1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/TargetTransformInfo.h" 16 #include "llvm/Analysis/ValueTracking.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 #include "llvm/Transforms/InstCombine/InstCombiner.h" 21 22 using namespace llvm; 23 using namespace llvm::PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 /// Check to see if the specified operand of the specified instruction is a 28 /// constant integer. If so, check to see if there are any bits set in the 29 /// constant that are not demanded. If so, shrink the constant and return true. 30 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 31 const APInt &Demanded) { 32 assert(I && "No instruction?"); 33 assert(OpNo < I->getNumOperands() && "Operand index too large"); 34 35 // The operand must be a constant integer or splat integer. 36 Value *Op = I->getOperand(OpNo); 37 const APInt *C; 38 if (!match(Op, m_APInt(C))) 39 return false; 40 41 // If there are no bits set that aren't demanded, nothing to do. 42 if (C->isSubsetOf(Demanded)) 43 return false; 44 45 // This instruction is producing bits that are not demanded. Shrink the RHS. 46 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 47 48 return true; 49 } 50 51 52 53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 54 /// the instruction has any properties that allow us to simplify its operands. 55 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) { 56 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 57 KnownBits Known(BitWidth); 58 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 59 60 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 61 0, &Inst); 62 if (!V) return false; 63 if (V == &Inst) return true; 64 replaceInstUsesWith(Inst, V); 65 return true; 66 } 67 68 /// This form of SimplifyDemandedBits simplifies the specified instruction 69 /// operand if possible, updating it in place. It returns true if it made any 70 /// change and false otherwise. 71 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 72 const APInt &DemandedMask, 73 KnownBits &Known, unsigned Depth) { 74 Use &U = I->getOperandUse(OpNo); 75 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 76 Depth, I); 77 if (!NewVal) return false; 78 if (Instruction* OpInst = dyn_cast<Instruction>(U)) 79 salvageDebugInfo(*OpInst); 80 81 replaceUse(U, NewVal); 82 return true; 83 } 84 85 /// This function attempts to replace V with a simpler value based on the 86 /// demanded bits. When this function is called, it is known that only the bits 87 /// set in DemandedMask of the result of V are ever used downstream. 88 /// Consequently, depending on the mask and V, it may be possible to replace V 89 /// with a constant or one of its operands. In such cases, this function does 90 /// the replacement and returns true. In all other cases, it returns false after 91 /// analyzing the expression and setting KnownOne and known to be one in the 92 /// expression. Known.Zero contains all the bits that are known to be zero in 93 /// the expression. These are provided to potentially allow the caller (which 94 /// might recursively be SimplifyDemandedBits itself) to simplify the 95 /// expression. 96 /// Known.One and Known.Zero always follow the invariant that: 97 /// Known.One & Known.Zero == 0. 98 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 99 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 100 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 101 /// be the same. 102 /// 103 /// This returns null if it did not change anything and it permits no 104 /// simplification. This returns V itself if it did some simplification of V's 105 /// operands based on the information about what bits are demanded. This returns 106 /// some other non-null value if it found out that V is equal to another value 107 /// in the context where the specified bits are demanded, but not for all users. 108 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 109 KnownBits &Known, 110 unsigned Depth, 111 Instruction *CxtI) { 112 assert(V != nullptr && "Null pointer of Value???"); 113 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 114 uint32_t BitWidth = DemandedMask.getBitWidth(); 115 Type *VTy = V->getType(); 116 assert( 117 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 118 Known.getBitWidth() == BitWidth && 119 "Value *V, DemandedMask and Known must have same BitWidth"); 120 121 if (isa<Constant>(V)) { 122 computeKnownBits(V, Known, Depth, CxtI); 123 return nullptr; 124 } 125 126 Known.resetAll(); 127 if (DemandedMask.isNullValue()) // Not demanding any bits from V. 128 return UndefValue::get(VTy); 129 130 if (Depth == MaxAnalysisRecursionDepth) 131 return nullptr; 132 133 if (isa<ScalableVectorType>(VTy)) 134 return nullptr; 135 136 Instruction *I = dyn_cast<Instruction>(V); 137 if (!I) { 138 computeKnownBits(V, Known, Depth, CxtI); 139 return nullptr; // Only analyze instructions. 140 } 141 142 // If there are multiple uses of this value and we aren't at the root, then 143 // we can't do any simplifications of the operands, because DemandedMask 144 // only reflects the bits demanded by *one* of the users. 145 if (Depth != 0 && !I->hasOneUse()) 146 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 147 148 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 149 150 // If this is the root being simplified, allow it to have multiple uses, 151 // just set the DemandedMask to all bits so that we can try to simplify the 152 // operands. This allows visitTruncInst (for example) to simplify the 153 // operand of a trunc without duplicating all the logic below. 154 if (Depth == 0 && !V->hasOneUse()) 155 DemandedMask.setAllBits(); 156 157 switch (I->getOpcode()) { 158 default: 159 computeKnownBits(I, Known, Depth, CxtI); 160 break; 161 case Instruction::And: { 162 // If either the LHS or the RHS are Zero, the result is zero. 163 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 164 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 165 Depth + 1)) 166 return I; 167 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 168 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 169 170 Known = LHSKnown & RHSKnown; 171 172 // If the client is only demanding bits that we know, return the known 173 // constant. 174 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 175 return Constant::getIntegerValue(VTy, Known.One); 176 177 // If all of the demanded bits are known 1 on one side, return the other. 178 // These bits cannot contribute to the result of the 'and'. 179 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 180 return I->getOperand(0); 181 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 182 return I->getOperand(1); 183 184 // If the RHS is a constant, see if we can simplify it. 185 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 186 return I; 187 188 break; 189 } 190 case Instruction::Or: { 191 // If either the LHS or the RHS are One, the result is One. 192 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 193 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 194 Depth + 1)) 195 return I; 196 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 197 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 198 199 Known = LHSKnown | RHSKnown; 200 201 // If the client is only demanding bits that we know, return the known 202 // constant. 