1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/PatternMatch.h" 18 #include "llvm/Support/KnownBits.h" 19 20 using namespace llvm; 21 using namespace llvm::PatternMatch; 22 23 #define DEBUG_TYPE "instcombine" 24 25 namespace { 26 27 struct AMDGPUImageDMaskIntrinsic { 28 unsigned Intr; 29 }; 30 31 #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL 32 #include "InstCombineTables.inc" 33 34 } // end anonymous namespace 35 36 /// Check to see if the specified operand of the specified instruction is a 37 /// constant integer. If so, check to see if there are any bits set in the 38 /// constant that are not demanded. If so, shrink the constant and return true. 39 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 40 const APInt &Demanded) { 41 assert(I && "No instruction?"); 42 assert(OpNo < I->getNumOperands() && "Operand index too large"); 43 44 // The operand must be a constant integer or splat integer. 45 Value *Op = I->getOperand(OpNo); 46 const APInt *C; 47 if (!match(Op, m_APInt(C))) 48 return false; 49 50 // If there are no bits set that aren't demanded, nothing to do. 51 if (C->isSubsetOf(Demanded)) 52 return false; 53 54 // This instruction is producing bits that are not demanded. Shrink the RHS. 55 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 56 57 return true; 58 } 59 60 61 62 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 63 /// the instruction has any properties that allow us to simplify its operands. 64 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { 65 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 66 KnownBits Known(BitWidth); 67 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 68 69 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 70 0, &Inst); 71 if (!V) return false; 72 if (V == &Inst) return true; 73 replaceInstUsesWith(Inst, V); 74 return true; 75 } 76 77 /// This form of SimplifyDemandedBits simplifies the specified instruction 78 /// operand if possible, updating it in place. It returns true if it made any 79 /// change and false otherwise. 80 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 81 const APInt &DemandedMask, 82 KnownBits &Known, 83 unsigned Depth) { 84 Use &U = I->getOperandUse(OpNo); 85 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 86 Depth, I); 87 if (!NewVal) return false; 88 U = NewVal; 89 return true; 90 } 91 92 93 /// This function attempts to replace V with a simpler value based on the 94 /// demanded bits. When this function is called, it is known that only the bits 95 /// set in DemandedMask of the result of V are ever used downstream. 96 /// Consequently, depending on the mask and V, it may be possible to replace V 97 /// with a constant or one of its operands. In such cases, this function does 98 /// the replacement and returns true. In all other cases, it returns false after 99 /// analyzing the expression and setting KnownOne and known to be one in the 100 /// expression. Known.Zero contains all the bits that are known to be zero in 101 /// the expression. These are provided to potentially allow the caller (which 102 /// might recursively be SimplifyDemandedBits itself) to simplify the 103 /// expression. 104 /// Known.One and Known.Zero always follow the invariant that: 105 /// Known.One & Known.Zero == 0. 106 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 107 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 108 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 109 /// be the same. 110 /// 111 /// This returns null if it did not change anything and it permits no 112 /// simplification. This returns V itself if it did some simplification of V's 113 /// operands based on the information about what bits are demanded. This returns 114 /// some other non-null value if it found out that V is equal to another value 115 /// in the context where the specified bits are demanded, but not for all users. 116 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 117 KnownBits &Known, unsigned Depth, 118 Instruction *CxtI) { 119 assert(V != nullptr && "Null pointer of Value???"); 120 assert(Depth <= 6 && "Limit Search Depth"); 121 uint32_t BitWidth = DemandedMask.getBitWidth(); 122 Type *VTy = V->getType(); 123 assert( 124 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 125 Known.getBitWidth() == BitWidth && 126 "Value *V, DemandedMask and Known must have same BitWidth"); 127 128 if (isa<Constant>(V)) { 129 computeKnownBits(V, Known, Depth, CxtI); 130 return nullptr; 131 } 132 133 Known.resetAll(); 134 if (DemandedMask.isNullValue()) // Not demanding any bits from V. 135 return UndefValue::get(VTy); 136 137 if (Depth == 6) // Limit search depth. 138 return nullptr; 139 140 Instruction *I = dyn_cast<Instruction>(V); 141 if (!I) { 142 computeKnownBits(V, Known, Depth, CxtI); 143 return nullptr; // Only analyze instructions. 144 } 145 146 // If there are multiple uses of this value and we aren't at the root, then 147 // we can't do any simplifications of the operands, because DemandedMask 148 // only reflects the bits demanded by *one* of the users. 149 if (Depth != 0 && !I->hasOneUse()) 150 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 151 152 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 153 154 // If this is the root being simplified, allow it to have multiple uses, 155 // just set the DemandedMask to all bits so that we can try to simplify the 156 // operands. This allows visitTruncInst (for example) to simplify the 157 // operand of a trunc without duplicating all the logic below. 158 if (Depth == 0 && !V->hasOneUse()) 159 DemandedMask.setAllBits(); 160 161 switch (I->getOpcode()) { 162 default: 163 computeKnownBits(I, Known, Depth, CxtI); 164 break; 165 case Instruction::And: { 166 // If either the LHS or the RHS are Zero, the result is zero. 167 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 168 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 169 Depth + 1)) 170 return I; 171 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 172 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 173 174 // Output known-0 are known to be clear if zero in either the LHS | RHS. 175 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 176 // Output known-1 bits are only known if set in both the LHS & RHS. 177 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 178 179 // If the client is only demanding bits that we know, return the known 180 // constant. 181 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 182 return Constant::getIntegerValue(VTy, IKnownOne); 183 184 // If all of the demanded bits are known 1 on one side, return the other. 185 // These bits cannot contribute to the result of the 'and'. 186 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 187 return I->getOperand(0); 188 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 189 return I->getOperand(1); 190 191 // If the RHS is a constant, see if we can simplify it. 192 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 193 return I; 194 195 Known.Zero = std::move(IKnownZero); 196 Known.One = std::move(IKnownOne); 197 break; 198 } 199 case Instruction::Or: { 200 // If either the LHS or the RHS are One, the result is One. 201 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 202 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 203 Depth + 1)) 204 return I; 205 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 206 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 207 208 // Output known-0 bits are only known if clear in both the LHS & RHS. 209 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 210 // Output known-1 are known. to be set if s.et in either the LHS | RHS. 211 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 212 213 // If the client is only demanding bits that we know, return the known 214 // constant. 215 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 216 return Constant::getIntegerValue(VTy, IKnownOne); 217 218 // If all of the demanded bits are known zero on one side, return the other. 