1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/TargetTransformInfo.h" 16 #include "llvm/Analysis/ValueTracking.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 #include "llvm/Transforms/InstCombine/InstCombiner.h" 21 22 using namespace llvm; 23 using namespace llvm::PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 /// Check to see if the specified operand of the specified instruction is a 28 /// constant integer. If so, check to see if there are any bits set in the 29 /// constant that are not demanded. If so, shrink the constant and return true. 30 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 31 const APInt &Demanded) { 32 assert(I && "No instruction?"); 33 assert(OpNo < I->getNumOperands() && "Operand index too large"); 34 35 // The operand must be a constant integer or splat integer. 36 Value *Op = I->getOperand(OpNo); 37 const APInt *C; 38 if (!match(Op, m_APInt(C))) 39 return false; 40 41 // If there are no bits set that aren't demanded, nothing to do. 42 if (C->isSubsetOf(Demanded)) 43 return false; 44 45 // This instruction is producing bits that are not demanded. Shrink the RHS. 46 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 47 48 return true; 49 } 50 51 52 53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 54 /// the instruction has any properties that allow us to simplify its operands. 55 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) { 56 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 57 KnownBits Known(BitWidth); 58 APInt DemandedMask(APInt::getAllOnes(BitWidth)); 59 60 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 61 0, &Inst); 62 if (!V) return false; 63 if (V == &Inst) return true; 64 replaceInstUsesWith(Inst, V); 65 return true; 66 } 67 68 /// This form of SimplifyDemandedBits simplifies the specified instruction 69 /// operand if possible, updating it in place. It returns true if it made any 70 /// change and false otherwise. 71 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 72 const APInt &DemandedMask, 73 KnownBits &Known, unsigned Depth) { 74 Use &U = I->getOperandUse(OpNo); 75 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 76 Depth, I); 77 if (!NewVal) return false; 78 if (Instruction* OpInst = dyn_cast<Instruction>(U)) 79 salvageDebugInfo(*OpInst); 80 81 replaceUse(U, NewVal); 82 return true; 83 } 84 85 /// This function attempts to replace V with a simpler value based on the 86 /// demanded bits. When this function is called, it is known that only the bits 87 /// set in DemandedMask of the result of V are ever used downstream. 88 /// Consequently, depending on the mask and V, it may be possible to replace V 89 /// with a constant or one of its operands. In such cases, this function does 90 /// the replacement and returns true. In all other cases, it returns false after 91 /// analyzing the expression and setting KnownOne and known to be one in the 92 /// expression. Known.Zero contains all the bits that are known to be zero in 93 /// the expression. These are provided to potentially allow the caller (which 94 /// might recursively be SimplifyDemandedBits itself) to simplify the 95 /// expression. 96 /// Known.One and Known.Zero always follow the invariant that: 97 /// Known.One & Known.Zero == 0. 98 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 99 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 100 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 101 /// be the same. 102 /// 103 /// This returns null if it did not change anything and it permits no 104 /// simplification. This returns V itself if it did some simplification of V's 105 /// operands based on the information about what bits are demanded. This returns 106 /// some other non-null value if it found out that V is equal to another value 107 /// in the context where the specified bits are demanded, but not for all users. 108 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 109 KnownBits &Known, 110 unsigned Depth, 111 Instruction *CxtI) { 112 assert(V != nullptr && "Null pointer of Value???"); 113 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 114 uint32_t BitWidth = DemandedMask.getBitWidth(); 115 Type *VTy = V->getType(); 116 assert( 117 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 118 Known.getBitWidth() == BitWidth && 119 "Value *V, DemandedMask and Known must have same BitWidth"); 120 121 if (isa<Constant>(V)) { 122 computeKnownBits(V, Known, Depth, CxtI); 123 return nullptr; 124 } 125 126 Known.resetAll(); 127 if (DemandedMask.isZero()) // Not demanding any bits from V. 128 return UndefValue::get(VTy); 129 130 if (Depth == MaxAnalysisRecursionDepth) 131 return nullptr; 132 133 if (isa<ScalableVectorType>(VTy)) 134 return nullptr; 135 136 Instruction *I = dyn_cast<Instruction>(V); 137 if (!I) { 138 computeKnownBits(V, Known, Depth, CxtI); 139 return nullptr; // Only analyze instructions. 140 } 141 142 // If there are multiple uses of this value and we aren't at the root, then 143 // we can't do any simplifications of the operands, because DemandedMask 144 // only reflects the bits demanded by *one* of the users. 145 if (Depth != 0 && !I->hasOneUse()) 146 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 147 148 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 149 150 // If this is the root being simplified, allow it to have multiple uses, 151 // just set the DemandedMask to all bits so that we can try to simplify the 152 // operands. This allows visitTruncInst (for example) to simplify the 153 // operand of a trunc without duplicating all the logic below. 154 if (Depth == 0 && !V->hasOneUse()) 155 DemandedMask.setAllBits(); 156 157 switch (I->getOpcode()) { 158 default: 159 computeKnownBits(I, Known, Depth, CxtI); 160 break; 161 case Instruction::And: { 162 // If either the LHS or the RHS are Zero, the result is zero. 163 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 164 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 165 Depth + 1)) 166 return I; 167 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 168 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 169 170 Known = LHSKnown & RHSKnown; 171 172 // If the client is only demanding bits that we know, return the known 173 // constant. 174 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 175 return Constant::getIntegerValue(VTy, Known.One); 176 177 // If all of the demanded bits are known 1 on one side, return the other. 178 // These bits cannot contribute to the result of the 'and'. 179 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 180 return I->getOperand(0); 181 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 182 return I->getOperand(1); 183 184 // If the RHS is a constant, see if we can simplify it. 185 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 186 return I; 187 188 break; 189 } 190 case Instruction::Or: { 191 // If either the LHS or the RHS are One, the result is One. 192 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 193 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 194 Depth + 1)) 195 return I; 196 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 197 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 198 199 Known = LHSKnown | RHSKnown; 200 201 // If the client is only demanding bits that we know, return the known 202 // constant. 203 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 204 return Constant::getIntegerValue(VTy, Known.One); 205 206 // If all of the demanded bits are known zero on one side, return the other. 