting those 318 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 319 // simplifying both of them. 320 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) { 321 ConstantInt *AndRHS, *XorRHS; 322 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 323 match(I->getOperand(1), m_ConstantInt(XorRHS)) && 324 match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) && 325 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 326 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 327 328 Constant *AndC = ConstantInt::get(VTy, NewMask & AndRHS->getValue()); 329 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 330 InsertNewInstWith(NewAnd, *I); 331 332 Constant *XorC = ConstantInt::get(VTy, NewMask & XorRHS->getValue()); 333 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 334 return InsertNewInstWith(NewXor, *I); 335 } 336 } 337 break; 338 } 339 case Instruction::Select: { 340 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 341 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 342 return I; 343 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 344 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 345 346 // If the operands are constants, see if we can simplify them. 347 // This is similar to ShrinkDemandedConstant, but for a select we want to 348 // try to keep the selected constants the same as icmp value constants, if 349 // we can. This helps not break apart (or helps put back together) 350 // canonical patterns like min and max. 351 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, 352 const APInt &DemandedMask) { 353 const APInt *SelC; 354 if (!match(I->getOperand(OpNo), m_APInt(SelC))) 355 return false; 356 357 // Get the constant out of the ICmp, if there is one. 358 // Only try this when exactly 1 operand is a constant (if both operands 359 // are constant, the icmp should eventually simplify). Otherwise, we may 360 // invert the transform that reduces set bits and infinite-loop. 361 Value *X; 362 const APInt *CmpC; 363 ICmpInst::Predicate Pred; 364 if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) || 365 isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth()) 366 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 367 368 // If the constant is already the same as the ICmp, leave it as-is. 369 if (*CmpC == *SelC) 370 return false; 371 // If the constants are not already the same, but can be with the demand 372 // mask, use the constant value from the ICmp. 373 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { 374 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC)); 375 return true; 376 } 377 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 378 }; 379 if (CanonicalizeSelectConstant(I, 1, DemandedMask) || 380 CanonicalizeSelectConstant(I, 2, DemandedMask)) 381 return I; 382 383 // Only known if known in both the LHS and RHS. 384 Known = KnownBits::commonBits(LHSKnown, RHSKnown); 385 break; 386 } 387 case Instruction::Trunc: { 388 // If we do not demand the high bits of a right-shifted and truncated value, 389 // then we may be able to truncate it before the shift. 390 Value *X; 391 const APInt *C; 392 if (match(I->getOperand(0), m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) { 393 // The shift amount must be valid (not poison) in the narrow type, and 394 // it must not be greater than the high bits demanded of the result. 395 if (C->ult(VTy->getScalarSizeInBits()) && 396 C->ule(DemandedMask.countLeadingZeros())) { 397 // trunc (lshr X, C) --> lshr (trunc X), C 398 IRBuilderBase::InsertPointGuard Guard(Builder); 399 Builder.SetInsertPoint(I); 400 Value *Trunc = Builder.CreateTrunc(X, VTy); 401 return Builder.CreateLShr(Trunc, C->getZExtValue()); 402 } 403 } 404 } 405 [[fallthrough]]; 406 case Instruction::ZExt: { 407 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 408 409 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 410 KnownBits InputKnown(SrcBitWidth); 411 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 412 return I; 413 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); 414 Known = InputKnown.zextOrTrunc(BitWidth); 415 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 416 break; 417 } 418 case Instruction::BitCast: 419 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 420 return nullptr; // vector->int or fp->int? 421 422 if (auto *DstVTy = dyn_cast<VectorType>(VTy)) { 423 if (auto *SrcVTy = dyn_cast<VectorType>(I->getOperand(0)->getType())) { 424 if (isa<ScalableVectorType>(DstVTy) || 425 isa<ScalableVectorType>(SrcVTy) || 426 cast<FixedVectorType>(DstVTy)->getNumElements() != 427 cast<FixedVectorType>(SrcVTy)->getNumElements()) 428 // Don't touch a bitcast between vectors of different element counts. 429 return nullptr; 430 } else 431 // Don't touch a scalar-to-vector bitcast. 432 return nullptr; 433 } else if (I->getOperand(0)->getType()->isVectorTy()) 434 // Don't touch a vector-to-scalar bitcast. 435 return nullptr; 436 437 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 438 return I; 439 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 440 break; 441 case Instruction::SExt: { 442 // Compute the bits in the result that are not present in the input. 443 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 444 445 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 446 447 // If any of the sign extended bits are demanded, we know that the sign 448 // bit is demanded. 449 if (DemandedMask.getActiveBits() > SrcBitWidth) 450 InputDemandedBits.setBit(SrcBitWidth-1); 451 452 KnownBits InputKnown(SrcBitWidth); 453 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 454 return I; 455 456 // If the input sign bit is known zero, or if the NewBits are not demanded 457 // convert this into a zero extension. 458 if (InputKnown.isNonNegative() || 459 DemandedMask.getActiveBits() <= SrcBitWidth) { 460 // Convert to ZExt cast. 461 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 462 return InsertNewInstWith(NewCast, *I); 463 } 464 465 // If the sign bit of the input is known set or clear, then we know the 466 // top bits of the result. 467 Known = InputKnown.sext(BitWidth); 468 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 469 break; 470 } 471 case Instruction::Add: { 472 if ((DemandedMask & 1) == 0) { 473 // If we do not need the low bit, try to convert bool math to logic: 474 // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN 475 Value *X, *Y; 476 if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))), 477 m_OneUse(m_SExt(m_Value(Y))))) && 478 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 479 // Truth table for inputs and output signbits: 480 // X:0 | X:1 481 // ---------- 482 // Y:0 | 0 | 0 | 483 // Y:1 | -1 | 0 | 484 // ---------- 485 IRBuilderBase::InsertPointGuard Guard(Builder); 486 Builder.SetInsertPoint(I); 487 Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y); 488 return Builder.CreateSExt(AndNot, VTy); 489 } 490 491 // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN 492 // TODO: Relax the one-use checks because we are removing an instruction? 