xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp (revision e64fe029e9d3ce476e77a478318e0c3cd201ff08)
1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains logic for simplifying instructions based on information
10 // about how they are used.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/IR/GetElementPtrTypeIterator.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/KnownBits.h"
20 #include "llvm/Transforms/InstCombine/InstCombiner.h"
21 
22 using namespace llvm;
23 using namespace llvm::PatternMatch;
24 
25 #define DEBUG_TYPE "instcombine"
26 
27 /// Check to see if the specified operand of the specified instruction is a
28 /// constant integer. If so, check to see if there are any bits set in the
29 /// constant that are not demanded. If so, shrink the constant and return true.
30 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
31                                    const APInt &Demanded) {
32   assert(I && "No instruction?");
33   assert(OpNo < I->getNumOperands() && "Operand index too large");
34 
35   // The operand must be a constant integer or splat integer.
36   Value *Op = I->getOperand(OpNo);
37   const APInt *C;
38   if (!match(Op, m_APInt(C)))
39     return false;
40 
41   // If there are no bits set that aren't demanded, nothing to do.
42   if (C->isSubsetOf(Demanded))
43     return false;
44 
45   // This instruction is producing bits that are not demanded. Shrink the RHS.
46   I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
47 
48   return true;
49 }
50 
51 
52 
53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
54 /// the instruction has any properties that allow us to simplify its operands.
55 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) {
56   unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
57   KnownBits Known(BitWidth);
58   APInt DemandedMask(APInt::getAllOnes(BitWidth));
59 
60   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
61                                      0, &Inst);
62   if (!V) return false;
63   if (V == &Inst) return true;
64   replaceInstUsesWith(Inst, V);
65   return true;
66 }
67 
68 /// This form of SimplifyDemandedBits simplifies the specified instruction
69 /// operand if possible, updating it in place. It returns true if it made any
70 /// change and false otherwise.
71 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
72                                             const APInt &DemandedMask,
73                                             KnownBits &Known, unsigned Depth) {
74   Use &U = I->getOperandUse(OpNo);
75   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
76                                           Depth, I);
77   if (!NewVal) return false;
78   if (Instruction* OpInst = dyn_cast<Instruction>(U))
79     salvageDebugInfo(*OpInst);
80 
81   replaceUse(U, NewVal);
82   return true;
83 }
84 
85 /// This function attempts to replace V with a simpler value based on the
86 /// demanded bits. When this function is called, it is known that only the bits
87 /// set in DemandedMask of the result of V are ever used downstream.
88 /// Consequently, depending on the mask and V, it may be possible to replace V
89 /// with a constant or one of its operands. In such cases, this function does
90 /// the replacement and returns true. In all other cases, it returns false after
91 /// analyzing the expression and setting KnownOne and known to be one in the
92 /// expression. Known.Zero contains all the bits that are known to be zero in
93 /// the expression. These are provided to potentially allow the caller (which
94 /// might recursively be SimplifyDemandedBits itself) to simplify the
95 /// expression.
96 /// Known.One and Known.Zero always follow the invariant that:
97 ///   Known.One & Known.Zero == 0.
98 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
99 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note
100 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
101 /// be the same.
102 ///
103 /// This returns null if it did not change anything and it permits no
104 /// simplification.  This returns V itself if it did some simplification of V's
105 /// operands based on the information about what bits are demanded. This returns
106 /// some other non-null value if it found out that V is equal to another value
107 /// in the context where the specified bits are demanded, but not for all users.
108 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
109                                                  KnownBits &Known,
110                                                  unsigned Depth,
111                                                  Instruction *CxtI) {
112   assert(V != nullptr && "Null pointer of Value???");
113   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
114   uint32_t BitWidth = DemandedMask.getBitWidth();
115   Type *VTy = V->getType();
116   assert(
117       (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
118       Known.getBitWidth() == BitWidth &&
119       "Value *V, DemandedMask and Known must have same BitWidth");
120 
121   if (isa<Constant>(V)) {
122     computeKnownBits(V, Known, Depth, CxtI);
123     return nullptr;
124   }
125 
126   Known.resetAll();
127   if (DemandedMask.isZero()) // Not demanding any bits from V.
128     return UndefValue::get(VTy);
129 
130   if (Depth == MaxAnalysisRecursionDepth)
131     return nullptr;
132 
133   Instruction *I = dyn_cast<Instruction>(V);
134   if (!I) {
135     computeKnownBits(V, Known, Depth, CxtI);
136     return nullptr;        // Only analyze instructions.
137   }
138 
139   // If there are multiple uses of this value and we aren't at the root, then
140   // we can't do any simplifications of the operands, because DemandedMask
141   // only reflects the bits demanded by *one* of the users.
142   if (Depth != 0 && !I->hasOneUse())
143     return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
144 
145   KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
146 
147   // If this is the root being simplified, allow it to have multiple uses,
148   // just set the DemandedMask to all bits so that we can try to simplify the
149   // operands.  This allows visitTruncInst (for example) to simplify the
150   // operand of a trunc without duplicating all the logic below.
151   if (Depth == 0 && !V->hasOneUse())
152     DemandedMask.setAllBits();
153 
154   // Update flags after simplifying an operand based on the fact that some high
155   // order bits are not demanded.
156   auto disableWrapFlagsBasedOnUnusedHighBits = [](Instruction *I,
157                                                   unsigned NLZ) {
158     if (NLZ > 0) {
159       // Disable the nsw and nuw flags here: We can no longer guarantee that
160       // we won't wrap after simplification. Removing the nsw/nuw flags is
161       // legal here because the top bit is not demanded.
162       I->setHasNoSignedWrap(false);
163       I->setHasNoUnsignedWrap(false);
164     }
165     return I;
166   };
167 
168   // If the high-bits of an ADD/SUB/MUL are not demanded, then we do not care
169   // about the high bits of the operands.
170   auto simplifyOperandsBasedOnUnusedHighBits = [&](APInt &DemandedFromOps) {
171     unsigned NLZ = DemandedMask.countLeadingZeros();
172     // Right fill the mask of bits for the operands to demand the most
173     // significant bit and all those below it.
174     DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
175     if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
176         SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
177         ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
178         SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
179       disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
180       return true;
181     }
182     return false;
183   };
184 
185   switch (I->getOpcode()) {
186   default:
187     computeKnownBits(I, Known, Depth, CxtI);
188     break;
189   case Instruction::And: {
190     // If either the LHS or the RHS are Zero, the result is zero.
191     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
192         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
193                              Depth + 1))
194       return I;
195     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
196     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
197 
198     Known = LHSKnown & RHSKnown;
199 
200     // If the client is only demanding bits that we know, return the known
201     // constant.
202     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
203       return Constant::getIntegerValue(VTy, Known.One);
204 
205     // If all of the demanded bits are known 1 on one side, return the other.
206     // These bits cannot contribute to the result of the 'and'.
207     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
208       return I->getOperand(0);
209     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
210       return I->getOperand(1);
211 
212     // If the RHS is a constant, see if we can simplify it.
213     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
214       return I;
215 
216     break;
217   }
218   case Instruction::Or: {
219     // If either the LHS or the RHS are One, the result is One.
220     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
221         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
222                              Depth + 1))
223       return I;
224     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
225     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
226 
227     Known = LHSKnown | RHSKnown;
228 
229     // If the client is only demanding bits that we know, return the known
230     // constant.
231     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
232       return Constant::getIntegerValue(VTy, Known.One);
233 
234     // If all of the demanded bits are known zero on one side, return the other.
235     // These bits cannot contribute to the result of the 'or'.
236     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
237       return I->getOperand(0);
238     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
239       return I->getOperand(1);
240 
241     // If the RHS is a constant, see if we can simplify it.
