1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/TargetTransformInfo.h" 16 #include "llvm/Analysis/ValueTracking.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 #include "llvm/Transforms/InstCombine/InstCombiner.h" 21 22 using namespace llvm; 23 using namespace llvm::PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 /// Check to see if the specified operand of the specified instruction is a 28 /// constant integer. If so, check to see if there are any bits set in the 29 /// constant that are not demanded. If so, shrink the constant and return true. 30 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 31 const APInt &Demanded) { 32 assert(I && "No instruction?"); 33 assert(OpNo < I->getNumOperands() && "Operand index too large"); 34 35 // The operand must be a constant integer or splat integer. 36 Value *Op = I->getOperand(OpNo); 37 const APInt *C; 38 if (!match(Op, m_APInt(C))) 39 return false; 40 41 // If there are no bits set that aren't demanded, nothing to do. 42 if (C->isSubsetOf(Demanded)) 43 return false; 44 45 // This instruction is producing bits that are not demanded. Shrink the RHS. 46 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 47 48 return true; 49 } 50 51 52 53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 54 /// the instruction has any properties that allow us to simplify its operands. 55 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) { 56 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 57 KnownBits Known(BitWidth); 58 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 59 60 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 61 0, &Inst); 62 if (!V) return false; 63 if (V == &Inst) return true; 64 replaceInstUsesWith(Inst, V); 65 return true; 66 } 67 68 /// This form of SimplifyDemandedBits simplifies the specified instruction 69 /// operand if possible, updating it in place. It returns true if it made any 70 /// change and false otherwise. 71 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 72 const APInt &DemandedMask, 73 KnownBits &Known, unsigned Depth) { 74 Use &U = I->getOperandUse(OpNo); 75 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 76 Depth, I); 77 if (!NewVal) return false; 78 if (Instruction* OpInst = dyn_cast<Instruction>(U)) 79 salvageDebugInfo(*OpInst); 80 81 replaceUse(U, NewVal); 82 return true; 83 } 84 85 /// This function attempts to replace V with a simpler value based on the 86 /// demanded bits. When this function is called, it is known that only the bits 87 /// set in DemandedMask of the result of V are ever used downstream. 88 /// Consequently, depending on the mask and V, it may be possible to replace V 89 /// with a constant or one of its operands. In such cases, this function does 90 /// the replacement and returns true. In all other cases, it returns false after 91 /// analyzing the expression and setting KnownOne and known to be one in the 92 /// expression. Known.Zero contains all the bits that are known to be zero in 93 /// the expression. These are provided to potentially allow the caller (which 94 /// might recursively be SimplifyDemandedBits itself) to simplify the 95 /// expression. 96 /// Known.One and Known.Zero always follow the invariant that: 97 /// Known.One & Known.Zero == 0. 98 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 99 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 100 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 101 /// be the same. 102 /// 103 /// This returns null if it did not change anything and it permits no 104 /// simplification. This returns V itself if it did some simplification of V's 105 /// operands based on the information about what bits are demanded. This returns 106 /// some other non-null value if it found out that V is equal to another value 107 /// in the context where the specified bits are demanded, but not for all users. 108 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 109 KnownBits &Known, 110 unsigned Depth, 111 Instruction *CxtI) { 112 assert(V != nullptr && "Null pointer of Value???"); 113 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 114 uint32_t BitWidth = DemandedMask.getBitWidth(); 115 Type *VTy = V->getType(); 116 assert( 117 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 118 Known.getBitWidth() == BitWidth && 119 "Value *V, DemandedMask and Known must have same BitWidth"); 120 121 if (isa<Constant>(V)) { 122 computeKnownBits(V, Known, Depth, CxtI); 123 return nullptr; 124 } 125 126 Known.resetAll(); 127 if (DemandedMask.isNullValue()) // Not demanding any bits from V. 128 return UndefValue::get(VTy); 129 130 if (Depth == MaxAnalysisRecursionDepth) 131 return nullptr; 132 133 if (isa<ScalableVectorType>(VTy)) 134 return nullptr; 135 136 Instruction *I = dyn_cast<Instruction>(V); 137 if (!I) { 138 computeKnownBits(V, Known, Depth, CxtI); 139 return nullptr; // Only analyze instructions. 140 } 141 142 // If there are multiple uses of this value and we aren't at the root, then 143 // we can't do any simplifications of the operands, because DemandedMask 144 // only reflects the bits demanded by *one* of the users. 145 if (Depth != 0 && !I->hasOneUse()) 146 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 147 148 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 149 150 // If this is the root being simplified, allow it to have multiple uses, 151 // just set the DemandedMask to all bits so that we can try to simplify the 152 // operands. This allows visitTruncInst (for example) to simplify the 153 // operand of a trunc without duplicating all the logic below. 154 if (Depth == 0 && !V->hasOneUse()) 155 DemandedMask.setAllBits(); 156 157 switch (I->getOpcode()) { 158 default: 159 computeKnownBits(I, Known, Depth, CxtI); 160 break; 161 case Instruction::And: { 162 // If either the LHS or the RHS are Zero, the result is zero. 163 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 164 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 165 Depth + 1)) 166 return I; 167 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 168 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 169 170 Known = LHSKnown & RHSKnown; 171 172 // If the client is only demanding bits that we know, return the known 173 // constant. 174 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 175 return Constant::getIntegerValue(VTy, Known.One); 176 177 // If all of the demanded bits are known 1 on one side, return the other. 178 // These bits cannot contribute to the result of the 'and'. 179 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 180 return I->getOperand(0); 181 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 182 return I->getOperand(1); 183 184 // If the RHS is a constant, see if we can simplify it. 185 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 186 return I; 187 188 break; 189 } 190 case Instruction::Or: { 191 // If either the LHS or the RHS are One, the result is One. 192 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 193 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 194 Depth + 1)) 195 return I; 196 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 197 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 198 199 Known = LHSKnown | RHSKnown; 200 201 // If the client is only demanding bits that we know, return the known 202 // constant. 