493 if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))), 494 m_OneUse(m_SExt(m_Value(Y))))) && 495 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 496 // Truth table for inputs and output signbits: 497 // X:0 | X:1 498 // ----------- 499 // Y:0 | -1 | -1 | 500 // Y:1 | -1 | 0 | 501 // ----------- 502 IRBuilderBase::InsertPointGuard Guard(Builder); 503 Builder.SetInsertPoint(I); 504 Value *Or = Builder.CreateOr(X, Y); 505 return Builder.CreateSExt(Or, VTy); 506 } 507 } 508 509 // Right fill the mask of bits for the operands to demand the most 510 // significant bit and all those below it. 511 unsigned NLZ = DemandedMask.countLeadingZeros(); 512 APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ); 513 if (ShrinkDemandedConstant(I, 1, DemandedFromOps) || 514 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) 515 return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ); 516 517 // If low order bits are not demanded and known to be zero in one operand, 518 // then we don't need to demand them from the other operand, since they 519 // can't cause overflow into any bits that are demanded in the result. 520 unsigned NTZ = (~DemandedMask & RHSKnown.Zero).countTrailingOnes(); 521 APInt DemandedFromLHS = DemandedFromOps; 522 DemandedFromLHS.clearLowBits(NTZ); 523 if (ShrinkDemandedConstant(I, 0, DemandedFromLHS) || 524 SimplifyDemandedBits(I, 0, DemandedFromLHS, LHSKnown, Depth + 1)) 525 return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ); 526 527 // If we are known to be adding zeros to every bit below 528 // the highest demanded bit, we just return the other side. 529 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 530 return I->getOperand(0); 531 if (DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 532 return I->getOperand(1); 533 534 // Otherwise just compute the known bits of the result. 535 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 536 Known = KnownBits::computeForAddSub(true, NSW, LHSKnown, RHSKnown); 537 break; 538 } 539 case Instruction::Sub: { 540 // Right fill the mask of bits for the operands to demand the most 541 // significant bit and all those below it. 542 unsigned NLZ = DemandedMask.countLeadingZeros(); 543 APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ); 544 if (ShrinkDemandedConstant(I, 1, DemandedFromOps) || 545 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) 546 return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ); 547 548 // If low order bits are not demanded and are known to be zero in RHS, 549 // then we don't need to demand them from LHS, since they can't cause a 550 // borrow from any bits that are demanded in the result. 551 unsigned NTZ = (~DemandedMask & RHSKnown.Zero).countTrailingOnes(); 552 APInt DemandedFromLHS = DemandedFromOps; 553 DemandedFromLHS.clearLowBits(NTZ); 554 if (ShrinkDemandedConstant(I, 0, DemandedFromLHS) || 555 SimplifyDemandedBits(I, 0, DemandedFromLHS, LHSKnown, Depth + 1)) 556 return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ); 557 558 // If we are known to be subtracting zeros from every bit below 559 // the highest demanded bit, we just return the other side. 560 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 561 return I->getOperand(0); 562 // We can't do this with the LHS for subtraction, unless we are only 563 // demanding the LSB. 564 if (DemandedFromOps.isOne() && DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 565 return I->getOperand(1); 566 567 // Otherwise just compute the known bits of the result. 568 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 569 Known = KnownBits::computeForAddSub(false, NSW, LHSKnown, RHSKnown); 570 break; 571 } 572 case Instruction::Mul: { 573 APInt DemandedFromOps; 574 if (simplifyOperandsBasedOnUnusedHighBits(DemandedFromOps)) 575 return I; 576 577 if (DemandedMask.isPowerOf2()) { 578 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 579 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 580 // odd (has LSB set), then the left-shifted low bit of X is the answer. 581 unsigned CTZ = DemandedMask.countTrailingZeros(); 582 const APInt *C; 583 if (match(I->getOperand(1), m_APInt(C)) && 584 C->countTrailingZeros() == CTZ) { 585 Constant *ShiftC = ConstantInt::get(VTy, CTZ); 586 Instruction *Shl = BinaryOperator::CreateShl(I->getOperand(0), ShiftC); 587 return InsertNewInstWith(Shl, *I); 588 } 589 } 590 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 591 // X * X is odd iff X is odd. 592 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 593 if (I->getOperand(0) == I->getOperand(1) && DemandedMask.ult(4)) { 594 Constant *One = ConstantInt::get(VTy, 1); 595 Instruction *And1 = BinaryOperator::CreateAnd(I->getOperand(0), One); 596 return InsertNewInstWith(And1, *I); 597 } 598 599 computeKnownBits(I, Known, Depth, CxtI); 600 break; 601 } 602 case Instruction::Shl: { 603 const APInt *SA; 604 if (match(I->getOperand(1), m_APInt(SA))) { 605 const APInt *ShrAmt; 606 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 607 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 608 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 609 DemandedMask, Known)) 610 return R; 611 612 // TODO: If we only want bits that already match the signbit then we don't 613 // need to shift. 614 615 // If we can pre-shift a right-shifted constant to the left without 616 // losing any high bits amd we don't demand the low bits, then eliminate 617 // the left-shift: 618 // (C >> X) << LeftShiftAmtC --> (C << RightShiftAmtC) >> X 619 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 620 Value *X; 621 Constant *C; 622 if (DemandedMask.countTrailingZeros() >= ShiftAmt && 623 match(I->getOperand(0), m_LShr(m_ImmConstant(C), m_Value(X)))) { 624 Constant *LeftShiftAmtC = ConstantInt::get(VTy, ShiftAmt); 625 Constant *NewC = ConstantExpr::getShl(C, LeftShiftAmtC); 626 if (ConstantExpr::getLShr(NewC, LeftShiftAmtC) == C) { 627 Instruction *Lshr = BinaryOperator::CreateLShr(NewC, X); 628 return InsertNewInstWith(Lshr, *I); 629 } 630 } 631 632 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 633 634 // If the shift is NUW/NSW, then it does demand the high bits. 635 ShlOperator *IOp = cast<ShlOperator>(I); 636 if (IOp->hasNoSignedWrap()) 637 DemandedMaskIn.setHighBits(ShiftAmt+1); 638 else if (IOp->hasNoUnsignedWrap()) 639 DemandedMaskIn.setHighBits(ShiftAmt); 640 641 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 642 return I; 643 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 644 645 bool SignBitZero = Known.Zero.isSignBitSet(); 646 bool SignBitOne = Known.One.isSignBitSet(); 647 Known.Zero <<= ShiftAmt; 648 Known.One <<= ShiftAmt; 649 // low bits known zero. 650 if (ShiftAmt) 651 Known.Zero.setLowBits(ShiftAmt); 652 653 // If this shift has "nsw" keyword, then the result is either a poison 654 // value or has the same sign bit as the first operand. 