242     if (ShrinkDemandedConstant(I, 1, DemandedMask))
243       return I;
244 
245     break;
246   }
247   case Instruction::Xor: {
248     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
249         SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
250       return I;
251     Value *LHS, *RHS;
252     if (DemandedMask == 1 &&
253         match(I->getOperand(0), m_Intrinsic<Intrinsic::ctpop>(m_Value(LHS))) &&
254         match(I->getOperand(1), m_Intrinsic<Intrinsic::ctpop>(m_Value(RHS)))) {
255       // (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1
256       IRBuilderBase::InsertPointGuard Guard(Builder);
257       Builder.SetInsertPoint(I);
258       auto *Xor = Builder.CreateXor(LHS, RHS);
259       return Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, Xor);
260     }
261 
262     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
263     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
264 
265     Known = LHSKnown ^ RHSKnown;
266 
267     // If the client is only demanding bits that we know, return the known
268     // constant.
269     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
270       return Constant::getIntegerValue(VTy, Known.One);
271 
272     // If all of the demanded bits are known zero on one side, return the other.
273     // These bits cannot contribute to the result of the 'xor'.
274     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
275       return I->getOperand(0);
276     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
277       return I->getOperand(1);
278 
279     // If all of the demanded bits are known to be zero on one side or the
280     // other, turn this into an *inclusive* or.
281     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
282     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
283       Instruction *Or =
284         BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
285                                  I->getName());
286       return InsertNewInstWith(Or, *I);
287     }
288 
289     // If all of the demanded bits on one side are known, and all of the set
290     // bits on that side are also known to be set on the other side, turn this
291     // into an AND, as we know the bits will be cleared.
292     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
293     if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
294         RHSKnown.One.isSubsetOf(LHSKnown.One)) {
295       Constant *AndC = Constant::getIntegerValue(VTy,
296                                                  ~RHSKnown.One & DemandedMask);
297       Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
298       return InsertNewInstWith(And, *I);
299     }
300 
301     // If the RHS is a constant, see if we can change it. Don't alter a -1
302     // constant because that's a canonical 'not' op, and that is better for
303     // combining, SCEV, and codegen.
304     const APInt *C;
305     if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnes()) {
306       if ((*C | ~DemandedMask).isAllOnes()) {
307         // Force bits to 1 to create a 'not' op.
308         I->setOperand(1, ConstantInt::getAllOnesValue(VTy));
309         return I;
310       }
311       // If we can't turn this into a 'not', try to shrink the constant.
312       if (ShrinkDemandedConstant(I, 1, DemandedMask))
313         return I;
314     }
315 
316     // If our LHS is an 'and' and if it has one use, and if any of the bits we
317     // are flipping are known to be set, then the xor is just resetting those
318     // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
319     // simplifying both of them.
320     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) {
321       ConstantInt *AndRHS, *XorRHS;
322       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
323           match(I->getOperand(1), m_ConstantInt(XorRHS)) &&
324           match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) &&
325           (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
326         APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
327 
328         Constant *AndC = ConstantInt::get(VTy, NewMask & AndRHS->getValue());
329         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
330         InsertNewInstWith(NewAnd, *I);
331 
332         Constant *XorC = ConstantInt::get(VTy, NewMask & XorRHS->getValue());
333         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
334         return InsertNewInstWith(NewXor, *I);
335       }
336     }
337     break;
338   }
339   case Instruction::Select: {
340     if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
341         SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
342       return I;
343     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
344     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
345 
346     // If the operands are constants, see if we can simplify them.
347     // This is similar to ShrinkDemandedConstant, but for a select we want to
348     // try to keep the selected constants the same as icmp value constants, if
349     // we can. This helps not break apart (or helps put back together)
350     // canonical patterns like min and max.
351     auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo,
352                                          const APInt &DemandedMask) {
353       const APInt *SelC;
354       if (!match(I->getOperand(OpNo), m_APInt(SelC)))
355         return false;
356 
357       // Get the constant out of the ICmp, if there is one.
358       // Only try this when exactly 1 operand is a constant (if both operands
359       // are constant, the icmp should eventually simplify). Otherwise, we may
360       // invert the transform that reduces set bits and infinite-loop.
361       Value *X;
362       const APInt *CmpC;
363       ICmpInst::Predicate Pred;
364       if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) ||
365           isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth())
366         return ShrinkDemandedConstant(I, OpNo, DemandedMask);
367 
368       // If the constant is already the same as the ICmp, leave it as-is.
369       if (*CmpC == *SelC)
370         return false;
371       // If the constants are not already the same, but can be with the demand
372       // mask, use the constant value from the ICmp.
373       if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) {
374         I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC));
375         return true;
376       }
377       return ShrinkDemandedConstant(I, OpNo, DemandedMask);
378     };
379     if (CanonicalizeSelectConstant(I, 1, DemandedMask) ||
380         CanonicalizeSelectConstant(I, 2, DemandedMask))
381       return I;
382 
383     // Only known if known in both the LHS and RHS.
384     Known = KnownBits::commonBits(LHSKnown, RHSKnown);
385     break;
386   }
387   case Instruction::Trunc: {
388     // If we do not demand the high bits of a right-shifted and truncated value,
389     // then we may be able to truncate it before the shift.
390     Value *X;
391     const APInt *C;
392     if (match(I->getOperand(0), m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) {
393       // The shift amount must be valid (not poison) in the narrow type, and
394       // it must not be greater than the high bits demanded of the result.
395       if (C->ult(VTy->getScalarSizeInBits()) &&
396           C->ule(DemandedMask.countLeadingZeros())) {
397         // trunc (lshr X, C) --> lshr (trunc X), C
398         IRBuilderBase::InsertPointGuard Guard(Builder);
399         Builder.SetInsertPoint(I);
400         Value *Trunc = Builder.CreateTrunc(X, VTy);
401         return Builder.CreateLShr(Trunc, C->getZExtValue());
402       }
403     }
404   }
405     [[fallthrough]];
406   case Instruction::ZExt: {
407     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
408 
409     APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
410     KnownBits InputKnown(SrcBitWidth);
411     if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
412       return I;
413     assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?");
414     Known = InputKnown.zextOrTrunc(BitWidth);
415     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
416     break;
417   }
418   case Instruction::BitCast:
419     if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
420       return nullptr;  // vector->int or fp->int?
421 
422     if (auto *DstVTy = dyn_cast<VectorType>(VTy)) {
423       if (auto *SrcVTy = dyn_cast<VectorType>(I->getOperand(0)->getType())) {
424         if (isa<ScalableVectorType>(DstVTy) ||
425             isa<ScalableVectorType>(SrcVTy) ||
426             cast<FixedVectorType>(DstVTy)->getNumElements() !=
427             cast<FixedVectorType>(SrcVTy)->getNumElements())
428           // Don't touch a bitcast between vectors of different element counts.
429           return nullptr;
430       } else
431         // Don't touch a scalar-to-vector bitcast.
432         return nullptr;
433     } else if (I->getOperand(0)->getType()->isVectorTy())
434       // Don't touch a vector-to-scalar bitcast.
435       return nullptr;
436 
437     if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
438       return I;
439     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
440     break;
441   case Instruction::SExt: {
442     // Compute the bits in the result that are not present in the input.
443     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
444 
445     APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
446 
447     // If any of the sign extended bits are demanded, we know that the sign
448     // bit is demanded.
449     if (DemandedMask.getActiveBits() > SrcBitWidth)
450       InputDemandedBits.setBit(SrcBitWidth-1);
451 
452     KnownBits InputKnown(SrcBitWidth);
453     if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
454       return I;
455 
456     // If the input sign bit is known zero, or if the NewBits are not demanded
457     // convert this into a zero extension.
458     if (InputKnown.isNonNegative() ||
459         DemandedMask.getActiveBits() <= SrcBitWidth) {
460       // Convert to ZExt cast.
461       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
462       return InsertNewInstWith(NewCast, *I);
463      }
464 
465     // If the sign bit of the input is known set or clear, then we know the
466     // top bits of the result.