203 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 204 return Constant::getIntegerValue(VTy, Known.One); 205 206 // If all of the demanded bits are known zero on one side, return the other. 207 // These bits cannot contribute to the result of the 'or'. 208 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 209 return I->getOperand(0); 210 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 211 return I->getOperand(1); 212 213 // If the RHS is a constant, see if we can simplify it. 214 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 215 return I; 216 217 break; 218 } 219 case Instruction::Xor: { 220 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 221 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 222 return I; 223 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 224 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 225 226 Known = LHSKnown ^ RHSKnown; 227 228 // If the client is only demanding bits that we know, return the known 229 // constant. 230 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 231 return Constant::getIntegerValue(VTy, Known.One); 232 233 // If all of the demanded bits are known zero on one side, return the other. 234 // These bits cannot contribute to the result of the 'xor'. 235 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 236 return I->getOperand(0); 237 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 238 return I->getOperand(1); 239 240 // If all of the demanded bits are known to be zero on one side or the 241 // other, turn this into an *inclusive* or. 242 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 243 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 244 Instruction *Or = 245 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 246 I->getName()); 247 return InsertNewInstWith(Or, *I); 248 } 249 250 // If all of the demanded bits on one side are known, and all of the set 251 // bits on that side are also known to be set on the other side, turn this 252 // into an AND, as we know the bits will be cleared. 253 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 254 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 255 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 256 Constant *AndC = Constant::getIntegerValue(VTy, 257 ~RHSKnown.One & DemandedMask); 258 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 259 return InsertNewInstWith(And, *I); 260 } 261 262 // If the RHS is a constant, see if we can change it. Don't alter a -1 263 // constant because that's a canonical 'not' op, and that is better for 264 // combining, SCEV, and codegen. 265 const APInt *C; 266 if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnesValue()) { 267 if ((*C | ~DemandedMask).isAllOnesValue()) { 268 // Force bits to 1 to create a 'not' op. 269 I->setOperand(1, ConstantInt::getAllOnesValue(VTy)); 270 return I; 271 } 272 // If we can't turn this into a 'not', try to shrink the constant. 273 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 274 return I; 275 } 276 277 // If our LHS is an 'and' and if it has one use, and if any of the bits we 278 // are flipping are known to be set, then the xor is just resetting those 279 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 280 // simplifying both of them. 281 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) { 282 ConstantInt *AndRHS, *XorRHS; 283 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 284 match(I->getOperand(1), m_ConstantInt(XorRHS)) && 285 match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) && 286 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 287 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 288 289 Constant *AndC = 290 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 291 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 292 InsertNewInstWith(NewAnd, *I); 293 294 Constant *XorC = 295 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 296 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 297 return InsertNewInstWith(NewXor, *I); 298 } 299 } 300 break; 301 } 302 case Instruction::Select: { 303 Value *LHS, *RHS; 304 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 305 if (SPF == SPF_UMAX) { 306 // UMax(A, C) == A if ... 307 // The lowest non-zero bit of DemandMask is higher than the highest 308 // non-zero bit of C. 309 const APInt *C; 310 unsigned CTZ = DemandedMask.countTrailingZeros(); 311 if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits()) 312 return LHS; 313 } else if (SPF == SPF_UMIN) { 314 // UMin(A, C) == A if ... 315 // The lowest non-zero bit of DemandMask is higher than the highest 316 // non-one bit of C. 317 // This comes from using DeMorgans on the above umax example. 318 const APInt *C; 319 unsigned CTZ = DemandedMask.countTrailingZeros(); 320 if (match(RHS, m_APInt(C)) && 321 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 322 return LHS; 323 } 324 325 // If this is a select as part of any other min/max pattern, don't simplify 326 // any further in case we break the structure. 327 if (SPF != SPF_UNKNOWN) 328 return nullptr; 329 330 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 331 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 332 return I; 333 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 334 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 335 336 // If the operands are constants, see if we can simplify them. 337 // This is similar to ShrinkDemandedConstant, but for a select we want to 338 // try to keep the selected constants the same as icmp value constants, if 339 // we can. This helps not break apart (or helps put back together) 340 // canonical patterns like min and max. 341 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, 342 const APInt &DemandedMask) { 343 const APInt *SelC; 344 if (!match(I->getOperand(OpNo), m_APInt(SelC))) 345 return false; 346 347 // Get the constant out of the ICmp, if there is one. 348 // Only try this when exactly 1 operand is a constant (if both operands 349 // are constant, the icmp should eventually simplify). Otherwise, we may 350 // invert the transform that reduces set bits and infinite-loop. 351 Value *X; 352 const APInt *CmpC; 353 ICmpInst::Predicate Pred; 354 if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) || 355 isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth()) 356 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 357 358 // If the constant is already the same as the ICmp, leave it as-is. 359 if (*CmpC == *SelC) 360 return false; 361 // If the constants are not already the same, but can be with the demand 362 // mask, use the constant value from the ICmp. 363 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { 364 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC)); 365 return true; 366 } 367 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 368 }; 369 if (CanonicalizeSelectConstant(I, 1, DemandedMask) || 370 CanonicalizeSelectConstant(I, 2, DemandedMask)) 371 return I; 372 373 // Only known if known in both the LHS and RHS. 374 Known = KnownBits::commonBits(LHSKnown, RHSKnown); 375 break; 376 } 377 case Instruction::ZExt: 378 case Instruction::Trunc: { 379 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 380 381 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 382 KnownBits InputKnown(SrcBitWidth); 383 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 384 return I; 385 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); 386 Known = InputKnown.zextOrTrunc(BitWidth); 387 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 388 break; 389 } 390 case Instruction::BitCast: 391 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 392 return nullptr; // vector->int or fp->int? 393 394 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 395 if (VectorType *SrcVTy = 396 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 397 if (cast<FixedVectorType>(DstVTy)->getNumElements() != 398 cast<FixedVectorType>(SrcVTy)->getNumElements()) 399 // Don't touch a bitcast between vectors of different element counts. 400 return nullptr; 401 } else 402 // Don't touch a scalar-to-vector bitcast. 403 return nullptr; 404 } else if (I->getOperand(0)->getType()->isVectorTy()) 405 // Don't touch a vector-to-scalar bitcast. 406 return nullptr; 407 408 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 409 return I; 410 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 411 break; 412 case Instruction::SExt: { 413 // Compute the bits in the result that are not present in the input. 414 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 415 416 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 417 418 // If any of the sign extended bits are demanded, we know that the sign 419 // bit is demanded. 420 if (DemandedMask.getActiveBits() > SrcBitWidth) 421 InputDemandedBits.setBit(SrcBitWidth-1); 422 423 KnownBits InputKnown(SrcBitWidth); 424 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 425 return I; 426 427 // If the input sign bit is known zero, or if the NewBits are not demanded 428 // convert this into a zero extension. 429 if (InputKnown.isNonNegative() || 430 DemandedMask.getActiveBits() <= SrcBitWidth) { 431 // Convert to ZExt cast. 432 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 433 return InsertNewInstWith(NewCast, *I); 434 } 435 436 // If the sign bit of the input is known set or clear, then we know the 437 // top bits of the result. 438 Known = InputKnown.sext(BitWidth); 439 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 440 break; 441 } 442 case Instruction::Add: 443 if ((DemandedMask & 1) == 0) { 444 // If we do not need the low bit, try to convert bool math to logic: 445 // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN 446 Value *X, *Y; 447 if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))), 448 m_OneUse(m_SExt(m_Value(Y))))) && 449 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 450 // Truth table for inputs and output signbits: 451 // X:0 | X:1 452 // ---------- 453 // Y:0 | 0 | 0 | 454 // Y:1 | -1 | 0 | 455 // ---------- 456 IRBuilderBase::InsertPointGuard Guard(Builder); 457 Builder.SetInsertPoint(I); 458 Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y); 459 return Builder.CreateSExt(AndNot, VTy); 460 } 461 462 // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN 463 // TODO: Relax the one-use checks because we are removing an instruction? 464 if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))), 465 m_OneUse(m_SExt(m_Value(Y))))) && 466 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 467 // Truth table for inputs and output signbits: 468 // X:0 | X:1 469 // ----------- 470 // Y:0 | -1 | -1 | 471 // Y:1 | -1 | 0 | 472 // ----------- 473 IRBuilderBase::InsertPointGuard Guard(Builder); 474 Builder.SetInsertPoint(I); 475 Value *Or = Builder.CreateOr(X, Y); 476 return Builder.CreateSExt(Or, VTy); 477 } 478 } 479 LLVM_FALLTHROUGH; 480 case Instruction::Sub: { 481 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 482 /// about the high bits of the operands. 483 unsigned NLZ = DemandedMask.countLeadingZeros(); 484 // Right fill the mask of bits for this ADD/SUB to demand the most 485 // significant bit and all those below it. 486 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 487 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 488 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 489 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 490 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 491 if (NLZ > 0) { 492 // Disable the nsw and nuw flags here: We can no longer guarantee that 493 // we won't wrap after simplification. Removing the nsw/nuw flags is 494 // legal here because the top bit is not demanded. 495 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 496 BinOP.setHasNoSignedWrap(false); 497 BinOP.setHasNoUnsignedWrap(false); 498 } 499 return I; 500 } 501 502 // If we are known to be adding/subtracting zeros to every bit below 503 // the highest demanded bit, we just return the other side. 504 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 505 return I->getOperand(0); 506 // We can't do this with the LHS for subtraction, unless we are only 507 // demanding the LSB. 508 if ((I->getOpcode() == Instruction::Add || 509 DemandedFromOps.isOneValue()) && 510 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 511 return I->getOperand(1); 512 513 // Otherwise just compute the known bits of the result. 514 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 515 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 516 NSW, LHSKnown, RHSKnown); 517 break; 518 } 519 case Instruction::Shl: { 520 const APInt *SA; 521 if (match(I->getOperand(1), m_APInt(SA))) { 522 const APInt *ShrAmt; 523 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 524 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 525 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 526 DemandedMask, Known)) 527 return R; 528 529 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 530 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 531 532 // If the shift is NUW/NSW, then it does demand the high bits. 533 ShlOperator *IOp = cast<ShlOperator>(I); 534 if (IOp->hasNoSignedWrap()) 535 DemandedMaskIn.setHighBits(ShiftAmt+1); 536 else if (IOp->hasNoUnsignedWrap()) 537 DemandedMaskIn.setHighBits(ShiftAmt); 538 539 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 540 return I; 541 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 542 543 bool SignBitZero = Known.Zero.isSignBitSet(); 544 bool SignBitOne = Known.One.isSignBitSet(); 545 Known.Zero <<= ShiftAmt; 546 Known.One <<= ShiftAmt; 547 // low bits known zero. 548 if (ShiftAmt) 549 Known.Zero.setLowBits(ShiftAmt); 550 551 // If this shift has "nsw" keyword, then the result is either a poison 552 // value or has the same sign bit as the first operand. 