655 if (IOp->hasNoSignedWrap()) { 656 if (SignBitZero) 657 Known.Zero.setSignBit(); 658 else if (SignBitOne) 659 Known.One.setSignBit(); 660 if (Known.hasConflict()) 661 return UndefValue::get(VTy); 662 } 663 } else { 664 // This is a variable shift, so we can't shift the demand mask by a known 665 // amount. But if we are not demanding high bits, then we are not 666 // demanding those bits from the pre-shifted operand either. 667 if (unsigned CTLZ = DemandedMask.countLeadingZeros()) { 668 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); 669 if (SimplifyDemandedBits(I, 0, DemandedFromOp, Known, Depth + 1)) { 670 // We can't guarantee that nsw/nuw hold after simplifying the operand. 671 I->dropPoisonGeneratingFlags(); 672 return I; 673 } 674 } 675 computeKnownBits(I, Known, Depth, CxtI); 676 } 677 break; 678 } 679 case Instruction::LShr: { 680 const APInt *SA; 681 if (match(I->getOperand(1), m_APInt(SA))) { 682 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 683 684 // If we are just demanding the shifted sign bit and below, then this can 685 // be treated as an ASHR in disguise. 686 if (DemandedMask.countLeadingZeros() >= ShiftAmt) { 687 // If we only want bits that already match the signbit then we don't 688 // need to shift. 689 unsigned NumHiDemandedBits = 690 BitWidth - DemandedMask.countTrailingZeros(); 691 unsigned SignBits = 692 ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 693 if (SignBits >= NumHiDemandedBits) 694 return I->getOperand(0); 695 696 // If we can pre-shift a left-shifted constant to the right without 697 // losing any low bits (we already know we don't demand the high bits), 698 // then eliminate the right-shift: 699 // (C << X) >> RightShiftAmtC --> (C >> RightShiftAmtC) << X 700 Value *X; 701 Constant *C; 702 if (match(I->getOperand(0), m_Shl(m_ImmConstant(C), m_Value(X)))) { 703 Constant *RightShiftAmtC = ConstantInt::get(VTy, ShiftAmt); 704 Constant *NewC = ConstantExpr::getLShr(C, RightShiftAmtC); 705 if (ConstantExpr::getShl(NewC, RightShiftAmtC) == C) { 706 Instruction *Shl = BinaryOperator::CreateShl(NewC, X); 707 return InsertNewInstWith(Shl, *I); 708 } 709 } 710 } 711 712 // Unsigned shift right. 713 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 714 715 // If the shift is exact, then it does demand the low bits (and knows that 716 // they are zero). 717 if (cast<LShrOperator>(I)->isExact()) 718 DemandedMaskIn.setLowBits(ShiftAmt); 719 720 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 721 return I; 722 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 723 Known.Zero.lshrInPlace(ShiftAmt); 724 Known.One.lshrInPlace(ShiftAmt); 725 if (ShiftAmt) 726 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 727 } else { 728 computeKnownBits(I, Known, Depth, CxtI); 729 } 730 break; 731 } 732 case Instruction::AShr: { 733 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 734 735 // If we only want bits that already match the signbit then we don't need 736 // to shift. 737 unsigned NumHiDemandedBits = BitWidth - DemandedMask.countTrailingZeros(); 738 if (SignBits >= NumHiDemandedBits) 739 return I->getOperand(0); 740 741 // If this is an arithmetic shift right and only the low-bit is set, we can 742 // always convert this into a logical shr, even if the shift amount is 743 // variable. The low bit of the shift cannot be an input sign bit unless 744 // the shift amount is >= the size of the datatype, which is undefined. 745 if (DemandedMask.isOne()) { 746 // Perform the logical shift right. 747 Instruction *NewVal = BinaryOperator::CreateLShr( 748 I->getOperand(0), I->getOperand(1), I->getName()); 749 return InsertNewInstWith(NewVal, *I); 750 } 751 752 const APInt *SA; 753 if (match(I->getOperand(1), m_APInt(SA))) { 754 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 755 756 // Signed shift right. 757 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 758 // If any of the high bits are demanded, we should set the sign bit as 759 // demanded. 760 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 761 DemandedMaskIn.setSignBit(); 762 763 // If the shift is exact, then it does demand the low bits (and knows that 764 // they are zero). 765 if (cast<AShrOperator>(I)->isExact()) 766 DemandedMaskIn.setLowBits(ShiftAmt); 767 768 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 769 return I; 770 771 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 772 // Compute the new bits that are at the top now plus sign bits. 773 APInt HighBits(APInt::getHighBitsSet( 774 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 775 Known.Zero.lshrInPlace(ShiftAmt); 776 Known.One.lshrInPlace(ShiftAmt); 777 778 // If the input sign bit is known to be zero, or if none of the top bits 779 // are demanded, turn this into an unsigned shift right. 780 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 781 if (Known.Zero[BitWidth-ShiftAmt-1] || 782 !DemandedMask.intersects(HighBits)) { 783 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 784 I->getOperand(1)); 785 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 786 return InsertNewInstWith(LShr, *I); 787 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 788 Known.One |= HighBits; 789 } 790 } else { 791 computeKnownBits(I, Known, Depth, CxtI); 792 } 793 break; 794 } 795 case Instruction::UDiv: { 796 // UDiv doesn't demand low bits that are zero in the divisor. 797 const APInt *SA; 798 if (match(I->getOperand(1), m_APInt(SA))) { 799 // TODO: Take the demanded mask of the result into account. 800 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 801 APInt DemandedMaskIn = 802 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 803 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) { 804 // We can't guarantee that "exact" is still true after changing the 805 // the dividend. 806 I->dropPoisonGeneratingFlags(); 807 return I; 808 } 809 810 // Increase high zero bits from the input. 811 Known.Zero.setHighBits(std::min( 812 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 813 } else { 814 computeKnownBits(I, Known, Depth, CxtI); 815 } 816 break; 817 } 818 case Instruction::SRem: { 819 const APInt *Rem; 820 if (match(I->getOperand(1), m_APInt(Rem))) { 821 // X % -1 demands all the bits because we don't want to introduce 822 // INT_MIN % -1 (== undef) by accident. 