467     Known = InputKnown.sext(BitWidth);
468     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
469     break;
470   }
471   case Instruction::Add: {
472     if ((DemandedMask & 1) == 0) {
473       // If we do not need the low bit, try to convert bool math to logic:
474       // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN
475       Value *X, *Y;
476       if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))),
477                            m_OneUse(m_SExt(m_Value(Y))))) &&
478           X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
479         // Truth table for inputs and output signbits:
480         //       X:0 | X:1
481         //      ----------
482         // Y:0  |  0 | 0 |
483         // Y:1  | -1 | 0 |
484         //      ----------
485         IRBuilderBase::InsertPointGuard Guard(Builder);
486         Builder.SetInsertPoint(I);
487         Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y);
488         return Builder.CreateSExt(AndNot, VTy);
489       }
490 
491       // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN
492       // TODO: Relax the one-use checks because we are removing an instruction?
493       if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))),
494                          m_OneUse(m_SExt(m_Value(Y))))) &&
495           X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
496         // Truth table for inputs and output signbits:
497         //       X:0 | X:1
498         //      -----------
499         // Y:0  | -1 | -1 |
500         // Y:1  | -1 |  0 |
501         //      -----------
502         IRBuilderBase::InsertPointGuard Guard(Builder);
503         Builder.SetInsertPoint(I);
504         Value *Or = Builder.CreateOr(X, Y);
505         return Builder.CreateSExt(Or, VTy);
506       }
507     }
508 
509     // Right fill the mask of bits for the operands to demand the most
510     // significant bit and all those below it.
511     unsigned NLZ = DemandedMask.countLeadingZeros();
512     APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
513     if (ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
514         SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1))
515       return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
516 
517     // If low order bits are not demanded and known to be zero in one operand,
518     // then we don't need to demand them from the other operand, since they
519     // can't cause overflow into any bits that are demanded in the result.
520     unsigned NTZ = (~DemandedMask & RHSKnown.Zero).countTrailingOnes();
521     APInt DemandedFromLHS = DemandedFromOps;
522     DemandedFromLHS.clearLowBits(NTZ);
523     if (ShrinkDemandedConstant(I, 0, DemandedFromLHS) ||
524         SimplifyDemandedBits(I, 0, DemandedFromLHS, LHSKnown, Depth + 1))
525       return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
526 
527     // If we are known to be adding zeros to every bit below
528     // the highest demanded bit, we just return the other side.
529     if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
530       return I->getOperand(0);
531     if (DemandedFromOps.isSubsetOf(LHSKnown.Zero))
532       return I->getOperand(1);
533 
534     // Otherwise just compute the known bits of the result.
535     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
536     Known = KnownBits::computeForAddSub(true, NSW, LHSKnown, RHSKnown);
537     break;
538   }
539   case Instruction::Sub: {
540     // Right fill the mask of bits for the operands to demand the most
541     // significant bit and all those below it.
542     unsigned NLZ = DemandedMask.countLeadingZeros();
543     APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
544     if (ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
545         SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1))
546       return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
547 
548     // If low order bits are not demanded and are known to be zero in RHS,
549     // then we don't need to demand them from LHS, since they can't cause a
550     // borrow from any bits that are demanded in the result.
551     unsigned NTZ = (~DemandedMask & RHSKnown.Zero).countTrailingOnes();
552     APInt DemandedFromLHS = DemandedFromOps;
553     DemandedFromLHS.clearLowBits(NTZ);
554     if (ShrinkDemandedConstant(I, 0, DemandedFromLHS) ||
555         SimplifyDemandedBits(I, 0, DemandedFromLHS, LHSKnown, Depth + 1))
556       return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
557 
558     // If we are known to be subtracting zeros from every bit below
559     // the highest demanded bit, we just return the other side.
560     if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
561       return I->getOperand(0);
562     // We can't do this with the LHS for subtraction, unless we are only
563     // demanding the LSB.
564     if (DemandedFromOps.isOne() && DemandedFromOps.isSubsetOf(LHSKnown.Zero))
565       return I->getOperand(1);
566 
567     // Otherwise just compute the known bits of the result.
568     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
569     Known = KnownBits::computeForAddSub(false, NSW, LHSKnown, RHSKnown);
570     break;
571   }
572   case Instruction::Mul: {
573     APInt DemandedFromOps;
574     if (simplifyOperandsBasedOnUnusedHighBits(DemandedFromOps))
575       return I;
576 
577     if (DemandedMask.isPowerOf2()) {
578       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
579       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
580       // odd (has LSB set), then the left-shifted low bit of X is the answer.
581       unsigned CTZ = DemandedMask.countTrailingZeros();
582       const APInt *C;
583       if (match(I->getOperand(1), m_APInt(C)) &&
584           C->countTrailingZeros() == CTZ) {
585         Constant *ShiftC = ConstantInt::get(VTy, CTZ);
586         Instruction *Shl = BinaryOperator::CreateShl(I->getOperand(0), ShiftC);
587         return InsertNewInstWith(Shl, *I);
588       }
589     }
590     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
591     // X * X is odd iff X is odd.
592     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
593     if (I->getOperand(0) == I->getOperand(1) && DemandedMask.ult(4)) {
594       Constant *One = ConstantInt::get(VTy, 1);
595       Instruction *And1 = BinaryOperator::CreateAnd(I->getOperand(0), One);
596       return InsertNewInstWith(And1, *I);
597     }
598 
599     computeKnownBits(I, Known, Depth, CxtI);
600     break;
601   }
602   case Instruction::Shl: {
603     const APInt *SA;
604     if (match(I->getOperand(1), m_APInt(SA))) {
605       const APInt *ShrAmt;
606       if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
607         if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
608           if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
609                                                     DemandedMask, Known))
610             return R;
611 
612       // TODO: If we only want bits that already match the signbit then we don't
613       // need to shift.
614 
615       // If we can pre-shift a right-shifted constant to the left without
616       // losing any high bits amd we don't demand the low bits, then eliminate
617       // the left-shift:
618       // (C >> X) << LeftShiftAmtC --> (C << RightShiftAmtC) >> X
619       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
620       Value *X;
621       Constant *C;
622       if (DemandedMask.countTrailingZeros() >= ShiftAmt &&
623           match(I->getOperand(0), m_LShr(m_ImmConstant(C), m_Value(X)))) {
624         Constant *LeftShiftAmtC = ConstantInt::get(VTy, ShiftAmt);
625         Constant *NewC = ConstantExpr::getShl(C, LeftShiftAmtC);
626         if (ConstantExpr::getLShr(NewC, LeftShiftAmtC) == C) {
627           Instruction *Lshr = BinaryOperator::CreateLShr(NewC, X);
628           return InsertNewInstWith(Lshr, *I);
629         }
630       }
631 
632       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
633 
634       // If the shift is NUW/NSW, then it does demand the high bits.
635       ShlOperator *IOp = cast<ShlOperator>(I);
636       if (IOp->hasNoSignedWrap())
637         DemandedMaskIn.setHighBits(ShiftAmt+1);
638       else if (IOp->hasNoUnsignedWrap())
639         DemandedMaskIn.setHighBits(ShiftAmt);
640 
641       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
642         return I;
643       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
644 
645       bool SignBitZero = Known.Zero.isSignBitSet();
646       bool SignBitOne = Known.One.isSignBitSet();
647       Known.Zero <<= ShiftAmt;
648       Known.One  <<= ShiftAmt;
649       // low bits known zero.
650       if (ShiftAmt)
651         Known.Zero.setLowBits(ShiftAmt);
652 
653       // If this shift has "nsw" keyword, then the result is either a poison
654       // value or has the same sign bit as the first operand.