203 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 204 return Constant::getIntegerValue(VTy, Known.One); 205 206 // If all of the demanded bits are known zero on one side, return the other. 207 // These bits cannot contribute to the result of the 'or'. 208 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 209 return I->getOperand(0); 210 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 211 return I->getOperand(1); 212 213 // If the RHS is a constant, see if we can simplify it. 214 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 215 return I; 216 217 break; 218 } 219 case Instruction::Xor: { 220 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 221 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 222 return I; 223 Value *LHS, *RHS; 224 if (DemandedMask == 1 && 225 match(I->getOperand(0), m_Intrinsic<Intrinsic::ctpop>(m_Value(LHS))) && 226 match(I->getOperand(1), m_Intrinsic<Intrinsic::ctpop>(m_Value(RHS)))) { 227 // (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1 228 IRBuilderBase::InsertPointGuard Guard(Builder); 229 Builder.SetInsertPoint(I); 230 auto *Xor = Builder.CreateXor(LHS, RHS); 231 return Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, Xor); 232 } 233 234 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 235 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 236 237 Known = LHSKnown ^ RHSKnown; 238 239 // If the client is only demanding bits that we know, return the known 240 // constant. 241 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 242 return Constant::getIntegerValue(VTy, Known.One); 243 244 // If all of the demanded bits are known zero on one side, return the other. 245 // These bits cannot contribute to the result of the 'xor'. 246 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 247 return I->getOperand(0); 248 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 249 return I->getOperand(1); 250 251 // If all of the demanded bits are known to be zero on one side or the 252 // other, turn this into an *inclusive* or. 253 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 254 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 255 Instruction *Or = 256 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 257 I->getName()); 258 return InsertNewInstWith(Or, *I); 259 } 260 261 // If all of the demanded bits on one side are known, and all of the set 262 // bits on that side are also known to be set on the other side, turn this 263 // into an AND, as we know the bits will be cleared. 264 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 265 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 266 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 267 Constant *AndC = Constant::getIntegerValue(VTy, 268 ~RHSKnown.One & DemandedMask); 269 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 270 return InsertNewInstWith(And, *I); 271 } 272 273 // If the RHS is a constant, see if we can change it. Don't alter a -1 274 // constant because that's a canonical 'not' op, and that is better for 275 // combining, SCEV, and codegen. 276 const APInt *C; 277 if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnesValue()) { 278 if ((*C | ~DemandedMask).isAllOnesValue()) { 279 // Force bits to 1 to create a 'not' op. 280 I->setOperand(1, ConstantInt::getAllOnesValue(VTy)); 281 return I; 282 } 283 // If we can't turn this into a 'not', try to shrink the constant. 284 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 285 return I; 286 } 287 288 // If our LHS is an 'and' and if it has one use, and if any of the bits we 289 // are flipping are known to be set, then the xor is just resetting those 290 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 291 // simplifying both of them. 292 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) { 293 ConstantInt *AndRHS, *XorRHS; 294 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 295 match(I->getOperand(1), m_ConstantInt(XorRHS)) && 296 match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) && 297 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 298 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 299 300 Constant *AndC = 301 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 302 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 303 InsertNewInstWith(NewAnd, *I); 304 305 Constant *XorC = 306 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 307 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 308 return InsertNewInstWith(NewXor, *I); 309 } 310 } 311 break; 312 } 313 case Instruction::Select: { 314 Value *LHS, *RHS; 315 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 316 if (SPF == SPF_UMAX) { 317 // UMax(A, C) == A if ... 318 // The lowest non-zero bit of DemandMask is higher than the highest 319 // non-zero bit of C. 320 const APInt *C; 321 unsigned CTZ = DemandedMask.countTrailingZeros(); 322 if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits()) 323 return LHS; 324 } else if (SPF == SPF_UMIN) { 325 // UMin(A, C) == A if ... 326 // The lowest non-zero bit of DemandMask is higher than the highest 327 // non-one bit of C. 328 // This comes from using DeMorgans on the above umax example. 329 const APInt *C; 330 unsigned CTZ = DemandedMask.countTrailingZeros(); 331 if (match(RHS, m_APInt(C)) && 332 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 333 return LHS; 334 } 335 336 // If this is a select as part of any other min/max pattern, don't simplify 337 // any further in case we break the structure. 338 if (SPF != SPF_UNKNOWN) 339 return nullptr; 340 341 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 342 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 343 return I; 344 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 345 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 346 347 // If the operands are constants, see if we can simplify them. 348 // This is similar to ShrinkDemandedConstant, but for a select we want to 349 // try to keep the selected constants the same as icmp value constants, if 350 // we can. This helps not break apart (or helps put back together) 351 // canonical patterns like min and max. 352 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, 353 const APInt &DemandedMask) { 354 const APInt *SelC; 355 if (!match(I->getOperand(OpNo), m_APInt(SelC))) 356 return false; 357 358 // Get the constant out of the ICmp, if there is one. 359 // Only try this when exactly 1 operand is a constant (if both operands 360 // are constant, the icmp should eventually simplify). Otherwise, we may 361 // invert the transform that reduces set bits and infinite-loop. 362 Value *X; 363 const APInt *CmpC; 364 ICmpInst::Predicate Pred; 365 if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) || 366 isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth()) 367 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 368 369 // If the constant is already the same as the ICmp, leave it as-is. 370 if (*CmpC == *SelC) 371 return false; 372 // If the constants are not already the same, but can be with the demand 373 // mask, use the constant value from the ICmp. 374 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { 375 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC)); 376 return true; 377 } 378 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 