823 if (Rem->isAllOnes()) 824 break; 825 APInt RA = Rem->abs(); 826 if (RA.isPowerOf2()) { 827 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 828 return I->getOperand(0); 829 830 APInt LowBits = RA - 1; 831 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 832 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 833 return I; 834 835 // The low bits of LHS are unchanged by the srem. 836 Known.Zero = LHSKnown.Zero & LowBits; 837 Known.One = LHSKnown.One & LowBits; 838 839 // If LHS is non-negative or has all low bits zero, then the upper bits 840 // are all zero. 841 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 842 Known.Zero |= ~LowBits; 843 844 // If LHS is negative and not all low bits are zero, then the upper bits 845 // are all one. 846 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 847 Known.One |= ~LowBits; 848 849 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 850 break; 851 } 852 } 853 854 // The sign bit is the LHS's sign bit, except when the result of the 855 // remainder is zero. 856 if (DemandedMask.isSignBitSet()) { 857 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 858 // If it's known zero, our sign bit is also zero. 859 if (LHSKnown.isNonNegative()) 860 Known.makeNonNegative(); 861 } 862 break; 863 } 864 case Instruction::URem: { 865 KnownBits Known2(BitWidth); 866 APInt AllOnes = APInt::getAllOnes(BitWidth); 867 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 868 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 869 return I; 870 871 unsigned Leaders = Known2.countMinLeadingZeros(); 872 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 873 break; 874 } 875 case Instruction::Call: { 876 bool KnownBitsComputed = false; 877 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 878 switch (II->getIntrinsicID()) { 879 case Intrinsic::abs: { 880 if (DemandedMask == 1) 881 return II->getArgOperand(0); 882 break; 883 } 884 case Intrinsic::ctpop: { 885 // Checking if the number of clear bits is odd (parity)? If the type has 886 // an even number of bits, that's the same as checking if the number of 887 // set bits is odd, so we can eliminate the 'not' op. 888 Value *X; 889 if (DemandedMask == 1 && VTy->getScalarSizeInBits() % 2 == 0 && 890 match(II->getArgOperand(0), m_Not(m_Value(X)))) { 891 Function *Ctpop = Intrinsic::getDeclaration( 892 II->getModule(), Intrinsic::ctpop, VTy); 893 return InsertNewInstWith(CallInst::Create(Ctpop, {X}), *I); 894 } 895 break; 896 } 897 case Intrinsic::bswap: { 898 // If the only bits demanded come from one byte of the bswap result, 899 // just shift the input byte into position to eliminate the bswap. 900 unsigned NLZ = DemandedMask.countLeadingZeros(); 901 unsigned NTZ = DemandedMask.countTrailingZeros(); 902 903 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 904 // we need all the bits down to bit 8. Likewise, round NLZ. If we 905 // have 14 leading zeros, round to 8. 906 NLZ = alignDown(NLZ, 8); 907 NTZ = alignDown(NTZ, 8); 908 // If we need exactly one byte, we can do this transformation. 909 if (BitWidth - NLZ - NTZ == 8) { 910 // Replace this with either a left or right shift to get the byte into 911 // the right place. 912 Instruction *NewVal; 913 if (NLZ > NTZ) 914 NewVal = BinaryOperator::CreateLShr( 915 II->getArgOperand(0), ConstantInt::get(VTy, NLZ - NTZ)); 916 else 917 NewVal = BinaryOperator::CreateShl( 918 II->getArgOperand(0), ConstantInt::get(VTy, NTZ - NLZ)); 919 NewVal->takeName(I); 920 return InsertNewInstWith(NewVal, *I); 921 } 922 break; 923 } 924 case Intrinsic::fshr: 925 case Intrinsic::fshl: { 926 const APInt *SA; 927 if (!match(I->getOperand(2), m_APInt(SA))) 928 break; 929 930 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 931 // defined, so no need to special-case zero shifts here. 932 uint64_t ShiftAmt = SA->urem(BitWidth); 933 if (II->getIntrinsicID() == Intrinsic::fshr) 934 ShiftAmt = BitWidth - ShiftAmt; 935 936 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 937 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 938 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || 939 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 940 return I; 941 942 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 943 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 944 Known.One = LHSKnown.One.shl(ShiftAmt) | 945 RHSKnown.One.lshr(BitWidth - ShiftAmt); 946 KnownBitsComputed = true; 947 break; 948 } 949 case Intrinsic::umax: { 950 // UMax(A, C) == A if ... 951 // The lowest non-zero bit of DemandMask is higher than the highest 952 // non-zero bit of C. 953 const APInt *C; 954 unsigned CTZ = DemandedMask.countTrailingZeros(); 955 if (match(II->getArgOperand(1), m_APInt(C)) && 956 CTZ >= C->getActiveBits()) 957 return II->getArgOperand(0); 958 break; 959 } 960 case Intrinsic::umin: { 961 // UMin(A, C) == A if ... 962 // The lowest non-zero bit of DemandMask is higher than the highest 963 // non-one bit of C. 964 // This comes from using DeMorgans on the above umax example. 965 const APInt *C; 966 unsigned CTZ = DemandedMask.countTrailingZeros(); 967 if (match(II->getArgOperand(1), m_APInt(C)) && 968 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 969 return II->getArgOperand(0); 970 break; 971 } 972 default: { 973 // Handle target specific intrinsics 974 std::optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic( 975 *II, DemandedMask, Known, KnownBitsComputed); 976 if (V) 977 return *V; 978 break; 979 } 980 } 981 } 982 983 if (!KnownBitsComputed) 984 computeKnownBits(V, Known, Depth, CxtI); 985 break; 986 } 987 } 988 989 // If the client is only demanding bits that we know, return the known 990 // constant. 991 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 992 return Constant::getIntegerValue(VTy, Known.One); 993 return nullptr; 994 } 995 996 /// Helper routine of SimplifyDemandedUseBits. It computes Known 997 /// bits. It also tries to handle simplifications that can be done based on 998 /// DemandedMask, but without modifying the Instruction. 999 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits( 1000 Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth, 1001 Instruction *CxtI) { 1002 unsigned BitWidth = DemandedMask.getBitWidth(); 1003 Type *ITy = I->getType(); 1004 1005 KnownBits LHSKnown(BitWidth); 1006 KnownBits RHSKnown(BitWidth); 1007 1008 // Despite the fact that we can't simplify this instruction in all User's 1009 // context, we can at least compute the known bits, and we can 1010 // do simplifications that apply to *just* the one user if we know that 1011 // this instruction has a simpler value in that context. 