219 // These bits cannot contribute to the result of the 'or'. 220 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 221 return I->getOperand(0); 222 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 223 return I->getOperand(1); 224 225 // If the RHS is a constant, see if we can simplify it. 226 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 227 return I; 228 229 Known.Zero = std::move(IKnownZero); 230 Known.One = std::move(IKnownOne); 231 break; 232 } 233 case Instruction::Xor: { 234 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 235 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 236 return I; 237 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 238 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 239 240 // Output known-0 bits are known if clear or set in both the LHS & RHS. 241 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 242 (RHSKnown.One & LHSKnown.One); 243 // Output known-1 are known to be set if set in only one of the LHS, RHS. 244 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 245 (RHSKnown.One & LHSKnown.Zero); 246 247 // If the client is only demanding bits that we know, return the known 248 // constant. 249 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 250 return Constant::getIntegerValue(VTy, IKnownOne); 251 252 // If all of the demanded bits are known zero on one side, return the other. 253 // These bits cannot contribute to the result of the 'xor'. 254 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 255 return I->getOperand(0); 256 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 257 return I->getOperand(1); 258 259 // If all of the demanded bits are known to be zero on one side or the 260 // other, turn this into an *inclusive* or. 261 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 262 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 263 Instruction *Or = 264 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 265 I->getName()); 266 return InsertNewInstWith(Or, *I); 267 } 268 269 // If all of the demanded bits on one side are known, and all of the set 270 // bits on that side are also known to be set on the other side, turn this 271 // into an AND, as we know the bits will be cleared. 272 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 273 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 274 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 275 Constant *AndC = Constant::getIntegerValue(VTy, 276 ~RHSKnown.One & DemandedMask); 277 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 278 return InsertNewInstWith(And, *I); 279 } 280 281 // If the RHS is a constant, see if we can simplify it. 282 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. 283 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 284 return I; 285 286 // If our LHS is an 'and' and if it has one use, and if any of the bits we 287 // are flipping are known to be set, then the xor is just resetting those 288 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 289 // simplifying both of them. 290 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) 291 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 292 isa<ConstantInt>(I->getOperand(1)) && 293 isa<ConstantInt>(LHSInst->getOperand(1)) && 294 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 295 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); 296 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); 297 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 298 299 Constant *AndC = 300 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 301 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 302 InsertNewInstWith(NewAnd, *I); 303 304 Constant *XorC = 305 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 306 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 307 return InsertNewInstWith(NewXor, *I); 308 } 309 310 // Output known-0 bits are known if clear or set in both the LHS & RHS. 311 Known.Zero = std::move(IKnownZero); 312 // Output known-1 are known to be set if set in only one of the LHS, RHS. 313 Known.One = std::move(IKnownOne); 314 break; 315 } 316 case Instruction::Select: { 317 Value *LHS, *RHS; 318 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 319 if (SPF == SPF_UMAX) { 320 // UMax(A, C) == A if ... 321 // The lowest non-zero bit of DemandMask is higher than the highest 322 // non-zero bit of C. 323 const APInt *C; 324 unsigned CTZ = DemandedMask.countTrailingZeros(); 325 if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits()) 326 return LHS; 327 } else if (SPF == SPF_UMIN) { 328 // UMin(A, C) == A if ... 329 // The lowest non-zero bit of DemandMask is higher than the highest 330 // non-one bit of C. 331 // This comes from using DeMorgans on the above umax example. 332 const APInt *C; 333 unsigned CTZ = DemandedMask.countTrailingZeros(); 334 if (match(RHS, m_APInt(C)) && 335 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 336 return LHS; 337 } 338 339 // If this is a select as part of any other min/max pattern, don't simplify 340 // any further in case we break the structure. 341 if (SPF != SPF_UNKNOWN) 342 return nullptr; 343 344 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 345 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 346 return I; 347 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 348 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 349 350 // If the operands are constants, see if we can simplify them. 351 if (ShrinkDemandedConstant(I, 1, DemandedMask) || 352 ShrinkDemandedConstant(I, 2, DemandedMask)) 353 return I; 354 355 // Only known if known in both the LHS and RHS. 356 Known.One = RHSKnown.One & LHSKnown.One; 357 Known.Zero = RHSKnown.Zero & LHSKnown.Zero; 358 break; 359 } 360 case Instruction::ZExt: 361 case Instruction::Trunc: { 362 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 363 364 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 365 KnownBits InputKnown(SrcBitWidth); 366 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 367 return I; 368 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); 369 Known = InputKnown.zextOrTrunc(BitWidth, 370 true /* ExtendedBitsAreKnownZero */); 371 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 372 break; 373 } 374 case Instruction::BitCast: 375 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 376 return nullptr; // vector->int or fp->int? 377 378 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 379 if (VectorType *SrcVTy = 380 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 381 if (DstVTy->getNumElements() != SrcVTy->getNumElements()) 382 // Don't touch a bitcast between vectors of different element counts. 383 return nullptr; 384 } else 385 // Don't touch a scalar-to-vector bitcast. 386 return nullptr; 387 } else if (I->getOperand(0)->getType()->isVectorTy()) 388 // Don't touch a vector-to-scalar bitcast. 389 return nullptr; 390 391 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 392 return I; 393 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 394 break; 395 case Instruction::SExt: { 396 // Compute the bits in the result that are not present in the input. 397 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 398 399 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 400 401 // If any of the sign extended bits are demanded, we know that the sign 402 // bit is demanded. 403 if (DemandedMask.getActiveBits() > SrcBitWidth) 404 InputDemandedBits.setBit(SrcBitWidth-1); 405 406 KnownBits InputKnown(SrcBitWidth); 407 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 408 return I; 409 410 // If the input sign bit is known zero, or if the NewBits are not demanded 411 // convert this into a zero extension. 412 if (InputKnown.isNonNegative() || 413 DemandedMask.getActiveBits() <= SrcBitWidth) { 414 // Convert to ZExt cast. 415 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 416 return InsertNewInstWith(NewCast, *I); 417 } 418 419 // If the sign bit of the input is known set or clear, then we know the 420 // top bits of the result. 