655       if (IOp->hasNoSignedWrap()) {
656         if (SignBitZero)
657           Known.Zero.setSignBit();
658         else if (SignBitOne)
659           Known.One.setSignBit();
660         if (Known.hasConflict())
661           return UndefValue::get(VTy);
662       }
663     } else {
664       // This is a variable shift, so we can't shift the demand mask by a known
665       // amount. But if we are not demanding high bits, then we are not
666       // demanding those bits from the pre-shifted operand either.
667       if (unsigned CTLZ = DemandedMask.countLeadingZeros()) {
668         APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
669         if (SimplifyDemandedBits(I, 0, DemandedFromOp, Known, Depth + 1)) {
670           // We can't guarantee that nsw/nuw hold after simplifying the operand.
671           I->dropPoisonGeneratingFlags();
672           return I;
673         }
674       }
675       computeKnownBits(I, Known, Depth, CxtI);
676     }
677     break;
678   }
679   case Instruction::LShr: {
680     const APInt *SA;
681     if (match(I->getOperand(1), m_APInt(SA))) {
682       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
683 
684       // If we are just demanding the shifted sign bit and below, then this can
685       // be treated as an ASHR in disguise.
686       if (DemandedMask.countLeadingZeros() >= ShiftAmt) {
687         // If we only want bits that already match the signbit then we don't
688         // need to shift.
689         unsigned NumHiDemandedBits =
690             BitWidth - DemandedMask.countTrailingZeros();
691         unsigned SignBits =
692             ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
693         if (SignBits >= NumHiDemandedBits)
694           return I->getOperand(0);
695 
696         // If we can pre-shift a left-shifted constant to the right without
697         // losing any low bits (we already know we don't demand the high bits),
698         // then eliminate the right-shift:
699         // (C << X) >> RightShiftAmtC --> (C >> RightShiftAmtC) << X
700         Value *X;
701         Constant *C;
702         if (match(I->getOperand(0), m_Shl(m_ImmConstant(C), m_Value(X)))) {
703           Constant *RightShiftAmtC = ConstantInt::get(VTy, ShiftAmt);
704           Constant *NewC = ConstantExpr::getLShr(C, RightShiftAmtC);
705           if (ConstantExpr::getShl(NewC, RightShiftAmtC) == C) {
706             Instruction *Shl = BinaryOperator::CreateShl(NewC, X);
707             return InsertNewInstWith(Shl, *I);
708           }
709         }
710       }
711 
712       // Unsigned shift right.
713       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
714 
715       // If the shift is exact, then it does demand the low bits (and knows that
716       // they are zero).
717       if (cast<LShrOperator>(I)->isExact())
718         DemandedMaskIn.setLowBits(ShiftAmt);
719 
720       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
721         return I;
722       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
723       Known.Zero.lshrInPlace(ShiftAmt);
724       Known.One.lshrInPlace(ShiftAmt);
725       if (ShiftAmt)
726         Known.Zero.setHighBits(ShiftAmt);  // high bits known zero.
727     } else {
728       computeKnownBits(I, Known, Depth, CxtI);
729     }
730     break;
731   }
732   case Instruction::AShr: {
733     unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
734 
735     // If we only want bits that already match the signbit then we don't need
736     // to shift.
737     unsigned NumHiDemandedBits = BitWidth - DemandedMask.countTrailingZeros();
738     if (SignBits >= NumHiDemandedBits)
739       return I->getOperand(0);
740 
741     // If this is an arithmetic shift right and only the low-bit is set, we can
742     // always convert this into a logical shr, even if the shift amount is
743     // variable.  The low bit of the shift cannot be an input sign bit unless
744     // the shift amount is >= the size of the datatype, which is undefined.
745     if (DemandedMask.isOne()) {
746       // Perform the logical shift right.
747       Instruction *NewVal = BinaryOperator::CreateLShr(
748                         I->getOperand(0), I->getOperand(1), I->getName());
749       return InsertNewInstWith(NewVal, *I);
750     }
751 
752     const APInt *SA;
753     if (match(I->getOperand(1), m_APInt(SA))) {
754       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
755 
756       // Signed shift right.
757       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
758       // If any of the high bits are demanded, we should set the sign bit as
759       // demanded.
760       if (DemandedMask.countLeadingZeros() <= ShiftAmt)
761         DemandedMaskIn.setSignBit();
762 
763       // If the shift is exact, then it does demand the low bits (and knows that
764       // they are zero).
765       if (cast<AShrOperator>(I)->isExact())
766         DemandedMaskIn.setLowBits(ShiftAmt);
767 
768       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
769         return I;
770 
771       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
772       // Compute the new bits that are at the top now plus sign bits.
773       APInt HighBits(APInt::getHighBitsSet(
774           BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
775       Known.Zero.lshrInPlace(ShiftAmt);
776       Known.One.lshrInPlace(ShiftAmt);
777 
778       // If the input sign bit is known to be zero, or if none of the top bits
779       // are demanded, turn this into an unsigned shift right.
780       assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
781       if (Known.Zero[BitWidth-ShiftAmt-1] ||
782           !DemandedMask.intersects(HighBits)) {
783         BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
784                                                           I->getOperand(1));
785         LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
786         return InsertNewInstWith(LShr, *I);
787       } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
788         Known.One |= HighBits;
789       }
790     } else {
791       computeKnownBits(I, Known, Depth, CxtI);
792     }
793     break;
794   }
795   case Instruction::UDiv: {
796     // UDiv doesn't demand low bits that are zero in the divisor.
797     const APInt *SA;
798     if (match(I->getOperand(1), m_APInt(SA))) {
799       // TODO: Take the demanded mask of the result into account.
800       unsigned RHSTrailingZeros = SA->countTrailingZeros();
801       APInt DemandedMaskIn =
802           APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
803       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) {
804         // We can't guarantee that "exact" is still true after changing the
805         // the dividend.
806         I->dropPoisonGeneratingFlags();
807         return I;
808       }
809 
810       // Increase high zero bits from the input.
811       Known.Zero.setHighBits(std::min(
812           BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
813     } else {
814       computeKnownBits(I, Known, Depth, CxtI);
815     }
816     break;
817   }
818   case Instruction::SRem: {
819     const APInt *Rem;
820     if (match(I->getOperand(1), m_APInt(Rem))) {
821       // X % -1 demands all the bits because we don't want to introduce
822       // INT_MIN % -1 (== undef) by accident.
823       if (Rem->isAllOnes())
824         break;
825       APInt RA = Rem->abs();
826       if (RA.isPowerOf2()) {
827         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
828           return I->getOperand(0);
829 
830         APInt LowBits = RA - 1;
831         APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
832         if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
833           return I;
834 
835         // The low bits of LHS are unchanged by the srem.
836         Known.Zero = LHSKnown.Zero & LowBits;
837         Known.One = LHSKnown.One & LowBits;
838 
839         // If LHS is non-negative or has all low bits zero, then the upper bits
840         // are all zero.
841         if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
842           Known.Zero |= ~LowBits;
843 
844         // If LHS is negative and not all low bits are zero, then the upper bits
845         // are all one.
846         if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
847           Known.One |= ~LowBits;
848 
849         assert(!Known.hasConflict() && "Bits known to be one AND zero?");
850         break;
851       }
852     }
853 
854     // The sign bit is the LHS's sign bit, except when the result of the
855     // remainder is zero.
856     if (DemandedMask.isSignBitSet()) {
857       computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
858       // If it's known zero, our sign bit is also zero.
859       if (LHSKnown.isNonNegative())
860         Known.makeNonNegative();
861     }
862     break;
863   }
864   case Instruction::URem: {
865     KnownBits Known2(BitWidth);
866     APInt AllOnes = APInt::getAllOnes(BitWidth);
867     if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
868         SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
869       return I;
870 
871     unsigned Leaders = Known2.countMinLeadingZeros();
872     Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
873     break;
874   }
875   case Instruction::Call: {
876     bool KnownBitsComputed = false;
877     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
878       switch (II->getIntrinsicID()) {
879       case Intrinsic::abs: {
880         if (DemandedMask == 1)
881           return II->getArgOperand(0);
882         break;
883       }
884       case Intrinsic::ctpop: {
885         // Checking if the number of clear bits is odd (parity)? If the type has
886         // an even number of bits, that's the same as checking if the number of
887         // set bits is odd, so we can eliminate the 'not' op.