207 // These bits cannot contribute to the result of the 'or'. 208 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 209 return I->getOperand(0); 210 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 211 return I->getOperand(1); 212 213 // If the RHS is a constant, see if we can simplify it. 214 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 215 return I; 216 217 break; 218 } 219 case Instruction::Xor: { 220 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 221 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 222 return I; 223 Value *LHS, *RHS; 224 if (DemandedMask == 1 && 225 match(I->getOperand(0), m_Intrinsic<Intrinsic::ctpop>(m_Value(LHS))) && 226 match(I->getOperand(1), m_Intrinsic<Intrinsic::ctpop>(m_Value(RHS)))) { 227 // (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1 228 IRBuilderBase::InsertPointGuard Guard(Builder); 229 Builder.SetInsertPoint(I); 230 auto *Xor = Builder.CreateXor(LHS, RHS); 231 return Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, Xor); 232 } 233 234 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 235 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 236 237 Known = LHSKnown ^ RHSKnown; 238 239 // If the client is only demanding bits that we know, return the known 240 // constant. 241 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 242 return Constant::getIntegerValue(VTy, Known.One); 243 244 // If all of the demanded bits are known zero on one side, return the other. 245 // These bits cannot contribute to the result of the 'xor'. 246 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 247 return I->getOperand(0); 248 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 249 return I->getOperand(1); 250 251 // If all of the demanded bits are known to be zero on one side or the 252 // other, turn this into an *inclusive* or. 253 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 254 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 255 Instruction *Or = 256 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 257 I->getName()); 258 return InsertNewInstWith(Or, *I); 259 } 260 261 // If all of the demanded bits on one side are known, and all of the set 262 // bits on that side are also known to be set on the other side, turn this 263 // into an AND, as we know the bits will be cleared. 264 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 265 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 266 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 267 Constant *AndC = Constant::getIntegerValue(VTy, 268 ~RHSKnown.One & DemandedMask); 269 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 270 return InsertNewInstWith(And, *I); 271 } 272 273 // If the RHS is a constant, see if we can change it. Don't alter a -1 274 // constant because that's a canonical 'not' op, and that is better for 275 // combining, SCEV, and codegen. 276 const APInt *C; 277 if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnes()) { 278 if ((*C | ~DemandedMask).isAllOnes()) { 279 // Force bits to 1 to create a 'not' op. 280 I->setOperand(1, ConstantInt::getAllOnesValue(VTy)); 281 return I; 282 } 283 // If we can't turn this into a 'not', try to shrink the constant. 284 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 285 return I; 286 } 287 288 // If our LHS is an 'and' and if it has one use, and if any of the bits we 289 // are flipping are known to be set, then the xor is just resetting those 290 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 291 // simplifying both of them. 292 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) { 293 ConstantInt *AndRHS, *XorRHS; 294 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 295 match(I->getOperand(1), m_ConstantInt(XorRHS)) && 296 match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) && 297 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 298 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 299 300 Constant *AndC = 301 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 302 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 303 InsertNewInstWith(NewAnd, *I); 304 305 Constant *XorC = 306 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 307 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 308 return InsertNewInstWith(NewXor, *I); 309 } 310 } 311 break; 312 } 313 case Instruction::Select: { 314 Value *LHS, *RHS; 315 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 316 if (SPF == SPF_UMAX) { 317 // UMax(A, C) == A if ... 318 // The lowest non-zero bit of DemandMask is higher than the highest 319 // non-zero bit of C. 320 const APInt *C; 321 unsigned CTZ = DemandedMask.countTrailingZeros(); 322 if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits()) 323 return LHS; 324 } else if (SPF == SPF_UMIN) { 325 // UMin(A, C) == A if ... 326 // The lowest non-zero bit of DemandMask is higher than the highest 327 // non-one bit of C. 328 // This comes from using DeMorgans on the above umax example. 329 const APInt *C; 330 unsigned CTZ = DemandedMask.countTrailingZeros(); 331 if (match(RHS, m_APInt(C)) && 332 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 333 return LHS; 334 } 335 336 // If this is a select as part of any other min/max pattern, don't simplify 337 // any further in case we break the structure. 338 if (SPF != SPF_UNKNOWN) 339 return nullptr; 340 341 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 342 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 343 return I; 344 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 345 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 346 347 // If the operands are constants, see if we can simplify them. 348 // This is similar to ShrinkDemandedConstant, but for a select we want to 349 // try to keep the selected constants the same as icmp value constants, if 350 // we can. This helps not break apart (or helps put back together) 351 // canonical patterns like min and max. 352 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, 353 const APInt &DemandedMask) { 354 const APInt *SelC; 355 if (!match(I->getOperand(OpNo), m_APInt(SelC))) 356 return false; 357 358 // Get the constant out of the ICmp, if there is one. 359 // Only try this when exactly 1 operand is a constant (if both operands 360 // are constant, the icmp should eventually simplify). Otherwise, we may 361 // invert the transform that reduces set bits and infinite-loop. 362 Value *X; 363 const APInt *CmpC; 364 ICmpInst::Predicate Pred; 365 if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) || 366 isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth()) 367 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 368 369 // If the constant is already the same as the ICmp, leave it as-is. 370 if (*CmpC == *SelC) 371 return false; 372 // If the constants are not already the same, but can be with the demand 373 // mask, use the constant value from the ICmp. 374 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { 375 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC)); 376 return true; 377 } 378 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 379 }; 380 if (CanonicalizeSelectConstant(I, 1, DemandedMask) || 381 CanonicalizeSelectConstant(I, 2, DemandedMask)) 382 return I; 383 384 // Only known if known in both the LHS and RHS. 385 Known = KnownBits::commonBits(LHSKnown, RHSKnown); 386 break; 387 } 388 case Instruction::Trunc: { 389 // If we do not demand the high bits of a right-shifted and truncated value, 390 // then we may be able to truncate it before the shift. 