421 Known = InputKnown.sext(BitWidth); 422 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 423 break; 424 } 425 case Instruction::Add: 426 case Instruction::Sub: { 427 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 428 /// about the high bits of the operands. 429 unsigned NLZ = DemandedMask.countLeadingZeros(); 430 // Right fill the mask of bits for this ADD/SUB to demand the most 431 // significant bit and all those below it. 432 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 433 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 434 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 435 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 436 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 437 if (NLZ > 0) { 438 // Disable the nsw and nuw flags here: We can no longer guarantee that 439 // we won't wrap after simplification. Removing the nsw/nuw flags is 440 // legal here because the top bit is not demanded. 441 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 442 BinOP.setHasNoSignedWrap(false); 443 BinOP.setHasNoUnsignedWrap(false); 444 } 445 return I; 446 } 447 448 // If we are known to be adding/subtracting zeros to every bit below 449 // the highest demanded bit, we just return the other side. 450 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 451 return I->getOperand(0); 452 // We can't do this with the LHS for subtraction, unless we are only 453 // demanding the LSB. 454 if ((I->getOpcode() == Instruction::Add || 455 DemandedFromOps.isOneValue()) && 456 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 457 return I->getOperand(1); 458 459 // Otherwise just compute the known bits of the result. 460 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 461 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 462 NSW, LHSKnown, RHSKnown); 463 break; 464 } 465 case Instruction::Shl: { 466 const APInt *SA; 467 if (match(I->getOperand(1), m_APInt(SA))) { 468 const APInt *ShrAmt; 469 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 470 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 471 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 472 DemandedMask, Known)) 473 return R; 474 475 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 476 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 477 478 // If the shift is NUW/NSW, then it does demand the high bits. 479 ShlOperator *IOp = cast<ShlOperator>(I); 480 if (IOp->hasNoSignedWrap()) 481 DemandedMaskIn.setHighBits(ShiftAmt+1); 482 else if (IOp->hasNoUnsignedWrap()) 483 DemandedMaskIn.setHighBits(ShiftAmt); 484 485 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 486 return I; 487 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 488 Known.Zero <<= ShiftAmt; 489 Known.One <<= ShiftAmt; 490 // low bits known zero. 491 if (ShiftAmt) 492 Known.Zero.setLowBits(ShiftAmt); 493 } 494 break; 495 } 496 case Instruction::LShr: { 497 const APInt *SA; 498 if (match(I->getOperand(1), m_APInt(SA))) { 499 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 500 501 // Unsigned shift right. 502 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 503 504 // If the shift is exact, then it does demand the low bits (and knows that 505 // they are zero). 506 if (cast<LShrOperator>(I)->isExact()) 507 DemandedMaskIn.setLowBits(ShiftAmt); 508 509 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 510 return I; 511 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 512 Known.Zero.lshrInPlace(ShiftAmt); 513 Known.One.lshrInPlace(ShiftAmt); 514 if (ShiftAmt) 515 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 516 } 517 break; 518 } 519 case Instruction::AShr: { 520 // If this is an arithmetic shift right and only the low-bit is set, we can 521 // always convert this into a logical shr, even if the shift amount is 522 // variable. The low bit of the shift cannot be an input sign bit unless 523 // the shift amount is >= the size of the datatype, which is undefined. 524 if (DemandedMask.isOneValue()) { 525 // Perform the logical shift right. 526 Instruction *NewVal = BinaryOperator::CreateLShr( 527 I->getOperand(0), I->getOperand(1), I->getName()); 528 return InsertNewInstWith(NewVal, *I); 529 } 530 531 // If the sign bit is the only bit demanded by this ashr, then there is no 532 // need to do it, the shift doesn't change the high bit. 533 if (DemandedMask.isSignMask()) 534 return I->getOperand(0); 535 536 const APInt *SA; 537 if (match(I->getOperand(1), m_APInt(SA))) { 538 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 539 540 // Signed shift right. 541 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 542 // If any of the high bits are demanded, we should set the sign bit as 543 // demanded. 544 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 545 DemandedMaskIn.setSignBit(); 546 547 // If the shift is exact, then it does demand the low bits (and knows that 548 // they are zero). 549 if (cast<AShrOperator>(I)->isExact()) 550 DemandedMaskIn.setLowBits(ShiftAmt); 551 552 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 553 return I; 554 555 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 556 557 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 558 // Compute the new bits that are at the top now plus sign bits. 559 APInt HighBits(APInt::getHighBitsSet( 560 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 561 Known.Zero.lshrInPlace(ShiftAmt); 562 Known.One.lshrInPlace(ShiftAmt); 563 564 // If the input sign bit is known to be zero, or if none of the top bits 565 // are demanded, turn this into an unsigned shift right. 566 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 567 if (Known.Zero[BitWidth-ShiftAmt-1] || 568 !DemandedMask.intersects(HighBits)) { 569 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 570 I->getOperand(1)); 571 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 572 return InsertNewInstWith(LShr, *I); 573 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 574 Known.One |= HighBits; 575 } 576 } 577 break; 578 } 579 case Instruction::UDiv: { 580 // UDiv doesn't demand low bits that are zero in the divisor. 581 const APInt *SA; 582 if (match(I->getOperand(1), m_APInt(SA))) { 583 // If the shift is exact, then it does demand the low bits. 584 if (cast<UDivOperator>(I)->isExact()) 585 break; 586 587 // FIXME: Take the demanded mask of the result into account. 588 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 589 APInt DemandedMaskIn = 590 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 591 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) 592 return I; 593 594 // Propagate zero bits from the input. 595 Known.Zero.setHighBits(std::min( 596 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 597 } 598 break; 599 } 600 case Instruction::SRem: 601 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 602 // X % -1 demands all the bits because we don't want to introduce 603 // INT_MIN % -1 (== undef) by accident. 604 if (Rem->isMinusOne()) 605 break; 606 APInt RA = Rem->getValue().abs(); 607 if (RA.isPowerOf2()) { 608 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 609 return I->getOperand(0); 610 611 APInt LowBits = RA - 1; 612 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 613 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 614 return I; 615 616 // The low bits of LHS are unchanged by the srem. 617 Known.Zero = LHSKnown.Zero & LowBits; 618 Known.One = LHSKnown.One & LowBits; 619 620 // If LHS is non-negative or has all low bits zero, then the upper bits 621 // are all zero. 622 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 623 Known.Zero |= ~LowBits; 624 625 // If LHS is negative and not all low bits are zero, then the upper bits 626 // are all one. 627 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 628 Known.One |= ~LowBits; 629 630 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 631 break; 632 } 633 } 634 635 // The sign bit is the LHS's sign bit, except when the result of the 636 // remainder is zero. 637 if (DemandedMask.isSignBitSet()) { 638 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 639 // If it's known zero, our sign bit is also zero. 640 if (LHSKnown.isNonNegative()) 641 Known.makeNonNegative(); 642 } 643 break; 644 case Instruction::URem: { 645 KnownBits Known2(BitWidth); 646 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 647 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 648 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 649 return I; 650 651 unsigned Leaders = Known2.countMinLeadingZeros(); 652 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 653 break; 654 } 655 case Instruction::Call: 656 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 657 switch (II->getIntrinsicID()) { 658 default: break; 659 case Intrinsic::bswap: { 660 // If the only bits demanded come from one byte of the bswap result, 661 // just shift the input byte into position to eliminate the bswap. 