379 }; 380 if (CanonicalizeSelectConstant(I, 1, DemandedMask) || 381 CanonicalizeSelectConstant(I, 2, DemandedMask)) 382 return I; 383 384 // Only known if known in both the LHS and RHS. 385 Known = KnownBits::commonBits(LHSKnown, RHSKnown); 386 break; 387 } 388 case Instruction::ZExt: 389 case Instruction::Trunc: { 390 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 391 392 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 393 KnownBits InputKnown(SrcBitWidth); 394 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 395 return I; 396 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); 397 Known = InputKnown.zextOrTrunc(BitWidth); 398 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 399 break; 400 } 401 case Instruction::BitCast: 402 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 403 return nullptr; // vector->int or fp->int? 404 405 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 406 if (VectorType *SrcVTy = 407 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 408 if (cast<FixedVectorType>(DstVTy)->getNumElements() != 409 cast<FixedVectorType>(SrcVTy)->getNumElements()) 410 // Don't touch a bitcast between vectors of different element counts. 411 return nullptr; 412 } else 413 // Don't touch a scalar-to-vector bitcast. 414 return nullptr; 415 } else if (I->getOperand(0)->getType()->isVectorTy()) 416 // Don't touch a vector-to-scalar bitcast. 417 return nullptr; 418 419 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 420 return I; 421 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 422 break; 423 case Instruction::SExt: { 424 // Compute the bits in the result that are not present in the input. 425 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 426 427 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 428 429 // If any of the sign extended bits are demanded, we know that the sign 430 // bit is demanded. 431 if (DemandedMask.getActiveBits() > SrcBitWidth) 432 InputDemandedBits.setBit(SrcBitWidth-1); 433 434 KnownBits InputKnown(SrcBitWidth); 435 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 436 return I; 437 438 // If the input sign bit is known zero, or if the NewBits are not demanded 439 // convert this into a zero extension. 440 if (InputKnown.isNonNegative() || 441 DemandedMask.getActiveBits() <= SrcBitWidth) { 442 // Convert to ZExt cast. 443 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 444 return InsertNewInstWith(NewCast, *I); 445 } 446 447 // If the sign bit of the input is known set or clear, then we know the 448 // top bits of the result. 449 Known = InputKnown.sext(BitWidth); 450 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 451 break; 452 } 453 case Instruction::Add: 454 if ((DemandedMask & 1) == 0) { 455 // If we do not need the low bit, try to convert bool math to logic: 456 // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN 457 Value *X, *Y; 458 if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))), 459 m_OneUse(m_SExt(m_Value(Y))))) && 460 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 461 // Truth table for inputs and output signbits: 462 // X:0 | X:1 463 // ---------- 464 // Y:0 | 0 | 0 | 465 // Y:1 | -1 | 0 | 466 // ---------- 467 IRBuilderBase::InsertPointGuard Guard(Builder); 468 Builder.SetInsertPoint(I); 469 Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y); 470 return Builder.CreateSExt(AndNot, VTy); 471 } 472 473 // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN 474 // TODO: Relax the one-use checks because we are removing an instruction? 475 if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))), 476 m_OneUse(m_SExt(m_Value(Y))))) && 477 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 478 // Truth table for inputs and output signbits: 479 // X:0 | X:1 480 // ----------- 481 // Y:0 | -1 | -1 | 482 // Y:1 | -1 | 0 | 483 // ----------- 484 IRBuilderBase::InsertPointGuard Guard(Builder); 485 Builder.SetInsertPoint(I); 486 Value *Or = Builder.CreateOr(X, Y); 487 return Builder.CreateSExt(Or, VTy); 488 } 489 } 490 LLVM_FALLTHROUGH; 491 case Instruction::Sub: { 492 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 493 /// about the high bits of the operands. 494 unsigned NLZ = DemandedMask.countLeadingZeros(); 495 // Right fill the mask of bits for this ADD/SUB to demand the most 496 // significant bit and all those below it. 497 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 498 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 499 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 500 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 501 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 502 if (NLZ > 0) { 503 // Disable the nsw and nuw flags here: We can no longer guarantee that 504 // we won't wrap after simplification. Removing the nsw/nuw flags is 505 // legal here because the top bit is not demanded. 506 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 507 BinOP.setHasNoSignedWrap(false); 508 BinOP.setHasNoUnsignedWrap(false); 509 } 510 return I; 511 } 512 513 // If we are known to be adding/subtracting zeros to every bit below 514 // the highest demanded bit, we just return the other side. 515 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 516 return I->getOperand(0); 517 // We can't do this with the LHS for subtraction, unless we are only 518 // demanding the LSB. 519 if ((I->getOpcode() == Instruction::Add || 520 DemandedFromOps.isOneValue()) && 521 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 522 return I->getOperand(1); 523 524 // Otherwise just compute the known bits of the result. 525 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 526 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 527 NSW, LHSKnown, RHSKnown); 528 break; 529 } 530 case Instruction::Shl: { 531 const APInt *SA; 532 if (match(I->getOperand(1), m_APInt(SA))) { 533 const APInt *ShrAmt; 534 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 535 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 536 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 537 DemandedMask, Known)) 538 return R; 539 540 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 541 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 542 543 // If the shift is NUW/NSW, then it does demand the high bits. 544 ShlOperator *IOp = cast<ShlOperator>(I); 545 if (IOp->hasNoSignedWrap()) 546 DemandedMaskIn.setHighBits(ShiftAmt+1); 547 else if (IOp->hasNoUnsignedWrap()) 548 DemandedMaskIn.setHighBits(ShiftAmt); 549 550 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 551 return I; 552 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 553 554 bool SignBitZero = Known.Zero.isSignBitSet(); 555 bool SignBitOne = Known.One.isSignBitSet(); 556 Known.Zero <<= ShiftAmt; 557 Known.One <<= ShiftAmt; 558 // low bits known zero. 559 if (ShiftAmt) 560 Known.Zero.setLowBits(ShiftAmt); 561 562 // If this shift has "nsw" keyword, then the result is either a poison 563 // value or has the same sign bit as the first operand. 564 if (IOp->hasNoSignedWrap()) { 565 if (SignBitZero) 566 Known.Zero.setSignBit(); 567 else if (SignBitOne) 568 Known.One.setSignBit(); 569 if (Known.hasConflict()) 570 return UndefValue::get(I->getType()); 571 } 572 } else { 573 // This is a variable shift, so we can't shift the demand mask by a known 574 // amount. But if we are not demanding high bits, then we are not 575 // demanding those bits from the pre-shifted operand either. 