888         Value *X;
889         if (DemandedMask == 1 && VTy->getScalarSizeInBits() % 2 == 0 &&
890             match(II->getArgOperand(0), m_Not(m_Value(X)))) {
891           Function *Ctpop = Intrinsic::getDeclaration(
892               II->getModule(), Intrinsic::ctpop, VTy);
893           return InsertNewInstWith(CallInst::Create(Ctpop, {X}), *I);
894         }
895         break;
896       }
897       case Intrinsic::bswap: {
898         // If the only bits demanded come from one byte of the bswap result,
899         // just shift the input byte into position to eliminate the bswap.
900         unsigned NLZ = DemandedMask.countLeadingZeros();
901         unsigned NTZ = DemandedMask.countTrailingZeros();
902 
903         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
904         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
905         // have 14 leading zeros, round to 8.
906         NLZ = alignDown(NLZ, 8);
907         NTZ = alignDown(NTZ, 8);
908         // If we need exactly one byte, we can do this transformation.
909         if (BitWidth - NLZ - NTZ == 8) {
910           // Replace this with either a left or right shift to get the byte into
911           // the right place.
912           Instruction *NewVal;
913           if (NLZ > NTZ)
914             NewVal = BinaryOperator::CreateLShr(
915                 II->getArgOperand(0), ConstantInt::get(VTy, NLZ - NTZ));
916           else
917             NewVal = BinaryOperator::CreateShl(
918                 II->getArgOperand(0), ConstantInt::get(VTy, NTZ - NLZ));
919           NewVal->takeName(I);
920           return InsertNewInstWith(NewVal, *I);
921         }
922         break;
923       }
924       case Intrinsic::fshr:
925       case Intrinsic::fshl: {
926         const APInt *SA;
927         if (!match(I->getOperand(2), m_APInt(SA)))
928           break;
929 
930         // Normalize to funnel shift left. APInt shifts of BitWidth are well-
931         // defined, so no need to special-case zero shifts here.
932         uint64_t ShiftAmt = SA->urem(BitWidth);
933         if (II->getIntrinsicID() == Intrinsic::fshr)
934           ShiftAmt = BitWidth - ShiftAmt;
935 
936         APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
937         APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
938         if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) ||
939             SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1))
940           return I;
941 
942         Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
943                      RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
944         Known.One = LHSKnown.One.shl(ShiftAmt) |
945                     RHSKnown.One.lshr(BitWidth - ShiftAmt);
946         KnownBitsComputed = true;
947         break;
948       }
949       case Intrinsic::umax: {
950         // UMax(A, C) == A if ...
951         // The lowest non-zero bit of DemandMask is higher than the highest
952         // non-zero bit of C.
953         const APInt *C;
954         unsigned CTZ = DemandedMask.countTrailingZeros();
955         if (match(II->getArgOperand(1), m_APInt(C)) &&
956             CTZ >= C->getActiveBits())
957           return II->getArgOperand(0);
958         break;
959       }
960       case Intrinsic::umin: {
961         // UMin(A, C) == A if ...
962         // The lowest non-zero bit of DemandMask is higher than the highest
963         // non-one bit of C.
964         // This comes from using DeMorgans on the above umax example.
965         const APInt *C;
966         unsigned CTZ = DemandedMask.countTrailingZeros();
967         if (match(II->getArgOperand(1), m_APInt(C)) &&
968             CTZ >= C->getBitWidth() - C->countLeadingOnes())
969           return II->getArgOperand(0);
970         break;
971       }
972       default: {
973         // Handle target specific intrinsics
974         std::optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic(
975             *II, DemandedMask, Known, KnownBitsComputed);
976         if (V)
977           return *V;
978         break;
979       }
980       }
981     }
982 
983     if (!KnownBitsComputed)
984       computeKnownBits(V, Known, Depth, CxtI);
985     break;
986   }
987   }
988 
989   // If the client is only demanding bits that we know, return the known
990   // constant.
991   if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
992     return Constant::getIntegerValue(VTy, Known.One);
993   return nullptr;
994 }
995 
996 /// Helper routine of SimplifyDemandedUseBits. It computes Known
997 /// bits. It also tries to handle simplifications that can be done based on
998 /// DemandedMask, but without modifying the Instruction.
999 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits(
1000     Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth,
1001     Instruction *CxtI) {
1002   unsigned BitWidth = DemandedMask.getBitWidth();
1003   Type *ITy = I->getType();
1004 
1005   KnownBits LHSKnown(BitWidth);
1006   KnownBits RHSKnown(BitWidth);
1007 
1008   // Despite the fact that we can't simplify this instruction in all User's
1009   // context, we can at least compute the known bits, and we can
1010   // do simplifications that apply to *just* the one user if we know that
1011   // this instruction has a simpler value in that context.
1012   switch (I->getOpcode()) {
1013   case Instruction::And: {
1014     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
1015     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
1016     Known = LHSKnown & RHSKnown;
1017 
1018     // If the client is only demanding bits that we know, return the known
1019     // constant.
1020     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
1021       return Constant::getIntegerValue(ITy, Known.One);
1022 
1023     // If all of the demanded bits are known 1 on one side, return the other.
1024     // These bits cannot contribute to the result of the 'and' in this context.
1025     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
1026       return I->getOperand(0);
1027     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
1028       return I->getOperand(1);
1029 
1030     break;
1031   }
1032   case Instruction::Or: {
1033     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
1034     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
1035     Known = LHSKnown | RHSKnown;
1036 
1037     // If the client is only demanding bits that we know, return the known
1038     // constant.
1039     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
1040       return Constant::getIntegerValue(ITy, Known.One);
1041 
1042     // We can simplify (X|Y) -> X or Y in the user's context if we know that
1043     // only bits from X or Y are demanded.
1044     // If all of the demanded bits are known zero on one side, return the other.
1045     // These bits cannot contribute to the result of the 'or' in this context.
1046     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
1047       return I->getOperand(0);
1048     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
1049       return I->getOperand(1);
1050 
1051     break;
1052   }
1053   case Instruction::Xor: {
1054     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
1055     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
1056     Known = LHSKnown ^ RHSKnown;
1057 
1058     // If the client is only demanding bits that we know, return the known
1059     // constant.
1060     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
1061       return Constant::getIntegerValue(ITy, Known.One);
1062 
1063     // We can simplify (X^Y) -> X or Y in the user's context if we know that
1064     // only bits from X or Y are demanded.
1065     // If all of the demanded bits are known zero on one side, return the other.
1066     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
1067       return I->getOperand(0);
1068     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
1069       return I->getOperand(1);
1070 
1071     break;
1072   }
1073   case Instruction::Add: {
1074     unsigned NLZ = DemandedMask.countLeadingZeros();
1075     APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
1076 
1077     // If an operand adds zeros to every bit below the highest demanded bit,
1078     // that operand doesn't change the result. Return the other side.
1079     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
1080     if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
1081       return I->getOperand(0);
1082 
1083     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
1084     if (DemandedFromOps.isSubsetOf(LHSKnown.Zero))
1085       return I->getOperand(1);
1086 
1087     break;
1088   }
1089   case Instruction::Sub: {
1090     unsigned NLZ = DemandedMask.countLeadingZeros();
1091     APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
1092 
1093     // If an operand subtracts zeros from every bit below the highest demanded
1094     // bit, that operand doesn't change the result. Return the other side.
1095     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
1096     if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
1097       return I->getOperand(0);
1098 
1099     break;
1100   }
1101   case Instruction::AShr: {
1102     // Compute the Known bits to simplify things downstream.