662 unsigned NLZ = DemandedMask.countLeadingZeros(); 663 unsigned NTZ = DemandedMask.countTrailingZeros(); 664 665 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 666 // we need all the bits down to bit 8. Likewise, round NLZ. If we 667 // have 14 leading zeros, round to 8. 668 NLZ &= ~7; 669 NTZ &= ~7; 670 // If we need exactly one byte, we can do this transformation. 671 if (BitWidth-NLZ-NTZ == 8) { 672 unsigned ResultBit = NTZ; 673 unsigned InputBit = BitWidth-NTZ-8; 674 675 // Replace this with either a left or right shift to get the byte into 676 // the right place. 677 Instruction *NewVal; 678 if (InputBit > ResultBit) 679 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 680 ConstantInt::get(I->getType(), InputBit-ResultBit)); 681 else 682 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 683 ConstantInt::get(I->getType(), ResultBit-InputBit)); 684 NewVal->takeName(I); 685 return InsertNewInstWith(NewVal, *I); 686 } 687 688 // TODO: Could compute known zero/one bits based on the input. 689 break; 690 } 691 case Intrinsic::fshr: 692 case Intrinsic::fshl: { 693 const APInt *SA; 694 if (!match(I->getOperand(2), m_APInt(SA))) 695 break; 696 697 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 698 // defined, so no need to special-case zero shifts here. 699 uint64_t ShiftAmt = SA->urem(BitWidth); 700 if (II->getIntrinsicID() == Intrinsic::fshr) 701 ShiftAmt = BitWidth - ShiftAmt; 702 703 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 704 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 705 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || 706 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 707 return I; 708 709 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 710 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 711 Known.One = LHSKnown.One.shl(ShiftAmt) | 712 RHSKnown.One.lshr(BitWidth - ShiftAmt); 713 break; 714 } 715 case Intrinsic::x86_mmx_pmovmskb: 716 case Intrinsic::x86_sse_movmsk_ps: 717 case Intrinsic::x86_sse2_movmsk_pd: 718 case Intrinsic::x86_sse2_pmovmskb_128: 719 case Intrinsic::x86_avx_movmsk_ps_256: 720 case Intrinsic::x86_avx_movmsk_pd_256: 721 case Intrinsic::x86_avx2_pmovmskb: { 722 // MOVMSK copies the vector elements' sign bits to the low bits 723 // and zeros the high bits. 724 unsigned ArgWidth; 725 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) { 726 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>. 727 } else { 728 auto Arg = II->getArgOperand(0); 729 auto ArgType = cast<VectorType>(Arg->getType()); 730 ArgWidth = ArgType->getNumElements(); 731 } 732 733 // If we don't need any of low bits then return zero, 734 // we know that DemandedMask is non-zero already. 735 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth); 736 if (DemandedElts.isNullValue()) 737 return ConstantInt::getNullValue(VTy); 738 739 // We know that the upper bits are set to zero. 740 Known.Zero.setBitsFrom(ArgWidth); 741 return nullptr; 742 } 743 case Intrinsic::x86_sse42_crc32_64_64: 744 Known.Zero.setBitsFrom(32); 745 return nullptr; 746 } 747 } 748 computeKnownBits(V, Known, Depth, CxtI); 749 break; 750 } 751 752 // If the client is only demanding bits that we know, return the known 753 // constant. 754 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 755 return Constant::getIntegerValue(VTy, Known.One); 756 return nullptr; 757 } 758 759 /// Helper routine of SimplifyDemandedUseBits. It computes Known 760 /// bits. It also tries to handle simplifications that can be done based on 761 /// DemandedMask, but without modifying the Instruction. 762 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I, 763 const APInt &DemandedMask, 764 KnownBits &Known, 765 unsigned Depth, 766 Instruction *CxtI) { 767 unsigned BitWidth = DemandedMask.getBitWidth(); 768 Type *ITy = I->getType(); 769 770 KnownBits LHSKnown(BitWidth); 771 KnownBits RHSKnown(BitWidth); 772 773 // Despite the fact that we can't simplify this instruction in all User's 774 // context, we can at least compute the known bits, and we can 775 // do simplifications that apply to *just* the one user if we know that 776 // this instruction has a simpler value in that context. 777 switch (I->getOpcode()) { 778 case Instruction::And: { 779 // If either the LHS or the RHS are Zero, the result is zero. 780 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 781 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 782 CxtI); 783 784 // Output known-0 are known to be clear if zero in either the LHS | RHS. 785 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 786 // Output known-1 bits are only known if set in both the LHS & RHS. 787 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 788 789 // If the client is only demanding bits that we know, return the known 790 // constant. 791 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 792 return Constant::getIntegerValue(ITy, IKnownOne); 793 794 // If all of the demanded bits are known 1 on one side, return the other. 795 // These bits cannot contribute to the result of the 'and' in this 796 // context. 797 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 798 return I->getOperand(0); 799 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 800 return I->getOperand(1); 801 802 Known.Zero = std::move(IKnownZero); 803 Known.One = std::move(IKnownOne); 804 break; 805 } 806 case Instruction::Or: { 807 // We can simplify (X|Y) -> X or Y in the user's context if we know that 808 // only bits from X or Y are demanded. 809 810 // If either the LHS or the RHS are One, the result is One. 811 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 812 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 813 CxtI); 814 815 // Output known-0 bits are only known if clear in both the LHS & RHS. 816 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 817 // Output known-1 are known to be set if set in either the LHS | RHS. 818 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 819 820 // If the client is only demanding bits that we know, return the known 821 // constant. 822 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 823 return Constant::getIntegerValue(ITy, IKnownOne); 824 825 // If all of the demanded bits are known zero on one side, return the 826 // other. These bits cannot contribute to the result of the 'or' in this 827 // context. 828 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 829 return I->getOperand(0); 830 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 831 return I->getOperand(1); 832 833 Known.Zero = std::move(IKnownZero); 834 Known.One = std::move(IKnownOne); 835 break; 836 } 837 case Instruction::Xor: { 838 // We can simplify (X^Y) -> X or Y in the user's context if we know that 839 // only bits from X or Y are demanded. 840 841 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 842 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 843 CxtI); 844 845 // Output known-0 bits are known if clear or set in both the LHS & RHS. 846 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 847 (RHSKnown.One & LHSKnown.One); 848 // Output known-1 are known to be set if set in only one of the LHS, RHS. 849 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 850 (RHSKnown.One & LHSKnown.Zero); 851 852 // If the client is only demanding bits that we know, return the known 853 // constant. 