xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains logic for simplifying instructions based on information
10 // about how they are used.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/TargetTransformInfo.h"
16 #include "llvm/Analysis/ValueTracking.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/KnownBits.h"
20 #include "llvm/Transforms/InstCombine/InstCombiner.h"
21 
22 using namespace llvm;
23 using namespace llvm::PatternMatch;
24 
25 #define DEBUG_TYPE "instcombine"
26 
27 /// Check to see if the specified operand of the specified instruction is a
28 /// constant integer. If so, check to see if there are any bits set in the
29 /// constant that are not demanded. If so, shrink the constant and return true.
30 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
31                                    const APInt &Demanded) {
32   assert(I && "No instruction?");
33   assert(OpNo < I->getNumOperands() && "Operand index too large");
34 
35   // The operand must be a constant integer or splat integer.
36   Value *Op = I->getOperand(OpNo);
37   const APInt *C;
38   if (!match(Op, m_APInt(C)))
39     return false;
40 
41   // If there are no bits set that aren't demanded, nothing to do.
42   if (C->isSubsetOf(Demanded))
43     return false;
44 
45   // This instruction is producing bits that are not demanded. Shrink the RHS.
46   I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
47 
48   return true;
49 }
50 
51 
52 
53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
54 /// the instruction has any properties that allow us to simplify its operands.
55 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) {
56   unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
57   KnownBits Known(BitWidth);
58   APInt DemandedMask(APInt::getAllOnes(BitWidth));
59 
60   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
61                                      0, &Inst);
62   if (!V) return false;
63   if (V == &Inst) return true;
64   replaceInstUsesWith(Inst, V);
65   return true;
66 }
67 
68 /// This form of SimplifyDemandedBits simplifies the specified instruction
69 /// operand if possible, updating it in place. It returns true if it made any
70 /// change and false otherwise.
71 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
72                                             const APInt &DemandedMask,
73                                             KnownBits &Known, unsigned Depth) {
74   Use &U = I->getOperandUse(OpNo);
75   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
76                                           Depth, I);
77   if (!NewVal) return false;
78   if (Instruction* OpInst = dyn_cast<Instruction>(U))
79     salvageDebugInfo(*OpInst);
80 
81   replaceUse(U, NewVal);
82   return true;
83 }
84 
85 /// This function attempts to replace V with a simpler value based on the
86 /// demanded bits. When this function is called, it is known that only the bits
87 /// set in DemandedMask of the result of V are ever used downstream.
88 /// Consequently, depending on the mask and V, it may be possible to replace V
89 /// with a constant or one of its operands. In such cases, this function does
90 /// the replacement and returns true. In all other cases, it returns false after
91 /// analyzing the expression and setting KnownOne and known to be one in the
92 /// expression. Known.Zero contains all the bits that are known to be zero in
93 /// the expression. These are provided to potentially allow the caller (which
94 /// might recursively be SimplifyDemandedBits itself) to simplify the
95 /// expression.
96 /// Known.One and Known.Zero always follow the invariant that:
97 ///   Known.One & Known.Zero == 0.
98 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
99 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note
100 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
101 /// be the same.
102 ///
103 /// This returns null if it did not change anything and it permits no
104 /// simplification.  This returns V itself if it did some simplification of V's
105 /// operands based on the information about what bits are demanded. This returns
106 /// some other non-null value if it found out that V is equal to another value
107 /// in the context where the specified bits are demanded, but not for all users.
108 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
109                                                  KnownBits &Known,
110                                                  unsigned Depth,
111                                                  Instruction *CxtI) {
112   assert(V != nullptr && "Null pointer of Value???");
113   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
114   uint32_t BitWidth = DemandedMask.getBitWidth();
115   Type *VTy = V->getType();
116   assert(
117       (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
118       Known.getBitWidth() == BitWidth &&
119       "Value *V, DemandedMask and Known must have same BitWidth");
120 
121   if (isa<Constant>(V)) {
122     computeKnownBits(V, Known, Depth, CxtI);
123     return nullptr;
124   }
125 
126   Known.resetAll();
127   if (DemandedMask.isZero()) // Not demanding any bits from V.
128     return UndefValue::get(VTy);
129 
130   if (Depth == MaxAnalysisRecursionDepth)
131     return nullptr;
132 
133   if (isa<ScalableVectorType>(VTy))
134     return nullptr;
135 
136   Instruction *I = dyn_cast<Instruction>(V);
137   if (!I) {
138     computeKnownBits(V, Known, Depth, CxtI);
139     return nullptr;        // Only analyze instructions.
140   }
141 
142   // If there are multiple uses of this value and we aren't at the root, then
143   // we can't do any simplifications of the operands, because DemandedMask
144   // only reflects the bits demanded by *one* of the users.
145   if (Depth != 0 && !I->hasOneUse())
146     return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
147 
148   KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
149 
150   // If this is the root being simplified, allow it to have multiple uses,
151   // just set the DemandedMask to all bits so that we can try to simplify the
152   // operands.  This allows visitTruncInst (for example) to simplify the
153   // operand of a trunc without duplicating all the logic below.
154   if (Depth == 0 && !V->hasOneUse())
155     DemandedMask.setAllBits();
156 
157   switch (I->getOpcode()) {
158   default:
159     computeKnownBits(I, Known, Depth, CxtI);
160     break;
161   case Instruction::And: {
162     // If either the LHS or the RHS are Zero, the result is zero.
163     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
164         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
165                              Depth + 1))
166       return I;
167     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
168     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
169 
170     Known = LHSKnown & RHSKnown;
171 
172     // If the client is only demanding bits that we know, return the known
173     // constant.
174     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
175       return Constant::getIntegerValue(VTy, Known.One);
176 
177     // If all of the demanded bits are known 1 on one side, return the other.
178     // These bits cannot contribute to the result of the 'and'.
179     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
180       return I->getOperand(0);
181     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
182       return I->getOperand(1);
183 
184     // If the RHS is a constant, see if we can simplify it.
185     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
186       return I;
187 
188     break;
189   }
190   case Instruction::Or: {
191     // If either the LHS or the RHS are One, the result is One.
192     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
193         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
194                              Depth + 1))
195       return I;
196     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
197     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
198 
199     Known = LHSKnown | RHSKnown;
200 
201     // If the client is only demanding bits that we know, return the known
202     // constant.
203     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
204       return Constant::getIntegerValue(VTy, Known.One);
205 
206     // If all of the demanded bits are known zero on one side, return the other.
207     // These bits cannot contribute to the result of the 'or'.
208     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
209       return I->getOperand(0);
210     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
211       return I->getOperand(1);
212 
213     // If the RHS is a constant, see if we can simplify it.