1103     computeKnownBits(I, Known, Depth, CxtI);
1104 
1105     // If this user is only demanding bits that we know, return the known
1106     // constant.
1107     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
1108       return Constant::getIntegerValue(ITy, Known.One);
1109 
1110     // If the right shift operand 0 is a result of a left shift by the same
1111     // amount, this is probably a zero/sign extension, which may be unnecessary,
1112     // if we do not demand any of the new sign bits. So, return the original
1113     // operand instead.
1114     const APInt *ShiftRC;
1115     const APInt *ShiftLC;
1116     Value *X;
1117     unsigned BitWidth = DemandedMask.getBitWidth();
1118     if (match(I,
1119               m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) &&
1120         ShiftLC == ShiftRC && ShiftLC->ult(BitWidth) &&
1121         DemandedMask.isSubsetOf(APInt::getLowBitsSet(
1122             BitWidth, BitWidth - ShiftRC->getZExtValue()))) {
1123       return X;
1124     }
1125 
1126     break;
1127   }
1128   default:
1129     // Compute the Known bits to simplify things downstream.
1130     computeKnownBits(I, Known, Depth, CxtI);
1131 
1132     // If this user is only demanding bits that we know, return the known
1133     // constant.
1134     if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
1135       return Constant::getIntegerValue(ITy, Known.One);
1136 
1137     break;
1138   }
1139 
1140   return nullptr;
1141 }
1142 
1143 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
1144 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
1145 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
1146 /// of "C2-C1".
1147 ///
1148 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
1149 /// ..., bn}, without considering the specific value X is holding.
1150 /// This transformation is legal iff one of following conditions is hold:
1151 ///  1) All the bit in S are 0, in this case E1 == E2.
1152 ///  2) We don't care those bits in S, per the input DemandedMask.
1153 ///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
1154 ///     rest bits.
1155 ///
1156 /// Currently we only test condition 2).
1157 ///
1158 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
1159 /// not successful.
1160 Value *InstCombinerImpl::simplifyShrShlDemandedBits(
1161     Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
1162     const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) {
1163   if (!ShlOp1 || !ShrOp1)
1164     return nullptr; // No-op.
1165 
1166   Value *VarX = Shr->getOperand(0);
1167   Type *Ty = VarX->getType();
1168   unsigned BitWidth = Ty->getScalarSizeInBits();
1169   if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
1170     return nullptr; // Undef.
1171 
1172   unsigned ShlAmt = ShlOp1.getZExtValue();
1173   unsigned ShrAmt = ShrOp1.getZExtValue();
1174 
1175   Known.One.clearAllBits();
1176   Known.Zero.setLowBits(ShlAmt - 1);
1177   Known.Zero &= DemandedMask;
1178 
1179   APInt BitMask1(APInt::getAllOnes(BitWidth));
1180   APInt BitMask2(APInt::getAllOnes(BitWidth));
1181 
1182   bool isLshr = (Shr->getOpcode() == Instruction::LShr);
1183   BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
1184                       (BitMask1.ashr(ShrAmt) << ShlAmt);
1185 
1186   if (ShrAmt <= ShlAmt) {
1187     BitMask2 <<= (ShlAmt - ShrAmt);
1188   } else {
1189     BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
1190                         BitMask2.ashr(ShrAmt - ShlAmt);
1191   }
1192 
1193   // Check if condition-2 (see the comment to this function) is satified.
1194   if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
1195     if (ShrAmt == ShlAmt)
1196       return VarX;
1197 
1198     if (!Shr->hasOneUse())
1199       return nullptr;
1200 
1201     BinaryOperator *New;
1202     if (ShrAmt < ShlAmt) {
1203       Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
1204       New = BinaryOperator::CreateShl(VarX, Amt);
1205       BinaryOperator *Orig = cast<BinaryOperator>(Shl);
1206       New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
1207       New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
1208     } else {
1209       Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
1210       New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
1211                      BinaryOperator::CreateAShr(VarX, Amt);
1212       if (cast<BinaryOperator>(Shr)->isExact())
1213         New->setIsExact(true);
1214     }
1215 
1216     return InsertNewInstWith(New, *Shl);
1217   }
1218 
1219   return nullptr;
1220 }
1221 
1222 /// The specified value produces a vector with any number of elements.
1223 /// This method analyzes which elements of the operand are undef or poison and
1224 /// returns that information in UndefElts.
1225 ///
1226 /// DemandedElts contains the set of elements that are actually used by the
1227 /// caller, and by default (AllowMultipleUsers equals false) the value is
1228 /// simplified only if it has a single caller. If AllowMultipleUsers is set
1229 /// to true, DemandedElts refers to the union of sets of elements that are
1230 /// used by all callers.
1231 ///
1232 /// If the information about demanded elements can be used to simplify the
1233 /// operation, the operation is simplified, then the resultant value is
1234 /// returned.  This returns null if no change was made.
1235 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V,
1236                                                     APInt DemandedElts,
1237                                                     APInt &UndefElts,
1238                                                     unsigned Depth,
1239                                                     bool AllowMultipleUsers) {
1240   // Cannot analyze scalable type. The number of vector elements is not a
1241   // compile-time constant.
1242   if (isa<ScalableVectorType>(V->getType()))
1243     return nullptr;
1244 
1245   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
1246   APInt EltMask(APInt::getAllOnes(VWidth));
1247   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
1248 
1249   if (match(V, m_Undef())) {
1250     // If the entire vector is undef or poison, just return this info.
1251     UndefElts = EltMask;
1252     return nullptr;
1253   }
1254 
1255   if (DemandedElts.isZero()) { // If nothing is demanded, provide poison.
1256     UndefElts = EltMask;
1257     return PoisonValue::get(V->getType());
1258   }
1259 
1260   UndefElts = 0;
1261 
1262   if (auto *C = dyn_cast<Constant>(V)) {
1263     // Check if this is identity. If so, return 0 since we are not simplifying
1264     // anything.
1265     if (DemandedElts.isAllOnes())
1266       return nullptr;
1267 
1268     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1269     Constant *Poison = PoisonValue::get(EltTy);
1270     SmallVector<Constant*, 16> Elts;
1271     for (unsigned i = 0; i != VWidth; ++i) {
1272       if (!DemandedElts[i]) {   // If not demanded, set to poison.
1273         Elts.push_back(Poison);
1274         UndefElts.setBit(i);
1275         continue;
1276       }
1277 
1278       Constant *Elt = C->getAggregateElement(i);
1279       if (!Elt) return nullptr;
1280 
1281       Elts.push_back(Elt);
1282       if (isa<UndefValue>(Elt))   // Already undef or poison.
1283         UndefElts.setBit(i);
1284     }
1285 
1286     // If we changed the constant, return it.
1287     Constant *NewCV = ConstantVector::get(Elts);
1288     return NewCV != C ? NewCV : nullptr;
1289   }
1290 
1291   // Limit search depth.
1292   if (Depth == 10)
1293     return nullptr;
1294 
1295   if (!AllowMultipleUsers) {
1296     // If multiple users are using the root value, proceed with
1297     // simplification conservatively assuming that all elements
1298     // are needed.
1299     if (!V->hasOneUse()) {
1300       // Quit if we find multiple users of a non-root value though.
1301       // They'll be handled when it's their turn to be visited by
1302       // the main instcombine process.
1303       if (Depth != 0)
1304         // TODO: Just compute the UndefElts information recursively.
1305         return nullptr;
1306 
1307       // Conservatively assume that all elements are needed.
1308       DemandedElts = EltMask;
1309     }
1310   }
1311 
1312   Instruction *I = dyn_cast<Instruction>(V);
1313   if (!I) return nullptr;        // Only analyze instructions.