854 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 855 return Constant::getIntegerValue(ITy, IKnownOne); 856 857 // If all of the demanded bits are known zero on one side, return the 858 // other. 859 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 860 return I->getOperand(0); 861 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 862 return I->getOperand(1); 863 864 // Output known-0 bits are known if clear or set in both the LHS & RHS. 865 Known.Zero = std::move(IKnownZero); 866 // Output known-1 are known to be set if set in only one of the LHS, RHS. 867 Known.One = std::move(IKnownOne); 868 break; 869 } 870 default: 871 // Compute the Known bits to simplify things downstream. 872 computeKnownBits(I, Known, Depth, CxtI); 873 874 // If this user is only demanding bits that we know, return the known 875 // constant. 876 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 877 return Constant::getIntegerValue(ITy, Known.One); 878 879 break; 880 } 881 882 return nullptr; 883 } 884 885 886 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 887 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 888 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 889 /// of "C2-C1". 890 /// 891 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 892 /// ..., bn}, without considering the specific value X is holding. 893 /// This transformation is legal iff one of following conditions is hold: 894 /// 1) All the bit in S are 0, in this case E1 == E2. 895 /// 2) We don't care those bits in S, per the input DemandedMask. 896 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 897 /// rest bits. 898 /// 899 /// Currently we only test condition 2). 900 /// 901 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 902 /// not successful. 903 Value * 904 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1, 905 Instruction *Shl, const APInt &ShlOp1, 906 const APInt &DemandedMask, 907 KnownBits &Known) { 908 if (!ShlOp1 || !ShrOp1) 909 return nullptr; // No-op. 910 911 Value *VarX = Shr->getOperand(0); 912 Type *Ty = VarX->getType(); 913 unsigned BitWidth = Ty->getScalarSizeInBits(); 914 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 915 return nullptr; // Undef. 916 917 unsigned ShlAmt = ShlOp1.getZExtValue(); 918 unsigned ShrAmt = ShrOp1.getZExtValue(); 919 920 Known.One.clearAllBits(); 921 Known.Zero.setLowBits(ShlAmt - 1); 922 Known.Zero &= DemandedMask; 923 924 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 925 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 926 927 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 928 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 929 (BitMask1.ashr(ShrAmt) << ShlAmt); 930 931 if (ShrAmt <= ShlAmt) { 932 BitMask2 <<= (ShlAmt - ShrAmt); 933 } else { 934 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 935 BitMask2.ashr(ShrAmt - ShlAmt); 936 } 937 938 // Check if condition-2 (see the comment to this function) is satified. 939 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 940 if (ShrAmt == ShlAmt) 941 return VarX; 942 943 if (!Shr->hasOneUse()) 944 return nullptr; 945 946 BinaryOperator *New; 947 if (ShrAmt < ShlAmt) { 948 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 949 New = BinaryOperator::CreateShl(VarX, Amt); 950 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 951 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 952 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 953 } else { 954 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 955 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 956 BinaryOperator::CreateAShr(VarX, Amt); 957 if (cast<BinaryOperator>(Shr)->isExact()) 958 New->setIsExact(true); 959 } 960 961 return InsertNewInstWith(New, *Shl); 962 } 963 964 return nullptr; 965 } 966 967 /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics. 968 /// 969 /// Note: This only supports non-TFE/LWE image intrinsic calls; those have 970 /// struct returns. 971 Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II, 972 APInt DemandedElts, 973 int DMaskIdx) { 974 975 // FIXME: Allow v3i16/v3f16 in buffer intrinsics when the types are fully supported. 976 if (DMaskIdx < 0 && 977 II->getType()->getScalarSizeInBits() != 32 && 978 DemandedElts.getActiveBits() == 3) 979 return nullptr; 980 981 unsigned VWidth = II->getType()->getVectorNumElements(); 982 if (VWidth == 1) 983 return nullptr; 984 985 ConstantInt *NewDMask = nullptr; 986 987 if (DMaskIdx < 0) { 988 // Pretend that a prefix of elements is demanded to simplify the code 989 // below. 990 DemandedElts = (1 << DemandedElts.getActiveBits()) - 1; 991 } else { 992 ConstantInt *DMask = cast<ConstantInt>(II->getArgOperand(DMaskIdx)); 993 unsigned DMaskVal = DMask->getZExtValue() & 0xf; 994 995 // Mask off values that are undefined because the dmask doesn't cover them 996 DemandedElts &= (1 << countPopulation(DMaskVal)) - 1; 997 998 unsigned NewDMaskVal = 0; 999 unsigned OrigLoadIdx = 0; 1000 for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) { 1001 const unsigned Bit = 1 << SrcIdx; 1002 if (!!(DMaskVal & Bit)) { 1003 if (!!DemandedElts[OrigLoadIdx]) 1004 NewDMaskVal |= Bit; 1005 OrigLoadIdx++; 1006 } 1007 } 1008 1009 if (DMaskVal != NewDMaskVal) 1010 NewDMask = ConstantInt::get(DMask->getType(), NewDMaskVal); 1011 } 1012 1013 unsigned NewNumElts = DemandedElts.countPopulation(); 1014 if (!NewNumElts) 1015 return UndefValue::get(II->getType()); 1016 1017 if (NewNumElts >= VWidth && DemandedElts.isMask()) { 1018 if (NewDMask) 1019 II->setArgOperand(DMaskIdx, NewDMask); 1020 return nullptr; 1021 } 1022 1023 // Determine the overload types of the original intrinsic. 1024 auto IID = II->getIntrinsicID(); 1025 SmallVector<Intrinsic::IITDescriptor, 16> Table; 1026 getIntrinsicInfoTableEntries(IID, Table); 1027 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1028 1029 // Validate function argument and return types, extracting overloaded types 1030 // along the way. 1031 FunctionType *FTy = II->getCalledFunction()->getFunctionType(); 1032 SmallVector<Type *, 6> OverloadTys; 1033 Intrinsic::matchIntrinsicSignature(FTy, TableRef, OverloadTys); 1034 1035 Module *M = II->getParent()->getParent()->getParent(); 1036 Type *EltTy = II->getType()->getVectorElementType(); 1037 Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts); 1038 1039 OverloadTys[0] = NewTy; 1040 Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys); 1041 1042 SmallVector<Value *, 16> Args; 1043 for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I) 1044 Args.push_back(II->getArgOperand(I)); 1045 1046 if (NewDMask) 1047 Args[DMaskIdx] = NewDMask; 1048 1049 IRBuilderBase::InsertPointGuard Guard(Builder); 1050 Builder.SetInsertPoint(II); 1051 1052 CallInst *NewCall = Builder.CreateCall(NewIntrin, Args); 1053 NewCall->takeName(II); 1054 NewCall->copyMetadata(*II); 1055 1056 if (NewNumElts == 1) { 1057 return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall, 1058 DemandedElts.countTrailingZeros()); 1059 } 1060 1061 SmallVector<uint32_t, 8> EltMask; 1062 unsigned NewLoadIdx = 0; 1063 for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) { 1064 if (!!DemandedElts[OrigLoadIdx]) 1065 EltMask.push_back(NewLoadIdx++); 1066 else 1067 EltMask.push_back(NewNumElts); 1068 } 1069 1070 Value *Shuffle = 1071 Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask); 1072 1073 return Shuffle; 1074 } 1075 1076 /// The specified value produces a vector with any number of elements. 1077 /// This method analyzes which elements of the operand are undef and returns 1078 /// that information in UndefElts. 1079 /// 1080 /// DemandedElts contains the set of elements that are actually used by the 1081 /// caller, and by default (AllowMultipleUsers equals false) the value is 1082 /// simplified only if it has a single caller. If AllowMultipleUsers is set 1083 /// to true, DemandedElts refers to the union of sets of elements that are 1084 /// used by all callers. 