1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/IR/GetElementPtrTypeIterator.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 #include "llvm/Transforms/InstCombine/InstCombiner.h" 21 22 using namespace llvm; 23 using namespace llvm::PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 static cl::opt<bool> 28 VerifyKnownBits("instcombine-verify-known-bits", 29 cl::desc("Verify that computeKnownBits() and " 30 "SimplifyDemandedBits() are consistent"), 31 cl::Hidden, cl::init(false)); 32 33 /// Check to see if the specified operand of the specified instruction is a 34 /// constant integer. If so, check to see if there are any bits set in the 35 /// constant that are not demanded. If so, shrink the constant and return true. 36 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 37 const APInt &Demanded) { 38 assert(I && "No instruction?"); 39 assert(OpNo < I->getNumOperands() && "Operand index too large"); 40 41 // The operand must be a constant integer or splat integer. 42 Value *Op = I->getOperand(OpNo); 43 const APInt *C; 44 if (!match(Op, m_APInt(C))) 45 return false; 46 47 // If there are no bits set that aren't demanded, nothing to do. 48 if (C->isSubsetOf(Demanded)) 49 return false; 50 51 // This instruction is producing bits that are not demanded. Shrink the RHS. 52 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 53 54 return true; 55 } 56 57 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 58 /// returns the element type's bitwidth. 59 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 60 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 61 return BitWidth; 62 63 return DL.getPointerTypeSizeInBits(Ty); 64 } 65 66 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 67 /// the instruction has any properties that allow us to simplify its operands. 68 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst, 69 KnownBits &Known) { 70 APInt DemandedMask(APInt::getAllOnes(Known.getBitWidth())); 71 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 72 0, &Inst); 73 if (!V) return false; 74 if (V == &Inst) return true; 75 replaceInstUsesWith(Inst, V); 76 return true; 77 } 78 79 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 80 /// the instruction has any properties that allow us to simplify its operands. 81 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) { 82 KnownBits Known(getBitWidth(Inst.getType(), DL)); 83 return SimplifyDemandedInstructionBits(Inst, Known); 84 } 85 86 /// This form of SimplifyDemandedBits simplifies the specified instruction 87 /// operand if possible, updating it in place. It returns true if it made any 88 /// change and false otherwise. 89 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 90 const APInt &DemandedMask, 91 KnownBits &Known, unsigned Depth) { 92 Use &U = I->getOperandUse(OpNo); 93 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 94 Depth, I); 95 if (!NewVal) return false; 96 if (Instruction* OpInst = dyn_cast<Instruction>(U)) 97 salvageDebugInfo(*OpInst); 98 99 replaceUse(U, NewVal); 100 return true; 101 } 102 103 /// This function attempts to replace V with a simpler value based on the 104 /// demanded bits. When this function is called, it is known that only the bits 105 /// set in DemandedMask of the result of V are ever used downstream. 106 /// Consequently, depending on the mask and V, it may be possible to replace V 107 /// with a constant or one of its operands. In such cases, this function does 108 /// the replacement and returns true. In all other cases, it returns false after 109 /// analyzing the expression and setting KnownOne and known to be one in the 110 /// expression. Known.Zero contains all the bits that are known to be zero in 111 /// the expression. These are provided to potentially allow the caller (which 112 /// might recursively be SimplifyDemandedBits itself) to simplify the 113 /// expression. 114 /// Known.One and Known.Zero always follow the invariant that: 115 /// Known.One & Known.Zero == 0. 116 /// That is, a bit can't be both 1 and 0. The bits in Known.One and Known.Zero 117 /// are accurate even for bits not in DemandedMask. Note 118 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 119 /// be the same. 120 /// 121 /// This returns null if it did not change anything and it permits no 122 /// simplification. This returns V itself if it did some simplification of V's 123 /// operands based on the information about what bits are demanded. This returns 124 /// some other non-null value if it found out that V is equal to another value 125 /// in the context where the specified bits are demanded, but not for all users. 126 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 127 KnownBits &Known, 128 unsigned Depth, 129 Instruction *CxtI) { 130 assert(V != nullptr && "Null pointer of Value???"); 131 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 132 uint32_t BitWidth = DemandedMask.getBitWidth(); 133 Type *VTy = V->getType(); 134 assert( 135 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 136 Known.getBitWidth() == BitWidth && 137 "Value *V, DemandedMask and Known must have same BitWidth"); 138 139 if (isa<Constant>(V)) { 140 computeKnownBits(V, Known, Depth, CxtI); 141 return nullptr; 142 } 143 144 Known.resetAll(); 145 if (DemandedMask.isZero()) // Not demanding any bits from V. 146 return UndefValue::get(VTy); 147 148 if (Depth == MaxAnalysisRecursionDepth) 149 return nullptr; 150 151 Instruction *I = dyn_cast<Instruction>(V); 152 if (!I) { 153 computeKnownBits(V, Known, Depth, CxtI); 154 return nullptr; // Only analyze instructions. 155 } 156 157 // If there are multiple uses of this value and we aren't at the root, then 158 // we can't do any simplifications of the operands, because DemandedMask 159 // only reflects the bits demanded by *one* of the users. 160 if (Depth != 0 && !I->hasOneUse()) 161 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 162 163 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 164 // If this is the root being simplified, allow it to have multiple uses, 165 // just set the DemandedMask to all bits so that we can try to simplify the 166 // operands. This allows visitTruncInst (for example) to simplify the 167 // operand of a trunc without duplicating all the logic below. 168 if (Depth == 0 && !V->hasOneUse()) 169 DemandedMask.setAllBits(); 170 171 // Update flags after simplifying an operand based on the fact that some high 172 // order bits are not demanded. 173 auto disableWrapFlagsBasedOnUnusedHighBits = [](Instruction *I, 174 unsigned NLZ) { 175 if (NLZ > 0) { 176 // Disable the nsw and nuw flags here: We can no longer guarantee that 177 // we won't wrap after simplification. Removing the nsw/nuw flags is 178 // legal here because the top bit is not demanded. 179 I->setHasNoSignedWrap(false); 180 I->setHasNoUnsignedWrap(false); 181 } 182 return I; 183 }; 184 185 // If the high-bits of an ADD/SUB/MUL are not demanded, then we do not care 186 // about the high bits of the operands. 187 auto simplifyOperandsBasedOnUnusedHighBits = [&](APInt &DemandedFromOps) { 188 unsigned NLZ = DemandedMask.countl_zero(); 189 // Right fill the mask of bits for the operands to demand the most 190 // significant bit and all those below it. 191 DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ); 192 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 193 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 194 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 195 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 196 disableWrapFlagsBasedOnUnusedHighBits(I, NLZ); 197 return true; 198 } 199 return false; 200 }; 201 202 switch (I->getOpcode()) { 203 default: 204 computeKnownBits(I, Known, Depth, CxtI); 205 break; 206 case Instruction::And: { 207 // If either the LHS or the RHS are Zero, the result is zero. 208 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 209 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 210 Depth + 1)) 211 return I; 212 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 213 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 214 215 Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown, 216 Depth, SQ.getWithInstruction(CxtI)); 217 218 // If the client is only demanding bits that we know, return the known 219 // constant. 