553 if (IOp->hasNoSignedWrap()) { 554 if (SignBitZero) 555 Known.Zero.setSignBit(); 556 else if (SignBitOne) 557 Known.One.setSignBit(); 558 if (Known.hasConflict()) 559 return UndefValue::get(I->getType()); 560 } 561 } else { 562 computeKnownBits(I, Known, Depth, CxtI); 563 } 564 break; 565 } 566 case Instruction::LShr: { 567 const APInt *SA; 568 if (match(I->getOperand(1), m_APInt(SA))) { 569 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 570 571 // Unsigned shift right. 572 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 573 574 // If the shift is exact, then it does demand the low bits (and knows that 575 // they are zero). 576 if (cast<LShrOperator>(I)->isExact()) 577 DemandedMaskIn.setLowBits(ShiftAmt); 578 579 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 580 return I; 581 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 582 Known.Zero.lshrInPlace(ShiftAmt); 583 Known.One.lshrInPlace(ShiftAmt); 584 if (ShiftAmt) 585 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 586 } else { 587 computeKnownBits(I, Known, Depth, CxtI); 588 } 589 break; 590 } 591 case Instruction::AShr: { 592 // If this is an arithmetic shift right and only the low-bit is set, we can 593 // always convert this into a logical shr, even if the shift amount is 594 // variable. The low bit of the shift cannot be an input sign bit unless 595 // the shift amount is >= the size of the datatype, which is undefined. 596 if (DemandedMask.isOneValue()) { 597 // Perform the logical shift right. 598 Instruction *NewVal = BinaryOperator::CreateLShr( 599 I->getOperand(0), I->getOperand(1), I->getName()); 600 return InsertNewInstWith(NewVal, *I); 601 } 602 603 // If the sign bit is the only bit demanded by this ashr, then there is no 604 // need to do it, the shift doesn't change the high bit. 605 if (DemandedMask.isSignMask()) 606 return I->getOperand(0); 607 608 const APInt *SA; 609 if (match(I->getOperand(1), m_APInt(SA))) { 610 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 611 612 // Signed shift right. 613 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 614 // If any of the high bits are demanded, we should set the sign bit as 615 // demanded. 616 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 617 DemandedMaskIn.setSignBit(); 618 619 // If the shift is exact, then it does demand the low bits (and knows that 620 // they are zero). 621 if (cast<AShrOperator>(I)->isExact()) 622 DemandedMaskIn.setLowBits(ShiftAmt); 623 624 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 625 return I; 626 627 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 628 629 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 630 // Compute the new bits that are at the top now plus sign bits. 631 APInt HighBits(APInt::getHighBitsSet( 632 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 633 Known.Zero.lshrInPlace(ShiftAmt); 634 Known.One.lshrInPlace(ShiftAmt); 635 636 // If the input sign bit is known to be zero, or if none of the top bits 637 // are demanded, turn this into an unsigned shift right. 638 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 639 if (Known.Zero[BitWidth-ShiftAmt-1] || 640 !DemandedMask.intersects(HighBits)) { 641 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 642 I->getOperand(1)); 643 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 644 return InsertNewInstWith(LShr, *I); 645 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 646 Known.One |= HighBits; 647 } 648 } else { 649 computeKnownBits(I, Known, Depth, CxtI); 650 } 651 break; 652 } 653 case Instruction::UDiv: { 654 // UDiv doesn't demand low bits that are zero in the divisor. 655 const APInt *SA; 656 if (match(I->getOperand(1), m_APInt(SA))) { 657 // If the shift is exact, then it does demand the low bits. 658 if (cast<UDivOperator>(I)->isExact()) 659 break; 660 661 // FIXME: Take the demanded mask of the result into account. 662 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 663 APInt DemandedMaskIn = 664 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 665 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) 666 return I; 667 668 // Propagate zero bits from the input. 669 Known.Zero.setHighBits(std::min( 670 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 671 } else { 672 computeKnownBits(I, Known, Depth, CxtI); 673 } 674 break; 675 } 676 case Instruction::SRem: { 677 ConstantInt *Rem; 678 if (match(I->getOperand(1), m_ConstantInt(Rem))) { 679 // X % -1 demands all the bits because we don't want to introduce 680 // INT_MIN % -1 (== undef) by accident. 681 if (Rem->isMinusOne()) 682 break; 683 APInt RA = Rem->getValue().abs(); 684 if (RA.isPowerOf2()) { 685 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 686 return I->getOperand(0); 687 688 APInt LowBits = RA - 1; 689 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 690 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 691 return I; 692 693 // The low bits of LHS are unchanged by the srem. 694 Known.Zero = LHSKnown.Zero & LowBits; 695 Known.One = LHSKnown.One & LowBits; 696 697 // If LHS is non-negative or has all low bits zero, then the upper bits 698 // are all zero. 699 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 700 Known.Zero |= ~LowBits; 701 702 // If LHS is negative and not all low bits are zero, then the upper bits 703 // are all one. 704 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 705 Known.One |= ~LowBits; 706 707 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 708 break; 709 } 710 } 711 712 // The sign bit is the LHS's sign bit, except when the result of the 713 // remainder is zero. 714 if (DemandedMask.isSignBitSet()) { 715 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 716 // If it's known zero, our sign bit is also zero. 717 if (LHSKnown.isNonNegative()) 718 Known.makeNonNegative(); 719 } 720 break; 721 } 722 case Instruction::URem: { 723 KnownBits Known2(BitWidth); 724 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 725 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 726 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 727 return I; 728 729 unsigned Leaders = Known2.countMinLeadingZeros(); 730 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 731 break; 732 } 733 case Instruction::Call: { 734 bool KnownBitsComputed = false; 735 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 736 switch (II->getIntrinsicID()) { 737 case Intrinsic::bswap: { 738 // If the only bits demanded come from one byte of the bswap result, 739 // just shift the input byte into position to eliminate the bswap. 740 unsigned NLZ = DemandedMask.countLeadingZeros(); 741 unsigned NTZ = DemandedMask.countTrailingZeros(); 742 743 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 744 // we need all the bits down to bit 8. Likewise, round NLZ. If we 745 // have 14 leading zeros, round to 8. 746 NLZ &= ~7; 747 NTZ &= ~7; 748 // If we need exactly one byte, we can do this transformation. 749 if (BitWidth-NLZ-NTZ == 8) { 750 unsigned ResultBit = NTZ; 751 unsigned InputBit = BitWidth-NTZ-8; 752 753 // Replace this with either a left or right shift to get the byte into 754 // the right place. 