1012 switch (I->getOpcode()) { 1013 case Instruction::And: { 1014 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 1015 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 1016 Known = LHSKnown & RHSKnown; 1017 1018 // If the client is only demanding bits that we know, return the known 1019 // constant. 1020 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 1021 return Constant::getIntegerValue(ITy, Known.One); 1022 1023 // If all of the demanded bits are known 1 on one side, return the other. 1024 // These bits cannot contribute to the result of the 'and' in this context. 1025 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 1026 return I->getOperand(0); 1027 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 1028 return I->getOperand(1); 1029 1030 break; 1031 } 1032 case Instruction::Or: { 1033 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 1034 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 1035 Known = LHSKnown | RHSKnown; 1036 1037 // If the client is only demanding bits that we know, return the known 1038 // constant. 1039 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 1040 return Constant::getIntegerValue(ITy, Known.One); 1041 1042 // We can simplify (X|Y) -> X or Y in the user's context if we know that 1043 // only bits from X or Y are demanded. 1044 // If all of the demanded bits are known zero on one side, return the other. 1045 // These bits cannot contribute to the result of the 'or' in this context. 1046 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 1047 return I->getOperand(0); 1048 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 1049 return I->getOperand(1); 1050 1051 break; 1052 } 1053 case Instruction::Xor: { 1054 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 1055 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 1056 Known = LHSKnown ^ RHSKnown; 1057 1058 // If the client is only demanding bits that we know, return the known 1059 // constant. 1060 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 1061 return Constant::getIntegerValue(ITy, Known.One); 1062 1063 // We can simplify (X^Y) -> X or Y in the user's context if we know that 1064 // only bits from X or Y are demanded. 1065 // If all of the demanded bits are known zero on one side, return the other. 1066 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 1067 return I->getOperand(0); 1068 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 1069 return I->getOperand(1); 1070 1071 break; 1072 } 1073 case Instruction::Add: { 1074 unsigned NLZ = DemandedMask.countLeadingZeros(); 1075 APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ); 1076 1077 // If an operand adds zeros to every bit below the highest demanded bit, 1078 // that operand doesn't change the result. Return the other side. 1079 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 1080 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 1081 return I->getOperand(0); 1082 1083 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 1084 if (DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 1085 return I->getOperand(1); 1086 1087 break; 1088 } 1089 case Instruction::Sub: { 1090 unsigned NLZ = DemandedMask.countLeadingZeros(); 1091 APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ); 1092 1093 // If an operand subtracts zeros from every bit below the highest demanded 1094 // bit, that operand doesn't change the result. Return the other side. 1095 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 1096 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 1097 return I->getOperand(0); 1098 1099 break; 1100 } 1101 case Instruction::AShr: { 1102 // Compute the Known bits to simplify things downstream. 1103 computeKnownBits(I, Known, Depth, CxtI); 1104 1105 // If this user is only demanding bits that we know, return the known 1106 // constant. 1107 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 1108 return Constant::getIntegerValue(ITy, Known.One); 1109 1110 // If the right shift operand 0 is a result of a left shift by the same 1111 // amount, this is probably a zero/sign extension, which may be unnecessary, 1112 // if we do not demand any of the new sign bits. So, return the original 1113 // operand instead. 1114 const APInt *ShiftRC; 1115 const APInt *ShiftLC; 1116 Value *X; 1117 unsigned BitWidth = DemandedMask.getBitWidth(); 1118 if (match(I, 1119 m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) && 1120 ShiftLC == ShiftRC && ShiftLC->ult(BitWidth) && 1121 DemandedMask.isSubsetOf(APInt::getLowBitsSet( 1122 BitWidth, BitWidth - ShiftRC->getZExtValue()))) { 1123 return X; 1124 } 1125 1126 break; 1127 } 1128 default: 1129 // Compute the Known bits to simplify things downstream. 1130 computeKnownBits(I, Known, Depth, CxtI); 1131 1132 // If this user is only demanding bits that we know, return the known 1133 // constant. 1134 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 1135 return Constant::getIntegerValue(ITy, Known.One); 1136 1137 break; 1138 } 1139 1140 return nullptr; 1141 } 1142 1143 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 1144 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 1145 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 1146 /// of "C2-C1". 1147 /// 1148 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 1149 /// ..., bn}, without considering the specific value X is holding. 1150 /// This transformation is legal iff one of following conditions is hold: 1151 /// 1) All the bit in S are 0, in this case E1 == E2. 1152 /// 2) We don't care those bits in S, per the input DemandedMask. 1153 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 1154 /// rest bits. 1155 /// 1156 /// Currently we only test condition 2). 1157 /// 1158 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 1159 /// not successful. 1160 Value *InstCombinerImpl::simplifyShrShlDemandedBits( 1161 Instruction *Shr, const APInt &ShrOp1, Instruction *Shl, 1162 const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) { 1163 if (!ShlOp1 || !ShrOp1) 1164 return nullptr; // No-op. 1165 1166 Value *VarX = Shr->getOperand(0); 1167 Type *Ty = VarX->getType(); 1168 unsigned BitWidth = Ty->getScalarSizeInBits(); 1169 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 1170 return nullptr; // Undef. 