220 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 221 return Constant::getIntegerValue(VTy, Known.One); 222 223 // If all of the demanded bits are known 1 on one side, return the other. 224 // These bits cannot contribute to the result of the 'and'. 225 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 226 return I->getOperand(0); 227 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 228 return I->getOperand(1); 229 230 // If the RHS is a constant, see if we can simplify it. 231 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 232 return I; 233 234 break; 235 } 236 case Instruction::Or: { 237 // If either the LHS or the RHS are One, the result is One. 238 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 239 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 240 Depth + 1)) { 241 // Disjoint flag may not longer hold. 242 I->dropPoisonGeneratingFlags(); 243 return I; 244 } 245 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 246 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 247 248 Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown, 249 Depth, SQ.getWithInstruction(CxtI)); 250 251 // If the client is only demanding bits that we know, return the known 252 // constant. 253 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 254 return Constant::getIntegerValue(VTy, Known.One); 255 256 // If all of the demanded bits are known zero on one side, return the other. 257 // These bits cannot contribute to the result of the 'or'. 258 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 259 return I->getOperand(0); 260 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 261 return I->getOperand(1); 262 263 // If the RHS is a constant, see if we can simplify it. 264 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 265 return I; 266 267 // Infer disjoint flag if no common bits are set. 268 if (!cast<PossiblyDisjointInst>(I)->isDisjoint()) { 269 WithCache<const Value *> LHSCache(I->getOperand(0), LHSKnown), 270 RHSCache(I->getOperand(1), RHSKnown); 271 if (haveNoCommonBitsSet(LHSCache, RHSCache, SQ.getWithInstruction(I))) { 272 cast<PossiblyDisjointInst>(I)->setIsDisjoint(true); 273 return I; 274 } 275 } 276 277 break; 278 } 279 case Instruction::Xor: { 280 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 281 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 282 return I; 283 Value *LHS, *RHS; 284 if (DemandedMask == 1 && 285 match(I->getOperand(0), m_Intrinsic<Intrinsic::ctpop>(m_Value(LHS))) && 286 match(I->getOperand(1), m_Intrinsic<Intrinsic::ctpop>(m_Value(RHS)))) { 287 // (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1 288 IRBuilderBase::InsertPointGuard Guard(Builder); 289 Builder.SetInsertPoint(I); 290 auto *Xor = Builder.CreateXor(LHS, RHS); 291 return Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, Xor); 292 } 293 294 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 295 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 296 297 Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown, 298 Depth, SQ.getWithInstruction(CxtI)); 299 300 // If the client is only demanding bits that we know, return the known 301 // constant. 302 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 303 return Constant::getIntegerValue(VTy, Known.One); 304 305 // If all of the demanded bits are known zero on one side, return the other. 306 // These bits cannot contribute to the result of the 'xor'. 307 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 308 return I->getOperand(0); 309 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 310 return I->getOperand(1); 311 312 // If all of the demanded bits are known to be zero on one side or the 313 // other, turn this into an *inclusive* or. 314 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 315 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 316 Instruction *Or = 317 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1)); 318 if (DemandedMask.isAllOnes()) 319 cast<PossiblyDisjointInst>(Or)->setIsDisjoint(true); 320 Or->takeName(I); 321 return InsertNewInstWith(Or, I->getIterator()); 322 } 323 324 // If all of the demanded bits on one side are known, and all of the set 325 // bits on that side are also known to be set on the other side, turn this 326 // into an AND, as we know the bits will be cleared. 327 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 328 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 329 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 330 Constant *AndC = Constant::getIntegerValue(VTy, 331 ~RHSKnown.One & DemandedMask); 332 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 333 return InsertNewInstWith(And, I->getIterator()); 334 } 335 336 // If the RHS is a constant, see if we can change it. Don't alter a -1 337 // constant because that's a canonical 'not' op, and that is better for 338 // combining, SCEV, and codegen. 339 const APInt *C; 340 if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnes()) { 341 if ((*C | ~DemandedMask).isAllOnes()) { 342 // Force bits to 1 to create a 'not' op. 343 I->setOperand(1, ConstantInt::getAllOnesValue(VTy)); 344 return I; 345 } 346 // If we can't turn this into a 'not', try to shrink the constant. 347 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 348 return I; 349 } 350 351 // If our LHS is an 'and' and if it has one use, and if any of the bits we 352 // are flipping are known to be set, then the xor is just resetting those 353 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 354 // simplifying both of them. 355 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) { 356 ConstantInt *AndRHS, *XorRHS; 357 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 358 match(I->getOperand(1), m_ConstantInt(XorRHS)) && 359 match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) && 360 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 361 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 362 363 Constant *AndC = ConstantInt::get(VTy, NewMask & AndRHS->getValue()); 364 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 365 InsertNewInstWith(NewAnd, I->getIterator()); 366 367 Constant *XorC = ConstantInt::get(VTy, NewMask & XorRHS->getValue()); 368 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 369 return InsertNewInstWith(NewXor, I->getIterator()); 370 } 371 } 372 break; 373 } 374 case Instruction::Select: { 375 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 376 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 377 return I; 378 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 379 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 380 381 // If the operands are constants, see if we can simplify them. 382 // This is similar to ShrinkDemandedConstant, but for a select we want to 383 // try to keep the selected constants the same as icmp value constants, if 384 // we can. This helps not break apart (or helps put back together) 385 // canonical patterns like min and max. 386 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, 387 const APInt &DemandedMask) { 388 const APInt *SelC; 389 if (!match(I->getOperand(OpNo), m_APInt(SelC))) 390 return false; 391 392 // Get the constant out of the ICmp, if there is one. 393 // Only try this when exactly 1 operand is a constant (if both operands 394 // are constant, the icmp should eventually simplify). Otherwise, we may 395 // invert the transform that reduces set bits and infinite-loop. 396 Value *X; 397 const APInt *CmpC; 398 ICmpInst::Predicate Pred; 399 if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) || 400 isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth()) 401 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 402 403 // If the constant is already the same as the ICmp, leave it as-is. 404 if (*CmpC == *SelC) 405 return false; 406 // If the constants are not already the same, but can be with the demand 407 // mask, use the constant value from the ICmp. 408 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { 409 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC)); 410 return true; 411 } 412 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 413 }; 414 if (CanonicalizeSelectConstant(I, 1, DemandedMask) || 415 CanonicalizeSelectConstant(I, 2, DemandedMask)) 416 return I; 417 418 // Only known if known in both the LHS and RHS. 419 Known = LHSKnown.intersectWith(RHSKnown); 420 break; 421 } 422 case Instruction::Trunc: { 423 // If we do not demand the high bits of a right-shifted and truncated value, 424 // then we may be able to truncate it before the shift. 