214     if (ShrinkDemandedConstant(I, 1, DemandedMask))
215       return I;
216 
217     break;
218   }
219   case Instruction::Xor: {
220     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
221         SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
222       return I;
223     Value *LHS, *RHS;
224     if (DemandedMask == 1 &&
225         match(I->getOperand(0), m_Intrinsic<Intrinsic::ctpop>(m_Value(LHS))) &&
226         match(I->getOperand(1), m_Intrinsic<Intrinsic::ctpop>(m_Value(RHS)))) {
227       // (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1
228       IRBuilderBase::InsertPointGuard Guard(Builder);
229       Builder.SetInsertPoint(I);
230       auto *Xor = Builder.CreateXor(LHS, RHS);
231       return Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, Xor);
232     }
233 
234     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
235     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
236 
237     Known = LHSKnown ^ RHSKnown;
238 
239     // If the client is only demanding bits that we know, return the known
240     // constant.
241     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
242       return Constant::getIntegerValue(VTy, Known.One);
243 
244     // If all of the demanded bits are known zero on one side, return the other.
245     // These bits cannot contribute to the result of the 'xor'.
246     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
247       return I->getOperand(0);
248     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
249       return I->getOperand(1);
250 
251     // If all of the demanded bits are known to be zero on one side or the
252     // other, turn this into an *inclusive* or.
253     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
254     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
255       Instruction *Or =
256         BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
257                                  I->getName());
258       return InsertNewInstWith(Or, *I);
259     }
260 
261     // If all of the demanded bits on one side are known, and all of the set
262     // bits on that side are also known to be set on the other side, turn this
263     // into an AND, as we know the bits will be cleared.
264     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
265     if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
266         RHSKnown.One.isSubsetOf(LHSKnown.One)) {
267       Constant *AndC = Constant::getIntegerValue(VTy,
268                                                  ~RHSKnown.One & DemandedMask);
269       Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
270       return InsertNewInstWith(And, *I);
271     }
272 
273     // If the RHS is a constant, see if we can change it. Don't alter a -1
274     // constant because that's a canonical 'not' op, and that is better for
275     // combining, SCEV, and codegen.
276     const APInt *C;
277     if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnes()) {
278       if ((*C | ~DemandedMask).isAllOnes()) {
279         // Force bits to 1 to create a 'not' op.
280         I->setOperand(1, ConstantInt::getAllOnesValue(VTy));
281         return I;
282       }
283       // If we can't turn this into a 'not', try to shrink the constant.
284       if (ShrinkDemandedConstant(I, 1, DemandedMask))
285         return I;
286     }
287 
288     // If our LHS is an 'and' and if it has one use, and if any of the bits we
289     // are flipping are known to be set, then the xor is just resetting those
290     // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
291     // simplifying both of them.
292     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) {
293       ConstantInt *AndRHS, *XorRHS;
294       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
295           match(I->getOperand(1), m_ConstantInt(XorRHS)) &&
296           match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) &&
297           (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
298         APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
299 
300         Constant *AndC =
301             ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
302         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
303         InsertNewInstWith(NewAnd, *I);
304 
305         Constant *XorC =
306             ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
307         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
308         return InsertNewInstWith(NewXor, *I);
309       }
310     }
311     break;
312   }
313   case Instruction::Select: {
314     Value *LHS, *RHS;
315     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
316     if (SPF == SPF_UMAX) {
317       // UMax(A, C) == A if ...
318       // The lowest non-zero bit of DemandMask is higher than the highest
319       // non-zero bit of C.
320       const APInt *C;
321       unsigned CTZ = DemandedMask.countTrailingZeros();
322       if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits())
323         return LHS;
324     } else if (SPF == SPF_UMIN) {
325       // UMin(A, C) == A if ...
326       // The lowest non-zero bit of DemandMask is higher than the highest
327       // non-one bit of C.
328       // This comes from using DeMorgans on the above umax example.
329       const APInt *C;
330       unsigned CTZ = DemandedMask.countTrailingZeros();
331       if (match(RHS, m_APInt(C)) &&
332           CTZ >= C->getBitWidth() - C->countLeadingOnes())
333         return LHS;
334     }
335 
336     // If this is a select as part of any other min/max pattern, don't simplify
337     // any further in case we break the structure.
338     if (SPF != SPF_UNKNOWN)
339       return nullptr;
340 
341     if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
342         SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
343       return I;
344     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
345     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
346 
347     // If the operands are constants, see if we can simplify them.
348     // This is similar to ShrinkDemandedConstant, but for a select we want to
349     // try to keep the selected constants the same as icmp value constants, if
350     // we can. This helps not break apart (or helps put back together)
351     // canonical patterns like min and max.
352     auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo,
353                                          const APInt &DemandedMask) {
354       const APInt *SelC;
355       if (!match(I->getOperand(OpNo), m_APInt(SelC)))
356         return false;
357 
358       // Get the constant out of the ICmp, if there is one.
359       // Only try this when exactly 1 operand is a constant (if both operands
360       // are constant, the icmp should eventually simplify). Otherwise, we may
361       // invert the transform that reduces set bits and infinite-loop.
362       Value *X;
363       const APInt *CmpC;
364       ICmpInst::Predicate Pred;
365       if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) ||
366           isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth())
367         return ShrinkDemandedConstant(I, OpNo, DemandedMask);
368 
369       // If the constant is already the same as the ICmp, leave it as-is.
370       if (*CmpC == *SelC)
371         return false;
372       // If the constants are not already the same, but can be with the demand
373       // mask, use the constant value from the ICmp.
374       if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) {
375         I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC));
376         return true;
377       }
378       return ShrinkDemandedConstant(I, OpNo, DemandedMask);
379     };
380     if (CanonicalizeSelectConstant(I, 1, DemandedMask) ||
381         CanonicalizeSelectConstant(I, 2, DemandedMask))
382       return I;
383 
384     // Only known if known in both the LHS and RHS.
385     Known = KnownBits::commonBits(LHSKnown, RHSKnown);
386     break;
387   }
388   case Instruction::Trunc: {
389     // If we do not demand the high bits of a right-shifted and truncated value,
390     // then we may be able to truncate it before the shift.
391     Value *X;
392     const APInt *C;
393     if (match(I->getOperand(0), m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) {
394       // The shift amount must be valid (not poison) in the narrow type, and
395       // it must not be greater than the high bits demanded of the result.
396       if (C->ult(I->getType()->getScalarSizeInBits()) &&
397           C->ule(DemandedMask.countLeadingZeros())) {
398         // trunc (lshr X, C) --> lshr (trunc X), C
399         IRBuilderBase::InsertPointGuard Guard(Builder);
400         Builder.SetInsertPoint(I);
401         Value *Trunc = Builder.CreateTrunc(X, I->getType());
402         return Builder.CreateLShr(Trunc, C->getZExtValue());
403       }
404     }
405   }
406     LLVM_FALLTHROUGH;
407   case Instruction::ZExt: {
408     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
409 
410     APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
411     KnownBits InputKnown(SrcBitWidth);
412     if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
413       return I;
414     assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?");
415     Known = InputKnown.zextOrTrunc(BitWidth);
416     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
417     break;
418   }
419   case Instruction::BitCast:
420     if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
421       return nullptr;  // vector->int or fp->int?
422 
423     if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
424       if (VectorType *SrcVTy =
425             dyn_cast<VectorType>(I->getOperand(0)->getType())) {
426         if (cast<FixedVectorType>(DstVTy)->getNumElements() !=
427             cast<FixedVectorType>(SrcVTy)->getNumElements())
428           // Don't touch a bitcast between vectors of different element counts.