391 Value *X; 392 const APInt *C; 393 if (match(I->getOperand(0), m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) { 394 // The shift amount must be valid (not poison) in the narrow type, and 395 // it must not be greater than the high bits demanded of the result. 396 if (C->ult(I->getType()->getScalarSizeInBits()) && 397 C->ule(DemandedMask.countLeadingZeros())) { 398 // trunc (lshr X, C) --> lshr (trunc X), C 399 IRBuilderBase::InsertPointGuard Guard(Builder); 400 Builder.SetInsertPoint(I); 401 Value *Trunc = Builder.CreateTrunc(X, I->getType()); 402 return Builder.CreateLShr(Trunc, C->getZExtValue()); 403 } 404 } 405 } 406 LLVM_FALLTHROUGH; 407 case Instruction::ZExt: { 408 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 409 410 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 411 KnownBits InputKnown(SrcBitWidth); 412 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 413 return I; 414 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); 415 Known = InputKnown.zextOrTrunc(BitWidth); 416 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 417 break; 418 } 419 case Instruction::BitCast: 420 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 421 return nullptr; // vector->int or fp->int? 422 423 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 424 if (VectorType *SrcVTy = 425 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 426 if (cast<FixedVectorType>(DstVTy)->getNumElements() != 427 cast<FixedVectorType>(SrcVTy)->getNumElements()) 428 // Don't touch a bitcast between vectors of different element counts. 429 return nullptr; 430 } else 431 // Don't touch a scalar-to-vector bitcast. 432 return nullptr; 433 } else if (I->getOperand(0)->getType()->isVectorTy()) 434 // Don't touch a vector-to-scalar bitcast. 435 return nullptr; 436 437 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 438 return I; 439 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 440 break; 441 case Instruction::SExt: { 442 // Compute the bits in the result that are not present in the input. 443 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 444 445 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 446 447 // If any of the sign extended bits are demanded, we know that the sign 448 // bit is demanded. 449 if (DemandedMask.getActiveBits() > SrcBitWidth) 450 InputDemandedBits.setBit(SrcBitWidth-1); 451 452 KnownBits InputKnown(SrcBitWidth); 453 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 454 return I; 455 456 // If the input sign bit is known zero, or if the NewBits are not demanded 457 // convert this into a zero extension. 458 if (InputKnown.isNonNegative() || 459 DemandedMask.getActiveBits() <= SrcBitWidth) { 460 // Convert to ZExt cast. 461 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 462 return InsertNewInstWith(NewCast, *I); 463 } 464 465 // If the sign bit of the input is known set or clear, then we know the 466 // top bits of the result. 467 Known = InputKnown.sext(BitWidth); 468 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 469 break; 470 } 471 case Instruction::Add: 472 if ((DemandedMask & 1) == 0) { 473 // If we do not need the low bit, try to convert bool math to logic: 474 // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN 475 Value *X, *Y; 476 if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))), 477 m_OneUse(m_SExt(m_Value(Y))))) && 478 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 479 // Truth table for inputs and output signbits: 480 // X:0 | X:1 481 // ---------- 482 // Y:0 | 0 | 0 | 483 // Y:1 | -1 | 0 | 484 // ---------- 485 IRBuilderBase::InsertPointGuard Guard(Builder); 486 Builder.SetInsertPoint(I); 487 Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y); 488 return Builder.CreateSExt(AndNot, VTy); 489 } 490 491 // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN 492 // TODO: Relax the one-use checks because we are removing an instruction? 493 if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))), 494 m_OneUse(m_SExt(m_Value(Y))))) && 495 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 496 // Truth table for inputs and output signbits: 497 // X:0 | X:1 498 // ----------- 499 // Y:0 | -1 | -1 | 500 // Y:1 | -1 | 0 | 501 // ----------- 502 IRBuilderBase::InsertPointGuard Guard(Builder); 503 Builder.SetInsertPoint(I); 504 Value *Or = Builder.CreateOr(X, Y); 505 return Builder.CreateSExt(Or, VTy); 506 } 507 } 508 LLVM_FALLTHROUGH; 509 case Instruction::Sub: { 510 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 511 /// about the high bits of the operands. 512 unsigned NLZ = DemandedMask.countLeadingZeros(); 513 // Right fill the mask of bits for this ADD/SUB to demand the most 514 // significant bit and all those below it. 515 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 516 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 517 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 518 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 519 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 520 if (NLZ > 0) { 521 // Disable the nsw and nuw flags here: We can no longer guarantee that 522 // we won't wrap after simplification. Removing the nsw/nuw flags is 523 // legal here because the top bit is not demanded. 524 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 525 BinOP.setHasNoSignedWrap(false); 526 BinOP.setHasNoUnsignedWrap(false); 527 } 528 return I; 529 } 530 531 // If we are known to be adding/subtracting zeros to every bit below 532 // the highest demanded bit, we just return the other side. 533 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 534 return I->getOperand(0); 535 // We can't do this with the LHS for subtraction, unless we are only 536 // demanding the LSB. 537 if ((I->getOpcode() == Instruction::Add || DemandedFromOps.isOne()) && 538 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 539 return I->getOperand(1); 540 541 // Otherwise just compute the known bits of the result. 542 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 543 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 544 NSW, LHSKnown, RHSKnown); 545 break; 546 } 547 case Instruction::Shl: { 548 const APInt *SA; 549 if (match(I->getOperand(1), m_APInt(SA))) { 550 const APInt *ShrAmt; 551 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 552 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 553 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 554 DemandedMask, Known)) 555 return R; 556 557 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 558 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 559 560 // If the shift is NUW/NSW, then it does demand the high bits. 561 ShlOperator *IOp = cast<ShlOperator>(I); 562 if (IOp->hasNoSignedWrap()) 563 DemandedMaskIn.setHighBits(ShiftAmt+1); 564 else if (IOp->hasNoUnsignedWrap()) 565 DemandedMaskIn.setHighBits(ShiftAmt); 566 567 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 568 return I; 569 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 570 571 bool SignBitZero = Known.Zero.isSignBitSet(); 572 bool SignBitOne = Known.One.isSignBitSet(); 573 Known.Zero <<= ShiftAmt; 574 Known.One <<= ShiftAmt; 575 // low bits known zero. 576 if (ShiftAmt) 577 Known.Zero.setLowBits(ShiftAmt); 578 579 // If this shift has "nsw" keyword, then the result is either a poison 580 // value or has the same sign bit as the first operand. 