1085 /// 1086 /// If the information about demanded elements can be used to simplify the 1087 /// operation, the operation is simplified, then the resultant value is 1088 /// returned. This returns null if no change was made. 1089 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, 1090 APInt &UndefElts, 1091 unsigned Depth, 1092 bool AllowMultipleUsers) { 1093 unsigned VWidth = V->getType()->getVectorNumElements(); 1094 APInt EltMask(APInt::getAllOnesValue(VWidth)); 1095 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1096 1097 if (isa<UndefValue>(V)) { 1098 // If the entire vector is undefined, just return this info. 1099 UndefElts = EltMask; 1100 return nullptr; 1101 } 1102 1103 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef. 1104 UndefElts = EltMask; 1105 return UndefValue::get(V->getType()); 1106 } 1107 1108 UndefElts = 0; 1109 1110 if (auto *C = dyn_cast<Constant>(V)) { 1111 // Check if this is identity. If so, return 0 since we are not simplifying 1112 // anything. 1113 if (DemandedElts.isAllOnesValue()) 1114 return nullptr; 1115 1116 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1117 Constant *Undef = UndefValue::get(EltTy); 1118 SmallVector<Constant*, 16> Elts; 1119 for (unsigned i = 0; i != VWidth; ++i) { 1120 if (!DemandedElts[i]) { // If not demanded, set to undef. 1121 Elts.push_back(Undef); 1122 UndefElts.setBit(i); 1123 continue; 1124 } 1125 1126 Constant *Elt = C->getAggregateElement(i); 1127 if (!Elt) return nullptr; 1128 1129 if (isa<UndefValue>(Elt)) { // Already undef. 1130 Elts.push_back(Undef); 1131 UndefElts.setBit(i); 1132 } else { // Otherwise, defined. 1133 Elts.push_back(Elt); 1134 } 1135 } 1136 1137 // If we changed the constant, return it. 1138 Constant *NewCV = ConstantVector::get(Elts); 1139 return NewCV != C ? NewCV : nullptr; 1140 } 1141 1142 // Limit search depth. 1143 if (Depth == 10) 1144 return nullptr; 1145 1146 if (!AllowMultipleUsers) { 1147 // If multiple users are using the root value, proceed with 1148 // simplification conservatively assuming that all elements 1149 // are needed. 1150 if (!V->hasOneUse()) { 1151 // Quit if we find multiple users of a non-root value though. 1152 // They'll be handled when it's their turn to be visited by 1153 // the main instcombine process. 1154 if (Depth != 0) 1155 // TODO: Just compute the UndefElts information recursively. 1156 return nullptr; 1157 1158 // Conservatively assume that all elements are needed. 1159 DemandedElts = EltMask; 1160 } 1161 } 1162 1163 Instruction *I = dyn_cast<Instruction>(V); 1164 if (!I) return nullptr; // Only analyze instructions. 1165 1166 bool MadeChange = false; 1167 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1168 APInt Demanded, APInt &Undef) { 1169 auto *II = dyn_cast<IntrinsicInst>(Inst); 1170 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1171 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1172 if (II) 1173 II->setArgOperand(OpNum, V); 1174 else 1175 Inst->setOperand(OpNum, V); 1176 MadeChange = true; 1177 } 1178 }; 1179 1180 APInt UndefElts2(VWidth, 0); 1181 APInt UndefElts3(VWidth, 0); 1182 switch (I->getOpcode()) { 1183 default: break; 1184 1185 case Instruction::GetElementPtr: { 1186 // The LangRef requires that struct geps have all constant indices. As 1187 // such, we can't convert any operand to partial undef. 1188 auto mayIndexStructType = [](GetElementPtrInst &GEP) { 1189 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); 1190 I != E; I++) 1191 if (I.isStruct()) 1192 return true;; 1193 return false; 1194 }; 1195 if (mayIndexStructType(cast<GetElementPtrInst>(*I))) 1196 break; 1197 1198 // Conservatively track the demanded elements back through any vector 1199 // operands we may have. We know there must be at least one, or we 1200 // wouldn't have a vector result to get here. Note that we intentionally 1201 // merge the undef bits here since gepping with either an undef base or 1202 // index results in undef. 1203 for (unsigned i = 0; i < I->getNumOperands(); i++) { 1204 if (isa<UndefValue>(I->getOperand(i))) { 1205 // If the entire vector is undefined, just return this info. 1206 UndefElts = EltMask; 1207 return nullptr; 1208 } 1209 if (I->getOperand(i)->getType()->isVectorTy()) { 1210 APInt UndefEltsOp(VWidth, 0); 1211 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp); 1212 UndefElts |= UndefEltsOp; 1213 } 1214 } 1215 1216 break; 1217 } 1218 case Instruction::InsertElement: { 1219 // If this is a variable index, we don't know which element it overwrites. 1220 // demand exactly the same input as we produce. 1221 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1222 if (!Idx) { 1223 // Note that we can't propagate undef elt info, because we don't know 1224 // which elt is getting updated. 1225 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); 1226 break; 1227 } 1228 1229 // The element inserted overwrites whatever was there, so the input demanded 1230 // set is simpler than the output set. 1231 unsigned IdxNo = Idx->getZExtValue(); 1232 APInt PreInsertDemandedElts = DemandedElts; 1233 if (IdxNo < VWidth) 1234 PreInsertDemandedElts.clearBit(IdxNo); 1235 1236 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); 1237 1238 // If this is inserting an element that isn't demanded, remove this 1239 // insertelement. 1240 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1241 Worklist.Add(I); 1242 return I->getOperand(0); 1243 } 1244 1245 // The inserted element is defined. 1246 UndefElts.clearBit(IdxNo); 1247 break; 1248 } 1249 case Instruction::ShuffleVector: { 1250 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1251 unsigned LHSVWidth = 1252 Shuffle->getOperand(0)->getType()->getVectorNumElements(); 1253 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0); 1254 for (unsigned i = 0; i < VWidth; i++) { 1255 if (DemandedElts[i]) { 1256 unsigned MaskVal = Shuffle->getMaskValue(i); 1257 if (MaskVal != -1u) { 1258 assert(MaskVal < LHSVWidth * 2 && 1259 "shufflevector mask index out of range!"); 1260 if (MaskVal < LHSVWidth) 1261 LeftDemanded.setBit(MaskVal); 1262 else 1263 RightDemanded.setBit(MaskVal - LHSVWidth); 1264 } 1265 } 1266 } 1267 1268 APInt LHSUndefElts(LHSVWidth, 0); 1269 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1270 1271 APInt RHSUndefElts(LHSVWidth, 0); 1272 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); 1273 1274 bool NewUndefElts = false; 1275 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1276 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1277 bool LHSUniform = true; 1278 bool RHSUniform = true; 1279 for (unsigned i = 0; i < VWidth; i++) { 1280 unsigned MaskVal = Shuffle->getMaskValue(i); 1281 if (MaskVal == -1u) { 1282 UndefElts.setBit(i); 1283 } else if (!DemandedElts[i]) { 1284 NewUndefElts = true; 1285 UndefElts.setBit(i); 1286 } else if (MaskVal < LHSVWidth) { 1287 if (LHSUndefElts[MaskVal]) { 1288 NewUndefElts = true; 1289 UndefElts.setBit(i); 1290 } else { 1291 LHSIdx = LHSIdx == -1u ? i : LHSVWidth; 1292 LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth; 1293 LHSUniform = LHSUniform && (MaskVal == i); 1294 } 1295 } else { 1296 if (RHSUndefElts[MaskVal - LHSVWidth]) { 1297 NewUndefElts = true; 1298 UndefElts.setBit(i); 1299 } else { 1300 RHSIdx = RHSIdx == -1u ? i : LHSVWidth; 1301 RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth; 1302 RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i); 1303 } 1304 } 1305 } 1306 1307 // Try to transform shuffle with constant vector and single element from 1308 // this constant vector to single insertelement instruction. 1309 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1310 // insertelement V, C[ci], ci-n 1311 if (LHSVWidth == Shuffle->getType()->getNumElements()) { 1312 Value *Op = nullptr; 1313 Constant *Value = nullptr; 1314 unsigned Idx = -1u; 1315 1316 // Find constant vector with the single element in shuffle (LHS or RHS). 