425 Value *X; 426 const APInt *C; 427 if (match(I->getOperand(0), m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) { 428 // The shift amount must be valid (not poison) in the narrow type, and 429 // it must not be greater than the high bits demanded of the result. 430 if (C->ult(VTy->getScalarSizeInBits()) && 431 C->ule(DemandedMask.countl_zero())) { 432 // trunc (lshr X, C) --> lshr (trunc X), C 433 IRBuilderBase::InsertPointGuard Guard(Builder); 434 Builder.SetInsertPoint(I); 435 Value *Trunc = Builder.CreateTrunc(X, VTy); 436 return Builder.CreateLShr(Trunc, C->getZExtValue()); 437 } 438 } 439 } 440 [[fallthrough]]; 441 case Instruction::ZExt: { 442 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 443 444 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 445 KnownBits InputKnown(SrcBitWidth); 446 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) { 447 // For zext nneg, we may have dropped the instruction which made the 448 // input non-negative. 449 I->dropPoisonGeneratingFlags(); 450 return I; 451 } 452 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); 453 if (I->getOpcode() == Instruction::ZExt && I->hasNonNeg() && 454 !InputKnown.isNegative()) 455 InputKnown.makeNonNegative(); 456 Known = InputKnown.zextOrTrunc(BitWidth); 457 458 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 459 break; 460 } 461 case Instruction::SExt: { 462 // Compute the bits in the result that are not present in the input. 463 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 464 465 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 466 467 // If any of the sign extended bits are demanded, we know that the sign 468 // bit is demanded. 469 if (DemandedMask.getActiveBits() > SrcBitWidth) 470 InputDemandedBits.setBit(SrcBitWidth-1); 471 472 KnownBits InputKnown(SrcBitWidth); 473 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 474 return I; 475 476 // If the input sign bit is known zero, or if the NewBits are not demanded 477 // convert this into a zero extension. 478 if (InputKnown.isNonNegative() || 479 DemandedMask.getActiveBits() <= SrcBitWidth) { 480 // Convert to ZExt cast. 481 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy); 482 NewCast->takeName(I); 483 return InsertNewInstWith(NewCast, I->getIterator()); 484 } 485 486 // If the sign bit of the input is known set or clear, then we know the 487 // top bits of the result. 488 Known = InputKnown.sext(BitWidth); 489 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 490 break; 491 } 492 case Instruction::Add: { 493 if ((DemandedMask & 1) == 0) { 494 // If we do not need the low bit, try to convert bool math to logic: 495 // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN 496 Value *X, *Y; 497 if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))), 498 m_OneUse(m_SExt(m_Value(Y))))) && 499 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 500 // Truth table for inputs and output signbits: 501 // X:0 | X:1 502 // ---------- 503 // Y:0 | 0 | 0 | 504 // Y:1 | -1 | 0 | 505 // ---------- 506 IRBuilderBase::InsertPointGuard Guard(Builder); 507 Builder.SetInsertPoint(I); 508 Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y); 509 return Builder.CreateSExt(AndNot, VTy); 510 } 511 512 // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN 513 // TODO: Relax the one-use checks because we are removing an instruction? 514 if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))), 515 m_OneUse(m_SExt(m_Value(Y))))) && 516 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 517 // Truth table for inputs and output signbits: 518 // X:0 | X:1 519 // ----------- 520 // Y:0 | -1 | -1 | 521 // Y:1 | -1 | 0 | 522 // ----------- 523 IRBuilderBase::InsertPointGuard Guard(Builder); 524 Builder.SetInsertPoint(I); 525 Value *Or = Builder.CreateOr(X, Y); 526 return Builder.CreateSExt(Or, VTy); 527 } 528 } 529 530 // Right fill the mask of bits for the operands to demand the most 531 // significant bit and all those below it. 532 unsigned NLZ = DemandedMask.countl_zero(); 533 APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ); 534 if (ShrinkDemandedConstant(I, 1, DemandedFromOps) || 535 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) 536 return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ); 537 538 // If low order bits are not demanded and known to be zero in one operand, 539 // then we don't need to demand them from the other operand, since they 540 // can't cause overflow into any bits that are demanded in the result. 541 unsigned NTZ = (~DemandedMask & RHSKnown.Zero).countr_one(); 542 APInt DemandedFromLHS = DemandedFromOps; 543 DemandedFromLHS.clearLowBits(NTZ); 544 if (ShrinkDemandedConstant(I, 0, DemandedFromLHS) || 545 SimplifyDemandedBits(I, 0, DemandedFromLHS, LHSKnown, Depth + 1)) 546 return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ); 547 548 // If we are known to be adding zeros to every bit below 549 // the highest demanded bit, we just return the other side. 550 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 551 return I->getOperand(0); 552 if (DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 553 return I->getOperand(1); 554 555 // (add X, C) --> (xor X, C) IFF C is equal to the top bit of the DemandMask 556 { 557 const APInt *C; 558 if (match(I->getOperand(1), m_APInt(C)) && 559 C->isOneBitSet(DemandedMask.getActiveBits() - 1)) { 560 IRBuilderBase::InsertPointGuard Guard(Builder); 561 Builder.SetInsertPoint(I); 562 return Builder.CreateXor(I->getOperand(0), ConstantInt::get(VTy, *C)); 563 } 564 } 565 566 // Otherwise just compute the known bits of the result. 567 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 568 Known = KnownBits::computeForAddSub(true, NSW, LHSKnown, RHSKnown); 569 break; 570 } 571 case Instruction::Sub: { 572 // Right fill the mask of bits for the operands to demand the most 573 // significant bit and all those below it. 574 unsigned NLZ = DemandedMask.countl_zero(); 575 APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ); 576 if (ShrinkDemandedConstant(I, 1, DemandedFromOps) || 577 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) 578 return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ); 579 580 // If low order bits are not demanded and are known to be zero in RHS, 581 // then we don't need to demand them from LHS, since they can't cause a 582 // borrow from any bits that are demanded in the result. 583 unsigned NTZ = (~DemandedMask & RHSKnown.Zero).countr_one(); 584 APInt DemandedFromLHS = DemandedFromOps; 585 DemandedFromLHS.clearLowBits(NTZ); 586 if (ShrinkDemandedConstant(I, 0, DemandedFromLHS) || 587 SimplifyDemandedBits(I, 0, DemandedFromLHS, LHSKnown, Depth + 1)) 588 return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ); 589 590 // If we are known to be subtracting zeros from every bit below 591 // the highest demanded bit, we just return the other side. 592 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 593 return I->getOperand(0); 594 // We can't do this with the LHS for subtraction, unless we are only 595 // demanding the LSB. 596 if (DemandedFromOps.isOne() && DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 597 return I->getOperand(1); 598 599 // Otherwise just compute the known bits of the result. 