1314 
1315   bool MadeChange = false;
1316   auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
1317                               APInt Demanded, APInt &Undef) {
1318     auto *II = dyn_cast<IntrinsicInst>(Inst);
1319     Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
1320     if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
1321       replaceOperand(*Inst, OpNum, V);
1322       MadeChange = true;
1323     }
1324   };
1325 
1326   APInt UndefElts2(VWidth, 0);
1327   APInt UndefElts3(VWidth, 0);
1328   switch (I->getOpcode()) {
1329   default: break;
1330 
1331   case Instruction::GetElementPtr: {
1332     // The LangRef requires that struct geps have all constant indices.  As
1333     // such, we can't convert any operand to partial undef.
1334     auto mayIndexStructType = [](GetElementPtrInst &GEP) {
1335       for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP);
1336            I != E; I++)
1337         if (I.isStruct())
1338           return true;
1339       return false;
1340     };
1341     if (mayIndexStructType(cast<GetElementPtrInst>(*I)))
1342       break;
1343 
1344     // Conservatively track the demanded elements back through any vector
1345     // operands we may have.  We know there must be at least one, or we
1346     // wouldn't have a vector result to get here. Note that we intentionally
1347     // merge the undef bits here since gepping with either an poison base or
1348     // index results in poison.
1349     for (unsigned i = 0; i < I->getNumOperands(); i++) {
1350       if (i == 0 ? match(I->getOperand(i), m_Undef())
1351                  : match(I->getOperand(i), m_Poison())) {
1352         // If the entire vector is undefined, just return this info.
1353         UndefElts = EltMask;
1354         return nullptr;
1355       }
1356       if (I->getOperand(i)->getType()->isVectorTy()) {
1357         APInt UndefEltsOp(VWidth, 0);
1358         simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp);
1359         // gep(x, undef) is not undef, so skip considering idx ops here
1360         // Note that we could propagate poison, but we can't distinguish between
1361         // undef & poison bits ATM
1362         if (i == 0)
1363           UndefElts |= UndefEltsOp;
1364       }
1365     }
1366 
1367     break;
1368   }
1369   case Instruction::InsertElement: {
1370     // If this is a variable index, we don't know which element it overwrites.
1371     // demand exactly the same input as we produce.
1372     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1373     if (!Idx) {
1374       // Note that we can't propagate undef elt info, because we don't know
1375       // which elt is getting updated.
1376       simplifyAndSetOp(I, 0, DemandedElts, UndefElts2);
1377       break;
1378     }
1379 
1380     // The element inserted overwrites whatever was there, so the input demanded
1381     // set is simpler than the output set.
1382     unsigned IdxNo = Idx->getZExtValue();
1383     APInt PreInsertDemandedElts = DemandedElts;
1384     if (IdxNo < VWidth)
1385       PreInsertDemandedElts.clearBit(IdxNo);
1386 
1387     // If we only demand the element that is being inserted and that element
1388     // was extracted from the same index in another vector with the same type,
1389     // replace this insert with that other vector.
1390     // Note: This is attempted before the call to simplifyAndSetOp because that
1391     //       may change UndefElts to a value that does not match with Vec.
1392     Value *Vec;
1393     if (PreInsertDemandedElts == 0 &&
1394         match(I->getOperand(1),
1395               m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) &&
1396         Vec->getType() == I->getType()) {
1397       return Vec;
1398     }
1399 
1400     simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts);
1401 
1402     // If this is inserting an element that isn't demanded, remove this
1403     // insertelement.
1404     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1405       Worklist.push(I);
1406       return I->getOperand(0);
1407     }
1408 
1409     // The inserted element is defined.
1410     UndefElts.clearBit(IdxNo);
1411     break;
1412   }
1413   case Instruction::ShuffleVector: {
1414     auto *Shuffle = cast<ShuffleVectorInst>(I);
1415     assert(Shuffle->getOperand(0)->getType() ==
1416            Shuffle->getOperand(1)->getType() &&
1417            "Expected shuffle operands to have same type");
1418     unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType())
1419                            ->getNumElements();
1420     // Handle trivial case of a splat. Only check the first element of LHS
1421     // operand.
1422     if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) &&
1423         DemandedElts.isAllOnes()) {
1424       if (!match(I->getOperand(1), m_Undef())) {
1425         I->setOperand(1, PoisonValue::get(I->getOperand(1)->getType()));
1426         MadeChange = true;
1427       }
1428       APInt LeftDemanded(OpWidth, 1);
1429       APInt LHSUndefElts(OpWidth, 0);
1430       simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1431       if (LHSUndefElts[0])
1432         UndefElts = EltMask;
1433       else
1434         UndefElts.clearAllBits();
1435       break;
1436     }
1437 
1438     APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0);
1439     for (unsigned i = 0; i < VWidth; i++) {
1440       if (DemandedElts[i]) {
1441         unsigned MaskVal = Shuffle->getMaskValue(i);
1442         if (MaskVal != -1u) {
1443           assert(MaskVal < OpWidth * 2 &&
1444                  "shufflevector mask index out of range!");
1445           if (MaskVal < OpWidth)
1446             LeftDemanded.setBit(MaskVal);
1447           else
1448             RightDemanded.setBit(MaskVal - OpWidth);
1449         }
1450       }
1451     }
1452 
1453     APInt LHSUndefElts(OpWidth, 0);
1454     simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1455 
1456     APInt RHSUndefElts(OpWidth, 0);
1457     simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts);
1458 
1459     // If this shuffle does not change the vector length and the elements
1460     // demanded by this shuffle are an identity mask, then this shuffle is
1461     // unnecessary.
1462     //
1463     // We are assuming canonical form for the mask, so the source vector is
1464     // operand 0 and operand 1 is not used.
1465     //
1466     // Note that if an element is demanded and this shuffle mask is undefined
1467     // for that element, then the shuffle is not considered an identity
1468     // operation. The shuffle prevents poison from the operand vector from
1469     // leaking to the result by replacing poison with an undefined value.
1470     if (VWidth == OpWidth) {
1471       bool IsIdentityShuffle = true;
1472       for (unsigned i = 0; i < VWidth; i++) {
1473         unsigned MaskVal = Shuffle->getMaskValue(i);
1474         if (DemandedElts[i] && i != MaskVal) {
1475           IsIdentityShuffle = false;
1476           break;
1477         }
1478       }
1479       if (IsIdentityShuffle)
1480         return Shuffle->getOperand(0);
1481     }
1482 
1483     bool NewUndefElts = false;
1484     unsigned LHSIdx = -1u, LHSValIdx = -1u;
1485     unsigned RHSIdx = -1u, RHSValIdx = -1u;
1486     bool LHSUniform = true;
1487     bool RHSUniform = true;
1488     for (unsigned i = 0; i < VWidth; i++) {
1489       unsigned MaskVal = Shuffle->getMaskValue(i);
1490       if (MaskVal == -1u) {
1491         UndefElts.setBit(i);
1492       } else if (!DemandedElts[i]) {
1493         NewUndefElts = true;
1494         UndefElts.setBit(i);
1495       } else if (MaskVal < OpWidth) {
1496         if (LHSUndefElts[MaskVal]) {
1497           NewUndefElts = true;
1498           UndefElts.setBit(i);
1499         } else {
1500           LHSIdx = LHSIdx == -1u ? i : OpWidth;
1501           LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth;
1502           LHSUniform = LHSUniform && (MaskVal == i);
1503         }
1504       } else {
1505         if (RHSUndefElts[MaskVal - OpWidth]) {
1506           NewUndefElts = true;
1507           UndefElts.setBit(i);
1508         } else {
1509           RHSIdx = RHSIdx == -1u ? i : OpWidth;
1510           RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth;
1511           RHSUniform = RHSUniform && (MaskVal - OpWidth == i);
1512         }
1513       }
1514     }
1515 
1516     // Try to transform shuffle with constant vector and single element from
1517     // this constant vector to single insertelement instruction.