429           return nullptr;
430       } else
431         // Don't touch a scalar-to-vector bitcast.
432         return nullptr;
433     } else if (I->getOperand(0)->getType()->isVectorTy())
434       // Don't touch a vector-to-scalar bitcast.
435       return nullptr;
436 
437     if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
438       return I;
439     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
440     break;
441   case Instruction::SExt: {
442     // Compute the bits in the result that are not present in the input.
443     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
444 
445     APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
446 
447     // If any of the sign extended bits are demanded, we know that the sign
448     // bit is demanded.
449     if (DemandedMask.getActiveBits() > SrcBitWidth)
450       InputDemandedBits.setBit(SrcBitWidth-1);
451 
452     KnownBits InputKnown(SrcBitWidth);
453     if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
454       return I;
455 
456     // If the input sign bit is known zero, or if the NewBits are not demanded
457     // convert this into a zero extension.
458     if (InputKnown.isNonNegative() ||
459         DemandedMask.getActiveBits() <= SrcBitWidth) {
460       // Convert to ZExt cast.
461       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
462       return InsertNewInstWith(NewCast, *I);
463      }
464 
465     // If the sign bit of the input is known set or clear, then we know the
466     // top bits of the result.
467     Known = InputKnown.sext(BitWidth);
468     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
469     break;
470   }
471   case Instruction::Add:
472     if ((DemandedMask & 1) == 0) {
473       // If we do not need the low bit, try to convert bool math to logic:
474       // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN
475       Value *X, *Y;
476       if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))),
477                            m_OneUse(m_SExt(m_Value(Y))))) &&
478           X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
479         // Truth table for inputs and output signbits:
480         //       X:0 | X:1
481         //      ----------
482         // Y:0  |  0 | 0 |
483         // Y:1  | -1 | 0 |
484         //      ----------
485         IRBuilderBase::InsertPointGuard Guard(Builder);
486         Builder.SetInsertPoint(I);
487         Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y);
488         return Builder.CreateSExt(AndNot, VTy);
489       }
490 
491       // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN
492       // TODO: Relax the one-use checks because we are removing an instruction?
493       if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))),
494                          m_OneUse(m_SExt(m_Value(Y))))) &&
495           X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
496         // Truth table for inputs and output signbits:
497         //       X:0 | X:1
498         //      -----------
499         // Y:0  | -1 | -1 |
500         // Y:1  | -1 |  0 |
501         //      -----------
502         IRBuilderBase::InsertPointGuard Guard(Builder);
503         Builder.SetInsertPoint(I);
504         Value *Or = Builder.CreateOr(X, Y);
505         return Builder.CreateSExt(Or, VTy);
506       }
507     }
508     LLVM_FALLTHROUGH;
509   case Instruction::Sub: {
510     /// If the high-bits of an ADD/SUB are not demanded, then we do not care
511     /// about the high bits of the operands.
512     unsigned NLZ = DemandedMask.countLeadingZeros();
513     // Right fill the mask of bits for this ADD/SUB to demand the most
514     // significant bit and all those below it.
515     APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
516     if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
517         SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
518         ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
519         SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
520       if (NLZ > 0) {
521         // Disable the nsw and nuw flags here: We can no longer guarantee that
522         // we won't wrap after simplification. Removing the nsw/nuw flags is
523         // legal here because the top bit is not demanded.
524         BinaryOperator &BinOP = *cast<BinaryOperator>(I);
525         BinOP.setHasNoSignedWrap(false);
526         BinOP.setHasNoUnsignedWrap(false);
527       }
528       return I;
529     }
530 
531     // If we are known to be adding/subtracting zeros to every bit below
532     // the highest demanded bit, we just return the other side.
533     if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
534       return I->getOperand(0);
535     // We can't do this with the LHS for subtraction, unless we are only
536     // demanding the LSB.
537     if ((I->getOpcode() == Instruction::Add || DemandedFromOps.isOne()) &&
538         DemandedFromOps.isSubsetOf(LHSKnown.Zero))
539       return I->getOperand(1);
540 
541     // Otherwise just compute the known bits of the result.
542     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
543     Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
544                                         NSW, LHSKnown, RHSKnown);
545     break;
546   }
547   case Instruction::Shl: {
548     const APInt *SA;
549     if (match(I->getOperand(1), m_APInt(SA))) {
550       const APInt *ShrAmt;
551       if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
552         if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
553           if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
554                                                     DemandedMask, Known))
555             return R;
556 
557       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
558       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
559 
560       // If the shift is NUW/NSW, then it does demand the high bits.
561       ShlOperator *IOp = cast<ShlOperator>(I);
562       if (IOp->hasNoSignedWrap())
563         DemandedMaskIn.setHighBits(ShiftAmt+1);
564       else if (IOp->hasNoUnsignedWrap())
565         DemandedMaskIn.setHighBits(ShiftAmt);
566 
567       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
568         return I;
569       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
570 
571       bool SignBitZero = Known.Zero.isSignBitSet();
572       bool SignBitOne = Known.One.isSignBitSet();
573       Known.Zero <<= ShiftAmt;
574       Known.One  <<= ShiftAmt;
575       // low bits known zero.
576       if (ShiftAmt)
577         Known.Zero.setLowBits(ShiftAmt);
578 
579       // If this shift has "nsw" keyword, then the result is either a poison
580       // value or has the same sign bit as the first operand.
581       if (IOp->hasNoSignedWrap()) {
582         if (SignBitZero)
583           Known.Zero.setSignBit();
584         else if (SignBitOne)
585           Known.One.setSignBit();
586         if (Known.hasConflict())
587           return UndefValue::get(I->getType());
588       }
589     } else {
590       // This is a variable shift, so we can't shift the demand mask by a known
591       // amount. But if we are not demanding high bits, then we are not
592       // demanding those bits from the pre-shifted operand either.
593       if (unsigned CTLZ = DemandedMask.countLeadingZeros()) {
594         APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
595         if (SimplifyDemandedBits(I, 0, DemandedFromOp, Known, Depth + 1)) {
596           // We can't guarantee that nsw/nuw hold after simplifying the operand.
597           I->dropPoisonGeneratingFlags();
598           return I;
599         }
600       }
601       computeKnownBits(I, Known, Depth, CxtI);
602     }
603     break;
604   }
605   case Instruction::LShr: {
606     const APInt *SA;
607     if (match(I->getOperand(1), m_APInt(SA))) {
608       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
609 
610       // Unsigned shift right.
611       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
612 
613       // If the shift is exact, then it does demand the low bits (and knows that
614       // they are zero).
615       if (cast<LShrOperator>(I)->isExact())
616         DemandedMaskIn.setLowBits(ShiftAmt);
617 
618       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
619         return I;
620       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
621       Known.Zero.lshrInPlace(ShiftAmt);
622       Known.One.lshrInPlace(ShiftAmt);
623       if (ShiftAmt)
624         Known.Zero.setHighBits(ShiftAmt);  // high bits known zero.
625     } else {
626       computeKnownBits(I, Known, Depth, CxtI);
627     }
628     break;
629   }
630   case Instruction::AShr: {
631     // If this is an arithmetic shift right and only the low-bit is set, we can
632     // always convert this into a logical shr, even if the shift amount is
633     // variable.  The low bit of the shift cannot be an input sign bit unless
634     // the shift amount is >= the size of the datatype, which is undefined.