1171 1172 unsigned ShlAmt = ShlOp1.getZExtValue(); 1173 unsigned ShrAmt = ShrOp1.getZExtValue(); 1174 1175 Known.One.clearAllBits(); 1176 Known.Zero.setLowBits(ShlAmt - 1); 1177 Known.Zero &= DemandedMask; 1178 1179 APInt BitMask1(APInt::getAllOnes(BitWidth)); 1180 APInt BitMask2(APInt::getAllOnes(BitWidth)); 1181 1182 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 1183 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 1184 (BitMask1.ashr(ShrAmt) << ShlAmt); 1185 1186 if (ShrAmt <= ShlAmt) { 1187 BitMask2 <<= (ShlAmt - ShrAmt); 1188 } else { 1189 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 1190 BitMask2.ashr(ShrAmt - ShlAmt); 1191 } 1192 1193 // Check if condition-2 (see the comment to this function) is satified. 1194 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 1195 if (ShrAmt == ShlAmt) 1196 return VarX; 1197 1198 if (!Shr->hasOneUse()) 1199 return nullptr; 1200 1201 BinaryOperator *New; 1202 if (ShrAmt < ShlAmt) { 1203 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 1204 New = BinaryOperator::CreateShl(VarX, Amt); 1205 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 1206 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 1207 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 1208 } else { 1209 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 1210 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 1211 BinaryOperator::CreateAShr(VarX, Amt); 1212 if (cast<BinaryOperator>(Shr)->isExact()) 1213 New->setIsExact(true); 1214 } 1215 1216 return InsertNewInstWith(New, *Shl); 1217 } 1218 1219 return nullptr; 1220 } 1221 1222 /// The specified value produces a vector with any number of elements. 1223 /// This method analyzes which elements of the operand are undef or poison and 1224 /// returns that information in UndefElts. 1225 /// 1226 /// DemandedElts contains the set of elements that are actually used by the 1227 /// caller, and by default (AllowMultipleUsers equals false) the value is 1228 /// simplified only if it has a single caller. If AllowMultipleUsers is set 1229 /// to true, DemandedElts refers to the union of sets of elements that are 1230 /// used by all callers. 1231 /// 1232 /// If the information about demanded elements can be used to simplify the 1233 /// operation, the operation is simplified, then the resultant value is 1234 /// returned. This returns null if no change was made. 1235 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V, 1236 APInt DemandedElts, 1237 APInt &UndefElts, 1238 unsigned Depth, 1239 bool AllowMultipleUsers) { 1240 // Cannot analyze scalable type. The number of vector elements is not a 1241 // compile-time constant. 1242 if (isa<ScalableVectorType>(V->getType())) 1243 return nullptr; 1244 1245 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 1246 APInt EltMask(APInt::getAllOnes(VWidth)); 1247 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1248 1249 if (match(V, m_Undef())) { 1250 // If the entire vector is undef or poison, just return this info. 1251 UndefElts = EltMask; 1252 return nullptr; 1253 } 1254 1255 if (DemandedElts.isZero()) { // If nothing is demanded, provide poison. 1256 UndefElts = EltMask; 1257 return PoisonValue::get(V->getType()); 1258 } 1259 1260 UndefElts = 0; 1261 1262 if (auto *C = dyn_cast<Constant>(V)) { 1263 // Check if this is identity. If so, return 0 since we are not simplifying 1264 // anything. 1265 if (DemandedElts.isAllOnes()) 1266 return nullptr; 1267 1268 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1269 Constant *Poison = PoisonValue::get(EltTy); 1270 SmallVector<Constant*, 16> Elts; 1271 for (unsigned i = 0; i != VWidth; ++i) { 1272 if (!DemandedElts[i]) { // If not demanded, set to poison. 1273 Elts.push_back(Poison); 1274 UndefElts.setBit(i); 1275 continue; 1276 } 1277 1278 Constant *Elt = C->getAggregateElement(i); 1279 if (!Elt) return nullptr; 1280 1281 Elts.push_back(Elt); 1282 if (isa<UndefValue>(Elt)) // Already undef or poison. 1283 UndefElts.setBit(i); 1284 } 1285 1286 // If we changed the constant, return it. 1287 Constant *NewCV = ConstantVector::get(Elts); 1288 return NewCV != C ? NewCV : nullptr; 1289 } 1290 1291 // Limit search depth. 1292 if (Depth == 10) 1293 return nullptr; 1294 1295 if (!AllowMultipleUsers) { 1296 // If multiple users are using the root value, proceed with 1297 // simplification conservatively assuming that all elements 1298 // are needed. 1299 if (!V->hasOneUse()) { 1300 // Quit if we find multiple users of a non-root value though. 1301 // They'll be handled when it's their turn to be visited by 1302 // the main instcombine process. 1303 if (Depth != 0) 1304 // TODO: Just compute the UndefElts information recursively. 1305 return nullptr; 1306 1307 // Conservatively assume that all elements are needed. 1308 DemandedElts = EltMask; 1309 } 1310 } 1311 1312 Instruction *I = dyn_cast<Instruction>(V); 1313 if (!I) return nullptr; // Only analyze instructions. 1314 1315 bool MadeChange = false; 1316 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1317 APInt Demanded, APInt &Undef) { 1318 auto *II = dyn_cast<IntrinsicInst>(Inst); 1319 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1320 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1321 replaceOperand(*Inst, OpNum, V); 1322 MadeChange = true; 1323 } 1324 }; 1325 1326 APInt UndefElts2(VWidth, 0); 1327 APInt UndefElts3(VWidth, 0); 1328 switch (I->getOpcode()) { 1329 default: break; 1330 1331 case Instruction::GetElementPtr: { 1332 // The LangRef requires that struct geps have all constant indices. As 1333 // such, we can't convert any operand to partial undef. 1334 auto mayIndexStructType = [](GetElementPtrInst &GEP) { 1335 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); 1336 I != E; I++) 1337 if (I.isStruct()) 1338 return true; 1339 return false; 1340 }; 1341 if (mayIndexStructType(cast<GetElementPtrInst>(*I))) 1342 break; 1343 1344 // Conservatively track the demanded elements back through any vector 1345 // operands we may have. We know there must be at least one, or we 1346 // wouldn't have a vector result to get here. Note that we intentionally 1347 // merge the undef bits here since gepping with either an poison base or 1348 // index results in poison. 1349 for (unsigned i = 0; i < I->getNumOperands(); i++) { 1350 if (i == 0 ? match(I->getOperand(i), m_Undef()) 1351 : match(I->getOperand(i), m_Poison())) { 1352 // If the entire vector is undefined, just return this info. 1353 UndefElts = EltMask; 1354 return nullptr; 1355 } 1356 if (I->getOperand(i)->getType()->isVectorTy()) { 1357 APInt UndefEltsOp(VWidth, 0); 1358 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp); 1359 // gep(x, undef) is not undef, so skip considering idx ops here 1360 // Note that we could propagate poison, but we can't distinguish between 1361 // undef & poison bits ATM 1362 if (i == 0) 1363 UndefElts |= UndefEltsOp; 1364 } 1365 } 1366 1367 break; 1368 } 1369 case Instruction::InsertElement: { 1370 // If this is a variable index, we don't know which element it overwrites. 