1518     // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1519     // insertelement V, C[ci], ci-n
1520     if (OpWidth ==
1521         cast<FixedVectorType>(Shuffle->getType())->getNumElements()) {
1522       Value *Op = nullptr;
1523       Constant *Value = nullptr;
1524       unsigned Idx = -1u;
1525 
1526       // Find constant vector with the single element in shuffle (LHS or RHS).
1527       if (LHSIdx < OpWidth && RHSUniform) {
1528         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1529           Op = Shuffle->getOperand(1);
1530           Value = CV->getOperand(LHSValIdx);
1531           Idx = LHSIdx;
1532         }
1533       }
1534       if (RHSIdx < OpWidth && LHSUniform) {
1535         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1536           Op = Shuffle->getOperand(0);
1537           Value = CV->getOperand(RHSValIdx);
1538           Idx = RHSIdx;
1539         }
1540       }
1541       // Found constant vector with single element - convert to insertelement.
1542       if (Op && Value) {
1543         Instruction *New = InsertElementInst::Create(
1544             Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1545             Shuffle->getName());
1546         InsertNewInstWith(New, *Shuffle);
1547         return New;
1548       }
1549     }
1550     if (NewUndefElts) {
1551       // Add additional discovered undefs.
1552       SmallVector<int, 16> Elts;
1553       for (unsigned i = 0; i < VWidth; ++i) {
1554         if (UndefElts[i])
1555           Elts.push_back(UndefMaskElem);
1556         else
1557           Elts.push_back(Shuffle->getMaskValue(i));
1558       }
1559       Shuffle->setShuffleMask(Elts);
1560       MadeChange = true;
1561     }
1562     break;
1563   }
1564   case Instruction::Select: {
1565     // If this is a vector select, try to transform the select condition based
1566     // on the current demanded elements.
1567     SelectInst *Sel = cast<SelectInst>(I);
1568     if (Sel->getCondition()->getType()->isVectorTy()) {
1569       // TODO: We are not doing anything with UndefElts based on this call.
1570       // It is overwritten below based on the other select operands. If an
1571       // element of the select condition is known undef, then we are free to
1572       // choose the output value from either arm of the select. If we know that
1573       // one of those values is undef, then the output can be undef.
1574       simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1575     }
1576 
1577     // Next, see if we can transform the arms of the select.
1578     APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
1579     if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
1580       for (unsigned i = 0; i < VWidth; i++) {
1581         // isNullValue() always returns false when called on a ConstantExpr.
1582         // Skip constant expressions to avoid propagating incorrect information.
1583         Constant *CElt = CV->getAggregateElement(i);
1584         if (isa<ConstantExpr>(CElt))
1585           continue;
1586         // TODO: If a select condition element is undef, we can demand from
1587         // either side. If one side is known undef, choosing that side would
1588         // propagate undef.
1589         if (CElt->isNullValue())
1590           DemandedLHS.clearBit(i);
1591         else
1592           DemandedRHS.clearBit(i);
1593       }
1594     }
1595 
1596     simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2);
1597     simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3);
1598 
1599     // Output elements are undefined if the element from each arm is undefined.
1600     // TODO: This can be improved. See comment in select condition handling.
1601     UndefElts = UndefElts2 & UndefElts3;
1602     break;
1603   }
1604   case Instruction::BitCast: {
1605     // Vector->vector casts only.
1606     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1607     if (!VTy) break;
1608     unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements();
1609     APInt InputDemandedElts(InVWidth, 0);
1610     UndefElts2 = APInt(InVWidth, 0);
1611     unsigned Ratio;
1612 
1613     if (VWidth == InVWidth) {
1614       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1615       // elements as are demanded of us.
1616       Ratio = 1;
1617       InputDemandedElts = DemandedElts;
1618     } else if ((VWidth % InVWidth) == 0) {
1619       // If the number of elements in the output is a multiple of the number of
1620       // elements in the input then an input element is live if any of the
1621       // corresponding output elements are live.
1622       Ratio = VWidth / InVWidth;
1623       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1624         if (DemandedElts[OutIdx])
1625           InputDemandedElts.setBit(OutIdx / Ratio);
1626     } else if ((InVWidth % VWidth) == 0) {
1627       // If the number of elements in the input is a multiple of the number of
1628       // elements in the output then an input element is live if the
1629       // corresponding output element is live.
1630       Ratio = InVWidth / VWidth;
1631       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1632         if (DemandedElts[InIdx / Ratio])
1633           InputDemandedElts.setBit(InIdx);
1634     } else {
1635       // Unsupported so far.
1636       break;
1637     }
1638 
1639     simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2);
1640 
1641     if (VWidth == InVWidth) {
1642       UndefElts = UndefElts2;
1643     } else if ((VWidth % InVWidth) == 0) {
1644       // If the number of elements in the output is a multiple of the number of
1645       // elements in the input then an output element is undef if the
1646       // corresponding input element is undef.
1647       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1648         if (UndefElts2[OutIdx / Ratio])
1649           UndefElts.setBit(OutIdx);
1650     } else if ((InVWidth % VWidth) == 0) {
1651       // If the number of elements in the input is a multiple of the number of
1652       // elements in the output then an output element is undef if all of the
1653       // corresponding input elements are undef.
1654       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1655         APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1656         if (SubUndef.countPopulation() == Ratio)
1657           UndefElts.setBit(OutIdx);
1658       }
1659     } else {
1660       llvm_unreachable("Unimp");
1661     }
1662     break;
1663   }
1664   case Instruction::FPTrunc:
1665   case Instruction::FPExt:
1666     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1667     break;
1668 
1669   case Instruction::Call: {
1670     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1671     if (!II) break;
1672     switch (II->getIntrinsicID()) {
1673     case Intrinsic::masked_gather: // fallthrough
1674     case Intrinsic::masked_load: {
1675       // Subtlety: If we load from a pointer, the pointer must be valid
1676       // regardless of whether the element is demanded.  Doing otherwise risks
1677       // segfaults which didn't exist in the original program.
1678       APInt DemandedPtrs(APInt::getAllOnes(VWidth)),
1679           DemandedPassThrough(DemandedElts);
1680       if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2)))
1681         for (unsigned i = 0; i < VWidth; i++) {
1682           Constant *CElt = CV->getAggregateElement(i);
1683           if (CElt->isNullValue())
1684             DemandedPtrs.clearBit(i);
1685           else if (CElt->isAllOnesValue())
1686             DemandedPassThrough.clearBit(i);
1687         }
1688       if (II->getIntrinsicID() == Intrinsic::masked_gather)
1689         simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2);
1690       simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3);
1691 
1692       // Output elements are undefined if the element from both sources are.
1693       // TODO: can strengthen via mask as well.
1694       UndefElts = UndefElts2 & UndefElts3;
1695       break;
1696     }
1697     default: {
1698       // Handle target specific intrinsics
1699       std::optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic(
1700           *II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
1701           simplifyAndSetOp);
1702       if (V)
1703         return *V;
1704       break;
1705     }
1706     } // switch on IntrinsicID
1707     break;
1708   } // case Call
1709   } // switch on Opcode
1710 
1711   // TODO: We bail completely on integer div/rem and shifts because they have
1712   // UB/poison potential, but that should be refined.
1713   BinaryOperator *BO;
1714   if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
1715     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1716     simplifyAndSetOp(I, 1, DemandedElts, UndefElts2);
1717 
1718     // Output elements are undefined if both are undefined. Consider things
1719     // like undef & 0. The result is known zero, not undef.
1720     UndefElts &= UndefElts2;
1721   }
1722 
1723   // If we've proven all of the lanes undef, return an undef value.
1724   // TODO: Intersect w/demanded lanes
1725   if (UndefElts.isAllOnes())
1726     return UndefValue::get(I->getType());;
1727 
1728   return MadeChange ? I : nullptr;
1729 }
1730