635     if (DemandedMask.isOne()) {
636       // Perform the logical shift right.
637       Instruction *NewVal = BinaryOperator::CreateLShr(
638                         I->getOperand(0), I->getOperand(1), I->getName());
639       return InsertNewInstWith(NewVal, *I);
640     }
641 
642     // If the sign bit is the only bit demanded by this ashr, then there is no
643     // need to do it, the shift doesn't change the high bit.
644     if (DemandedMask.isSignMask())
645       return I->getOperand(0);
646 
647     const APInt *SA;
648     if (match(I->getOperand(1), m_APInt(SA))) {
649       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
650 
651       // Signed shift right.
652       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
653       // If any of the high bits are demanded, we should set the sign bit as
654       // demanded.
655       if (DemandedMask.countLeadingZeros() <= ShiftAmt)
656         DemandedMaskIn.setSignBit();
657 
658       // If the shift is exact, then it does demand the low bits (and knows that
659       // they are zero).
660       if (cast<AShrOperator>(I)->isExact())
661         DemandedMaskIn.setLowBits(ShiftAmt);
662 
663       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
664         return I;
665 
666       unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
667 
668       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
669       // Compute the new bits that are at the top now plus sign bits.
670       APInt HighBits(APInt::getHighBitsSet(
671           BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
672       Known.Zero.lshrInPlace(ShiftAmt);
673       Known.One.lshrInPlace(ShiftAmt);
674 
675       // If the input sign bit is known to be zero, or if none of the top bits
676       // are demanded, turn this into an unsigned shift right.
677       assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
678       if (Known.Zero[BitWidth-ShiftAmt-1] ||
679           !DemandedMask.intersects(HighBits)) {
680         BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
681                                                           I->getOperand(1));
682         LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
683         return InsertNewInstWith(LShr, *I);
684       } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
685         Known.One |= HighBits;
686       }
687     } else {
688       computeKnownBits(I, Known, Depth, CxtI);
689     }
690     break;
691   }
692   case Instruction::UDiv: {
693     // UDiv doesn't demand low bits that are zero in the divisor.
694     const APInt *SA;
695     if (match(I->getOperand(1), m_APInt(SA))) {
696       // If the shift is exact, then it does demand the low bits.
697       if (cast<UDivOperator>(I)->isExact())
698         break;
699 
700       // FIXME: Take the demanded mask of the result into account.
701       unsigned RHSTrailingZeros = SA->countTrailingZeros();
702       APInt DemandedMaskIn =
703           APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
704       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1))
705         return I;
706 
707       // Propagate zero bits from the input.
708       Known.Zero.setHighBits(std::min(
709           BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
710     } else {
711       computeKnownBits(I, Known, Depth, CxtI);
712     }
713     break;
714   }
715   case Instruction::SRem: {
716     ConstantInt *Rem;
717     if (match(I->getOperand(1), m_ConstantInt(Rem))) {
718       // X % -1 demands all the bits because we don't want to introduce
719       // INT_MIN % -1 (== undef) by accident.
720       if (Rem->isMinusOne())
721         break;
722       APInt RA = Rem->getValue().abs();
723       if (RA.isPowerOf2()) {
724         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
725           return I->getOperand(0);
726 
727         APInt LowBits = RA - 1;
728         APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
729         if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
730           return I;
731 
732         // The low bits of LHS are unchanged by the srem.
733         Known.Zero = LHSKnown.Zero & LowBits;
734         Known.One = LHSKnown.One & LowBits;
735 
736         // If LHS is non-negative or has all low bits zero, then the upper bits
737         // are all zero.
738         if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
739           Known.Zero |= ~LowBits;
740 
741         // If LHS is negative and not all low bits are zero, then the upper bits
742         // are all one.
743         if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
744           Known.One |= ~LowBits;
745 
746         assert(!Known.hasConflict() && "Bits known to be one AND zero?");
747         break;
748       }
749     }
750 
751     // The sign bit is the LHS's sign bit, except when the result of the
752     // remainder is zero.
753     if (DemandedMask.isSignBitSet()) {
754       computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
755       // If it's known zero, our sign bit is also zero.
756       if (LHSKnown.isNonNegative())
757         Known.makeNonNegative();
758     }
759     break;
760   }
761   case Instruction::URem: {
762     KnownBits Known2(BitWidth);
763     APInt AllOnes = APInt::getAllOnes(BitWidth);
764     if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
765         SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
766       return I;
767 
768     unsigned Leaders = Known2.countMinLeadingZeros();
769     Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
770     break;
771   }
772   case Instruction::Call: {
773     bool KnownBitsComputed = false;
774     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
775       switch (II->getIntrinsicID()) {
776       case Intrinsic::abs: {
777         if (DemandedMask == 1)
778           return II->getArgOperand(0);
779         break;
780       }
781       case Intrinsic::ctpop: {
782         // Checking if the number of clear bits is odd (parity)? If the type has
783         // an even number of bits, that's the same as checking if the number of
784         // set bits is odd, so we can eliminate the 'not' op.
785         Value *X;
786         if (DemandedMask == 1 && VTy->getScalarSizeInBits() % 2 == 0 &&
787             match(II->getArgOperand(0), m_Not(m_Value(X)))) {
788           Function *Ctpop = Intrinsic::getDeclaration(
789               II->getModule(), Intrinsic::ctpop, II->getType());
790           return InsertNewInstWith(CallInst::Create(Ctpop, {X}), *I);
791         }
792         break;
793       }
794       case Intrinsic::bswap: {
795         // If the only bits demanded come from one byte of the bswap result,
796         // just shift the input byte into position to eliminate the bswap.
797         unsigned NLZ = DemandedMask.countLeadingZeros();
798         unsigned NTZ = DemandedMask.countTrailingZeros();
799 
800         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
801         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
802         // have 14 leading zeros, round to 8.
803         NLZ &= ~7;
804         NTZ &= ~7;
805         // If we need exactly one byte, we can do this transformation.
806         if (BitWidth-NLZ-NTZ == 8) {
807           unsigned ResultBit = NTZ;
808           unsigned InputBit = BitWidth-NTZ-8;
809 
810           // Replace this with either a left or right shift to get the byte into
811           // the right place.
812           Instruction *NewVal;
813           if (InputBit > ResultBit)
814             NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
815                     ConstantInt::get(I->getType(), InputBit-ResultBit));
816           else
817             NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
818                     ConstantInt::get(I->getType(), ResultBit-InputBit));
819           NewVal->takeName(I);
820           return InsertNewInstWith(NewVal, *I);
821         }
822         break;
823       }
824       case Intrinsic::fshr:
825       case Intrinsic::fshl: {
826         const APInt *SA;
827         if (!match(I->getOperand(2), m_APInt(SA)))
828           break;
829 
830         // Normalize to funnel shift left. APInt shifts of BitWidth are well-
831         // defined, so no need to special-case zero shifts here.