581 if (IOp->hasNoSignedWrap()) { 582 if (SignBitZero) 583 Known.Zero.setSignBit(); 584 else if (SignBitOne) 585 Known.One.setSignBit(); 586 if (Known.hasConflict()) 587 return UndefValue::get(I->getType()); 588 } 589 } else { 590 // This is a variable shift, so we can't shift the demand mask by a known 591 // amount. But if we are not demanding high bits, then we are not 592 // demanding those bits from the pre-shifted operand either. 593 if (unsigned CTLZ = DemandedMask.countLeadingZeros()) { 594 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); 595 if (SimplifyDemandedBits(I, 0, DemandedFromOp, Known, Depth + 1)) { 596 // We can't guarantee that nsw/nuw hold after simplifying the operand. 597 I->dropPoisonGeneratingFlags(); 598 return I; 599 } 600 } 601 computeKnownBits(I, Known, Depth, CxtI); 602 } 603 break; 604 } 605 case Instruction::LShr: { 606 const APInt *SA; 607 if (match(I->getOperand(1), m_APInt(SA))) { 608 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 609 610 // Unsigned shift right. 611 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 612 613 // If the shift is exact, then it does demand the low bits (and knows that 614 // they are zero). 615 if (cast<LShrOperator>(I)->isExact()) 616 DemandedMaskIn.setLowBits(ShiftAmt); 617 618 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 619 return I; 620 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 621 Known.Zero.lshrInPlace(ShiftAmt); 622 Known.One.lshrInPlace(ShiftAmt); 623 if (ShiftAmt) 624 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 625 } else { 626 computeKnownBits(I, Known, Depth, CxtI); 627 } 628 break; 629 } 630 case Instruction::AShr: { 631 // If this is an arithmetic shift right and only the low-bit is set, we can 632 // always convert this into a logical shr, even if the shift amount is 633 // variable. The low bit of the shift cannot be an input sign bit unless 634 // the shift amount is >= the size of the datatype, which is undefined. 635 if (DemandedMask.isOne()) { 636 // Perform the logical shift right. 637 Instruction *NewVal = BinaryOperator::CreateLShr( 638 I->getOperand(0), I->getOperand(1), I->getName()); 639 return InsertNewInstWith(NewVal, *I); 640 } 641 642 // If the sign bit is the only bit demanded by this ashr, then there is no 643 // need to do it, the shift doesn't change the high bit. 644 if (DemandedMask.isSignMask()) 645 return I->getOperand(0); 646 647 const APInt *SA; 648 if (match(I->getOperand(1), m_APInt(SA))) { 649 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 650 651 // Signed shift right. 652 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 653 // If any of the high bits are demanded, we should set the sign bit as 654 // demanded. 655 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 656 DemandedMaskIn.setSignBit(); 657 658 // If the shift is exact, then it does demand the low bits (and knows that 659 // they are zero). 660 if (cast<AShrOperator>(I)->isExact()) 661 DemandedMaskIn.setLowBits(ShiftAmt); 662 663 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 664 return I; 665 666 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 667 668 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 669 // Compute the new bits that are at the top now plus sign bits. 670 APInt HighBits(APInt::getHighBitsSet( 671 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 672 Known.Zero.lshrInPlace(ShiftAmt); 673 Known.One.lshrInPlace(ShiftAmt); 674 675 // If the input sign bit is known to be zero, or if none of the top bits 676 // are demanded, turn this into an unsigned shift right. 677 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 678 if (Known.Zero[BitWidth-ShiftAmt-1] || 679 !DemandedMask.intersects(HighBits)) { 680 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 681 I->getOperand(1)); 682 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 683 return InsertNewInstWith(LShr, *I); 684 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 685 Known.One |= HighBits; 686 } 687 } else { 688 computeKnownBits(I, Known, Depth, CxtI); 689 } 690 break; 691 } 692 case Instruction::UDiv: { 693 // UDiv doesn't demand low bits that are zero in the divisor. 694 const APInt *SA; 695 if (match(I->getOperand(1), m_APInt(SA))) { 696 // If the shift is exact, then it does demand the low bits. 697 if (cast<UDivOperator>(I)->isExact()) 698 break; 699 700 // FIXME: Take the demanded mask of the result into account. 701 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 702 APInt DemandedMaskIn = 703 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 704 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) 705 return I; 706 707 // Propagate zero bits from the input. 708 Known.Zero.setHighBits(std::min( 709 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 710 } else { 711 computeKnownBits(I, Known, Depth, CxtI); 712 } 713 break; 714 } 715 case Instruction::SRem: { 716 ConstantInt *Rem; 717 if (match(I->getOperand(1), m_ConstantInt(Rem))) { 718 // X % -1 demands all the bits because we don't want to introduce 719 // INT_MIN % -1 (== undef) by accident. 720 if (Rem->isMinusOne()) 721 break; 722 APInt RA = Rem->getValue().abs(); 723 if (RA.isPowerOf2()) { 724 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 725 return I->getOperand(0); 726 727 APInt LowBits = RA - 1; 728 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 729 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 730 return I; 731 732 // The low bits of LHS are unchanged by the srem. 733 Known.Zero = LHSKnown.Zero & LowBits; 734 Known.One = LHSKnown.One & LowBits; 735 736 // If LHS is non-negative or has all low bits zero, then the upper bits 737 // are all zero. 738 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 739 Known.Zero |= ~LowBits; 740 741 // If LHS is negative and not all low bits are zero, then the upper bits 742 // are all one. 743 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 744 Known.One |= ~LowBits; 745 746 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 747 break; 748 } 749 } 750 751 // The sign bit is the LHS's sign bit, except when the result of the 752 // remainder is zero. 753 if (DemandedMask.isSignBitSet()) { 754 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 755 // If it's known zero, our sign bit is also zero. 756 if (LHSKnown.isNonNegative()) 757 Known.makeNonNegative(); 758 } 759 break; 760 } 761 case Instruction::URem: { 762 KnownBits Known2(BitWidth); 763 APInt AllOnes = APInt::getAllOnes(BitWidth); 764 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 765 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 766 return I; 767 768 unsigned Leaders = Known2.countMinLeadingZeros(); 769 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 770 break; 771 } 772 case Instruction::Call: { 773 bool KnownBitsComputed = false; 774 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 775 switch (II->getIntrinsicID()) { 776 case Intrinsic::abs: { 777 if (DemandedMask == 1) 778 return II->getArgOperand(0); 779 break; 780 } 781 case Intrinsic::ctpop: { 782 // Checking if the number of clear bits is odd (parity)? If the type has 783 // an even number of bits, that's the same as checking if the number of 784 // set bits is odd, so we can eliminate the 'not' op. 785 Value *X; 786 if (DemandedMask == 1 && VTy->getScalarSizeInBits() % 2 == 0 && 787 match(II->getArgOperand(0), m_Not(m_Value(X)))) { 788 Function *Ctpop = Intrinsic::getDeclaration( 789 II->getModule(), Intrinsic::ctpop, II->getType()); 790 return InsertNewInstWith(CallInst::Create(Ctpop, {X}), *I); 791 } 792 break; 793 } 794 case Intrinsic::bswap: { 795 // If the only bits demanded come from one byte of the bswap result, 796 // just shift the input byte into position to eliminate the bswap. 