1371 // demand exactly the same input as we produce. 1372 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1373 if (!Idx) { 1374 // Note that we can't propagate undef elt info, because we don't know 1375 // which elt is getting updated. 1376 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); 1377 break; 1378 } 1379 1380 // The element inserted overwrites whatever was there, so the input demanded 1381 // set is simpler than the output set. 1382 unsigned IdxNo = Idx->getZExtValue(); 1383 APInt PreInsertDemandedElts = DemandedElts; 1384 if (IdxNo < VWidth) 1385 PreInsertDemandedElts.clearBit(IdxNo); 1386 1387 // If we only demand the element that is being inserted and that element 1388 // was extracted from the same index in another vector with the same type, 1389 // replace this insert with that other vector. 1390 // Note: This is attempted before the call to simplifyAndSetOp because that 1391 // may change UndefElts to a value that does not match with Vec. 1392 Value *Vec; 1393 if (PreInsertDemandedElts == 0 && 1394 match(I->getOperand(1), 1395 m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) && 1396 Vec->getType() == I->getType()) { 1397 return Vec; 1398 } 1399 1400 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); 1401 1402 // If this is inserting an element that isn't demanded, remove this 1403 // insertelement. 1404 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1405 Worklist.push(I); 1406 return I->getOperand(0); 1407 } 1408 1409 // The inserted element is defined. 1410 UndefElts.clearBit(IdxNo); 1411 break; 1412 } 1413 case Instruction::ShuffleVector: { 1414 auto *Shuffle = cast<ShuffleVectorInst>(I); 1415 assert(Shuffle->getOperand(0)->getType() == 1416 Shuffle->getOperand(1)->getType() && 1417 "Expected shuffle operands to have same type"); 1418 unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType()) 1419 ->getNumElements(); 1420 // Handle trivial case of a splat. Only check the first element of LHS 1421 // operand. 1422 if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) && 1423 DemandedElts.isAllOnes()) { 1424 if (!match(I->getOperand(1), m_Undef())) { 1425 I->setOperand(1, PoisonValue::get(I->getOperand(1)->getType())); 1426 MadeChange = true; 1427 } 1428 APInt LeftDemanded(OpWidth, 1); 1429 APInt LHSUndefElts(OpWidth, 0); 1430 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1431 if (LHSUndefElts[0]) 1432 UndefElts = EltMask; 1433 else 1434 UndefElts.clearAllBits(); 1435 break; 1436 } 1437 1438 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); 1439 for (unsigned i = 0; i < VWidth; i++) { 1440 if (DemandedElts[i]) { 1441 unsigned MaskVal = Shuffle->getMaskValue(i); 1442 if (MaskVal != -1u) { 1443 assert(MaskVal < OpWidth * 2 && 1444 "shufflevector mask index out of range!"); 1445 if (MaskVal < OpWidth) 1446 LeftDemanded.setBit(MaskVal); 1447 else 1448 RightDemanded.setBit(MaskVal - OpWidth); 1449 } 1450 } 1451 } 1452 1453 APInt LHSUndefElts(OpWidth, 0); 1454 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1455 1456 APInt RHSUndefElts(OpWidth, 0); 1457 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); 1458 1459 // If this shuffle does not change the vector length and the elements 1460 // demanded by this shuffle are an identity mask, then this shuffle is 1461 // unnecessary. 1462 // 1463 // We are assuming canonical form for the mask, so the source vector is 1464 // operand 0 and operand 1 is not used. 1465 // 1466 // Note that if an element is demanded and this shuffle mask is undefined 1467 // for that element, then the shuffle is not considered an identity 1468 // operation. The shuffle prevents poison from the operand vector from 1469 // leaking to the result by replacing poison with an undefined value. 1470 if (VWidth == OpWidth) { 1471 bool IsIdentityShuffle = true; 1472 for (unsigned i = 0; i < VWidth; i++) { 1473 unsigned MaskVal = Shuffle->getMaskValue(i); 1474 if (DemandedElts[i] && i != MaskVal) { 1475 IsIdentityShuffle = false; 1476 break; 1477 } 1478 } 1479 if (IsIdentityShuffle) 1480 return Shuffle->getOperand(0); 1481 } 1482 1483 bool NewUndefElts = false; 1484 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1485 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1486 bool LHSUniform = true; 1487 bool RHSUniform = true; 1488 for (unsigned i = 0; i < VWidth; i++) { 1489 unsigned MaskVal = Shuffle->getMaskValue(i); 1490 if (MaskVal == -1u) { 1491 UndefElts.setBit(i); 1492 } else if (!DemandedElts[i]) { 1493 NewUndefElts = true; 1494 UndefElts.setBit(i); 1495 } else if (MaskVal < OpWidth) { 1496 if (LHSUndefElts[MaskVal]) { 1497 NewUndefElts = true; 1498 UndefElts.setBit(i); 1499 } else { 1500 LHSIdx = LHSIdx == -1u ? i : OpWidth; 1501 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; 1502 LHSUniform = LHSUniform && (MaskVal == i); 1503 } 1504 } else { 1505 if (RHSUndefElts[MaskVal - OpWidth]) { 1506 NewUndefElts = true; 1507 UndefElts.setBit(i); 1508 } else { 1509 RHSIdx = RHSIdx == -1u ? i : OpWidth; 1510 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; 1511 RHSUniform = RHSUniform && (MaskVal - OpWidth == i); 1512 } 1513 } 1514 } 1515 1516 // Try to transform shuffle with constant vector and single element from 1517 // this constant vector to single insertelement instruction. 1518 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1519 // insertelement V, C[ci], ci-n 1520 if (OpWidth == 1521 cast<FixedVectorType>(Shuffle->getType())->getNumElements()) { 1522 Value *Op = nullptr; 1523 Constant *Value = nullptr; 1524 unsigned Idx = -1u; 1525 1526 // Find constant vector with the single element in shuffle (LHS or RHS). 1527 if (LHSIdx < OpWidth && RHSUniform) { 1528 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1529 Op = Shuffle->getOperand(1); 1530 Value = CV->getOperand(LHSValIdx); 1531 Idx = LHSIdx; 1532 } 1533 } 1534 if (RHSIdx < OpWidth && LHSUniform) { 1535 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1536 Op = Shuffle->getOperand(0); 1537 Value = CV->getOperand(RHSValIdx); 1538 Idx = RHSIdx; 1539 } 1540 } 1541 // Found constant vector with single element - convert to insertelement. 1542 if (Op && Value) { 1543 Instruction *New = InsertElementInst::Create( 1544 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1545 Shuffle->getName()); 1546 InsertNewInstWith(New, *Shuffle); 1547 return New; 1548 } 1549 } 1550 if (NewUndefElts) { 1551 // Add additional discovered undefs. 1552 SmallVector<int, 16> Elts; 1553 for (unsigned i = 0; i < VWidth; ++i) { 1554 if (UndefElts[i]) 1555 Elts.push_back(UndefMaskElem); 1556 else 1557 Elts.push_back(Shuffle->getMaskValue(i)); 1558 } 1559 Shuffle->setShuffleMask(Elts); 1560 MadeChange = true; 1561 } 1562 break; 1563 } 1564 case Instruction::Select: { 1565 // If this is a vector select, try to transform the select condition based 1566 // on the current demanded elements. 