1317 if (LHSIdx < LHSVWidth && RHSUniform) { 1318 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1319 Op = Shuffle->getOperand(1); 1320 Value = CV->getOperand(LHSValIdx); 1321 Idx = LHSIdx; 1322 } 1323 } 1324 if (RHSIdx < LHSVWidth && LHSUniform) { 1325 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1326 Op = Shuffle->getOperand(0); 1327 Value = CV->getOperand(RHSValIdx); 1328 Idx = RHSIdx; 1329 } 1330 } 1331 // Found constant vector with single element - convert to insertelement. 1332 if (Op && Value) { 1333 Instruction *New = InsertElementInst::Create( 1334 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1335 Shuffle->getName()); 1336 InsertNewInstWith(New, *Shuffle); 1337 return New; 1338 } 1339 } 1340 if (NewUndefElts) { 1341 // Add additional discovered undefs. 1342 SmallVector<Constant*, 16> Elts; 1343 for (unsigned i = 0; i < VWidth; ++i) { 1344 if (UndefElts[i]) 1345 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); 1346 else 1347 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), 1348 Shuffle->getMaskValue(i))); 1349 } 1350 I->setOperand(2, ConstantVector::get(Elts)); 1351 MadeChange = true; 1352 } 1353 break; 1354 } 1355 case Instruction::Select: { 1356 // If this is a vector select, try to transform the select condition based 1357 // on the current demanded elements. 1358 SelectInst *Sel = cast<SelectInst>(I); 1359 if (Sel->getCondition()->getType()->isVectorTy()) { 1360 // TODO: We are not doing anything with UndefElts based on this call. 1361 // It is overwritten below based on the other select operands. If an 1362 // element of the select condition is known undef, then we are free to 1363 // choose the output value from either arm of the select. If we know that 1364 // one of those values is undef, then the output can be undef. 1365 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1366 } 1367 1368 // Next, see if we can transform the arms of the select. 1369 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1370 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1371 for (unsigned i = 0; i < VWidth; i++) { 1372 // isNullValue() always returns false when called on a ConstantExpr. 1373 // Skip constant expressions to avoid propagating incorrect information. 1374 Constant *CElt = CV->getAggregateElement(i); 1375 if (isa<ConstantExpr>(CElt)) 1376 continue; 1377 // TODO: If a select condition element is undef, we can demand from 1378 // either side. If one side is known undef, choosing that side would 1379 // propagate undef. 1380 if (CElt->isNullValue()) 1381 DemandedLHS.clearBit(i); 1382 else 1383 DemandedRHS.clearBit(i); 1384 } 1385 } 1386 1387 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); 1388 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); 1389 1390 // Output elements are undefined if the element from each arm is undefined. 1391 // TODO: This can be improved. See comment in select condition handling. 1392 UndefElts = UndefElts2 & UndefElts3; 1393 break; 1394 } 1395 case Instruction::BitCast: { 1396 // Vector->vector casts only. 1397 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1398 if (!VTy) break; 1399 unsigned InVWidth = VTy->getNumElements(); 1400 APInt InputDemandedElts(InVWidth, 0); 1401 UndefElts2 = APInt(InVWidth, 0); 1402 unsigned Ratio; 1403 1404 if (VWidth == InVWidth) { 1405 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1406 // elements as are demanded of us. 1407 Ratio = 1; 1408 InputDemandedElts = DemandedElts; 1409 } else if ((VWidth % InVWidth) == 0) { 1410 // If the number of elements in the output is a multiple of the number of 1411 // elements in the input then an input element is live if any of the 1412 // corresponding output elements are live. 1413 Ratio = VWidth / InVWidth; 1414 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1415 if (DemandedElts[OutIdx]) 1416 InputDemandedElts.setBit(OutIdx / Ratio); 1417 } else if ((InVWidth % VWidth) == 0) { 1418 // If the number of elements in the input is a multiple of the number of 1419 // elements in the output then an input element is live if the 1420 // corresponding output element is live. 1421 Ratio = InVWidth / VWidth; 1422 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1423 if (DemandedElts[InIdx / Ratio]) 1424 InputDemandedElts.setBit(InIdx); 1425 } else { 1426 // Unsupported so far. 1427 break; 1428 } 1429 1430 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); 1431 1432 if (VWidth == InVWidth) { 1433 UndefElts = UndefElts2; 1434 } else if ((VWidth % InVWidth) == 0) { 1435 // If the number of elements in the output is a multiple of the number of 1436 // elements in the input then an output element is undef if the 1437 // corresponding input element is undef. 1438 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1439 if (UndefElts2[OutIdx / Ratio]) 1440 UndefElts.setBit(OutIdx); 1441 } else if ((InVWidth % VWidth) == 0) { 1442 // If the number of elements in the input is a multiple of the number of 1443 // elements in the output then an output element is undef if all of the 1444 // corresponding input elements are undef. 1445 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1446 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1447 if (SubUndef.countPopulation() == Ratio) 1448 UndefElts.setBit(OutIdx); 1449 } 1450 } else { 1451 llvm_unreachable("Unimp"); 1452 } 1453 break; 1454 } 1455 case Instruction::FPTrunc: 1456 case Instruction::FPExt: 1457 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1458 break; 1459 1460 case Instruction::Call: { 1461 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1462 if (!II) break; 1463 switch (II->getIntrinsicID()) { 1464 case Intrinsic::masked_gather: // fallthrough 1465 case Intrinsic::masked_load: { 1466 // Subtlety: If we load from a pointer, the pointer must be valid 1467 // regardless of whether the element is demanded. Doing otherwise risks 1468 // segfaults which didn't exist in the original program. 1469 APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)), 1470 DemandedPassThrough(DemandedElts); 1471 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) 1472 for (unsigned i = 0; i < VWidth; i++) { 1473 Constant *CElt = CV->getAggregateElement(i); 1474 if (CElt->isNullValue()) 1475 DemandedPtrs.clearBit(i); 1476 else if (CElt->isAllOnesValue()) 1477 DemandedPassThrough.clearBit(i); 1478 } 1479 if (II->getIntrinsicID() == Intrinsic::masked_gather) 1480 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2); 1481 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3); 1482 1483 // Output elements are undefined if the element from both sources are. 1484 // TODO: can strengthen via mask as well. 1485 UndefElts = UndefElts2 & UndefElts3; 1486 break; 1487 } 1488 case Intrinsic::x86_xop_vfrcz_ss: 1489 case Intrinsic::x86_xop_vfrcz_sd: 1490 // The instructions for these intrinsics are speced to zero upper bits not 1491 // pass them through like other scalar intrinsics. So we shouldn't just 1492 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics. 1493 // Instead we should return a zero vector. 1494 if (!DemandedElts[0]) { 1495 Worklist.Add(II); 1496 return ConstantAggregateZero::get(II->getType()); 1497 } 1498 1499 // Only the lower element is used. 1500 DemandedElts = 1; 1501 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1502 1503 // Only the lower element is undefined. The high elements are zero. 1504 UndefElts = UndefElts[0]; 1505 break; 1506 1507 // Unary scalar-as-vector operations that work column-wise. 1508 case Intrinsic::x86_sse_rcp_ss: 1509 case Intrinsic::x86_sse_rsqrt_ss: 1510 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1511 1512 // If lowest element of a scalar op isn't used then use Arg0. 1513 if (!DemandedElts[0]) { 1514 Worklist.Add(II); 1515 return II->getArgOperand(0); 1516 } 1517 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions 1518 // checks). 1519 break; 1520 1521 // Binary scalar-as-vector operations that work column-wise. The high 1522 // elements come from operand 0. The low element is a function of both 1523 // operands. 