600 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 601 Known = KnownBits::computeForAddSub(false, NSW, LHSKnown, RHSKnown); 602 break; 603 } 604 case Instruction::Mul: { 605 APInt DemandedFromOps; 606 if (simplifyOperandsBasedOnUnusedHighBits(DemandedFromOps)) 607 return I; 608 609 if (DemandedMask.isPowerOf2()) { 610 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 611 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 612 // odd (has LSB set), then the left-shifted low bit of X is the answer. 613 unsigned CTZ = DemandedMask.countr_zero(); 614 const APInt *C; 615 if (match(I->getOperand(1), m_APInt(C)) && C->countr_zero() == CTZ) { 616 Constant *ShiftC = ConstantInt::get(VTy, CTZ); 617 Instruction *Shl = BinaryOperator::CreateShl(I->getOperand(0), ShiftC); 618 return InsertNewInstWith(Shl, I->getIterator()); 619 } 620 } 621 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 622 // X * X is odd iff X is odd. 623 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 624 if (I->getOperand(0) == I->getOperand(1) && DemandedMask.ult(4)) { 625 Constant *One = ConstantInt::get(VTy, 1); 626 Instruction *And1 = BinaryOperator::CreateAnd(I->getOperand(0), One); 627 return InsertNewInstWith(And1, I->getIterator()); 628 } 629 630 computeKnownBits(I, Known, Depth, CxtI); 631 break; 632 } 633 case Instruction::Shl: { 634 const APInt *SA; 635 if (match(I->getOperand(1), m_APInt(SA))) { 636 const APInt *ShrAmt; 637 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 638 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 639 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 640 DemandedMask, Known)) 641 return R; 642 643 // TODO: If we only want bits that already match the signbit then we don't 644 // need to shift. 645 646 // If we can pre-shift a right-shifted constant to the left without 647 // losing any high bits amd we don't demand the low bits, then eliminate 648 // the left-shift: 649 // (C >> X) << LeftShiftAmtC --> (C << RightShiftAmtC) >> X 650 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 651 Value *X; 652 Constant *C; 653 if (DemandedMask.countr_zero() >= ShiftAmt && 654 match(I->getOperand(0), m_LShr(m_ImmConstant(C), m_Value(X)))) { 655 Constant *LeftShiftAmtC = ConstantInt::get(VTy, ShiftAmt); 656 Constant *NewC = ConstantFoldBinaryOpOperands(Instruction::Shl, C, 657 LeftShiftAmtC, DL); 658 if (ConstantFoldBinaryOpOperands(Instruction::LShr, NewC, LeftShiftAmtC, 659 DL) == C) { 660 Instruction *Lshr = BinaryOperator::CreateLShr(NewC, X); 661 return InsertNewInstWith(Lshr, I->getIterator()); 662 } 663 } 664 665 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 666 667 // If the shift is NUW/NSW, then it does demand the high bits. 668 ShlOperator *IOp = cast<ShlOperator>(I); 669 if (IOp->hasNoSignedWrap()) 670 DemandedMaskIn.setHighBits(ShiftAmt+1); 671 else if (IOp->hasNoUnsignedWrap()) 672 DemandedMaskIn.setHighBits(ShiftAmt); 673 674 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 675 return I; 676 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 677 678 Known = KnownBits::shl(Known, 679 KnownBits::makeConstant(APInt(BitWidth, ShiftAmt)), 680 /* NUW */ IOp->hasNoUnsignedWrap(), 681 /* NSW */ IOp->hasNoSignedWrap()); 682 } else { 683 // This is a variable shift, so we can't shift the demand mask by a known 684 // amount. But if we are not demanding high bits, then we are not 685 // demanding those bits from the pre-shifted operand either. 686 if (unsigned CTLZ = DemandedMask.countl_zero()) { 687 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); 688 if (SimplifyDemandedBits(I, 0, DemandedFromOp, Known, Depth + 1)) { 689 // We can't guarantee that nsw/nuw hold after simplifying the operand. 690 I->dropPoisonGeneratingFlags(); 691 return I; 692 } 693 } 694 computeKnownBits(I, Known, Depth, CxtI); 695 } 696 break; 697 } 698 case Instruction::LShr: { 699 const APInt *SA; 700 if (match(I->getOperand(1), m_APInt(SA))) { 701 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 702 703 // If we are just demanding the shifted sign bit and below, then this can 704 // be treated as an ASHR in disguise. 705 if (DemandedMask.countl_zero() >= ShiftAmt) { 706 // If we only want bits that already match the signbit then we don't 707 // need to shift. 708 unsigned NumHiDemandedBits = BitWidth - DemandedMask.countr_zero(); 709 unsigned SignBits = 710 ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 711 if (SignBits >= NumHiDemandedBits) 712 return I->getOperand(0); 713 714 // If we can pre-shift a left-shifted constant to the right without 715 // losing any low bits (we already know we don't demand the high bits), 716 // then eliminate the right-shift: 717 // (C << X) >> RightShiftAmtC --> (C >> RightShiftAmtC) << X 718 Value *X; 719 Constant *C; 720 if (match(I->getOperand(0), m_Shl(m_ImmConstant(C), m_Value(X)))) { 721 Constant *RightShiftAmtC = ConstantInt::get(VTy, ShiftAmt); 722 Constant *NewC = ConstantFoldBinaryOpOperands(Instruction::LShr, C, 723 RightShiftAmtC, DL); 724 if (ConstantFoldBinaryOpOperands(Instruction::Shl, NewC, 725 RightShiftAmtC, DL) == C) { 726 Instruction *Shl = BinaryOperator::CreateShl(NewC, X); 727 return InsertNewInstWith(Shl, I->getIterator()); 728 } 729 } 730 } 731 732 // Unsigned shift right. 733 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 734 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) { 735 // exact flag may not longer hold. 736 I->dropPoisonGeneratingFlags(); 737 return I; 738 } 739 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 740 Known.Zero.lshrInPlace(ShiftAmt); 741 Known.One.lshrInPlace(ShiftAmt); 742 if (ShiftAmt) 743 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 744 } else { 745 computeKnownBits(I, Known, Depth, CxtI); 746 } 747 break; 748 } 749 case Instruction::AShr: { 750 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 751 752 // If we only want bits that already match the signbit then we don't need 753 // to shift. 754 unsigned NumHiDemandedBits = BitWidth - DemandedMask.countr_zero(); 755 if (SignBits >= NumHiDemandedBits) 756 return I->getOperand(0); 757 758 // If this is an arithmetic shift right and only the low-bit is set, we can 759 // always convert this into a logical shr, even if the shift amount is 760 // variable. The low bit of the shift cannot be an input sign bit unless 761 // the shift amount is >= the size of the datatype, which is undefined. 762 if (DemandedMask.isOne()) { 763 // Perform the logical shift right. 764 Instruction *NewVal = BinaryOperator::CreateLShr( 765 I->getOperand(0), I->getOperand(1), I->getName()); 766 return InsertNewInstWith(NewVal, I->getIterator()); 767 } 768 769 const APInt *SA; 770 if (match(I->getOperand(1), m_APInt(SA))) { 771 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 772 773 // Signed shift right. 774 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 775 // If any of the high bits are demanded, we should set the sign bit as 776 // demanded. 777 if (DemandedMask.countl_zero() <= ShiftAmt) 778 DemandedMaskIn.setSignBit(); 779 780 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) { 781 // exact flag may not longer hold. 782 I->dropPoisonGeneratingFlags(); 783 return I; 784 } 785 786 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 787 // Compute the new bits that are at the top now plus sign bits. 788 APInt HighBits(APInt::getHighBitsSet( 789 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 790 Known.Zero.lshrInPlace(ShiftAmt); 791 Known.One.lshrInPlace(ShiftAmt); 792 793 // If the input sign bit is known to be zero, or if none of the top bits 794 // are demanded, turn this into an unsigned shift right. 795 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 796 if (Known.Zero[BitWidth-ShiftAmt-1] || 797 !DemandedMask.intersects(HighBits)) { 798 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 799 I->getOperand(1)); 800 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 801 LShr->takeName(I); 802 return InsertNewInstWith(LShr, I->getIterator()); 803 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 804 Known.One |= HighBits; 805 // SignBits may be out-of-sync with Known.countMinSignBits(). Mask out 806 // high bits of Known.Zero to avoid conflicts. 