1567 SelectInst *Sel = cast<SelectInst>(I); 1568 if (Sel->getCondition()->getType()->isVectorTy()) { 1569 // TODO: We are not doing anything with UndefElts based on this call. 1570 // It is overwritten below based on the other select operands. If an 1571 // element of the select condition is known undef, then we are free to 1572 // choose the output value from either arm of the select. If we know that 1573 // one of those values is undef, then the output can be undef. 1574 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1575 } 1576 1577 // Next, see if we can transform the arms of the select. 1578 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1579 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1580 for (unsigned i = 0; i < VWidth; i++) { 1581 // isNullValue() always returns false when called on a ConstantExpr. 1582 // Skip constant expressions to avoid propagating incorrect information. 1583 Constant *CElt = CV->getAggregateElement(i); 1584 if (isa<ConstantExpr>(CElt)) 1585 continue; 1586 // TODO: If a select condition element is undef, we can demand from 1587 // either side. If one side is known undef, choosing that side would 1588 // propagate undef. 1589 if (CElt->isNullValue()) 1590 DemandedLHS.clearBit(i); 1591 else 1592 DemandedRHS.clearBit(i); 1593 } 1594 } 1595 1596 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); 1597 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); 1598 1599 // Output elements are undefined if the element from each arm is undefined. 1600 // TODO: This can be improved. See comment in select condition handling. 1601 UndefElts = UndefElts2 & UndefElts3; 1602 break; 1603 } 1604 case Instruction::BitCast: { 1605 // Vector->vector casts only. 1606 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1607 if (!VTy) break; 1608 unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements(); 1609 APInt InputDemandedElts(InVWidth, 0); 1610 UndefElts2 = APInt(InVWidth, 0); 1611 unsigned Ratio; 1612 1613 if (VWidth == InVWidth) { 1614 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1615 // elements as are demanded of us. 1616 Ratio = 1; 1617 InputDemandedElts = DemandedElts; 1618 } else if ((VWidth % InVWidth) == 0) { 1619 // If the number of elements in the output is a multiple of the number of 1620 // elements in the input then an input element is live if any of the 1621 // corresponding output elements are live. 1622 Ratio = VWidth / InVWidth; 1623 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1624 if (DemandedElts[OutIdx]) 1625 InputDemandedElts.setBit(OutIdx / Ratio); 1626 } else if ((InVWidth % VWidth) == 0) { 1627 // If the number of elements in the input is a multiple of the number of 1628 // elements in the output then an input element is live if the 1629 // corresponding output element is live. 1630 Ratio = InVWidth / VWidth; 1631 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1632 if (DemandedElts[InIdx / Ratio]) 1633 InputDemandedElts.setBit(InIdx); 1634 } else { 1635 // Unsupported so far. 1636 break; 1637 } 1638 1639 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); 1640 1641 if (VWidth == InVWidth) { 1642 UndefElts = UndefElts2; 1643 } else if ((VWidth % InVWidth) == 0) { 1644 // If the number of elements in the output is a multiple of the number of 1645 // elements in the input then an output element is undef if the 1646 // corresponding input element is undef. 1647 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1648 if (UndefElts2[OutIdx / Ratio]) 1649 UndefElts.setBit(OutIdx); 1650 } else if ((InVWidth % VWidth) == 0) { 1651 // If the number of elements in the input is a multiple of the number of 1652 // elements in the output then an output element is undef if all of the 1653 // corresponding input elements are undef. 1654 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1655 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1656 if (SubUndef.countPopulation() == Ratio) 1657 UndefElts.setBit(OutIdx); 1658 } 1659 } else { 1660 llvm_unreachable("Unimp"); 1661 } 1662 break; 1663 } 1664 case Instruction::FPTrunc: 1665 case Instruction::FPExt: 1666 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1667 break; 1668 1669 case Instruction::Call: { 1670 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1671 if (!II) break; 1672 switch (II->getIntrinsicID()) { 1673 case Intrinsic::masked_gather: // fallthrough 1674 case Intrinsic::masked_load: { 1675 // Subtlety: If we load from a pointer, the pointer must be valid 1676 // regardless of whether the element is demanded. Doing otherwise risks 1677 // segfaults which didn't exist in the original program. 1678 APInt DemandedPtrs(APInt::getAllOnes(VWidth)), 1679 DemandedPassThrough(DemandedElts); 1680 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) 1681 for (unsigned i = 0; i < VWidth; i++) { 1682 Constant *CElt = CV->getAggregateElement(i); 1683 if (CElt->isNullValue()) 1684 DemandedPtrs.clearBit(i); 1685 else if (CElt->isAllOnesValue()) 1686 DemandedPassThrough.clearBit(i); 1687 } 1688 if (II->getIntrinsicID() == Intrinsic::masked_gather) 1689 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2); 1690 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3); 1691 1692 // Output elements are undefined if the element from both sources are. 1693 // TODO: can strengthen via mask as well. 1694 UndefElts = UndefElts2 & UndefElts3; 1695 break; 1696 } 1697 default: { 1698 // Handle target specific intrinsics 1699 std::optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic( 1700 *II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 1701 simplifyAndSetOp); 1702 if (V) 1703 return *V; 1704 break; 1705 } 1706 } // switch on IntrinsicID 1707 break; 1708 } // case Call 1709 } // switch on Opcode 1710 1711 // TODO: We bail completely on integer div/rem and shifts because they have 1712 // UB/poison potential, but that should be refined. 1713 BinaryOperator *BO; 1714 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1715 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1716 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); 1717 1718 // Output elements are undefined if both are undefined. Consider things 1719 // like undef & 0. The result is known zero, not undef. 1720 UndefElts &= UndefElts2; 1721 } 1722 1723 // If we've proven all of the lanes undef, return an undef value. 1724 // TODO: Intersect w/demanded lanes 1725 if (UndefElts.isAllOnes()) 1726 return UndefValue::get(I->getType());; 1727 1728 return MadeChange ? I : nullptr; 1729 } 1730