832         uint64_t ShiftAmt = SA->urem(BitWidth);
833         if (II->getIntrinsicID() == Intrinsic::fshr)
834           ShiftAmt = BitWidth - ShiftAmt;
835 
836         APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
837         APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
838         if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) ||
839             SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1))
840           return I;
841 
842         Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
843                      RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
844         Known.One = LHSKnown.One.shl(ShiftAmt) |
845                     RHSKnown.One.lshr(BitWidth - ShiftAmt);
846         KnownBitsComputed = true;
847         break;
848       }
849       case Intrinsic::umax: {
850         // UMax(A, C) == A if ...
851         // The lowest non-zero bit of DemandMask is higher than the highest
852         // non-zero bit of C.
853         const APInt *C;
854         unsigned CTZ = DemandedMask.countTrailingZeros();
855         if (match(II->getArgOperand(1), m_APInt(C)) &&
856             CTZ >= C->getActiveBits())
857           return II->getArgOperand(0);
858         break;
859       }
860       case Intrinsic::umin: {
861         // UMin(A, C) == A if ...
862         // The lowest non-zero bit of DemandMask is higher than the highest
863         // non-one bit of C.
864         // This comes from using DeMorgans on the above umax example.
865         const APInt *C;
866         unsigned CTZ = DemandedMask.countTrailingZeros();
867         if (match(II->getArgOperand(1), m_APInt(C)) &&
868             CTZ >= C->getBitWidth() - C->countLeadingOnes())
869           return II->getArgOperand(0);
870         break;
871       }
872       default: {
873         // Handle target specific intrinsics
874         Optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic(
875             *II, DemandedMask, Known, KnownBitsComputed);
876         if (V.hasValue())
877           return V.getValue();
878         break;
879       }
880       }
881     }
882 
883     if (!KnownBitsComputed)
884       computeKnownBits(V, Known, Depth, CxtI);
885     break;
886   }
887   }
888 
889   // If the client is only demanding bits that we know, return the known
890   // constant.
891   if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
892     return Constant::getIntegerValue(VTy, Known.One);
893   return nullptr;
894 }
895 
896 /// Helper routine of SimplifyDemandedUseBits. It computes Known
897 /// bits. It also tries to handle simplifications that can be done based on
898 /// DemandedMask, but without modifying the Instruction.
899 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits(
900     Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth,
901     Instruction *CxtI) {
902   unsigned BitWidth = DemandedMask.getBitWidth();
903   Type *ITy = I->getType();
904 
905   KnownBits LHSKnown(BitWidth);
906   KnownBits RHSKnown(BitWidth);
907 
908   // Despite the fact that we can't simplify this instruction in all User's
909   // context, we can at least compute the known bits, and we can
910   // do simplifications that apply to *just* the one user if we know that
911   // this instruction has a simpler value in that context.
912   switch (I->getOpcode()) {
913   case Instruction::And: {
914     // If either the LHS or the RHS are Zero, the result is zero.
915     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
916     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
917                      CxtI);
918 
919     Known = LHSKnown & RHSKnown;
920 
921     // If the client is only demanding bits that we know, return the known
922     // constant.
923     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
924       return Constant::getIntegerValue(ITy, Known.One);
925 
926     // If all of the demanded bits are known 1 on one side, return the other.
927     // These bits cannot contribute to the result of the 'and' in this
928     // context.
929     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
930       return I->getOperand(0);
931     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
932       return I->getOperand(1);
933 
934     break;
935   }
936   case Instruction::Or: {
937     // We can simplify (X|Y) -> X or Y in the user's context if we know that
938     // only bits from X or Y are demanded.
939 
940     // If either the LHS or the RHS are One, the result is One.
941     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
942     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
943                      CxtI);
944 
945     Known = LHSKnown | RHSKnown;
946 
947     // If the client is only demanding bits that we know, return the known
948     // constant.
949     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
950       return Constant::getIntegerValue(ITy, Known.One);
951 
952     // If all of the demanded bits are known zero on one side, return the
953     // other.  These bits cannot contribute to the result of the 'or' in this
954     // context.
955     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
956       return I->getOperand(0);
957     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
958       return I->getOperand(1);
959 
960     break;
961   }
962   case Instruction::Xor: {
963     // We can simplify (X^Y) -> X or Y in the user's context if we know that
964     // only bits from X or Y are demanded.
965 
966     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
967     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
968                      CxtI);
969 
970     Known = LHSKnown ^ RHSKnown;
971 
972     // If the client is only demanding bits that we know, return the known
973     // constant.
974     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
975       return Constant::getIntegerValue(ITy, Known.One);
976 
977     // If all of the demanded bits are known zero on one side, return the
978     // other.
979     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
980       return I->getOperand(0);
981     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
982       return I->getOperand(1);
983 
984     break;
985   }
986   case Instruction::AShr: {
987     // Compute the Known bits to simplify things downstream.
988     computeKnownBits(I, Known, Depth, CxtI);
989 
990     // If this user is only demanding bits that we know, return the known
991     // constant.
992     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
993       return Constant::getIntegerValue(ITy, Known.One);
994 
995     // If the right shift operand 0 is a result of a left shift by the same
996     // amount, this is probably a zero/sign extension, which may be unnecessary,
997     // if we do not demand any of the new sign bits. So, return the original
998     // operand instead.
999     const APInt *ShiftRC;
1000     const APInt *ShiftLC;
1001     Value *X;
1002     unsigned BitWidth = DemandedMask.getBitWidth();
1003     if (match(I,
1004               m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) &&
1005         ShiftLC == ShiftRC && ShiftLC->ult(BitWidth) &&
1006         DemandedMask.isSubsetOf(APInt::getLowBitsSet(
1007             BitWidth, BitWidth - ShiftRC->getZExtValue()))) {
1008       return X;
1009     }
1010 
1011     break;
1012   }
1013   default:
1014     // Compute the Known bits to simplify things downstream.
1015     computeKnownBits(I, Known, Depth, CxtI);
1016 
1017     // If this user is only demanding bits that we know, return the known
1018     // constant.
1019     if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
1020       return Constant::getIntegerValue(ITy, Known.One);
1021 
1022     break;
1023   }
1024 
1025   return nullptr;
1026 }
1027 
1028 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
1029 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
1030 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
1031 /// of "C2-C1".
1032 ///
1033 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
1034 /// ..., bn}, without considering the specific value X is holding.
1035 /// This transformation is legal iff one of following conditions is hold:
1036 ///  1) All the bit in S are 0, in this case E1 == E2.
1037 ///  2) We don't care those bits in S, per the input DemandedMask.
1038 ///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
1039 ///     rest bits.
1040 ///
1041 /// Currently we only test condition 2).
1042 ///
1043 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
1044 /// not successful.
1045 Value *InstCombinerImpl::simplifyShrShlDemandedBits(
1046     Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
1047     const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) {
1048   if (!ShlOp1 || !ShrOp1)
1049     return nullptr; // No-op.