576 if (unsigned CTLZ = DemandedMask.countLeadingZeros()) { 577 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); 578 if (SimplifyDemandedBits(I, 0, DemandedFromOp, Known, Depth + 1)) { 579 // We can't guarantee that nsw/nuw hold after simplifying the operand. 580 I->dropPoisonGeneratingFlags(); 581 return I; 582 } 583 } 584 computeKnownBits(I, Known, Depth, CxtI); 585 } 586 break; 587 } 588 case Instruction::LShr: { 589 const APInt *SA; 590 if (match(I->getOperand(1), m_APInt(SA))) { 591 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 592 593 // Unsigned shift right. 594 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 595 596 // If the shift is exact, then it does demand the low bits (and knows that 597 // they are zero). 598 if (cast<LShrOperator>(I)->isExact()) 599 DemandedMaskIn.setLowBits(ShiftAmt); 600 601 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 602 return I; 603 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 604 Known.Zero.lshrInPlace(ShiftAmt); 605 Known.One.lshrInPlace(ShiftAmt); 606 if (ShiftAmt) 607 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 608 } else { 609 computeKnownBits(I, Known, Depth, CxtI); 610 } 611 break; 612 } 613 case Instruction::AShr: { 614 // If this is an arithmetic shift right and only the low-bit is set, we can 615 // always convert this into a logical shr, even if the shift amount is 616 // variable. The low bit of the shift cannot be an input sign bit unless 617 // the shift amount is >= the size of the datatype, which is undefined. 618 if (DemandedMask.isOneValue()) { 619 // Perform the logical shift right. 620 Instruction *NewVal = BinaryOperator::CreateLShr( 621 I->getOperand(0), I->getOperand(1), I->getName()); 622 return InsertNewInstWith(NewVal, *I); 623 } 624 625 // If the sign bit is the only bit demanded by this ashr, then there is no 626 // need to do it, the shift doesn't change the high bit. 627 if (DemandedMask.isSignMask()) 628 return I->getOperand(0); 629 630 const APInt *SA; 631 if (match(I->getOperand(1), m_APInt(SA))) { 632 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 633 634 // Signed shift right. 635 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 636 // If any of the high bits are demanded, we should set the sign bit as 637 // demanded. 638 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 639 DemandedMaskIn.setSignBit(); 640 641 // If the shift is exact, then it does demand the low bits (and knows that 642 // they are zero). 643 if (cast<AShrOperator>(I)->isExact()) 644 DemandedMaskIn.setLowBits(ShiftAmt); 645 646 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 647 return I; 648 649 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 650 651 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 652 // Compute the new bits that are at the top now plus sign bits. 653 APInt HighBits(APInt::getHighBitsSet( 654 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 655 Known.Zero.lshrInPlace(ShiftAmt); 656 Known.One.lshrInPlace(ShiftAmt); 657 658 // If the input sign bit is known to be zero, or if none of the top bits 659 // are demanded, turn this into an unsigned shift right. 660 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 661 if (Known.Zero[BitWidth-ShiftAmt-1] || 662 !DemandedMask.intersects(HighBits)) { 663 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 664 I->getOperand(1)); 665 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 666 return InsertNewInstWith(LShr, *I); 667 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 668 Known.One |= HighBits; 669 } 670 } else { 671 computeKnownBits(I, Known, Depth, CxtI); 672 } 673 break; 674 } 675 case Instruction::UDiv: { 676 // UDiv doesn't demand low bits that are zero in the divisor. 677 const APInt *SA; 678 if (match(I->getOperand(1), m_APInt(SA))) { 679 // If the shift is exact, then it does demand the low bits. 680 if (cast<UDivOperator>(I)->isExact()) 681 break; 682 683 // FIXME: Take the demanded mask of the result into account. 684 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 685 APInt DemandedMaskIn = 686 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 687 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) 688 return I; 689 690 // Propagate zero bits from the input. 691 Known.Zero.setHighBits(std::min( 692 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 693 } else { 694 computeKnownBits(I, Known, Depth, CxtI); 695 } 696 break; 697 } 698 case Instruction::SRem: { 699 ConstantInt *Rem; 700 if (match(I->getOperand(1), m_ConstantInt(Rem))) { 701 // X % -1 demands all the bits because we don't want to introduce 702 // INT_MIN % -1 (== undef) by accident. 703 if (Rem->isMinusOne()) 704 break; 705 APInt RA = Rem->getValue().abs(); 706 if (RA.isPowerOf2()) { 707 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 708 return I->getOperand(0); 709 710 APInt LowBits = RA - 1; 711 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 712 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 713 return I; 714 715 // The low bits of LHS are unchanged by the srem. 716 Known.Zero = LHSKnown.Zero & LowBits; 717 Known.One = LHSKnown.One & LowBits; 718 719 // If LHS is non-negative or has all low bits zero, then the upper bits 720 // are all zero. 721 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 722 Known.Zero |= ~LowBits; 723 724 // If LHS is negative and not all low bits are zero, then the upper bits 725 // are all one. 726 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 727 Known.One |= ~LowBits; 728 729 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 730 break; 731 } 732 } 733 734 // The sign bit is the LHS's sign bit, except when the result of the 735 // remainder is zero. 736 if (DemandedMask.isSignBitSet()) { 737 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 738 // If it's known zero, our sign bit is also zero. 739 if (LHSKnown.isNonNegative()) 740 Known.makeNonNegative(); 741 } 742 break; 743 } 744 case Instruction::URem: { 745 KnownBits Known2(BitWidth); 746 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 747 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 748 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 749 return I; 750 751 unsigned Leaders = Known2.countMinLeadingZeros(); 752 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 753 break; 754 } 755 case Instruction::Call: { 756 bool KnownBitsComputed = false; 757 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 758 switch (II->getIntrinsicID()) { 759 case Intrinsic::abs: { 760 if (DemandedMask == 1) 761 return II->getArgOperand(0); 762 break; 763 } 764 case Intrinsic::ctpop: { 765 // Checking if the number of clear bits is odd (parity)? If the type has 766 // an even number of bits, that's the same as checking if the number of 767 // set bits is odd, so we can eliminate the 'not' op. 768 Value *X; 769 if (DemandedMask == 1 && VTy->getScalarSizeInBits() % 2 == 0 && 770 match(II->getArgOperand(0), m_Not(m_Value(X)))) { 771 Function *Ctpop = Intrinsic::getDeclaration( 772 II->getModule(), Intrinsic::ctpop, II->getType()); 773 return InsertNewInstWith(CallInst::Create(Ctpop, {X}), *I); 774 } 775 break; 776 } 777 case Intrinsic::bswap: { 778 // If the only bits demanded come from one byte of the bswap result, 779 // just shift the input byte into position to eliminate the bswap. 