1524 case Intrinsic::x86_sse_min_ss: 1525 case Intrinsic::x86_sse_max_ss: 1526 case Intrinsic::x86_sse_cmp_ss: 1527 case Intrinsic::x86_sse2_min_sd: 1528 case Intrinsic::x86_sse2_max_sd: 1529 case Intrinsic::x86_sse2_cmp_sd: { 1530 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1531 1532 // If lowest element of a scalar op isn't used then use Arg0. 1533 if (!DemandedElts[0]) { 1534 Worklist.Add(II); 1535 return II->getArgOperand(0); 1536 } 1537 1538 // Only lower element is used for operand 1. 1539 DemandedElts = 1; 1540 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1541 1542 // Lower element is undefined if both lower elements are undefined. 1543 // Consider things like undef&0. The result is known zero, not undef. 1544 if (!UndefElts2[0]) 1545 UndefElts.clearBit(0); 1546 1547 break; 1548 } 1549 1550 // Binary scalar-as-vector operations that work column-wise. The high 1551 // elements come from operand 0 and the low element comes from operand 1. 1552 case Intrinsic::x86_sse41_round_ss: 1553 case Intrinsic::x86_sse41_round_sd: { 1554 // Don't use the low element of operand 0. 1555 APInt DemandedElts2 = DemandedElts; 1556 DemandedElts2.clearBit(0); 1557 simplifyAndSetOp(II, 0, DemandedElts2, UndefElts); 1558 1559 // If lowest element of a scalar op isn't used then use Arg0. 1560 if (!DemandedElts[0]) { 1561 Worklist.Add(II); 1562 return II->getArgOperand(0); 1563 } 1564 1565 // Only lower element is used for operand 1. 1566 DemandedElts = 1; 1567 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1568 1569 // Take the high undef elements from operand 0 and take the lower element 1570 // from operand 1. 1571 UndefElts.clearBit(0); 1572 UndefElts |= UndefElts2[0]; 1573 break; 1574 } 1575 1576 // Three input scalar-as-vector operations that work column-wise. The high 1577 // elements come from operand 0 and the low element is a function of all 1578 // three inputs. 1579 case Intrinsic::x86_avx512_mask_add_ss_round: 1580 case Intrinsic::x86_avx512_mask_div_ss_round: 1581 case Intrinsic::x86_avx512_mask_mul_ss_round: 1582 case Intrinsic::x86_avx512_mask_sub_ss_round: 1583 case Intrinsic::x86_avx512_mask_max_ss_round: 1584 case Intrinsic::x86_avx512_mask_min_ss_round: 1585 case Intrinsic::x86_avx512_mask_add_sd_round: 1586 case Intrinsic::x86_avx512_mask_div_sd_round: 1587 case Intrinsic::x86_avx512_mask_mul_sd_round: 1588 case Intrinsic::x86_avx512_mask_sub_sd_round: 1589 case Intrinsic::x86_avx512_mask_max_sd_round: 1590 case Intrinsic::x86_avx512_mask_min_sd_round: 1591 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1592 1593 // If lowest element of a scalar op isn't used then use Arg0. 1594 if (!DemandedElts[0]) { 1595 Worklist.Add(II); 1596 return II->getArgOperand(0); 1597 } 1598 1599 // Only lower element is used for operand 1 and 2. 1600 DemandedElts = 1; 1601 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1602 simplifyAndSetOp(II, 2, DemandedElts, UndefElts3); 1603 1604 // Lower element is undefined if all three lower elements are undefined. 1605 // Consider things like undef&0. The result is known zero, not undef. 1606 if (!UndefElts2[0] || !UndefElts3[0]) 1607 UndefElts.clearBit(0); 1608 1609 break; 1610 1611 case Intrinsic::x86_sse2_packssdw_128: 1612 case Intrinsic::x86_sse2_packsswb_128: 1613 case Intrinsic::x86_sse2_packuswb_128: 1614 case Intrinsic::x86_sse41_packusdw: 1615 case Intrinsic::x86_avx2_packssdw: 1616 case Intrinsic::x86_avx2_packsswb: 1617 case Intrinsic::x86_avx2_packusdw: 1618 case Intrinsic::x86_avx2_packuswb: 1619 case Intrinsic::x86_avx512_packssdw_512: 1620 case Intrinsic::x86_avx512_packsswb_512: 1621 case Intrinsic::x86_avx512_packusdw_512: 1622 case Intrinsic::x86_avx512_packuswb_512: { 1623 auto *Ty0 = II->getArgOperand(0)->getType(); 1624 unsigned InnerVWidth = Ty0->getVectorNumElements(); 1625 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size"); 1626 1627 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128; 1628 unsigned VWidthPerLane = VWidth / NumLanes; 1629 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes; 1630 1631 // Per lane, pack the elements of the first input and then the second. 1632 // e.g. 1633 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3]) 1634 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15]) 1635 for (int OpNum = 0; OpNum != 2; ++OpNum) { 1636 APInt OpDemandedElts(InnerVWidth, 0); 1637 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1638 unsigned LaneIdx = Lane * VWidthPerLane; 1639 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) { 1640 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum; 1641 if (DemandedElts[Idx]) 1642 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt); 1643 } 1644 } 1645 1646 // Demand elements from the operand. 1647 APInt OpUndefElts(InnerVWidth, 0); 1648 simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts); 1649 1650 // Pack the operand's UNDEF elements, one lane at a time. 1651 OpUndefElts = OpUndefElts.zext(VWidth); 1652 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1653 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane); 1654 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane); 1655 LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum); 1656 UndefElts |= LaneElts; 1657 } 1658 } 1659 break; 1660 } 1661 1662 // PSHUFB 1663 case Intrinsic::x86_ssse3_pshuf_b_128: 1664 case Intrinsic::x86_avx2_pshuf_b: 1665 case Intrinsic::x86_avx512_pshuf_b_512: 1666 // PERMILVAR 1667 case Intrinsic::x86_avx_vpermilvar_ps: 1668 case Intrinsic::x86_avx_vpermilvar_ps_256: 1669 case Intrinsic::x86_avx512_vpermilvar_ps_512: 1670 case Intrinsic::x86_avx_vpermilvar_pd: 1671 case Intrinsic::x86_avx_vpermilvar_pd_256: 1672 case Intrinsic::x86_avx512_vpermilvar_pd_512: 1673 // PERMV 1674 case Intrinsic::x86_avx2_permd: 1675 case Intrinsic::x86_avx2_permps: { 1676 simplifyAndSetOp(II, 1, DemandedElts, UndefElts); 1677 break; 1678 } 1679 1680 // SSE4A instructions leave the upper 64-bits of the 128-bit result 1681 // in an undefined state. 1682 case Intrinsic::x86_sse4a_extrq: 1683 case Intrinsic::x86_sse4a_extrqi: 1684 case Intrinsic::x86_sse4a_insertq: 1685 case Intrinsic::x86_sse4a_insertqi: 1686 UndefElts.setHighBits(VWidth / 2); 1687 break; 1688 case Intrinsic::amdgcn_buffer_load: 1689 case Intrinsic::amdgcn_buffer_load_format: 1690 case Intrinsic::amdgcn_raw_buffer_load: 1691 case Intrinsic::amdgcn_raw_buffer_load_format: 1692 case Intrinsic::amdgcn_raw_tbuffer_load: 1693 case Intrinsic::amdgcn_struct_buffer_load: 1694 case Intrinsic::amdgcn_struct_buffer_load_format: 1695 case Intrinsic::amdgcn_struct_tbuffer_load: 1696 case Intrinsic::amdgcn_tbuffer_load: 1697 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts); 1698 default: { 1699 if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID())) 1700 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts, 0); 1701 1702 break; 1703 } 1704 } // switch on IntrinsicID 1705 break; 1706 } // case Call 1707 } // switch on Opcode 1708 1709 // TODO: We bail completely on integer div/rem and shifts because they have 1710 // UB/poison potential, but that should be refined. 1711 BinaryOperator *BO; 1712 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1713 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1714 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); 1715 1716 // Any change to an instruction with potential poison must clear those flags 1717 // because we can not guarantee those constraints now. Other analysis may 1718 // determine that it is safe to re-apply the flags. 1719 if (MadeChange) 1720 BO->dropPoisonGeneratingFlags(); 1721 1722 // Output elements are undefined if both are undefined. Consider things 1723 // like undef & 0. The result is known zero, not undef. 1724 UndefElts &= UndefElts2; 1725 } 1726 1727 // If we've proven all of the lanes undef, return an undef value. 1728 // TODO: Intersect w/demanded lanes 1729 if (UndefElts.isAllOnesValue()) 1730 return UndefValue::get(I->getType());; 1731 1732 return MadeChange ? I : nullptr; 1733 } 1734