807 Known.Zero &= ~HighBits; 808 } 809 } else { 810 computeKnownBits(I, Known, Depth, CxtI); 811 } 812 break; 813 } 814 case Instruction::UDiv: { 815 // UDiv doesn't demand low bits that are zero in the divisor. 816 const APInt *SA; 817 if (match(I->getOperand(1), m_APInt(SA))) { 818 // TODO: Take the demanded mask of the result into account. 819 unsigned RHSTrailingZeros = SA->countr_zero(); 820 APInt DemandedMaskIn = 821 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 822 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) { 823 // We can't guarantee that "exact" is still true after changing the 824 // the dividend. 825 I->dropPoisonGeneratingFlags(); 826 return I; 827 } 828 829 Known = KnownBits::udiv(LHSKnown, KnownBits::makeConstant(*SA), 830 cast<BinaryOperator>(I)->isExact()); 831 } else { 832 computeKnownBits(I, Known, Depth, CxtI); 833 } 834 break; 835 } 836 case Instruction::SRem: { 837 const APInt *Rem; 838 if (match(I->getOperand(1), m_APInt(Rem))) { 839 // X % -1 demands all the bits because we don't want to introduce 840 // INT_MIN % -1 (== undef) by accident. 841 if (Rem->isAllOnes()) 842 break; 843 APInt RA = Rem->abs(); 844 if (RA.isPowerOf2()) { 845 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 846 return I->getOperand(0); 847 848 APInt LowBits = RA - 1; 849 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 850 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 851 return I; 852 853 // The low bits of LHS are unchanged by the srem. 854 Known.Zero = LHSKnown.Zero & LowBits; 855 Known.One = LHSKnown.One & LowBits; 856 857 // If LHS is non-negative or has all low bits zero, then the upper bits 858 // are all zero. 859 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 860 Known.Zero |= ~LowBits; 861 862 // If LHS is negative and not all low bits are zero, then the upper bits 863 // are all one. 864 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 865 Known.One |= ~LowBits; 866 867 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 868 break; 869 } 870 } 871 872 computeKnownBits(I, Known, Depth, CxtI); 873 break; 874 } 875 case Instruction::URem: { 876 APInt AllOnes = APInt::getAllOnes(BitWidth); 877 if (SimplifyDemandedBits(I, 0, AllOnes, LHSKnown, Depth + 1) || 878 SimplifyDemandedBits(I, 1, AllOnes, RHSKnown, Depth + 1)) 879 return I; 880 881 Known = KnownBits::urem(LHSKnown, RHSKnown); 882 break; 883 } 884 case Instruction::Call: { 885 bool KnownBitsComputed = false; 886 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 887 switch (II->getIntrinsicID()) { 888 case Intrinsic::abs: { 889 if (DemandedMask == 1) 890 return II->getArgOperand(0); 891 break; 892 } 893 case Intrinsic::ctpop: { 894 // Checking if the number of clear bits is odd (parity)? If the type has 895 // an even number of bits, that's the same as checking if the number of 896 // set bits is odd, so we can eliminate the 'not' op. 897 Value *X; 898 if (DemandedMask == 1 && VTy->getScalarSizeInBits() % 2 == 0 && 899 match(II->getArgOperand(0), m_Not(m_Value(X)))) { 900 Function *Ctpop = Intrinsic::getDeclaration( 901 II->getModule(), Intrinsic::ctpop, VTy); 902 return InsertNewInstWith(CallInst::Create(Ctpop, {X}), I->getIterator()); 903 } 904 break; 905 } 906 case Intrinsic::bswap: { 907 // If the only bits demanded come from one byte of the bswap result, 908 // just shift the input byte into position to eliminate the bswap. 909 unsigned NLZ = DemandedMask.countl_zero(); 910 unsigned NTZ = DemandedMask.countr_zero(); 911 912 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 913 // we need all the bits down to bit 8. Likewise, round NLZ. If we 914 // have 14 leading zeros, round to 8. 915 NLZ = alignDown(NLZ, 8); 916 NTZ = alignDown(NTZ, 8); 917 // If we need exactly one byte, we can do this transformation. 918 if (BitWidth - NLZ - NTZ == 8) { 919 // Replace this with either a left or right shift to get the byte into 920 // the right place. 921 Instruction *NewVal; 922 if (NLZ > NTZ) 923 NewVal = BinaryOperator::CreateLShr( 924 II->getArgOperand(0), ConstantInt::get(VTy, NLZ - NTZ)); 925 else 926 NewVal = BinaryOperator::CreateShl( 927 II->getArgOperand(0), ConstantInt::get(VTy, NTZ - NLZ)); 928 NewVal->takeName(I); 929 return InsertNewInstWith(NewVal, I->getIterator()); 930 } 931 break; 932 } 933 case Intrinsic::ptrmask: { 934 unsigned MaskWidth = I->getOperand(1)->getType()->getScalarSizeInBits(); 935 RHSKnown = KnownBits(MaskWidth); 936 // If either the LHS or the RHS are Zero, the result is zero. 937 if (SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1) || 938 SimplifyDemandedBits( 939 I, 1, (DemandedMask & ~LHSKnown.Zero).zextOrTrunc(MaskWidth), 940 RHSKnown, Depth + 1)) 941 return I; 942 943 // TODO: Should be 1-extend 944 RHSKnown = RHSKnown.anyextOrTrunc(BitWidth); 945 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 946 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 947 948 Known = LHSKnown & RHSKnown; 949 KnownBitsComputed = true; 950 951 // If the client is only demanding bits we know to be zero, return 952 // `llvm.ptrmask(p, 0)`. We can't return `null` here due to pointer 953 // provenance, but making the mask zero will be easily optimizable in 954 // the backend. 955 if (DemandedMask.isSubsetOf(Known.Zero) && 956 !match(I->getOperand(1), m_Zero())) 957 return replaceOperand( 958 *I, 1, Constant::getNullValue(I->getOperand(1)->getType())); 959 960 // Mask in demanded space does nothing. 961 // NOTE: We may have attributes associated with the return value of the 962 // llvm.ptrmask intrinsic that will be lost when we just return the 963 // operand. We should try to preserve them. 964 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 965 return I->getOperand(0); 966 967 // If the RHS is a constant, see if we can simplify it. 968 if (ShrinkDemandedConstant( 969 I, 1, (DemandedMask & ~LHSKnown.Zero).zextOrTrunc(MaskWidth))) 970 return I; 971 972 break; 973 } 974 975 case Intrinsic::fshr: 976 case Intrinsic::fshl: { 977 const APInt *SA; 978 if (!match(I->getOperand(2), m_APInt(SA))) 979 break; 980 981 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 982 // defined, so no need to special-case zero shifts here. 983 uint64_t ShiftAmt = SA->urem(BitWidth); 984 if (II->getIntrinsicID() == Intrinsic::fshr) 985 ShiftAmt = BitWidth - ShiftAmt; 986 987 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 988 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 989 if (I->getOperand(0) != I->getOperand(1)) { 990 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, 991 Depth + 1) || 992 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 993 return I; 994 } else { // fshl is a rotate 995 // Avoid converting rotate into funnel shift. 996 // Only simplify if one operand is constant. 997 LHSKnown = computeKnownBits(I->getOperand(0), Depth + 1, I); 998 if (DemandedMaskLHS.isSubsetOf(LHSKnown.Zero | LHSKnown.One) && 999 !match(I->getOperand(0), m_SpecificInt(LHSKnown.One))) { 1000 replaceOperand(*I, 0, Constant::getIntegerValue(VTy, LHSKnown.One)); 1001 return I; 1002 } 1003 1004 RHSKnown = computeKnownBits(I->getOperand(1), Depth + 1, I); 1005 if (DemandedMaskRHS.isSubsetOf(RHSKnown.Zero | RHSKnown.One) && 1006 !match(I->getOperand(1), m_SpecificInt(RHSKnown.One))) { 1007 replaceOperand(*I, 1, Constant::getIntegerValue(VTy, RHSKnown.One)); 1008 return I; 1009 } 1010 } 1011 1012 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 1013 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 1014 Known.One = LHSKnown.One.shl(ShiftAmt) | 1015 RHSKnown.One.lshr(BitWidth - ShiftAmt); 1016 KnownBitsComputed = true; 1017 break; 1018 } 1019 case Intrinsic::umax: { 1020 // UMax(A, C) == A if ... 