797 unsigned NLZ = DemandedMask.countLeadingZeros(); 798 unsigned NTZ = DemandedMask.countTrailingZeros(); 799 800 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 801 // we need all the bits down to bit 8. Likewise, round NLZ. If we 802 // have 14 leading zeros, round to 8. 803 NLZ &= ~7; 804 NTZ &= ~7; 805 // If we need exactly one byte, we can do this transformation. 806 if (BitWidth-NLZ-NTZ == 8) { 807 unsigned ResultBit = NTZ; 808 unsigned InputBit = BitWidth-NTZ-8; 809 810 // Replace this with either a left or right shift to get the byte into 811 // the right place. 812 Instruction *NewVal; 813 if (InputBit > ResultBit) 814 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 815 ConstantInt::get(I->getType(), InputBit-ResultBit)); 816 else 817 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 818 ConstantInt::get(I->getType(), ResultBit-InputBit)); 819 NewVal->takeName(I); 820 return InsertNewInstWith(NewVal, *I); 821 } 822 break; 823 } 824 case Intrinsic::fshr: 825 case Intrinsic::fshl: { 826 const APInt *SA; 827 if (!match(I->getOperand(2), m_APInt(SA))) 828 break; 829 830 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 831 // defined, so no need to special-case zero shifts here. 832 uint64_t ShiftAmt = SA->urem(BitWidth); 833 if (II->getIntrinsicID() == Intrinsic::fshr) 834 ShiftAmt = BitWidth - ShiftAmt; 835 836 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 837 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 838 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || 839 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 840 return I; 841 842 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 843 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 844 Known.One = LHSKnown.One.shl(ShiftAmt) | 845 RHSKnown.One.lshr(BitWidth - ShiftAmt); 846 KnownBitsComputed = true; 847 break; 848 } 849 case Intrinsic::umax: { 850 // UMax(A, C) == A if ... 851 // The lowest non-zero bit of DemandMask is higher than the highest 852 // non-zero bit of C. 853 const APInt *C; 854 unsigned CTZ = DemandedMask.countTrailingZeros(); 855 if (match(II->getArgOperand(1), m_APInt(C)) && 856 CTZ >= C->getActiveBits()) 857 return II->getArgOperand(0); 858 break; 859 } 860 case Intrinsic::umin: { 861 // UMin(A, C) == A if ... 862 // The lowest non-zero bit of DemandMask is higher than the highest 863 // non-one bit of C. 864 // This comes from using DeMorgans on the above umax example. 865 const APInt *C; 866 unsigned CTZ = DemandedMask.countTrailingZeros(); 867 if (match(II->getArgOperand(1), m_APInt(C)) && 868 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 869 return II->getArgOperand(0); 870 break; 871 } 872 default: { 873 // Handle target specific intrinsics 874 Optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic( 875 *II, DemandedMask, Known, KnownBitsComputed); 876 if (V.hasValue()) 877 return V.getValue(); 878 break; 879 } 880 } 881 } 882 883 if (!KnownBitsComputed) 884 computeKnownBits(V, Known, Depth, CxtI); 885 break; 886 } 887 } 888 889 // If the client is only demanding bits that we know, return the known 890 // constant. 891 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 892 return Constant::getIntegerValue(VTy, Known.One); 893 return nullptr; 894 } 895 896 /// Helper routine of SimplifyDemandedUseBits. It computes Known 897 /// bits. It also tries to handle simplifications that can be done based on 898 /// DemandedMask, but without modifying the Instruction. 899 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits( 900 Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth, 901 Instruction *CxtI) { 902 unsigned BitWidth = DemandedMask.getBitWidth(); 903 Type *ITy = I->getType(); 904 905 KnownBits LHSKnown(BitWidth); 906 KnownBits RHSKnown(BitWidth); 907 908 // Despite the fact that we can't simplify this instruction in all User's 909 // context, we can at least compute the known bits, and we can 910 // do simplifications that apply to *just* the one user if we know that 911 // this instruction has a simpler value in that context. 912 switch (I->getOpcode()) { 913 case Instruction::And: { 914 // If either the LHS or the RHS are Zero, the result is zero. 915 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 916 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 917 CxtI); 918 919 Known = LHSKnown & RHSKnown; 920 921 // If the client is only demanding bits that we know, return the known 922 // constant. 923 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 924 return Constant::getIntegerValue(ITy, Known.One); 925 926 // If all of the demanded bits are known 1 on one side, return the other. 927 // These bits cannot contribute to the result of the 'and' in this 928 // context. 929 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 930 return I->getOperand(0); 931 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 932 return I->getOperand(1); 933 934 break; 935 } 936 case Instruction::Or: { 937 // We can simplify (X|Y) -> X or Y in the user's context if we know that 938 // only bits from X or Y are demanded. 939 940 // If either the LHS or the RHS are One, the result is One. 941 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 942 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 943 CxtI); 944 945 Known = LHSKnown | RHSKnown; 946 947 // If the client is only demanding bits that we know, return the known 948 // constant. 949 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 950 return Constant::getIntegerValue(ITy, Known.One); 951 952 // If all of the demanded bits are known zero on one side, return the 953 // other. These bits cannot contribute to the result of the 'or' in this 954 // context. 955 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 956 return I->getOperand(0); 957 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 958 return I->getOperand(1); 959 960 break; 961 } 962 case Instruction::Xor: { 963 // We can simplify (X^Y) -> X or Y in the user's context if we know that 964 // only bits from X or Y are demanded. 965 966 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 967 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 968 CxtI); 969 970 Known = LHSKnown ^ RHSKnown; 971 972 // If the client is only demanding bits that we know, return the known 973 // constant. 974 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 975 return Constant::getIntegerValue(ITy, Known.One); 976 977 // If all of the demanded bits are known zero on one side, return the 978 // other. 979 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 980 return I->getOperand(0); 981 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 982 return I->getOperand(1); 983 984 break; 985 } 986 case Instruction::AShr: { 987 // Compute the Known bits to simplify things downstream. 988 computeKnownBits(I, Known, Depth, CxtI); 989 990 // If this user is only demanding bits that we know, return the known 991 // constant. 992 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 993 return Constant::getIntegerValue(ITy, Known.One); 994 995 // If the right shift operand 0 is a result of a left shift by the same 996 // amount, this is probably a zero/sign extension, which may be unnecessary, 997 // if we do not demand any of the new sign bits. So, return the original 998 // operand instead. 