780 unsigned NLZ = DemandedMask.countLeadingZeros(); 781 unsigned NTZ = DemandedMask.countTrailingZeros(); 782 783 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 784 // we need all the bits down to bit 8. Likewise, round NLZ. If we 785 // have 14 leading zeros, round to 8. 786 NLZ &= ~7; 787 NTZ &= ~7; 788 // If we need exactly one byte, we can do this transformation. 789 if (BitWidth-NLZ-NTZ == 8) { 790 unsigned ResultBit = NTZ; 791 unsigned InputBit = BitWidth-NTZ-8; 792 793 // Replace this with either a left or right shift to get the byte into 794 // the right place. 795 Instruction *NewVal; 796 if (InputBit > ResultBit) 797 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 798 ConstantInt::get(I->getType(), InputBit-ResultBit)); 799 else 800 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 801 ConstantInt::get(I->getType(), ResultBit-InputBit)); 802 NewVal->takeName(I); 803 return InsertNewInstWith(NewVal, *I); 804 } 805 break; 806 } 807 case Intrinsic::fshr: 808 case Intrinsic::fshl: { 809 const APInt *SA; 810 if (!match(I->getOperand(2), m_APInt(SA))) 811 break; 812 813 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 814 // defined, so no need to special-case zero shifts here. 815 uint64_t ShiftAmt = SA->urem(BitWidth); 816 if (II->getIntrinsicID() == Intrinsic::fshr) 817 ShiftAmt = BitWidth - ShiftAmt; 818 819 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 820 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 821 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || 822 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 823 return I; 824 825 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 826 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 827 Known.One = LHSKnown.One.shl(ShiftAmt) | 828 RHSKnown.One.lshr(BitWidth - ShiftAmt); 829 KnownBitsComputed = true; 830 break; 831 } 832 default: { 833 // Handle target specific intrinsics 834 Optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic( 835 *II, DemandedMask, Known, KnownBitsComputed); 836 if (V.hasValue()) 837 return V.getValue(); 838 break; 839 } 840 } 841 } 842 843 if (!KnownBitsComputed) 844 computeKnownBits(V, Known, Depth, CxtI); 845 break; 846 } 847 } 848 849 // If the client is only demanding bits that we know, return the known 850 // constant. 851 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 852 return Constant::getIntegerValue(VTy, Known.One); 853 return nullptr; 854 } 855 856 /// Helper routine of SimplifyDemandedUseBits. It computes Known 857 /// bits. It also tries to handle simplifications that can be done based on 858 /// DemandedMask, but without modifying the Instruction. 859 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits( 860 Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth, 861 Instruction *CxtI) { 862 unsigned BitWidth = DemandedMask.getBitWidth(); 863 Type *ITy = I->getType(); 864 865 KnownBits LHSKnown(BitWidth); 866 KnownBits RHSKnown(BitWidth); 867 868 // Despite the fact that we can't simplify this instruction in all User's 869 // context, we can at least compute the known bits, and we can 870 // do simplifications that apply to *just* the one user if we know that 871 // this instruction has a simpler value in that context. 872 switch (I->getOpcode()) { 873 case Instruction::And: { 874 // If either the LHS or the RHS are Zero, the result is zero. 875 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 876 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 877 CxtI); 878 879 Known = LHSKnown & RHSKnown; 880 881 // If the client is only demanding bits that we know, return the known 882 // constant. 883 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 884 return Constant::getIntegerValue(ITy, Known.One); 885 886 // If all of the demanded bits are known 1 on one side, return the other. 887 // These bits cannot contribute to the result of the 'and' in this 888 // context. 889 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 890 return I->getOperand(0); 891 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 892 return I->getOperand(1); 893 894 break; 895 } 896 case Instruction::Or: { 897 // We can simplify (X|Y) -> X or Y in the user's context if we know that 898 // only bits from X or Y are demanded. 899 900 // If either the LHS or the RHS are One, the result is One. 901 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 902 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 903 CxtI); 904 905 Known = LHSKnown | RHSKnown; 906 907 // If the client is only demanding bits that we know, return the known 908 // constant. 909 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 910 return Constant::getIntegerValue(ITy, Known.One); 911 912 // If all of the demanded bits are known zero on one side, return the 913 // other. These bits cannot contribute to the result of the 'or' in this 914 // context. 915 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 916 return I->getOperand(0); 917 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 918 return I->getOperand(1); 919 920 break; 921 } 922 case Instruction::Xor: { 923 // We can simplify (X^Y) -> X or Y in the user's context if we know that 924 // only bits from X or Y are demanded. 925 926 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 927 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 928 CxtI); 929 930 Known = LHSKnown ^ RHSKnown; 931 932 // If the client is only demanding bits that we know, return the known 933 // constant. 934 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 935 return Constant::getIntegerValue(ITy, Known.One); 936 937 // If all of the demanded bits are known zero on one side, return the 938 // other. 939 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 940 return I->getOperand(0); 941 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 942 return I->getOperand(1); 943 944 break; 945 } 946 case Instruction::AShr: { 947 // Compute the Known bits to simplify things downstream. 948 computeKnownBits(I, Known, Depth, CxtI); 949 950 // If this user is only demanding bits that we know, return the known 951 // constant. 952 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 953 return Constant::getIntegerValue(ITy, Known.One); 954 955 // If the right shift operand 0 is a result of a left shift by the same 956 // amount, this is probably a zero/sign extension, which may be unnecessary, 957 // if we do not demand any of the new sign bits. So, return the original 958 // operand instead. 959 const APInt *ShiftRC; 960 const APInt *ShiftLC; 961 Value *X; 962 unsigned BitWidth = DemandedMask.getBitWidth(); 963 if (match(I, 964 m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) && 965 ShiftLC == ShiftRC && ShiftLC->ult(BitWidth) && 966 DemandedMask.isSubsetOf(APInt::getLowBitsSet( 967 BitWidth, BitWidth - ShiftRC->getZExtValue()))) { 968 return X; 969 } 970 971 break; 972 } 973 default: 974 // Compute the Known bits to simplify things downstream. 975 computeKnownBits(I, Known, Depth, CxtI); 976 977 // If this user is only demanding bits that we know, return the known 978 // constant. 