755 Instruction *NewVal; 756 if (InputBit > ResultBit) 757 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 758 ConstantInt::get(I->getType(), InputBit-ResultBit)); 759 else 760 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 761 ConstantInt::get(I->getType(), ResultBit-InputBit)); 762 NewVal->takeName(I); 763 return InsertNewInstWith(NewVal, *I); 764 } 765 break; 766 } 767 case Intrinsic::fshr: 768 case Intrinsic::fshl: { 769 const APInt *SA; 770 if (!match(I->getOperand(2), m_APInt(SA))) 771 break; 772 773 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 774 // defined, so no need to special-case zero shifts here. 775 uint64_t ShiftAmt = SA->urem(BitWidth); 776 if (II->getIntrinsicID() == Intrinsic::fshr) 777 ShiftAmt = BitWidth - ShiftAmt; 778 779 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 780 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 781 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || 782 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 783 return I; 784 785 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 786 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 787 Known.One = LHSKnown.One.shl(ShiftAmt) | 788 RHSKnown.One.lshr(BitWidth - ShiftAmt); 789 KnownBitsComputed = true; 790 break; 791 } 792 default: { 793 // Handle target specific intrinsics 794 Optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic( 795 *II, DemandedMask, Known, KnownBitsComputed); 796 if (V.hasValue()) 797 return V.getValue(); 798 break; 799 } 800 } 801 } 802 803 if (!KnownBitsComputed) 804 computeKnownBits(V, Known, Depth, CxtI); 805 break; 806 } 807 } 808 809 // If the client is only demanding bits that we know, return the known 810 // constant. 811 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 812 return Constant::getIntegerValue(VTy, Known.One); 813 return nullptr; 814 } 815 816 /// Helper routine of SimplifyDemandedUseBits. It computes Known 817 /// bits. It also tries to handle simplifications that can be done based on 818 /// DemandedMask, but without modifying the Instruction. 819 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits( 820 Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth, 821 Instruction *CxtI) { 822 unsigned BitWidth = DemandedMask.getBitWidth(); 823 Type *ITy = I->getType(); 824 825 KnownBits LHSKnown(BitWidth); 826 KnownBits RHSKnown(BitWidth); 827 828 // Despite the fact that we can't simplify this instruction in all User's 829 // context, we can at least compute the known bits, and we can 830 // do simplifications that apply to *just* the one user if we know that 831 // this instruction has a simpler value in that context. 832 switch (I->getOpcode()) { 833 case Instruction::And: { 834 // If either the LHS or the RHS are Zero, the result is zero. 835 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 836 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 837 CxtI); 838 839 Known = LHSKnown & RHSKnown; 840 841 // If the client is only demanding bits that we know, return the known 842 // constant. 843 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 844 return Constant::getIntegerValue(ITy, Known.One); 845 846 // If all of the demanded bits are known 1 on one side, return the other. 847 // These bits cannot contribute to the result of the 'and' in this 848 // context. 849 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 850 return I->getOperand(0); 851 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 852 return I->getOperand(1); 853 854 break; 855 } 856 case Instruction::Or: { 857 // We can simplify (X|Y) -> X or Y in the user's context if we know that 858 // only bits from X or Y are demanded. 859 860 // If either the LHS or the RHS are One, the result is One. 861 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 862 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 863 CxtI); 864 865 Known = LHSKnown | RHSKnown; 866 867 // If the client is only demanding bits that we know, return the known 868 // constant. 869 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 870 return Constant::getIntegerValue(ITy, Known.One); 871 872 // If all of the demanded bits are known zero on one side, return the 873 // other. These bits cannot contribute to the result of the 'or' in this 874 // context. 875 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 876 return I->getOperand(0); 877 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 878 return I->getOperand(1); 879 880 break; 881 } 882 case Instruction::Xor: { 883 // We can simplify (X^Y) -> X or Y in the user's context if we know that 884 // only bits from X or Y are demanded. 885 886 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 887 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 888 CxtI); 889 890 Known = LHSKnown ^ RHSKnown; 891 892 // If the client is only demanding bits that we know, return the known 893 // constant. 894 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 895 return Constant::getIntegerValue(ITy, Known.One); 896 897 // If all of the demanded bits are known zero on one side, return the 898 // other. 899 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 900 return I->getOperand(0); 901 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 902 return I->getOperand(1); 903 904 break; 905 } 906 case Instruction::AShr: { 907 // Compute the Known bits to simplify things downstream. 908 computeKnownBits(I, Known, Depth, CxtI); 909 910 // If this user is only demanding bits that we know, return the known 911 // constant. 912 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 913 return Constant::getIntegerValue(ITy, Known.One); 914 915 // If the right shift operand 0 is a result of a left shift by the same 916 // amount, this is probably a zero/sign extension, which may be unnecessary, 917 // if we do not demand any of the new sign bits. So, return the original 918 // operand instead. 919 const APInt *ShiftRC; 920 const APInt *ShiftLC; 921 Value *X; 922 unsigned BitWidth = DemandedMask.getBitWidth(); 923 if (match(I, 924 m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) && 925 ShiftLC == ShiftRC && 926 DemandedMask.isSubsetOf(APInt::getLowBitsSet( 927 BitWidth, BitWidth - ShiftRC->getZExtValue()))) { 928 return X; 929 } 930 931 break; 932 } 933 default: 934 // Compute the Known bits to simplify things downstream. 935 computeKnownBits(I, Known, Depth, CxtI); 936 937 // If this user is only demanding bits that we know, return the known 938 // constant. 939 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 940 return Constant::getIntegerValue(ITy, Known.One); 941 942 break; 943 } 944 945 return nullptr; 946 } 947 948 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 949 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 950 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 951 /// of "C2-C1". 952 /// 953 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 954 /// ..., bn}, without considering the specific value X is holding. 955 /// This transformation is legal iff one of following conditions is hold: 956 /// 1) All the bit in S are 0, in this case E1 == E2. 