999 const APInt *ShiftRC; 1000 const APInt *ShiftLC; 1001 Value *X; 1002 unsigned BitWidth = DemandedMask.getBitWidth(); 1003 if (match(I, 1004 m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) && 1005 ShiftLC == ShiftRC && ShiftLC->ult(BitWidth) && 1006 DemandedMask.isSubsetOf(APInt::getLowBitsSet( 1007 BitWidth, BitWidth - ShiftRC->getZExtValue()))) { 1008 return X; 1009 } 1010 1011 break; 1012 } 1013 default: 1014 // Compute the Known bits to simplify things downstream. 1015 computeKnownBits(I, Known, Depth, CxtI); 1016 1017 // If this user is only demanding bits that we know, return the known 1018 // constant. 1019 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 1020 return Constant::getIntegerValue(ITy, Known.One); 1021 1022 break; 1023 } 1024 1025 return nullptr; 1026 } 1027 1028 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 1029 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 1030 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 1031 /// of "C2-C1". 1032 /// 1033 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 1034 /// ..., bn}, without considering the specific value X is holding. 1035 /// This transformation is legal iff one of following conditions is hold: 1036 /// 1) All the bit in S are 0, in this case E1 == E2. 1037 /// 2) We don't care those bits in S, per the input DemandedMask. 1038 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 1039 /// rest bits. 1040 /// 1041 /// Currently we only test condition 2). 1042 /// 1043 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 1044 /// not successful. 1045 Value *InstCombinerImpl::simplifyShrShlDemandedBits( 1046 Instruction *Shr, const APInt &ShrOp1, Instruction *Shl, 1047 const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) { 1048 if (!ShlOp1 || !ShrOp1) 1049 return nullptr; // No-op. 1050 1051 Value *VarX = Shr->getOperand(0); 1052 Type *Ty = VarX->getType(); 1053 unsigned BitWidth = Ty->getScalarSizeInBits(); 1054 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 1055 return nullptr; // Undef. 1056 1057 unsigned ShlAmt = ShlOp1.getZExtValue(); 1058 unsigned ShrAmt = ShrOp1.getZExtValue(); 1059 1060 Known.One.clearAllBits(); 1061 Known.Zero.setLowBits(ShlAmt - 1); 1062 Known.Zero &= DemandedMask; 1063 1064 APInt BitMask1(APInt::getAllOnes(BitWidth)); 1065 APInt BitMask2(APInt::getAllOnes(BitWidth)); 1066 1067 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 1068 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 1069 (BitMask1.ashr(ShrAmt) << ShlAmt); 1070 1071 if (ShrAmt <= ShlAmt) { 1072 BitMask2 <<= (ShlAmt - ShrAmt); 1073 } else { 1074 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 1075 BitMask2.ashr(ShrAmt - ShlAmt); 1076 } 1077 1078 // Check if condition-2 (see the comment to this function) is satified. 1079 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 1080 if (ShrAmt == ShlAmt) 1081 return VarX; 1082 1083 if (!Shr->hasOneUse()) 1084 return nullptr; 1085 1086 BinaryOperator *New; 1087 if (ShrAmt < ShlAmt) { 1088 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 1089 New = BinaryOperator::CreateShl(VarX, Amt); 1090 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 1091 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 1092 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 1093 } else { 1094 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 1095 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 1096 BinaryOperator::CreateAShr(VarX, Amt); 1097 if (cast<BinaryOperator>(Shr)->isExact()) 1098 New->setIsExact(true); 1099 } 1100 1101 return InsertNewInstWith(New, *Shl); 1102 } 1103 1104 return nullptr; 1105 } 1106 1107 /// The specified value produces a vector with any number of elements. 1108 /// This method analyzes which elements of the operand are undef or poison and 1109 /// returns that information in UndefElts. 1110 /// 1111 /// DemandedElts contains the set of elements that are actually used by the 1112 /// caller, and by default (AllowMultipleUsers equals false) the value is 1113 /// simplified only if it has a single caller. If AllowMultipleUsers is set 1114 /// to true, DemandedElts refers to the union of sets of elements that are 1115 /// used by all callers. 1116 /// 1117 /// If the information about demanded elements can be used to simplify the 1118 /// operation, the operation is simplified, then the resultant value is 1119 /// returned. This returns null if no change was made. 1120 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V, 1121 APInt DemandedElts, 1122 APInt &UndefElts, 1123 unsigned Depth, 1124 bool AllowMultipleUsers) { 1125 // Cannot analyze scalable type. The number of vector elements is not a 1126 // compile-time constant. 1127 if (isa<ScalableVectorType>(V->getType())) 1128 return nullptr; 1129 1130 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 1131 APInt EltMask(APInt::getAllOnes(VWidth)); 1132 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1133 1134 if (match(V, m_Undef())) { 1135 // If the entire vector is undef or poison, just return this info. 1136 UndefElts = EltMask; 1137 return nullptr; 1138 } 1139 1140 if (DemandedElts.isZero()) { // If nothing is demanded, provide poison. 1141 UndefElts = EltMask; 1142 return PoisonValue::get(V->getType()); 1143 } 1144 1145 UndefElts = 0; 1146 1147 if (auto *C = dyn_cast<Constant>(V)) { 1148 // Check if this is identity. If so, return 0 since we are not simplifying 1149 // anything. 1150 if (DemandedElts.isAllOnes()) 1151 return nullptr; 1152 1153 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1154 Constant *Poison = PoisonValue::get(EltTy); 1155 SmallVector<Constant*, 16> Elts; 1156 for (unsigned i = 0; i != VWidth; ++i) { 1157 if (!DemandedElts[i]) { // If not demanded, set to poison. 1158 Elts.push_back(Poison); 1159 UndefElts.setBit(i); 1160 continue; 1161 } 1162 1163 Constant *Elt = C->getAggregateElement(i); 1164 if (!Elt) return nullptr; 1165 1166 Elts.push_back(Elt); 1167 if (isa<UndefValue>(Elt)) // Already undef or poison. 1168 UndefElts.setBit(i); 1169 } 1170 1171 // If we changed the constant, return it. 1172 Constant *NewCV = ConstantVector::get(Elts); 1173 return NewCV != C ? NewCV : nullptr; 1174 } 1175 1176 // Limit search depth. 1177 if (Depth == 10) 1178 return nullptr; 1179 1180 if (!AllowMultipleUsers) { 1181 // If multiple users are using the root value, proceed with 1182 // simplification conservatively assuming that all elements 1183 // are needed. 1184 if (!V->hasOneUse()) { 1185 // Quit if we find multiple users of a non-root value though. 1186 // They'll be handled when it's their turn to be visited by 1187 // the main instcombine process. 1188 if (Depth != 0) 1189 // TODO: Just compute the UndefElts information recursively. 1190 return nullptr; 1191 1192 // Conservatively assume that all elements are needed. 1193 DemandedElts = EltMask; 1194 } 1195 } 1196 1197 Instruction *I = dyn_cast<Instruction>(V); 1198 if (!I) return nullptr; // Only analyze instructions. 1199 1200 bool MadeChange = false; 1201 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1202 APInt Demanded, APInt &Undef) { 1203 auto *II = dyn_cast<IntrinsicInst>(Inst); 1204 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1205 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1206 replaceOperand(*Inst, OpNum, V); 1207 MadeChange = true; 1208 } 1209 }; 1210 1211 APInt UndefElts2(VWidth, 0); 1212 APInt UndefElts3(VWidth, 0); 1213 switch (I->getOpcode()) { 1214 default: break; 1215 1216 case Instruction::GetElementPtr: { 1217 // The LangRef requires that struct geps have all constant indices. As 1218 // such, we can't convert any operand to partial undef. 