979 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 980 return Constant::getIntegerValue(ITy, Known.One); 981 982 break; 983 } 984 985 return nullptr; 986 } 987 988 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 989 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 990 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 991 /// of "C2-C1". 992 /// 993 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 994 /// ..., bn}, without considering the specific value X is holding. 995 /// This transformation is legal iff one of following conditions is hold: 996 /// 1) All the bit in S are 0, in this case E1 == E2. 997 /// 2) We don't care those bits in S, per the input DemandedMask. 998 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 999 /// rest bits. 1000 /// 1001 /// Currently we only test condition 2). 1002 /// 1003 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 1004 /// not successful. 1005 Value *InstCombinerImpl::simplifyShrShlDemandedBits( 1006 Instruction *Shr, const APInt &ShrOp1, Instruction *Shl, 1007 const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) { 1008 if (!ShlOp1 || !ShrOp1) 1009 return nullptr; // No-op. 1010 1011 Value *VarX = Shr->getOperand(0); 1012 Type *Ty = VarX->getType(); 1013 unsigned BitWidth = Ty->getScalarSizeInBits(); 1014 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 1015 return nullptr; // Undef. 1016 1017 unsigned ShlAmt = ShlOp1.getZExtValue(); 1018 unsigned ShrAmt = ShrOp1.getZExtValue(); 1019 1020 Known.One.clearAllBits(); 1021 Known.Zero.setLowBits(ShlAmt - 1); 1022 Known.Zero &= DemandedMask; 1023 1024 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 1025 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 1026 1027 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 1028 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 1029 (BitMask1.ashr(ShrAmt) << ShlAmt); 1030 1031 if (ShrAmt <= ShlAmt) { 1032 BitMask2 <<= (ShlAmt - ShrAmt); 1033 } else { 1034 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 1035 BitMask2.ashr(ShrAmt - ShlAmt); 1036 } 1037 1038 // Check if condition-2 (see the comment to this function) is satified. 1039 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 1040 if (ShrAmt == ShlAmt) 1041 return VarX; 1042 1043 if (!Shr->hasOneUse()) 1044 return nullptr; 1045 1046 BinaryOperator *New; 1047 if (ShrAmt < ShlAmt) { 1048 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 1049 New = BinaryOperator::CreateShl(VarX, Amt); 1050 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 1051 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 1052 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 1053 } else { 1054 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 1055 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 1056 BinaryOperator::CreateAShr(VarX, Amt); 1057 if (cast<BinaryOperator>(Shr)->isExact()) 1058 New->setIsExact(true); 1059 } 1060 1061 return InsertNewInstWith(New, *Shl); 1062 } 1063 1064 return nullptr; 1065 } 1066 1067 /// The specified value produces a vector with any number of elements. 1068 /// This method analyzes which elements of the operand are undef or poison and 1069 /// returns that information in UndefElts. 1070 /// 1071 /// DemandedElts contains the set of elements that are actually used by the 1072 /// caller, and by default (AllowMultipleUsers equals false) the value is 1073 /// simplified only if it has a single caller. If AllowMultipleUsers is set 1074 /// to true, DemandedElts refers to the union of sets of elements that are 1075 /// used by all callers. 1076 /// 1077 /// If the information about demanded elements can be used to simplify the 1078 /// operation, the operation is simplified, then the resultant value is 1079 /// returned. This returns null if no change was made. 1080 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V, 1081 APInt DemandedElts, 1082 APInt &UndefElts, 1083 unsigned Depth, 1084 bool AllowMultipleUsers) { 1085 // Cannot analyze scalable type. The number of vector elements is not a 1086 // compile-time constant. 1087 if (isa<ScalableVectorType>(V->getType())) 1088 return nullptr; 1089 1090 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 1091 APInt EltMask(APInt::getAllOnesValue(VWidth)); 1092 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1093 1094 if (match(V, m_Undef())) { 1095 // If the entire vector is undef or poison, just return this info. 1096 UndefElts = EltMask; 1097 return nullptr; 1098 } 1099 1100 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide poison. 1101 UndefElts = EltMask; 1102 return PoisonValue::get(V->getType()); 1103 } 1104 1105 UndefElts = 0; 1106 1107 if (auto *C = dyn_cast<Constant>(V)) { 1108 // Check if this is identity. If so, return 0 since we are not simplifying 1109 // anything. 1110 if (DemandedElts.isAllOnesValue()) 1111 return nullptr; 1112 1113 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1114 Constant *Poison = PoisonValue::get(EltTy); 1115 SmallVector<Constant*, 16> Elts; 1116 for (unsigned i = 0; i != VWidth; ++i) { 1117 if (!DemandedElts[i]) { // If not demanded, set to poison. 1118 Elts.push_back(Poison); 1119 UndefElts.setBit(i); 1120 continue; 1121 } 1122 1123 Constant *Elt = C->getAggregateElement(i); 1124 if (!Elt) return nullptr; 1125 1126 Elts.push_back(Elt); 1127 if (isa<UndefValue>(Elt)) // Already undef or poison. 1128 UndefElts.setBit(i); 1129 } 1130 1131 // If we changed the constant, return it. 1132 Constant *NewCV = ConstantVector::get(Elts); 1133 return NewCV != C ? NewCV : nullptr; 1134 } 1135 1136 // Limit search depth. 1137 if (Depth == 10) 1138 return nullptr; 1139 1140 if (!AllowMultipleUsers) { 1141 // If multiple users are using the root value, proceed with 1142 // simplification conservatively assuming that all elements 1143 // are needed. 1144 if (!V->hasOneUse()) { 1145 // Quit if we find multiple users of a non-root value though. 1146 // They'll be handled when it's their turn to be visited by 1147 // the main instcombine process. 1148 if (Depth != 0) 1149 // TODO: Just compute the UndefElts information recursively. 1150 return nullptr; 1151 1152 // Conservatively assume that all elements are needed. 1153 DemandedElts = EltMask; 1154 } 1155 } 1156 1157 Instruction *I = dyn_cast<Instruction>(V); 1158 if (!I) return nullptr; // Only analyze instructions. 1159 1160 bool MadeChange = false; 1161 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1162 APInt Demanded, APInt &Undef) { 1163 auto *II = dyn_cast<IntrinsicInst>(Inst); 1164 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1165 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1166 replaceOperand(*Inst, OpNum, V); 1167 MadeChange = true; 1168 } 1169 }; 1170 1171 APInt UndefElts2(VWidth, 0); 1172 APInt UndefElts3(VWidth, 0); 1173 switch (I->getOpcode()) { 1174 default: break; 1175 1176 case Instruction::GetElementPtr: { 1177 // The LangRef requires that struct geps have all constant indices. As 1178 // such, we can't convert any operand to partial undef. 