1050 
1051   Value *VarX = Shr->getOperand(0);
1052   Type *Ty = VarX->getType();
1053   unsigned BitWidth = Ty->getScalarSizeInBits();
1054   if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
1055     return nullptr; // Undef.
1056 
1057   unsigned ShlAmt = ShlOp1.getZExtValue();
1058   unsigned ShrAmt = ShrOp1.getZExtValue();
1059 
1060   Known.One.clearAllBits();
1061   Known.Zero.setLowBits(ShlAmt - 1);
1062   Known.Zero &= DemandedMask;
1063 
1064   APInt BitMask1(APInt::getAllOnes(BitWidth));
1065   APInt BitMask2(APInt::getAllOnes(BitWidth));
1066 
1067   bool isLshr = (Shr->getOpcode() == Instruction::LShr);
1068   BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
1069                       (BitMask1.ashr(ShrAmt) << ShlAmt);
1070 
1071   if (ShrAmt <= ShlAmt) {
1072     BitMask2 <<= (ShlAmt - ShrAmt);
1073   } else {
1074     BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
1075                         BitMask2.ashr(ShrAmt - ShlAmt);
1076   }
1077 
1078   // Check if condition-2 (see the comment to this function) is satified.
1079   if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
1080     if (ShrAmt == ShlAmt)
1081       return VarX;
1082 
1083     if (!Shr->hasOneUse())
1084       return nullptr;
1085 
1086     BinaryOperator *New;
1087     if (ShrAmt < ShlAmt) {
1088       Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
1089       New = BinaryOperator::CreateShl(VarX, Amt);
1090       BinaryOperator *Orig = cast<BinaryOperator>(Shl);
1091       New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
1092       New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
1093     } else {
1094       Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
1095       New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
1096                      BinaryOperator::CreateAShr(VarX, Amt);
1097       if (cast<BinaryOperator>(Shr)->isExact())
1098         New->setIsExact(true);
1099     }
1100 
1101     return InsertNewInstWith(New, *Shl);
1102   }
1103 
1104   return nullptr;
1105 }
1106 
1107 /// The specified value produces a vector with any number of elements.
1108 /// This method analyzes which elements of the operand are undef or poison and
1109 /// returns that information in UndefElts.
1110 ///
1111 /// DemandedElts contains the set of elements that are actually used by the
1112 /// caller, and by default (AllowMultipleUsers equals false) the value is
1113 /// simplified only if it has a single caller. If AllowMultipleUsers is set
1114 /// to true, DemandedElts refers to the union of sets of elements that are
1115 /// used by all callers.
1116 ///
1117 /// If the information about demanded elements can be used to simplify the
1118 /// operation, the operation is simplified, then the resultant value is
1119 /// returned.  This returns null if no change was made.
1120 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V,
1121                                                     APInt DemandedElts,
1122                                                     APInt &UndefElts,
1123                                                     unsigned Depth,
1124                                                     bool AllowMultipleUsers) {
1125   // Cannot analyze scalable type. The number of vector elements is not a
1126   // compile-time constant.
1127   if (isa<ScalableVectorType>(V->getType()))
1128     return nullptr;
1129 
1130   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
1131   APInt EltMask(APInt::getAllOnes(VWidth));
1132   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
1133 
1134   if (match(V, m_Undef())) {
1135     // If the entire vector is undef or poison, just return this info.
1136     UndefElts = EltMask;
1137     return nullptr;
1138   }
1139 
1140   if (DemandedElts.isZero()) { // If nothing is demanded, provide poison.
1141     UndefElts = EltMask;
1142     return PoisonValue::get(V->getType());
1143   }
1144 
1145   UndefElts = 0;
1146 
1147   if (auto *C = dyn_cast<Constant>(V)) {
1148     // Check if this is identity. If so, return 0 since we are not simplifying
1149     // anything.
1150     if (DemandedElts.isAllOnes())
1151       return nullptr;
1152 
1153     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1154     Constant *Poison = PoisonValue::get(EltTy);
1155     SmallVector<Constant*, 16> Elts;
1156     for (unsigned i = 0; i != VWidth; ++i) {
1157       if (!DemandedElts[i]) {   // If not demanded, set to poison.
1158         Elts.push_back(Poison);
1159         UndefElts.setBit(i);
1160         continue;
1161       }
1162 
1163       Constant *Elt = C->getAggregateElement(i);
1164       if (!Elt) return nullptr;
1165 
1166       Elts.push_back(Elt);
1167       if (isa<UndefValue>(Elt))   // Already undef or poison.
1168         UndefElts.setBit(i);
1169     }
1170 
1171     // If we changed the constant, return it.
1172     Constant *NewCV = ConstantVector::get(Elts);
1173     return NewCV != C ? NewCV : nullptr;
1174   }
1175 
1176   // Limit search depth.
1177   if (Depth == 10)
1178     return nullptr;
1179 
1180   if (!AllowMultipleUsers) {
1181     // If multiple users are using the root value, proceed with
1182     // simplification conservatively assuming that all elements
1183     // are needed.
1184     if (!V->hasOneUse()) {
1185       // Quit if we find multiple users of a non-root value though.
1186       // They'll be handled when it's their turn to be visited by
1187       // the main instcombine process.
1188       if (Depth != 0)
1189         // TODO: Just compute the UndefElts information recursively.
1190         return nullptr;
1191 
1192       // Conservatively assume that all elements are needed.
1193       DemandedElts = EltMask;
1194     }
1195   }
1196 
1197   Instruction *I = dyn_cast<Instruction>(V);
1198   if (!I) return nullptr;        // Only analyze instructions.
1199 
1200   bool MadeChange = false;
1201   auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
1202                               APInt Demanded, APInt &Undef) {
1203     auto *II = dyn_cast<IntrinsicInst>(Inst);
1204     Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
1205     if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
1206       replaceOperand(*Inst, OpNum, V);
1207       MadeChange = true;
1208     }
1209   };
1210 
1211   APInt UndefElts2(VWidth, 0);
1212   APInt UndefElts3(VWidth, 0);
1213   switch (I->getOpcode()) {
1214   default: break;
1215 
1216   case Instruction::GetElementPtr: {
1217     // The LangRef requires that struct geps have all constant indices.  As
1218     // such, we can't convert any operand to partial undef.
1219     auto mayIndexStructType = [](GetElementPtrInst &GEP) {
1220       for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP);
1221            I != E; I++)
1222         if (I.isStruct())
1223           return true;;
1224       return false;
1225     };
1226     if (mayIndexStructType(cast<GetElementPtrInst>(*I)))
1227       break;
1228 
1229     // Conservatively track the demanded elements back through any vector
1230     // operands we may have.  We know there must be at least one, or we
1231     // wouldn't have a vector result to get here. Note that we intentionally
1232     // merge the undef bits here since gepping with either an undef base or
1233     // index results in undef.
1234     for (unsigned i = 0; i < I->getNumOperands(); i++) {
1235       if (match(I->getOperand(i), m_Undef())) {
1236         // If the entire vector is undefined, just return this info.