957 /// 2) We don't care those bits in S, per the input DemandedMask. 958 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 959 /// rest bits. 960 /// 961 /// Currently we only test condition 2). 962 /// 963 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 964 /// not successful. 965 Value *InstCombinerImpl::simplifyShrShlDemandedBits( 966 Instruction *Shr, const APInt &ShrOp1, Instruction *Shl, 967 const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) { 968 if (!ShlOp1 || !ShrOp1) 969 return nullptr; // No-op. 970 971 Value *VarX = Shr->getOperand(0); 972 Type *Ty = VarX->getType(); 973 unsigned BitWidth = Ty->getScalarSizeInBits(); 974 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 975 return nullptr; // Undef. 976 977 unsigned ShlAmt = ShlOp1.getZExtValue(); 978 unsigned ShrAmt = ShrOp1.getZExtValue(); 979 980 Known.One.clearAllBits(); 981 Known.Zero.setLowBits(ShlAmt - 1); 982 Known.Zero &= DemandedMask; 983 984 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 985 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 986 987 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 988 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 989 (BitMask1.ashr(ShrAmt) << ShlAmt); 990 991 if (ShrAmt <= ShlAmt) { 992 BitMask2 <<= (ShlAmt - ShrAmt); 993 } else { 994 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 995 BitMask2.ashr(ShrAmt - ShlAmt); 996 } 997 998 // Check if condition-2 (see the comment to this function) is satified. 999 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 1000 if (ShrAmt == ShlAmt) 1001 return VarX; 1002 1003 if (!Shr->hasOneUse()) 1004 return nullptr; 1005 1006 BinaryOperator *New; 1007 if (ShrAmt < ShlAmt) { 1008 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 1009 New = BinaryOperator::CreateShl(VarX, Amt); 1010 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 1011 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 1012 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 1013 } else { 1014 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 1015 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 1016 BinaryOperator::CreateAShr(VarX, Amt); 1017 if (cast<BinaryOperator>(Shr)->isExact()) 1018 New->setIsExact(true); 1019 } 1020 1021 return InsertNewInstWith(New, *Shl); 1022 } 1023 1024 return nullptr; 1025 } 1026 1027 /// The specified value produces a vector with any number of elements. 1028 /// This method analyzes which elements of the operand are undef or poison and 1029 /// returns that information in UndefElts. 1030 /// 1031 /// DemandedElts contains the set of elements that are actually used by the 1032 /// caller, and by default (AllowMultipleUsers equals false) the value is 1033 /// simplified only if it has a single caller. If AllowMultipleUsers is set 1034 /// to true, DemandedElts refers to the union of sets of elements that are 1035 /// used by all callers. 1036 /// 1037 /// If the information about demanded elements can be used to simplify the 1038 /// operation, the operation is simplified, then the resultant value is 1039 /// returned. This returns null if no change was made. 1040 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V, 1041 APInt DemandedElts, 1042 APInt &UndefElts, 1043 unsigned Depth, 1044 bool AllowMultipleUsers) { 1045 // Cannot analyze scalable type. The number of vector elements is not a 1046 // compile-time constant. 1047 if (isa<ScalableVectorType>(V->getType())) 1048 return nullptr; 1049 1050 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 1051 APInt EltMask(APInt::getAllOnesValue(VWidth)); 1052 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1053 1054 if (isa<UndefValue>(V)) { 1055 // If the entire vector is undef or poison, just return this info. 1056 UndefElts = EltMask; 1057 return nullptr; 1058 } 1059 1060 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide poison. 1061 UndefElts = EltMask; 1062 return PoisonValue::get(V->getType()); 1063 } 1064 1065 UndefElts = 0; 1066 1067 if (auto *C = dyn_cast<Constant>(V)) { 1068 // Check if this is identity. If so, return 0 since we are not simplifying 1069 // anything. 1070 if (DemandedElts.isAllOnesValue()) 1071 return nullptr; 1072 1073 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1074 Constant *Poison = PoisonValue::get(EltTy); 1075 SmallVector<Constant*, 16> Elts; 1076 for (unsigned i = 0; i != VWidth; ++i) { 1077 if (!DemandedElts[i]) { // If not demanded, set to poison. 1078 Elts.push_back(Poison); 1079 UndefElts.setBit(i); 1080 continue; 1081 } 1082 1083 Constant *Elt = C->getAggregateElement(i); 1084 if (!Elt) return nullptr; 1085 1086 Elts.push_back(Elt); 1087 if (isa<UndefValue>(Elt)) // Already undef or poison. 1088 UndefElts.setBit(i); 1089 } 1090 1091 // If we changed the constant, return it. 1092 Constant *NewCV = ConstantVector::get(Elts); 1093 return NewCV != C ? NewCV : nullptr; 1094 } 1095 1096 // Limit search depth. 1097 if (Depth == 10) 1098 return nullptr; 1099 1100 if (!AllowMultipleUsers) { 1101 // If multiple users are using the root value, proceed with 1102 // simplification conservatively assuming that all elements 1103 // are needed. 1104 if (!V->hasOneUse()) { 1105 // Quit if we find multiple users of a non-root value though. 1106 // They'll be handled when it's their turn to be visited by 1107 // the main instcombine process. 1108 if (Depth != 0) 1109 // TODO: Just compute the UndefElts information recursively. 1110 return nullptr; 1111 1112 // Conservatively assume that all elements are needed. 1113 DemandedElts = EltMask; 1114 } 1115 } 1116 1117 Instruction *I = dyn_cast<Instruction>(V); 1118 if (!I) return nullptr; // Only analyze instructions. 1119 1120 bool MadeChange = false; 1121 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1122 APInt Demanded, APInt &Undef) { 1123 auto *II = dyn_cast<IntrinsicInst>(Inst); 1124 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1125 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1126 replaceOperand(*Inst, OpNum, V); 1127 MadeChange = true; 1128 } 1129 }; 1130 1131 APInt UndefElts2(VWidth, 0); 1132 APInt UndefElts3(VWidth, 0); 1133 switch (I->getOpcode()) { 1134 default: break; 1135 1136 case Instruction::GetElementPtr: { 1137 // The LangRef requires that struct geps have all constant indices. As 1138 // such, we can't convert any operand to partial undef. 1139 auto mayIndexStructType = [](GetElementPtrInst &GEP) { 1140 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); 1141 I != E; I++) 1142 if (I.isStruct()) 1143 return true;; 1144 return false; 1145 }; 1146 if (mayIndexStructType(cast<GetElementPtrInst>(*I))) 1147 break; 1148 1149 // Conservatively track the demanded elements back through any vector 1150 // operands we may have. We know there must be at least one, or we 1151 // wouldn't have a vector result to get here. Note that we intentionally 1152 // merge the undef bits here since gepping with either an undef base or 1153 // index results in undef. 