1179 auto mayIndexStructType = [](GetElementPtrInst &GEP) { 1180 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); 1181 I != E; I++) 1182 if (I.isStruct()) 1183 return true;; 1184 return false; 1185 }; 1186 if (mayIndexStructType(cast<GetElementPtrInst>(*I))) 1187 break; 1188 1189 // Conservatively track the demanded elements back through any vector 1190 // operands we may have. We know there must be at least one, or we 1191 // wouldn't have a vector result to get here. Note that we intentionally 1192 // merge the undef bits here since gepping with either an undef base or 1193 // index results in undef. 1194 for (unsigned i = 0; i < I->getNumOperands(); i++) { 1195 if (match(I->getOperand(i), m_Undef())) { 1196 // If the entire vector is undefined, just return this info. 1197 UndefElts = EltMask; 1198 return nullptr; 1199 } 1200 if (I->getOperand(i)->getType()->isVectorTy()) { 1201 APInt UndefEltsOp(VWidth, 0); 1202 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp); 1203 UndefElts |= UndefEltsOp; 1204 } 1205 } 1206 1207 break; 1208 } 1209 case Instruction::InsertElement: { 1210 // If this is a variable index, we don't know which element it overwrites. 1211 // demand exactly the same input as we produce. 1212 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1213 if (!Idx) { 1214 // Note that we can't propagate undef elt info, because we don't know 1215 // which elt is getting updated. 1216 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); 1217 break; 1218 } 1219 1220 // The element inserted overwrites whatever was there, so the input demanded 1221 // set is simpler than the output set. 1222 unsigned IdxNo = Idx->getZExtValue(); 1223 APInt PreInsertDemandedElts = DemandedElts; 1224 if (IdxNo < VWidth) 1225 PreInsertDemandedElts.clearBit(IdxNo); 1226 1227 // If we only demand the element that is being inserted and that element 1228 // was extracted from the same index in another vector with the same type, 1229 // replace this insert with that other vector. 1230 // Note: This is attempted before the call to simplifyAndSetOp because that 1231 // may change UndefElts to a value that does not match with Vec. 1232 Value *Vec; 1233 if (PreInsertDemandedElts == 0 && 1234 match(I->getOperand(1), 1235 m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) && 1236 Vec->getType() == I->getType()) { 1237 return Vec; 1238 } 1239 1240 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); 1241 1242 // If this is inserting an element that isn't demanded, remove this 1243 // insertelement. 1244 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1245 Worklist.push(I); 1246 return I->getOperand(0); 1247 } 1248 1249 // The inserted element is defined. 1250 UndefElts.clearBit(IdxNo); 1251 break; 1252 } 1253 case Instruction::ShuffleVector: { 1254 auto *Shuffle = cast<ShuffleVectorInst>(I); 1255 assert(Shuffle->getOperand(0)->getType() == 1256 Shuffle->getOperand(1)->getType() && 1257 "Expected shuffle operands to have same type"); 1258 unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType()) 1259 ->getNumElements(); 1260 // Handle trivial case of a splat. Only check the first element of LHS 1261 // operand. 1262 if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) && 1263 DemandedElts.isAllOnesValue()) { 1264 if (!match(I->getOperand(1), m_Undef())) { 1265 I->setOperand(1, PoisonValue::get(I->getOperand(1)->getType())); 1266 MadeChange = true; 1267 } 1268 APInt LeftDemanded(OpWidth, 1); 1269 APInt LHSUndefElts(OpWidth, 0); 1270 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1271 if (LHSUndefElts[0]) 1272 UndefElts = EltMask; 1273 else 1274 UndefElts.clearAllBits(); 1275 break; 1276 } 1277 1278 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); 1279 for (unsigned i = 0; i < VWidth; i++) { 1280 if (DemandedElts[i]) { 1281 unsigned MaskVal = Shuffle->getMaskValue(i); 1282 if (MaskVal != -1u) { 1283 assert(MaskVal < OpWidth * 2 && 1284 "shufflevector mask index out of range!"); 1285 if (MaskVal < OpWidth) 1286 LeftDemanded.setBit(MaskVal); 1287 else 1288 RightDemanded.setBit(MaskVal - OpWidth); 1289 } 1290 } 1291 } 1292 1293 APInt LHSUndefElts(OpWidth, 0); 1294 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1295 1296 APInt RHSUndefElts(OpWidth, 0); 1297 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); 1298 1299 // If this shuffle does not change the vector length and the elements 1300 // demanded by this shuffle are an identity mask, then this shuffle is 1301 // unnecessary. 1302 // 1303 // We are assuming canonical form for the mask, so the source vector is 1304 // operand 0 and operand 1 is not used. 1305 // 1306 // Note that if an element is demanded and this shuffle mask is undefined 1307 // for that element, then the shuffle is not considered an identity 1308 // operation. The shuffle prevents poison from the operand vector from 1309 // leaking to the result by replacing poison with an undefined value. 1310 if (VWidth == OpWidth) { 1311 bool IsIdentityShuffle = true; 1312 for (unsigned i = 0; i < VWidth; i++) { 1313 unsigned MaskVal = Shuffle->getMaskValue(i); 1314 if (DemandedElts[i] && i != MaskVal) { 1315 IsIdentityShuffle = false; 1316 break; 1317 } 1318 } 1319 if (IsIdentityShuffle) 1320 return Shuffle->getOperand(0); 1321 } 1322 1323 bool NewUndefElts = false; 1324 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1325 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1326 bool LHSUniform = true; 1327 bool RHSUniform = true; 1328 for (unsigned i = 0; i < VWidth; i++) { 1329 unsigned MaskVal = Shuffle->getMaskValue(i); 1330 if (MaskVal == -1u) { 1331 UndefElts.setBit(i); 1332 } else if (!DemandedElts[i]) { 1333 NewUndefElts = true; 1334 UndefElts.setBit(i); 1335 } else if (MaskVal < OpWidth) { 1336 if (LHSUndefElts[MaskVal]) { 1337 NewUndefElts = true; 1338 UndefElts.setBit(i); 1339 } else { 1340 LHSIdx = LHSIdx == -1u ? i : OpWidth; 1341 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; 1342 LHSUniform = LHSUniform && (MaskVal == i); 1343 } 1344 } else { 1345 if (RHSUndefElts[MaskVal - OpWidth]) { 1346 NewUndefElts = true; 1347 UndefElts.setBit(i); 1348 } else { 1349 RHSIdx = RHSIdx == -1u ? i : OpWidth; 1350 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; 1351 RHSUniform = RHSUniform && (MaskVal - OpWidth == i); 1352 } 1353 } 1354 } 1355 1356 // Try to transform shuffle with constant vector and single element from 1357 // this constant vector to single insertelement instruction. 1358 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1359 // insertelement V, C[ci], ci-n 1360 if (OpWidth == 1361 cast<FixedVectorType>(Shuffle->getType())->getNumElements()) { 1362 Value *Op = nullptr; 1363 Constant *Value = nullptr; 1364 unsigned Idx = -1u; 1365 1366 // Find constant vector with the single element in shuffle (LHS or RHS). 1367 if (LHSIdx < OpWidth && RHSUniform) { 1368 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1369 Op = Shuffle->getOperand(1); 1370 Value = CV->getOperand(LHSValIdx); 1371 Idx = LHSIdx; 1372 } 1373 } 1374 if (RHSIdx < OpWidth && LHSUniform) { 1375 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1376 Op = Shuffle->getOperand(0); 1377 Value = CV->getOperand(RHSValIdx); 1378 Idx = RHSIdx; 1379 } 1380 } 1381 // Found constant vector with single element - convert to insertelement. 1382 if (Op && Value) { 1383 Instruction *New = InsertElementInst::Create( 1384 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1385 Shuffle->getName()); 1386 InsertNewInstWith(New, *Shuffle); 1387 return New; 1388 } 1389 } 1390 if (NewUndefElts) { 1391 // Add additional discovered undefs. 