1219 auto mayIndexStructType = [](GetElementPtrInst &GEP) { 1220 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); 1221 I != E; I++) 1222 if (I.isStruct()) 1223 return true;; 1224 return false; 1225 }; 1226 if (mayIndexStructType(cast<GetElementPtrInst>(*I))) 1227 break; 1228 1229 // Conservatively track the demanded elements back through any vector 1230 // operands we may have. We know there must be at least one, or we 1231 // wouldn't have a vector result to get here. Note that we intentionally 1232 // merge the undef bits here since gepping with either an undef base or 1233 // index results in undef. 1234 for (unsigned i = 0; i < I->getNumOperands(); i++) { 1235 if (match(I->getOperand(i), m_Undef())) { 1236 // If the entire vector is undefined, just return this info. 1237 UndefElts = EltMask; 1238 return nullptr; 1239 } 1240 if (I->getOperand(i)->getType()->isVectorTy()) { 1241 APInt UndefEltsOp(VWidth, 0); 1242 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp); 1243 UndefElts |= UndefEltsOp; 1244 } 1245 } 1246 1247 break; 1248 } 1249 case Instruction::InsertElement: { 1250 // If this is a variable index, we don't know which element it overwrites. 1251 // demand exactly the same input as we produce. 1252 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1253 if (!Idx) { 1254 // Note that we can't propagate undef elt info, because we don't know 1255 // which elt is getting updated. 1256 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); 1257 break; 1258 } 1259 1260 // The element inserted overwrites whatever was there, so the input demanded 1261 // set is simpler than the output set. 1262 unsigned IdxNo = Idx->getZExtValue(); 1263 APInt PreInsertDemandedElts = DemandedElts; 1264 if (IdxNo < VWidth) 1265 PreInsertDemandedElts.clearBit(IdxNo); 1266 1267 // If we only demand the element that is being inserted and that element 1268 // was extracted from the same index in another vector with the same type, 1269 // replace this insert with that other vector. 1270 // Note: This is attempted before the call to simplifyAndSetOp because that 1271 // may change UndefElts to a value that does not match with Vec. 1272 Value *Vec; 1273 if (PreInsertDemandedElts == 0 && 1274 match(I->getOperand(1), 1275 m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) && 1276 Vec->getType() == I->getType()) { 1277 return Vec; 1278 } 1279 1280 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); 1281 1282 // If this is inserting an element that isn't demanded, remove this 1283 // insertelement. 1284 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1285 Worklist.push(I); 1286 return I->getOperand(0); 1287 } 1288 1289 // The inserted element is defined. 1290 UndefElts.clearBit(IdxNo); 1291 break; 1292 } 1293 case Instruction::ShuffleVector: { 1294 auto *Shuffle = cast<ShuffleVectorInst>(I); 1295 assert(Shuffle->getOperand(0)->getType() == 1296 Shuffle->getOperand(1)->getType() && 1297 "Expected shuffle operands to have same type"); 1298 unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType()) 1299 ->getNumElements(); 1300 // Handle trivial case of a splat. Only check the first element of LHS 1301 // operand. 1302 if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) && 1303 DemandedElts.isAllOnes()) { 1304 if (!match(I->getOperand(1), m_Undef())) { 1305 I->setOperand(1, PoisonValue::get(I->getOperand(1)->getType())); 1306 MadeChange = true; 1307 } 1308 APInt LeftDemanded(OpWidth, 1); 1309 APInt LHSUndefElts(OpWidth, 0); 1310 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1311 if (LHSUndefElts[0]) 1312 UndefElts = EltMask; 1313 else 1314 UndefElts.clearAllBits(); 1315 break; 1316 } 1317 1318 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); 1319 for (unsigned i = 0; i < VWidth; i++) { 1320 if (DemandedElts[i]) { 1321 unsigned MaskVal = Shuffle->getMaskValue(i); 1322 if (MaskVal != -1u) { 1323 assert(MaskVal < OpWidth * 2 && 1324 "shufflevector mask index out of range!"); 1325 if (MaskVal < OpWidth) 1326 LeftDemanded.setBit(MaskVal); 1327 else 1328 RightDemanded.setBit(MaskVal - OpWidth); 1329 } 1330 } 1331 } 1332 1333 APInt LHSUndefElts(OpWidth, 0); 1334 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1335 1336 APInt RHSUndefElts(OpWidth, 0); 1337 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); 1338 1339 // If this shuffle does not change the vector length and the elements 1340 // demanded by this shuffle are an identity mask, then this shuffle is 1341 // unnecessary. 1342 // 1343 // We are assuming canonical form for the mask, so the source vector is 1344 // operand 0 and operand 1 is not used. 1345 // 1346 // Note that if an element is demanded and this shuffle mask is undefined 1347 // for that element, then the shuffle is not considered an identity 1348 // operation. The shuffle prevents poison from the operand vector from 1349 // leaking to the result by replacing poison with an undefined value. 1350 if (VWidth == OpWidth) { 1351 bool IsIdentityShuffle = true; 1352 for (unsigned i = 0; i < VWidth; i++) { 1353 unsigned MaskVal = Shuffle->getMaskValue(i); 1354 if (DemandedElts[i] && i != MaskVal) { 1355 IsIdentityShuffle = false; 1356 break; 1357 } 1358 } 1359 if (IsIdentityShuffle) 1360 return Shuffle->getOperand(0); 1361 } 1362 1363 bool NewUndefElts = false; 1364 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1365 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1366 bool LHSUniform = true; 1367 bool RHSUniform = true; 1368 for (unsigned i = 0; i < VWidth; i++) { 1369 unsigned MaskVal = Shuffle->getMaskValue(i); 1370 if (MaskVal == -1u) { 1371 UndefElts.setBit(i); 1372 } else if (!DemandedElts[i]) { 1373 NewUndefElts = true; 1374 UndefElts.setBit(i); 1375 } else if (MaskVal < OpWidth) { 1376 if (LHSUndefElts[MaskVal]) { 1377 NewUndefElts = true; 1378 UndefElts.setBit(i); 1379 } else { 1380 LHSIdx = LHSIdx == -1u ? i : OpWidth; 1381 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; 1382 LHSUniform = LHSUniform && (MaskVal == i); 1383 } 1384 } else { 1385 if (RHSUndefElts[MaskVal - OpWidth]) { 1386 NewUndefElts = true; 1387 UndefElts.setBit(i); 1388 } else { 1389 RHSIdx = RHSIdx == -1u ? i : OpWidth; 1390 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; 1391 RHSUniform = RHSUniform && (MaskVal - OpWidth == i); 1392 } 1393 } 1394 } 1395 1396 // Try to transform shuffle with constant vector and single element from 1397 // this constant vector to single insertelement instruction. 1398 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1399 // insertelement V, C[ci], ci-n 1400 if (OpWidth == 1401 cast<FixedVectorType>(Shuffle->getType())->getNumElements()) { 1402 Value *Op = nullptr; 1403 Constant *Value = nullptr; 1404 unsigned Idx = -1u; 1405 1406 // Find constant vector with the single element in shuffle (LHS or RHS). 1407 if (LHSIdx < OpWidth && RHSUniform) { 1408 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1409 Op = Shuffle->getOperand(1); 1410 Value = CV->getOperand(LHSValIdx); 1411 Idx = LHSIdx; 1412 } 1413 } 1414 if (RHSIdx < OpWidth && LHSUniform) { 1415 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1416 Op = Shuffle->getOperand(0); 1417 Value = CV->getOperand(RHSValIdx); 1418 Idx = RHSIdx; 1419 } 1420 } 1421 // Found constant vector with single element - convert to insertelement. 