1237         UndefElts = EltMask;
1238         return nullptr;
1239       }
1240       if (I->getOperand(i)->getType()->isVectorTy()) {
1241         APInt UndefEltsOp(VWidth, 0);
1242         simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp);
1243         UndefElts |= UndefEltsOp;
1244       }
1245     }
1246 
1247     break;
1248   }
1249   case Instruction::InsertElement: {
1250     // If this is a variable index, we don't know which element it overwrites.
1251     // demand exactly the same input as we produce.
1252     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1253     if (!Idx) {
1254       // Note that we can't propagate undef elt info, because we don't know
1255       // which elt is getting updated.
1256       simplifyAndSetOp(I, 0, DemandedElts, UndefElts2);
1257       break;
1258     }
1259 
1260     // The element inserted overwrites whatever was there, so the input demanded
1261     // set is simpler than the output set.
1262     unsigned IdxNo = Idx->getZExtValue();
1263     APInt PreInsertDemandedElts = DemandedElts;
1264     if (IdxNo < VWidth)
1265       PreInsertDemandedElts.clearBit(IdxNo);
1266 
1267     // If we only demand the element that is being inserted and that element
1268     // was extracted from the same index in another vector with the same type,
1269     // replace this insert with that other vector.
1270     // Note: This is attempted before the call to simplifyAndSetOp because that
1271     //       may change UndefElts to a value that does not match with Vec.
1272     Value *Vec;
1273     if (PreInsertDemandedElts == 0 &&
1274         match(I->getOperand(1),
1275               m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) &&
1276         Vec->getType() == I->getType()) {
1277       return Vec;
1278     }
1279 
1280     simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts);
1281 
1282     // If this is inserting an element that isn't demanded, remove this
1283     // insertelement.
1284     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1285       Worklist.push(I);
1286       return I->getOperand(0);
1287     }
1288 
1289     // The inserted element is defined.
1290     UndefElts.clearBit(IdxNo);
1291     break;
1292   }
1293   case Instruction::ShuffleVector: {
1294     auto *Shuffle = cast<ShuffleVectorInst>(I);
1295     assert(Shuffle->getOperand(0)->getType() ==
1296            Shuffle->getOperand(1)->getType() &&
1297            "Expected shuffle operands to have same type");
1298     unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType())
1299                            ->getNumElements();
1300     // Handle trivial case of a splat. Only check the first element of LHS
1301     // operand.
1302     if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) &&
1303         DemandedElts.isAllOnes()) {
1304       if (!match(I->getOperand(1), m_Undef())) {
1305         I->setOperand(1, PoisonValue::get(I->getOperand(1)->getType()));
1306         MadeChange = true;
1307       }
1308       APInt LeftDemanded(OpWidth, 1);
1309       APInt LHSUndefElts(OpWidth, 0);
1310       simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1311       if (LHSUndefElts[0])
1312         UndefElts = EltMask;
1313       else
1314         UndefElts.clearAllBits();
1315       break;
1316     }
1317 
1318     APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0);
1319     for (unsigned i = 0; i < VWidth; i++) {
1320       if (DemandedElts[i]) {
1321         unsigned MaskVal = Shuffle->getMaskValue(i);
1322         if (MaskVal != -1u) {
1323           assert(MaskVal < OpWidth * 2 &&
1324                  "shufflevector mask index out of range!");
1325           if (MaskVal < OpWidth)
1326             LeftDemanded.setBit(MaskVal);
1327           else
1328             RightDemanded.setBit(MaskVal - OpWidth);
1329         }
1330       }
1331     }
1332 
1333     APInt LHSUndefElts(OpWidth, 0);
1334     simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1335 
1336     APInt RHSUndefElts(OpWidth, 0);
1337     simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts);
1338 
1339     // If this shuffle does not change the vector length and the elements
1340     // demanded by this shuffle are an identity mask, then this shuffle is
1341     // unnecessary.
1342     //
1343     // We are assuming canonical form for the mask, so the source vector is
1344     // operand 0 and operand 1 is not used.
1345     //
1346     // Note that if an element is demanded and this shuffle mask is undefined
1347     // for that element, then the shuffle is not considered an identity
1348     // operation. The shuffle prevents poison from the operand vector from
1349     // leaking to the result by replacing poison with an undefined value.
1350     if (VWidth == OpWidth) {
1351       bool IsIdentityShuffle = true;
1352       for (unsigned i = 0; i < VWidth; i++) {
1353         unsigned MaskVal = Shuffle->getMaskValue(i);
1354         if (DemandedElts[i] && i != MaskVal) {
1355           IsIdentityShuffle = false;
1356           break;
1357         }
1358       }
1359       if (IsIdentityShuffle)
1360         return Shuffle->getOperand(0);
1361     }
1362 
1363     bool NewUndefElts = false;
1364     unsigned LHSIdx = -1u, LHSValIdx = -1u;
1365     unsigned RHSIdx = -1u, RHSValIdx = -1u;
1366     bool LHSUniform = true;
1367     bool RHSUniform = true;
1368     for (unsigned i = 0; i < VWidth; i++) {
1369       unsigned MaskVal = Shuffle->getMaskValue(i);
1370       if (MaskVal == -1u) {
1371         UndefElts.setBit(i);
1372       } else if (!DemandedElts[i]) {
1373         NewUndefElts = true;
1374         UndefElts.setBit(i);
1375       } else if (MaskVal < OpWidth) {
1376         if (LHSUndefElts[MaskVal]) {
1377           NewUndefElts = true;
1378           UndefElts.setBit(i);
1379         } else {
1380           LHSIdx = LHSIdx == -1u ? i : OpWidth;
1381           LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth;
1382           LHSUniform = LHSUniform && (MaskVal == i);
1383         }
1384       } else {
1385         if (RHSUndefElts[MaskVal - OpWidth]) {
1386           NewUndefElts = true;
1387           UndefElts.setBit(i);
1388         } else {
1389           RHSIdx = RHSIdx == -1u ? i : OpWidth;
1390           RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth;
1391           RHSUniform = RHSUniform && (MaskVal - OpWidth == i);
1392         }
1393       }
1394     }
1395 
1396     // Try to transform shuffle with constant vector and single element from
1397     // this constant vector to single insertelement instruction.
1398     // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1399     // insertelement V, C[ci], ci-n
1400     if (OpWidth ==
1401         cast<FixedVectorType>(Shuffle->getType())->getNumElements()) {
1402       Value *Op = nullptr;
1403       Constant *Value = nullptr;
1404       unsigned Idx = -1u;
1405 
1406       // Find constant vector with the single element in shuffle (LHS or RHS).
1407       if (LHSIdx < OpWidth && RHSUniform) {
1408         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1409           Op = Shuffle->getOperand(1);
1410           Value = CV->getOperand(LHSValIdx);
1411           Idx = LHSIdx;
1412         }
1413       }
1414       if (RHSIdx < OpWidth && LHSUniform) {
1415         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1416           Op = Shuffle->getOperand(0);
1417           Value = CV->getOperand(RHSValIdx);
1418           Idx = RHSIdx;
1419         }
1420       }
1421       // Found constant vector with single element - convert to insertelement.