1021 // The lowest non-zero bit of DemandMask is higher than the highest 1022 // non-zero bit of C. 1023 const APInt *C; 1024 unsigned CTZ = DemandedMask.countr_zero(); 1025 if (match(II->getArgOperand(1), m_APInt(C)) && 1026 CTZ >= C->getActiveBits()) 1027 return II->getArgOperand(0); 1028 break; 1029 } 1030 case Intrinsic::umin: { 1031 // UMin(A, C) == A if ... 1032 // The lowest non-zero bit of DemandMask is higher than the highest 1033 // non-one bit of C. 1034 // This comes from using DeMorgans on the above umax example. 1035 const APInt *C; 1036 unsigned CTZ = DemandedMask.countr_zero(); 1037 if (match(II->getArgOperand(1), m_APInt(C)) && 1038 CTZ >= C->getBitWidth() - C->countl_one()) 1039 return II->getArgOperand(0); 1040 break; 1041 } 1042 default: { 1043 // Handle target specific intrinsics 1044 std::optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic( 1045 *II, DemandedMask, Known, KnownBitsComputed); 1046 if (V) 1047 return *V; 1048 break; 1049 } 1050 } 1051 } 1052 1053 if (!KnownBitsComputed) 1054 computeKnownBits(V, Known, Depth, CxtI); 1055 break; 1056 } 1057 } 1058 1059 if (V->getType()->isPointerTy()) { 1060 Align Alignment = V->getPointerAlignment(DL); 1061 Known.Zero.setLowBits(Log2(Alignment)); 1062 } 1063 1064 // If the client is only demanding bits that we know, return the known 1065 // constant. We can't directly simplify pointers as a constant because of 1066 // pointer provenance. 1067 // TODO: We could return `(inttoptr const)` for pointers. 1068 if (!V->getType()->isPointerTy() && DemandedMask.isSubsetOf(Known.Zero | Known.One)) 1069 return Constant::getIntegerValue(VTy, Known.One); 1070 1071 if (VerifyKnownBits) { 1072 KnownBits ReferenceKnown = computeKnownBits(V, Depth, CxtI); 1073 if (Known != ReferenceKnown) { 1074 errs() << "Mismatched known bits for " << *V << " in " 1075 << I->getFunction()->getName() << "\n"; 1076 errs() << "computeKnownBits(): " << ReferenceKnown << "\n"; 1077 errs() << "SimplifyDemandedBits(): " << Known << "\n"; 1078 std::abort(); 1079 } 1080 } 1081 1082 return nullptr; 1083 } 1084 1085 /// Helper routine of SimplifyDemandedUseBits. It computes Known 1086 /// bits. It also tries to handle simplifications that can be done based on 1087 /// DemandedMask, but without modifying the Instruction. 1088 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits( 1089 Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth, 1090 Instruction *CxtI) { 1091 unsigned BitWidth = DemandedMask.getBitWidth(); 1092 Type *ITy = I->getType(); 1093 1094 KnownBits LHSKnown(BitWidth); 1095 KnownBits RHSKnown(BitWidth); 1096 1097 // Despite the fact that we can't simplify this instruction in all User's 1098 // context, we can at least compute the known bits, and we can 1099 // do simplifications that apply to *just* the one user if we know that 1100 // this instruction has a simpler value in that context. 1101 switch (I->getOpcode()) { 1102 case Instruction::And: { 1103 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 1104 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 1105 Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown, 1106 Depth, SQ.getWithInstruction(CxtI)); 1107 computeKnownBitsFromContext(I, Known, Depth, SQ.getWithInstruction(CxtI)); 1108 1109 // If the client is only demanding bits that we know, return the known 1110 // constant. 1111 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 1112 return Constant::getIntegerValue(ITy, Known.One); 1113 1114 // If all of the demanded bits are known 1 on one side, return the other. 1115 // These bits cannot contribute to the result of the 'and' in this context. 1116 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 1117 return I->getOperand(0); 1118 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 1119 return I->getOperand(1); 1120 1121 break; 1122 } 1123 case Instruction::Or: { 1124 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 1125 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 1126 Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown, 1127 Depth, SQ.getWithInstruction(CxtI)); 1128 computeKnownBitsFromContext(I, Known, Depth, SQ.getWithInstruction(CxtI)); 1129 1130 // If the client is only demanding bits that we know, return the known 1131 // constant. 1132 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 1133 return Constant::getIntegerValue(ITy, Known.One); 1134 1135 // We can simplify (X|Y) -> X or Y in the user's context if we know that 1136 // only bits from X or Y are demanded. 1137 // If all of the demanded bits are known zero on one side, return the other. 1138 // These bits cannot contribute to the result of the 'or' in this context. 1139 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 1140 return I->getOperand(0); 1141 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 1142 return I->getOperand(1); 1143 1144 break; 1145 } 1146 case Instruction::Xor: { 1147 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 1148 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 1149 Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown, 1150 Depth, SQ.getWithInstruction(CxtI)); 1151 computeKnownBitsFromContext(I, Known, Depth, SQ.getWithInstruction(CxtI)); 1152 1153 // If the client is only demanding bits that we know, return the known 1154 // constant. 1155 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 1156 return Constant::getIntegerValue(ITy, Known.One); 1157 1158 // We can simplify (X^Y) -> X or Y in the user's context if we know that 1159 // only bits from X or Y are demanded. 1160 // If all of the demanded bits are known zero on one side, return the other. 1161 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 1162 return I->getOperand(0); 1163 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 1164 return I->getOperand(1); 1165 1166 break; 1167 } 1168 case Instruction::Add: { 1169 unsigned NLZ = DemandedMask.countl_zero(); 1170 APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ); 1171 1172 // If an operand adds zeros to every bit below the highest demanded bit, 1173 // that operand doesn't change the result. Return the other side. 1174 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 1175 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 1176 return I->getOperand(0); 1177 1178 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 1179 if (DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 1180 return I->getOperand(1); 1181 1182 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1183 Known = KnownBits::computeForAddSub(/*Add*/ true, NSW, LHSKnown, RHSKnown); 1184 computeKnownBitsFromContext(I, Known, Depth, SQ.getWithInstruction(CxtI)); 1185 break; 1186 } 1187 case Instruction::Sub: { 1188 unsigned NLZ = DemandedMask.countl_zero(); 1189 APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ); 1190 1191 // If an operand subtracts zeros from every bit below the highest demanded 1192 // bit, that operand doesn't change the result. Return the other side. 1193 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 1194 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 1195 return I->getOperand(0); 1196 1197 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1198 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 1199 Known = KnownBits::computeForAddSub(/*Add*/ false, NSW, LHSKnown, RHSKnown); 1200 computeKnownBitsFromContext(I, Known, Depth, SQ.getWithInstruction(CxtI)); 1201 break; 1202 } 1203 case Instruction::AShr: { 1204 // Compute the Known bits to simplify things downstream. 1205 computeKnownBits(I, Known, Depth, CxtI); 1206 1207 // If this user is only demanding bits that we know, return the known 1208 // constant. 1209 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 1210 return Constant::getIntegerValue(ITy, Known.One); 1211 1212 // If the right shift operand 0 is a result of a left shift by the same 1213 // amount, this is probably a zero/sign extension, which may be unnecessary, 1214 // if we do not demand any of the new sign bits. So, return the original 1215 // operand instead. 