1392 SmallVector<int, 16> Elts; 1393 for (unsigned i = 0; i < VWidth; ++i) { 1394 if (UndefElts[i]) 1395 Elts.push_back(UndefMaskElem); 1396 else 1397 Elts.push_back(Shuffle->getMaskValue(i)); 1398 } 1399 Shuffle->setShuffleMask(Elts); 1400 MadeChange = true; 1401 } 1402 break; 1403 } 1404 case Instruction::Select: { 1405 // If this is a vector select, try to transform the select condition based 1406 // on the current demanded elements. 1407 SelectInst *Sel = cast<SelectInst>(I); 1408 if (Sel->getCondition()->getType()->isVectorTy()) { 1409 // TODO: We are not doing anything with UndefElts based on this call. 1410 // It is overwritten below based on the other select operands. If an 1411 // element of the select condition is known undef, then we are free to 1412 // choose the output value from either arm of the select. If we know that 1413 // one of those values is undef, then the output can be undef. 1414 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1415 } 1416 1417 // Next, see if we can transform the arms of the select. 1418 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1419 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1420 for (unsigned i = 0; i < VWidth; i++) { 1421 // isNullValue() always returns false when called on a ConstantExpr. 1422 // Skip constant expressions to avoid propagating incorrect information. 1423 Constant *CElt = CV->getAggregateElement(i); 1424 if (isa<ConstantExpr>(CElt)) 1425 continue; 1426 // TODO: If a select condition element is undef, we can demand from 1427 // either side. If one side is known undef, choosing that side would 1428 // propagate undef. 1429 if (CElt->isNullValue()) 1430 DemandedLHS.clearBit(i); 1431 else 1432 DemandedRHS.clearBit(i); 1433 } 1434 } 1435 1436 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); 1437 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); 1438 1439 // Output elements are undefined if the element from each arm is undefined. 1440 // TODO: This can be improved. See comment in select condition handling. 1441 UndefElts = UndefElts2 & UndefElts3; 1442 break; 1443 } 1444 case Instruction::BitCast: { 1445 // Vector->vector casts only. 1446 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1447 if (!VTy) break; 1448 unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements(); 1449 APInt InputDemandedElts(InVWidth, 0); 1450 UndefElts2 = APInt(InVWidth, 0); 1451 unsigned Ratio; 1452 1453 if (VWidth == InVWidth) { 1454 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1455 // elements as are demanded of us. 1456 Ratio = 1; 1457 InputDemandedElts = DemandedElts; 1458 } else if ((VWidth % InVWidth) == 0) { 1459 // If the number of elements in the output is a multiple of the number of 1460 // elements in the input then an input element is live if any of the 1461 // corresponding output elements are live. 1462 Ratio = VWidth / InVWidth; 1463 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1464 if (DemandedElts[OutIdx]) 1465 InputDemandedElts.setBit(OutIdx / Ratio); 1466 } else if ((InVWidth % VWidth) == 0) { 1467 // If the number of elements in the input is a multiple of the number of 1468 // elements in the output then an input element is live if the 1469 // corresponding output element is live. 1470 Ratio = InVWidth / VWidth; 1471 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1472 if (DemandedElts[InIdx / Ratio]) 1473 InputDemandedElts.setBit(InIdx); 1474 } else { 1475 // Unsupported so far. 1476 break; 1477 } 1478 1479 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); 1480 1481 if (VWidth == InVWidth) { 1482 UndefElts = UndefElts2; 1483 } else if ((VWidth % InVWidth) == 0) { 1484 // If the number of elements in the output is a multiple of the number of 1485 // elements in the input then an output element is undef if the 1486 // corresponding input element is undef. 1487 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1488 if (UndefElts2[OutIdx / Ratio]) 1489 UndefElts.setBit(OutIdx); 1490 } else if ((InVWidth % VWidth) == 0) { 1491 // If the number of elements in the input is a multiple of the number of 1492 // elements in the output then an output element is undef if all of the 1493 // corresponding input elements are undef. 1494 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1495 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1496 if (SubUndef.countPopulation() == Ratio) 1497 UndefElts.setBit(OutIdx); 1498 } 1499 } else { 1500 llvm_unreachable("Unimp"); 1501 } 1502 break; 1503 } 1504 case Instruction::FPTrunc: 1505 case Instruction::FPExt: 1506 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1507 break; 1508 1509 case Instruction::Call: { 1510 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1511 if (!II) break; 1512 switch (II->getIntrinsicID()) { 1513 case Intrinsic::masked_gather: // fallthrough 1514 case Intrinsic::masked_load: { 1515 // Subtlety: If we load from a pointer, the pointer must be valid 1516 // regardless of whether the element is demanded. Doing otherwise risks 1517 // segfaults which didn't exist in the original program. 1518 APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)), 1519 DemandedPassThrough(DemandedElts); 1520 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) 1521 for (unsigned i = 0; i < VWidth; i++) { 1522 Constant *CElt = CV->getAggregateElement(i); 1523 if (CElt->isNullValue()) 1524 DemandedPtrs.clearBit(i); 1525 else if (CElt->isAllOnesValue()) 1526 DemandedPassThrough.clearBit(i); 1527 } 1528 if (II->getIntrinsicID() == Intrinsic::masked_gather) 1529 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2); 1530 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3); 1531 1532 // Output elements are undefined if the element from both sources are. 1533 // TODO: can strengthen via mask as well. 1534 UndefElts = UndefElts2 & UndefElts3; 1535 break; 1536 } 1537 default: { 1538 // Handle target specific intrinsics 1539 Optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic( 1540 *II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 1541 simplifyAndSetOp); 1542 if (V.hasValue()) 1543 return V.getValue(); 1544 break; 1545 } 1546 } // switch on IntrinsicID 1547 break; 1548 } // case Call 1549 } // switch on Opcode 1550 1551 // TODO: We bail completely on integer div/rem and shifts because they have 1552 // UB/poison potential, but that should be refined. 1553 BinaryOperator *BO; 1554 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1555 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1556 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); 1557 1558 // Any change to an instruction with potential poison must clear those flags 1559 // because we can not guarantee those constraints now. Other analysis may 1560 // determine that it is safe to re-apply the flags. 1561 if (MadeChange) 1562 BO->dropPoisonGeneratingFlags(); 1563 1564 // Output elements are undefined if both are undefined. Consider things 1565 // like undef & 0. The result is known zero, not undef. 1566 UndefElts &= UndefElts2; 1567 } 1568 1569 // If we've proven all of the lanes undef, return an undef value. 1570 // TODO: Intersect w/demanded lanes 1571 if (UndefElts.isAllOnesValue()) 1572 return UndefValue::get(I->getType());; 1573 1574 return MadeChange ? I : nullptr; 1575 } 1576