1422       if (Op && Value) {
1423         Instruction *New = InsertElementInst::Create(
1424             Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1425             Shuffle->getName());
1426         InsertNewInstWith(New, *Shuffle);
1427         return New;
1428       }
1429     }
1430     if (NewUndefElts) {
1431       // Add additional discovered undefs.
1432       SmallVector<int, 16> Elts;
1433       for (unsigned i = 0; i < VWidth; ++i) {
1434         if (UndefElts[i])
1435           Elts.push_back(UndefMaskElem);
1436         else
1437           Elts.push_back(Shuffle->getMaskValue(i));
1438       }
1439       Shuffle->setShuffleMask(Elts);
1440       MadeChange = true;
1441     }
1442     break;
1443   }
1444   case Instruction::Select: {
1445     // If this is a vector select, try to transform the select condition based
1446     // on the current demanded elements.
1447     SelectInst *Sel = cast<SelectInst>(I);
1448     if (Sel->getCondition()->getType()->isVectorTy()) {
1449       // TODO: We are not doing anything with UndefElts based on this call.
1450       // It is overwritten below based on the other select operands. If an
1451       // element of the select condition is known undef, then we are free to
1452       // choose the output value from either arm of the select. If we know that
1453       // one of those values is undef, then the output can be undef.
1454       simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1455     }
1456 
1457     // Next, see if we can transform the arms of the select.
1458     APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
1459     if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
1460       for (unsigned i = 0; i < VWidth; i++) {
1461         // isNullValue() always returns false when called on a ConstantExpr.
1462         // Skip constant expressions to avoid propagating incorrect information.
1463         Constant *CElt = CV->getAggregateElement(i);
1464         if (isa<ConstantExpr>(CElt))
1465           continue;
1466         // TODO: If a select condition element is undef, we can demand from
1467         // either side. If one side is known undef, choosing that side would
1468         // propagate undef.
1469         if (CElt->isNullValue())
1470           DemandedLHS.clearBit(i);
1471         else
1472           DemandedRHS.clearBit(i);
1473       }
1474     }
1475 
1476     simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2);
1477     simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3);
1478 
1479     // Output elements are undefined if the element from each arm is undefined.
1480     // TODO: This can be improved. See comment in select condition handling.
1481     UndefElts = UndefElts2 & UndefElts3;
1482     break;
1483   }
1484   case Instruction::BitCast: {
1485     // Vector->vector casts only.
1486     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1487     if (!VTy) break;
1488     unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements();
1489     APInt InputDemandedElts(InVWidth, 0);
1490     UndefElts2 = APInt(InVWidth, 0);
1491     unsigned Ratio;
1492 
1493     if (VWidth == InVWidth) {
1494       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1495       // elements as are demanded of us.
1496       Ratio = 1;
1497       InputDemandedElts = DemandedElts;
1498     } else if ((VWidth % InVWidth) == 0) {
1499       // If the number of elements in the output is a multiple of the number of
1500       // elements in the input then an input element is live if any of the
1501       // corresponding output elements are live.
1502       Ratio = VWidth / InVWidth;
1503       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1504         if (DemandedElts[OutIdx])
1505           InputDemandedElts.setBit(OutIdx / Ratio);
1506     } else if ((InVWidth % VWidth) == 0) {
1507       // If the number of elements in the input is a multiple of the number of
1508       // elements in the output then an input element is live if the
1509       // corresponding output element is live.
1510       Ratio = InVWidth / VWidth;
1511       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1512         if (DemandedElts[InIdx / Ratio])
1513           InputDemandedElts.setBit(InIdx);
1514     } else {
1515       // Unsupported so far.
1516       break;
1517     }
1518 
1519     simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2);
1520 
1521     if (VWidth == InVWidth) {
1522       UndefElts = UndefElts2;
1523     } else if ((VWidth % InVWidth) == 0) {
1524       // If the number of elements in the output is a multiple of the number of
1525       // elements in the input then an output element is undef if the
1526       // corresponding input element is undef.
1527       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1528         if (UndefElts2[OutIdx / Ratio])
1529           UndefElts.setBit(OutIdx);
1530     } else if ((InVWidth % VWidth) == 0) {
1531       // If the number of elements in the input is a multiple of the number of
1532       // elements in the output then an output element is undef if all of the
1533       // corresponding input elements are undef.
1534       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1535         APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1536         if (SubUndef.countPopulation() == Ratio)
1537           UndefElts.setBit(OutIdx);
1538       }
1539     } else {
1540       llvm_unreachable("Unimp");
1541     }
1542     break;
1543   }
1544   case Instruction::FPTrunc:
1545   case Instruction::FPExt:
1546     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1547     break;
1548 
1549   case Instruction::Call: {
1550     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1551     if (!II) break;
1552     switch (II->getIntrinsicID()) {
1553     case Intrinsic::masked_gather: // fallthrough
1554     case Intrinsic::masked_load: {
1555       // Subtlety: If we load from a pointer, the pointer must be valid
1556       // regardless of whether the element is demanded.  Doing otherwise risks
1557       // segfaults which didn't exist in the original program.
1558       APInt DemandedPtrs(APInt::getAllOnes(VWidth)),
1559           DemandedPassThrough(DemandedElts);
1560       if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2)))
1561         for (unsigned i = 0; i < VWidth; i++) {
1562           Constant *CElt = CV->getAggregateElement(i);
1563           if (CElt->isNullValue())
1564             DemandedPtrs.clearBit(i);
1565           else if (CElt->isAllOnesValue())
1566             DemandedPassThrough.clearBit(i);
1567         }
1568       if (II->getIntrinsicID() == Intrinsic::masked_gather)
1569         simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2);
1570       simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3);
1571 
1572       // Output elements are undefined if the element from both sources are.
1573       // TODO: can strengthen via mask as well.
1574       UndefElts = UndefElts2 & UndefElts3;
1575       break;
1576     }
1577     default: {
1578       // Handle target specific intrinsics
1579       Optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic(
1580           *II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
1581           simplifyAndSetOp);
1582       if (V.hasValue())
1583         return V.getValue();
1584       break;
1585     }
1586     } // switch on IntrinsicID
1587     break;
1588   } // case Call
1589   } // switch on Opcode
1590 
1591   // TODO: We bail completely on integer div/rem and shifts because they have
1592   // UB/poison potential, but that should be refined.
1593   BinaryOperator *BO;
1594   if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
1595     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1596     simplifyAndSetOp(I, 1, DemandedElts, UndefElts2);
1597 
1598     // Any change to an instruction with potential poison must clear those flags
1599     // because we can not guarantee those constraints now. Other analysis may
1600     // determine that it is safe to re-apply the flags.
1601     if (MadeChange)
1602       BO->dropPoisonGeneratingFlags();
1603 
1604     // Output elements are undefined if both are undefined. Consider things
1605     // like undef & 0. The result is known zero, not undef.
1606     UndefElts &= UndefElts2;
1607   }
1608 
1609   // If we've proven all of the lanes undef, return an undef value.
1610   // TODO: Intersect w/demanded lanes
1611   if (UndefElts.isAllOnes())
1612     return UndefValue::get(I->getType());;
1613 
1614   return MadeChange ? I : nullptr;
1615 }
1616