1154 for (unsigned i = 0; i < I->getNumOperands(); i++) { 1155 if (isa<UndefValue>(I->getOperand(i))) { 1156 // If the entire vector is undefined, just return this info. 1157 UndefElts = EltMask; 1158 return nullptr; 1159 } 1160 if (I->getOperand(i)->getType()->isVectorTy()) { 1161 APInt UndefEltsOp(VWidth, 0); 1162 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp); 1163 UndefElts |= UndefEltsOp; 1164 } 1165 } 1166 1167 break; 1168 } 1169 case Instruction::InsertElement: { 1170 // If this is a variable index, we don't know which element it overwrites. 1171 // demand exactly the same input as we produce. 1172 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1173 if (!Idx) { 1174 // Note that we can't propagate undef elt info, because we don't know 1175 // which elt is getting updated. 1176 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); 1177 break; 1178 } 1179 1180 // The element inserted overwrites whatever was there, so the input demanded 1181 // set is simpler than the output set. 1182 unsigned IdxNo = Idx->getZExtValue(); 1183 APInt PreInsertDemandedElts = DemandedElts; 1184 if (IdxNo < VWidth) 1185 PreInsertDemandedElts.clearBit(IdxNo); 1186 1187 // If we only demand the element that is being inserted and that element 1188 // was extracted from the same index in another vector with the same type, 1189 // replace this insert with that other vector. 1190 // Note: This is attempted before the call to simplifyAndSetOp because that 1191 // may change UndefElts to a value that does not match with Vec. 1192 Value *Vec; 1193 if (PreInsertDemandedElts == 0 && 1194 match(I->getOperand(1), 1195 m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) && 1196 Vec->getType() == I->getType()) { 1197 return Vec; 1198 } 1199 1200 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); 1201 1202 // If this is inserting an element that isn't demanded, remove this 1203 // insertelement. 1204 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1205 Worklist.push(I); 1206 return I->getOperand(0); 1207 } 1208 1209 // The inserted element is defined. 1210 UndefElts.clearBit(IdxNo); 1211 break; 1212 } 1213 case Instruction::ShuffleVector: { 1214 auto *Shuffle = cast<ShuffleVectorInst>(I); 1215 assert(Shuffle->getOperand(0)->getType() == 1216 Shuffle->getOperand(1)->getType() && 1217 "Expected shuffle operands to have same type"); 1218 unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType()) 1219 ->getNumElements(); 1220 // Handle trivial case of a splat. Only check the first element of LHS 1221 // operand. 1222 if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) && 1223 DemandedElts.isAllOnesValue()) { 1224 if (!isa<UndefValue>(I->getOperand(1))) { 1225 I->setOperand(1, UndefValue::get(I->getOperand(1)->getType())); 1226 MadeChange = true; 1227 } 1228 APInt LeftDemanded(OpWidth, 1); 1229 APInt LHSUndefElts(OpWidth, 0); 1230 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1231 if (LHSUndefElts[0]) 1232 UndefElts = EltMask; 1233 else 1234 UndefElts.clearAllBits(); 1235 break; 1236 } 1237 1238 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); 1239 for (unsigned i = 0; i < VWidth; i++) { 1240 if (DemandedElts[i]) { 1241 unsigned MaskVal = Shuffle->getMaskValue(i); 1242 if (MaskVal != -1u) { 1243 assert(MaskVal < OpWidth * 2 && 1244 "shufflevector mask index out of range!"); 1245 if (MaskVal < OpWidth) 1246 LeftDemanded.setBit(MaskVal); 1247 else 1248 RightDemanded.setBit(MaskVal - OpWidth); 1249 } 1250 } 1251 } 1252 1253 APInt LHSUndefElts(OpWidth, 0); 1254 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1255 1256 APInt RHSUndefElts(OpWidth, 0); 1257 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); 1258 1259 // If this shuffle does not change the vector length and the elements 1260 // demanded by this shuffle are an identity mask, then this shuffle is 1261 // unnecessary. 1262 // 1263 // We are assuming canonical form for the mask, so the source vector is 1264 // operand 0 and operand 1 is not used. 1265 // 1266 // Note that if an element is demanded and this shuffle mask is undefined 1267 // for that element, then the shuffle is not considered an identity 1268 // operation. The shuffle prevents poison from the operand vector from 1269 // leaking to the result by replacing poison with an undefined value. 1270 if (VWidth == OpWidth) { 1271 bool IsIdentityShuffle = true; 1272 for (unsigned i = 0; i < VWidth; i++) { 1273 unsigned MaskVal = Shuffle->getMaskValue(i); 1274 if (DemandedElts[i] && i != MaskVal) { 1275 IsIdentityShuffle = false; 1276 break; 1277 } 1278 } 1279 if (IsIdentityShuffle) 1280 return Shuffle->getOperand(0); 1281 } 1282 1283 bool NewUndefElts = false; 1284 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1285 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1286 bool LHSUniform = true; 1287 bool RHSUniform = true; 1288 for (unsigned i = 0; i < VWidth; i++) { 1289 unsigned MaskVal = Shuffle->getMaskValue(i); 1290 if (MaskVal == -1u) { 1291 UndefElts.setBit(i); 1292 } else if (!DemandedElts[i]) { 1293 NewUndefElts = true; 1294 UndefElts.setBit(i); 1295 } else if (MaskVal < OpWidth) { 1296 if (LHSUndefElts[MaskVal]) { 1297 NewUndefElts = true; 1298 UndefElts.setBit(i); 1299 } else { 1300 LHSIdx = LHSIdx == -1u ? i : OpWidth; 1301 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; 1302 LHSUniform = LHSUniform && (MaskVal == i); 1303 } 1304 } else { 1305 if (RHSUndefElts[MaskVal - OpWidth]) { 1306 NewUndefElts = true; 1307 UndefElts.setBit(i); 1308 } else { 1309 RHSIdx = RHSIdx == -1u ? i : OpWidth; 1310 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; 1311 RHSUniform = RHSUniform && (MaskVal - OpWidth == i); 1312 } 1313 } 1314 } 1315 1316 // Try to transform shuffle with constant vector and single element from 1317 // this constant vector to single insertelement instruction. 1318 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1319 // insertelement V, C[ci], ci-n 1320 if (OpWidth == 1321 cast<FixedVectorType>(Shuffle->getType())->getNumElements()) { 1322 Value *Op = nullptr; 1323 Constant *Value = nullptr; 1324 unsigned Idx = -1u; 1325 1326 // Find constant vector with the single element in shuffle (LHS or RHS). 1327 if (LHSIdx < OpWidth && RHSUniform) { 1328 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1329 Op = Shuffle->getOperand(1); 1330 Value = CV->getOperand(LHSValIdx); 1331 Idx = LHSIdx; 1332 } 1333 } 1334 if (RHSIdx < OpWidth && LHSUniform) { 1335 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1336 Op = Shuffle->getOperand(0); 1337 Value = CV->getOperand(RHSValIdx); 1338 Idx = RHSIdx; 1339 } 1340 } 1341 // Found constant vector with single element - convert to insertelement. 1342 if (Op && Value) { 1343 Instruction *New = InsertElementInst::Create( 1344 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1345 Shuffle->getName()); 1346 InsertNewInstWith(New, *Shuffle); 1347 return New; 1348 } 1349 } 1350 if (NewUndefElts) { 1351 // Add additional discovered undefs. 