1216 const APInt *ShiftRC; 1217 const APInt *ShiftLC; 1218 Value *X; 1219 unsigned BitWidth = DemandedMask.getBitWidth(); 1220 if (match(I, 1221 m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) && 1222 ShiftLC == ShiftRC && ShiftLC->ult(BitWidth) && 1223 DemandedMask.isSubsetOf(APInt::getLowBitsSet( 1224 BitWidth, BitWidth - ShiftRC->getZExtValue()))) { 1225 return X; 1226 } 1227 1228 break; 1229 } 1230 default: 1231 // Compute the Known bits to simplify things downstream. 1232 computeKnownBits(I, Known, Depth, CxtI); 1233 1234 // If this user is only demanding bits that we know, return the known 1235 // constant. 1236 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 1237 return Constant::getIntegerValue(ITy, Known.One); 1238 1239 break; 1240 } 1241 1242 return nullptr; 1243 } 1244 1245 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 1246 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 1247 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 1248 /// of "C2-C1". 1249 /// 1250 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 1251 /// ..., bn}, without considering the specific value X is holding. 1252 /// This transformation is legal iff one of following conditions is hold: 1253 /// 1) All the bit in S are 0, in this case E1 == E2. 1254 /// 2) We don't care those bits in S, per the input DemandedMask. 1255 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 1256 /// rest bits. 1257 /// 1258 /// Currently we only test condition 2). 1259 /// 1260 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 1261 /// not successful. 1262 Value *InstCombinerImpl::simplifyShrShlDemandedBits( 1263 Instruction *Shr, const APInt &ShrOp1, Instruction *Shl, 1264 const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) { 1265 if (!ShlOp1 || !ShrOp1) 1266 return nullptr; // No-op. 1267 1268 Value *VarX = Shr->getOperand(0); 1269 Type *Ty = VarX->getType(); 1270 unsigned BitWidth = Ty->getScalarSizeInBits(); 1271 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 1272 return nullptr; // Undef. 1273 1274 unsigned ShlAmt = ShlOp1.getZExtValue(); 1275 unsigned ShrAmt = ShrOp1.getZExtValue(); 1276 1277 Known.One.clearAllBits(); 1278 Known.Zero.setLowBits(ShlAmt - 1); 1279 Known.Zero &= DemandedMask; 1280 1281 APInt BitMask1(APInt::getAllOnes(BitWidth)); 1282 APInt BitMask2(APInt::getAllOnes(BitWidth)); 1283 1284 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 1285 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 1286 (BitMask1.ashr(ShrAmt) << ShlAmt); 1287 1288 if (ShrAmt <= ShlAmt) { 1289 BitMask2 <<= (ShlAmt - ShrAmt); 1290 } else { 1291 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 1292 BitMask2.ashr(ShrAmt - ShlAmt); 1293 } 1294 1295 // Check if condition-2 (see the comment to this function) is satified. 1296 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 1297 if (ShrAmt == ShlAmt) 1298 return VarX; 1299 1300 if (!Shr->hasOneUse()) 1301 return nullptr; 1302 1303 BinaryOperator *New; 1304 if (ShrAmt < ShlAmt) { 1305 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 1306 New = BinaryOperator::CreateShl(VarX, Amt); 1307 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 1308 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 1309 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 1310 } else { 1311 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 1312 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 1313 BinaryOperator::CreateAShr(VarX, Amt); 1314 if (cast<BinaryOperator>(Shr)->isExact()) 1315 New->setIsExact(true); 1316 } 1317 1318 return InsertNewInstWith(New, Shl->getIterator()); 1319 } 1320 1321 return nullptr; 1322 } 1323 1324 /// The specified value produces a vector with any number of elements. 1325 /// This method analyzes which elements of the operand are poison and 1326 /// returns that information in PoisonElts. 1327 /// 1328 /// DemandedElts contains the set of elements that are actually used by the 1329 /// caller, and by default (AllowMultipleUsers equals false) the value is 1330 /// simplified only if it has a single caller. If AllowMultipleUsers is set 1331 /// to true, DemandedElts refers to the union of sets of elements that are 1332 /// used by all callers. 1333 /// 1334 /// If the information about demanded elements can be used to simplify the 1335 /// operation, the operation is simplified, then the resultant value is 1336 /// returned. This returns null if no change was made. 1337 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V, 1338 APInt DemandedElts, 1339 APInt &PoisonElts, 1340 unsigned Depth, 1341 bool AllowMultipleUsers) { 1342 // Cannot analyze scalable type. The number of vector elements is not a 1343 // compile-time constant. 1344 if (isa<ScalableVectorType>(V->getType())) 1345 return nullptr; 1346 1347 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 1348 APInt EltMask(APInt::getAllOnes(VWidth)); 1349 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1350 1351 if (match(V, m_Poison())) { 1352 // If the entire vector is poison, just return this info. 1353 PoisonElts = EltMask; 1354 return nullptr; 1355 } 1356 1357 if (DemandedElts.isZero()) { // If nothing is demanded, provide poison. 1358 PoisonElts = EltMask; 1359 return PoisonValue::get(V->getType()); 1360 } 1361 1362 PoisonElts = 0; 1363 1364 if (auto *C = dyn_cast<Constant>(V)) { 1365 // Check if this is identity. If so, return 0 since we are not simplifying 1366 // anything. 1367 if (DemandedElts.isAllOnes()) 1368 return nullptr; 1369 1370 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1371 Constant *Poison = PoisonValue::get(EltTy); 1372 SmallVector<Constant*, 16> Elts; 1373 for (unsigned i = 0; i != VWidth; ++i) { 1374 if (!DemandedElts[i]) { // If not demanded, set to poison. 1375 Elts.push_back(Poison); 1376 PoisonElts.setBit(i); 1377 continue; 1378 } 1379 1380 Constant *Elt = C->getAggregateElement(i); 1381 if (!Elt) return nullptr; 1382 1383 Elts.push_back(Elt); 1384 if (isa<PoisonValue>(Elt)) // Already poison. 1385 PoisonElts.setBit(i); 1386 } 1387 1388 // If we changed the constant, return it. 1389 Constant *NewCV = ConstantVector::get(Elts); 1390 return NewCV != C ? NewCV : nullptr; 1391 } 1392 1393 // Limit search depth. 1394 if (Depth == 10) 1395 return nullptr; 1396 1397 if (!AllowMultipleUsers) { 1398 // If multiple users are using the root value, proceed with 1399 // simplification conservatively assuming that all elements 1400 // are needed. 1401 if (!V->hasOneUse()) { 1402 // Quit if we find multiple users of a non-root value though. 1403 // They'll be handled when it's their turn to be visited by 1404 // the main instcombine process. 1405 if (Depth != 0) 1406 // TODO: Just compute the PoisonElts information recursively. 1407 return nullptr; 1408 1409 // Conservatively assume that all elements are needed. 1410 DemandedElts = EltMask; 1411 } 1412 } 1413 1414 Instruction *I = dyn_cast<Instruction>(V); 1415 if (!I) return nullptr; // Only analyze instructions. 1416 1417 bool MadeChange = false; 1418 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1419 APInt Demanded, APInt &Undef) { 1420 auto *II = dyn_cast<IntrinsicInst>(Inst); 1421 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1422 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1423 replaceOperand(*Inst, OpNum, V); 1424 MadeChange = true; 1425 } 1426 }; 1427 1428 APInt PoisonElts2(VWidth, 0); 1429 APInt PoisonElts3(VWidth, 0); 1430 switch (I->getOpcode()) { 1431 default: break; 1432 1433 case Instruction::GetElementPtr: { 1434 // The LangRef requires that struct geps have all constant indices. As 1435 // such, we can't convert any operand to partial undef. 1436 auto mayIndexStructType = [](GetElementPtrInst &GEP) { 1437 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); 1438 I != E; I++) 1439 if (I.isStruct()) 1440 return true; 1441 return false; 1442 }; 1443 if (mayIndexStructType(cast<GetElementPtrInst>(*I))) 1444 break; 1445 1446 // Conservatively track the demanded elements back through any vector 1447 // operands we may have. We know there must be at least one, or we 1448 // wouldn't have a vector result to get here. Note that we intentionally 1449 // merge the undef bits here since gepping with either an poison base or 1450 // index results in poison. 