1422 if (Op && Value) { 1423 Instruction *New = InsertElementInst::Create( 1424 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1425 Shuffle->getName()); 1426 InsertNewInstWith(New, *Shuffle); 1427 return New; 1428 } 1429 } 1430 if (NewUndefElts) { 1431 // Add additional discovered undefs. 1432 SmallVector<int, 16> Elts; 1433 for (unsigned i = 0; i < VWidth; ++i) { 1434 if (UndefElts[i]) 1435 Elts.push_back(UndefMaskElem); 1436 else 1437 Elts.push_back(Shuffle->getMaskValue(i)); 1438 } 1439 Shuffle->setShuffleMask(Elts); 1440 MadeChange = true; 1441 } 1442 break; 1443 } 1444 case Instruction::Select: { 1445 // If this is a vector select, try to transform the select condition based 1446 // on the current demanded elements. 1447 SelectInst *Sel = cast<SelectInst>(I); 1448 if (Sel->getCondition()->getType()->isVectorTy()) { 1449 // TODO: We are not doing anything with UndefElts based on this call. 1450 // It is overwritten below based on the other select operands. If an 1451 // element of the select condition is known undef, then we are free to 1452 // choose the output value from either arm of the select. If we know that 1453 // one of those values is undef, then the output can be undef. 1454 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1455 } 1456 1457 // Next, see if we can transform the arms of the select. 1458 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1459 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1460 for (unsigned i = 0; i < VWidth; i++) { 1461 // isNullValue() always returns false when called on a ConstantExpr. 1462 // Skip constant expressions to avoid propagating incorrect information. 1463 Constant *CElt = CV->getAggregateElement(i); 1464 if (isa<ConstantExpr>(CElt)) 1465 continue; 1466 // TODO: If a select condition element is undef, we can demand from 1467 // either side. If one side is known undef, choosing that side would 1468 // propagate undef. 1469 if (CElt->isNullValue()) 1470 DemandedLHS.clearBit(i); 1471 else 1472 DemandedRHS.clearBit(i); 1473 } 1474 } 1475 1476 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); 1477 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); 1478 1479 // Output elements are undefined if the element from each arm is undefined. 1480 // TODO: This can be improved. See comment in select condition handling. 1481 UndefElts = UndefElts2 & UndefElts3; 1482 break; 1483 } 1484 case Instruction::BitCast: { 1485 // Vector->vector casts only. 1486 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1487 if (!VTy) break; 1488 unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements(); 1489 APInt InputDemandedElts(InVWidth, 0); 1490 UndefElts2 = APInt(InVWidth, 0); 1491 unsigned Ratio; 1492 1493 if (VWidth == InVWidth) { 1494 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1495 // elements as are demanded of us. 1496 Ratio = 1; 1497 InputDemandedElts = DemandedElts; 1498 } else if ((VWidth % InVWidth) == 0) { 1499 // If the number of elements in the output is a multiple of the number of 1500 // elements in the input then an input element is live if any of the 1501 // corresponding output elements are live. 1502 Ratio = VWidth / InVWidth; 1503 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1504 if (DemandedElts[OutIdx]) 1505 InputDemandedElts.setBit(OutIdx / Ratio); 1506 } else if ((InVWidth % VWidth) == 0) { 1507 // If the number of elements in the input is a multiple of the number of 1508 // elements in the output then an input element is live if the 1509 // corresponding output element is live. 1510 Ratio = InVWidth / VWidth; 1511 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1512 if (DemandedElts[InIdx / Ratio]) 1513 InputDemandedElts.setBit(InIdx); 1514 } else { 1515 // Unsupported so far. 1516 break; 1517 } 1518 1519 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); 1520 1521 if (VWidth == InVWidth) { 1522 UndefElts = UndefElts2; 1523 } else if ((VWidth % InVWidth) == 0) { 1524 // If the number of elements in the output is a multiple of the number of 1525 // elements in the input then an output element is undef if the 1526 // corresponding input element is undef. 1527 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1528 if (UndefElts2[OutIdx / Ratio]) 1529 UndefElts.setBit(OutIdx); 1530 } else if ((InVWidth % VWidth) == 0) { 1531 // If the number of elements in the input is a multiple of the number of 1532 // elements in the output then an output element is undef if all of the 1533 // corresponding input elements are undef. 1534 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1535 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1536 if (SubUndef.countPopulation() == Ratio) 1537 UndefElts.setBit(OutIdx); 1538 } 1539 } else { 1540 llvm_unreachable("Unimp"); 1541 } 1542 break; 1543 } 1544 case Instruction::FPTrunc: 1545 case Instruction::FPExt: 1546 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1547 break; 1548 1549 case Instruction::Call: { 1550 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1551 if (!II) break; 1552 switch (II->getIntrinsicID()) { 1553 case Intrinsic::masked_gather: // fallthrough 1554 case Intrinsic::masked_load: { 1555 // Subtlety: If we load from a pointer, the pointer must be valid 1556 // regardless of whether the element is demanded. Doing otherwise risks 1557 // segfaults which didn't exist in the original program. 1558 APInt DemandedPtrs(APInt::getAllOnes(VWidth)), 1559 DemandedPassThrough(DemandedElts); 1560 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) 1561 for (unsigned i = 0; i < VWidth; i++) { 1562 Constant *CElt = CV->getAggregateElement(i); 1563 if (CElt->isNullValue()) 1564 DemandedPtrs.clearBit(i); 1565 else if (CElt->isAllOnesValue()) 1566 DemandedPassThrough.clearBit(i); 1567 } 1568 if (II->getIntrinsicID() == Intrinsic::masked_gather) 1569 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2); 1570 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3); 1571 1572 // Output elements are undefined if the element from both sources are. 1573 // TODO: can strengthen via mask as well. 1574 UndefElts = UndefElts2 & UndefElts3; 1575 break; 1576 } 1577 default: { 1578 // Handle target specific intrinsics 1579 Optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic( 1580 *II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 1581 simplifyAndSetOp); 1582 if (V.hasValue()) 1583 return V.getValue(); 1584 break; 1585 } 1586 } // switch on IntrinsicID 1587 break; 1588 } // case Call 1589 } // switch on Opcode 1590 1591 // TODO: We bail completely on integer div/rem and shifts because they have 1592 // UB/poison potential, but that should be refined. 1593 BinaryOperator *BO; 1594 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1595 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1596 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); 1597 1598 // Any change to an instruction with potential poison must clear those flags 1599 // because we can not guarantee those constraints now. Other analysis may 1600 // determine that it is safe to re-apply the flags. 1601 if (MadeChange) 1602 BO->dropPoisonGeneratingFlags(); 1603 1604 // Output elements are undefined if both are undefined. Consider things 1605 // like undef & 0. The result is known zero, not undef. 1606 UndefElts &= UndefElts2; 1607 } 1608 1609 // If we've proven all of the lanes undef, return an undef value. 1610 // TODO: Intersect w/demanded lanes 1611 if (UndefElts.isAllOnes()) 1612 return UndefValue::get(I->getType());; 1613 1614 return MadeChange ? I : nullptr; 1615 } 1616