1352 SmallVector<int, 16> Elts; 1353 for (unsigned i = 0; i < VWidth; ++i) { 1354 if (UndefElts[i]) 1355 Elts.push_back(UndefMaskElem); 1356 else 1357 Elts.push_back(Shuffle->getMaskValue(i)); 1358 } 1359 Shuffle->setShuffleMask(Elts); 1360 MadeChange = true; 1361 } 1362 break; 1363 } 1364 case Instruction::Select: { 1365 // If this is a vector select, try to transform the select condition based 1366 // on the current demanded elements. 1367 SelectInst *Sel = cast<SelectInst>(I); 1368 if (Sel->getCondition()->getType()->isVectorTy()) { 1369 // TODO: We are not doing anything with UndefElts based on this call. 1370 // It is overwritten below based on the other select operands. If an 1371 // element of the select condition is known undef, then we are free to 1372 // choose the output value from either arm of the select. If we know that 1373 // one of those values is undef, then the output can be undef. 1374 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1375 } 1376 1377 // Next, see if we can transform the arms of the select. 1378 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1379 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1380 for (unsigned i = 0; i < VWidth; i++) { 1381 // isNullValue() always returns false when called on a ConstantExpr. 1382 // Skip constant expressions to avoid propagating incorrect information. 1383 Constant *CElt = CV->getAggregateElement(i); 1384 if (isa<ConstantExpr>(CElt)) 1385 continue; 1386 // TODO: If a select condition element is undef, we can demand from 1387 // either side. If one side is known undef, choosing that side would 1388 // propagate undef. 1389 if (CElt->isNullValue()) 1390 DemandedLHS.clearBit(i); 1391 else 1392 DemandedRHS.clearBit(i); 1393 } 1394 } 1395 1396 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); 1397 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); 1398 1399 // Output elements are undefined if the element from each arm is undefined. 1400 // TODO: This can be improved. See comment in select condition handling. 1401 UndefElts = UndefElts2 & UndefElts3; 1402 break; 1403 } 1404 case Instruction::BitCast: { 1405 // Vector->vector casts only. 1406 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1407 if (!VTy) break; 1408 unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements(); 1409 APInt InputDemandedElts(InVWidth, 0); 1410 UndefElts2 = APInt(InVWidth, 0); 1411 unsigned Ratio; 1412 1413 if (VWidth == InVWidth) { 1414 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1415 // elements as are demanded of us. 1416 Ratio = 1; 1417 InputDemandedElts = DemandedElts; 1418 } else if ((VWidth % InVWidth) == 0) { 1419 // If the number of elements in the output is a multiple of the number of 1420 // elements in the input then an input element is live if any of the 1421 // corresponding output elements are live. 1422 Ratio = VWidth / InVWidth; 1423 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1424 if (DemandedElts[OutIdx]) 1425 InputDemandedElts.setBit(OutIdx / Ratio); 1426 } else if ((InVWidth % VWidth) == 0) { 1427 // If the number of elements in the input is a multiple of the number of 1428 // elements in the output then an input element is live if the 1429 // corresponding output element is live. 1430 Ratio = InVWidth / VWidth; 1431 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1432 if (DemandedElts[InIdx / Ratio]) 1433 InputDemandedElts.setBit(InIdx); 1434 } else { 1435 // Unsupported so far. 1436 break; 1437 } 1438 1439 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); 1440 1441 if (VWidth == InVWidth) { 1442 UndefElts = UndefElts2; 1443 } else if ((VWidth % InVWidth) == 0) { 1444 // If the number of elements in the output is a multiple of the number of 1445 // elements in the input then an output element is undef if the 1446 // corresponding input element is undef. 1447 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1448 if (UndefElts2[OutIdx / Ratio]) 1449 UndefElts.setBit(OutIdx); 1450 } else if ((InVWidth % VWidth) == 0) { 1451 // If the number of elements in the input is a multiple of the number of 1452 // elements in the output then an output element is undef if all of the 1453 // corresponding input elements are undef. 1454 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1455 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1456 if (SubUndef.countPopulation() == Ratio) 1457 UndefElts.setBit(OutIdx); 1458 } 1459 } else { 1460 llvm_unreachable("Unimp"); 1461 } 1462 break; 1463 } 1464 case Instruction::FPTrunc: 1465 case Instruction::FPExt: 1466 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1467 break; 1468 1469 case Instruction::Call: { 1470 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1471 if (!II) break; 1472 switch (II->getIntrinsicID()) { 1473 case Intrinsic::masked_gather: // fallthrough 1474 case Intrinsic::masked_load: { 1475 // Subtlety: If we load from a pointer, the pointer must be valid 1476 // regardless of whether the element is demanded. Doing otherwise risks 1477 // segfaults which didn't exist in the original program. 1478 APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)), 1479 DemandedPassThrough(DemandedElts); 1480 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) 1481 for (unsigned i = 0; i < VWidth; i++) { 1482 Constant *CElt = CV->getAggregateElement(i); 1483 if (CElt->isNullValue()) 1484 DemandedPtrs.clearBit(i); 1485 else if (CElt->isAllOnesValue()) 1486 DemandedPassThrough.clearBit(i); 1487 } 1488 if (II->getIntrinsicID() == Intrinsic::masked_gather) 1489 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2); 1490 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3); 1491 1492 // Output elements are undefined if the element from both sources are. 1493 // TODO: can strengthen via mask as well. 1494 UndefElts = UndefElts2 & UndefElts3; 1495 break; 1496 } 1497 default: { 1498 // Handle target specific intrinsics 1499 Optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic( 1500 *II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 1501 simplifyAndSetOp); 1502 if (V.hasValue()) 1503 return V.getValue(); 1504 break; 1505 } 1506 } // switch on IntrinsicID 1507 break; 1508 } // case Call 1509 } // switch on Opcode 1510 1511 // TODO: We bail completely on integer div/rem and shifts because they have 1512 // UB/poison potential, but that should be refined. 1513 BinaryOperator *BO; 1514 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1515 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1516 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); 1517 1518 // Any change to an instruction with potential poison must clear those flags 1519 // because we can not guarantee those constraints now. Other analysis may 1520 // determine that it is safe to re-apply the flags. 1521 if (MadeChange) 1522 BO->dropPoisonGeneratingFlags(); 1523 1524 // Output elements are undefined if both are undefined. Consider things 1525 // like undef & 0. The result is known zero, not undef. 1526 UndefElts &= UndefElts2; 1527 } 1528 1529 // If we've proven all of the lanes undef, return an undef value. 1530 // TODO: Intersect w/demanded lanes 1531 if (UndefElts.isAllOnesValue()) 1532 return UndefValue::get(I->getType());; 1533 1534 return MadeChange ? I : nullptr; 1535 } 1536