1451 for (unsigned i = 0; i < I->getNumOperands(); i++) { 1452 if (i == 0 ? match(I->getOperand(i), m_Undef()) 1453 : match(I->getOperand(i), m_Poison())) { 1454 // If the entire vector is undefined, just return this info. 1455 PoisonElts = EltMask; 1456 return nullptr; 1457 } 1458 if (I->getOperand(i)->getType()->isVectorTy()) { 1459 APInt PoisonEltsOp(VWidth, 0); 1460 simplifyAndSetOp(I, i, DemandedElts, PoisonEltsOp); 1461 // gep(x, undef) is not undef, so skip considering idx ops here 1462 // Note that we could propagate poison, but we can't distinguish between 1463 // undef & poison bits ATM 1464 if (i == 0) 1465 PoisonElts |= PoisonEltsOp; 1466 } 1467 } 1468 1469 break; 1470 } 1471 case Instruction::InsertElement: { 1472 // If this is a variable index, we don't know which element it overwrites. 1473 // demand exactly the same input as we produce. 1474 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1475 if (!Idx) { 1476 // Note that we can't propagate undef elt info, because we don't know 1477 // which elt is getting updated. 1478 simplifyAndSetOp(I, 0, DemandedElts, PoisonElts2); 1479 break; 1480 } 1481 1482 // The element inserted overwrites whatever was there, so the input demanded 1483 // set is simpler than the output set. 1484 unsigned IdxNo = Idx->getZExtValue(); 1485 APInt PreInsertDemandedElts = DemandedElts; 1486 if (IdxNo < VWidth) 1487 PreInsertDemandedElts.clearBit(IdxNo); 1488 1489 // If we only demand the element that is being inserted and that element 1490 // was extracted from the same index in another vector with the same type, 1491 // replace this insert with that other vector. 1492 // Note: This is attempted before the call to simplifyAndSetOp because that 1493 // may change PoisonElts to a value that does not match with Vec. 1494 Value *Vec; 1495 if (PreInsertDemandedElts == 0 && 1496 match(I->getOperand(1), 1497 m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) && 1498 Vec->getType() == I->getType()) { 1499 return Vec; 1500 } 1501 1502 simplifyAndSetOp(I, 0, PreInsertDemandedElts, PoisonElts); 1503 1504 // If this is inserting an element that isn't demanded, remove this 1505 // insertelement. 1506 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1507 Worklist.push(I); 1508 return I->getOperand(0); 1509 } 1510 1511 // The inserted element is defined. 1512 PoisonElts.clearBit(IdxNo); 1513 break; 1514 } 1515 case Instruction::ShuffleVector: { 1516 auto *Shuffle = cast<ShuffleVectorInst>(I); 1517 assert(Shuffle->getOperand(0)->getType() == 1518 Shuffle->getOperand(1)->getType() && 1519 "Expected shuffle operands to have same type"); 1520 unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType()) 1521 ->getNumElements(); 1522 // Handle trivial case of a splat. Only check the first element of LHS 1523 // operand. 1524 if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) && 1525 DemandedElts.isAllOnes()) { 1526 if (!isa<PoisonValue>(I->getOperand(1))) { 1527 I->setOperand(1, PoisonValue::get(I->getOperand(1)->getType())); 1528 MadeChange = true; 1529 } 1530 APInt LeftDemanded(OpWidth, 1); 1531 APInt LHSPoisonElts(OpWidth, 0); 1532 simplifyAndSetOp(I, 0, LeftDemanded, LHSPoisonElts); 1533 if (LHSPoisonElts[0]) 1534 PoisonElts = EltMask; 1535 else 1536 PoisonElts.clearAllBits(); 1537 break; 1538 } 1539 1540 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); 1541 for (unsigned i = 0; i < VWidth; i++) { 1542 if (DemandedElts[i]) { 1543 unsigned MaskVal = Shuffle->getMaskValue(i); 1544 if (MaskVal != -1u) { 1545 assert(MaskVal < OpWidth * 2 && 1546 "shufflevector mask index out of range!"); 1547 if (MaskVal < OpWidth) 1548 LeftDemanded.setBit(MaskVal); 1549 else 1550 RightDemanded.setBit(MaskVal - OpWidth); 1551 } 1552 } 1553 } 1554 1555 APInt LHSPoisonElts(OpWidth, 0); 1556 simplifyAndSetOp(I, 0, LeftDemanded, LHSPoisonElts); 1557 1558 APInt RHSPoisonElts(OpWidth, 0); 1559 simplifyAndSetOp(I, 1, RightDemanded, RHSPoisonElts); 1560 1561 // If this shuffle does not change the vector length and the elements 1562 // demanded by this shuffle are an identity mask, then this shuffle is 1563 // unnecessary. 1564 // 1565 // We are assuming canonical form for the mask, so the source vector is 1566 // operand 0 and operand 1 is not used. 1567 // 1568 // Note that if an element is demanded and this shuffle mask is undefined 1569 // for that element, then the shuffle is not considered an identity 1570 // operation. The shuffle prevents poison from the operand vector from 1571 // leaking to the result by replacing poison with an undefined value. 1572 if (VWidth == OpWidth) { 1573 bool IsIdentityShuffle = true; 1574 for (unsigned i = 0; i < VWidth; i++) { 1575 unsigned MaskVal = Shuffle->getMaskValue(i); 1576 if (DemandedElts[i] && i != MaskVal) { 1577 IsIdentityShuffle = false; 1578 break; 1579 } 1580 } 1581 if (IsIdentityShuffle) 1582 return Shuffle->getOperand(0); 1583 } 1584 1585 bool NewPoisonElts = false; 1586 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1587 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1588 bool LHSUniform = true; 1589 bool RHSUniform = true; 1590 for (unsigned i = 0; i < VWidth; i++) { 1591 unsigned MaskVal = Shuffle->getMaskValue(i); 1592 if (MaskVal == -1u) { 1593 PoisonElts.setBit(i); 1594 } else if (!DemandedElts[i]) { 1595 NewPoisonElts = true; 1596 PoisonElts.setBit(i); 1597 } else if (MaskVal < OpWidth) { 1598 if (LHSPoisonElts[MaskVal]) { 1599 NewPoisonElts = true; 1600 PoisonElts.setBit(i); 1601 } else { 1602 LHSIdx = LHSIdx == -1u ? i : OpWidth; 1603 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; 1604 LHSUniform = LHSUniform && (MaskVal == i); 1605 } 1606 } else { 1607 if (RHSPoisonElts[MaskVal - OpWidth]) { 1608 NewPoisonElts = true; 1609 PoisonElts.setBit(i); 1610 } else { 1611 RHSIdx = RHSIdx == -1u ? i : OpWidth; 1612 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; 1613 RHSUniform = RHSUniform && (MaskVal - OpWidth == i); 1614 } 1615 } 1616 } 1617 1618 // Try to transform shuffle with constant vector and single element from 1619 // this constant vector to single insertelement instruction. 1620 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1621 // insertelement V, C[ci], ci-n 1622 if (OpWidth == 1623 cast<FixedVectorType>(Shuffle->getType())->getNumElements()) { 1624 Value *Op = nullptr; 1625 Constant *Value = nullptr; 1626 unsigned Idx = -1u; 1627 1628 // Find constant vector with the single element in shuffle (LHS or RHS). 1629 if (LHSIdx < OpWidth && RHSUniform) { 1630 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1631 Op = Shuffle->getOperand(1); 1632 Value = CV->getOperand(LHSValIdx); 1633 Idx = LHSIdx; 1634 } 1635 } 1636 if (RHSIdx < OpWidth && LHSUniform) { 1637 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1638 Op = Shuffle->getOperand(0); 1639 Value = CV->getOperand(RHSValIdx); 1640 Idx = RHSIdx; 1641 } 1642 } 1643 // Found constant vector with single element - convert to insertelement. 1644 if (Op && Value) { 1645 Instruction *New = InsertElementInst::Create( 1646 Op, Value, ConstantInt::get(Type::getInt64Ty(I->getContext()), Idx), 1647 Shuffle->getName()); 1648 InsertNewInstWith(New, Shuffle->getIterator()); 1649 return New; 1650 } 1651 } 1652 if (NewPoisonElts) { 1653 // Add additional discovered undefs. 1654 SmallVector<int, 16> Elts; 1655 for (unsigned i = 0; i < VWidth; ++i) { 1656 if (PoisonElts[i]) 1657 Elts.push_back(PoisonMaskElem); 1658 else 1659 Elts.push_back(Shuffle->getMaskValue(i)); 1660 } 1661 Shuffle->setShuffleMask(Elts); 1662 MadeChange = true; 1663 } 1664 break; 1665 } 1666 case Instruction::Select: { 1667 // If this is a vector select, try to transform the select condition based 1668 // on the current demanded elements. 1669 SelectInst *Sel = cast<SelectInst>(I); 1670 if (Sel->getCondition()->getType()->isVectorTy()) { 1671 // TODO: We are not doing anything with PoisonElts based on this call. 1672 // It is overwritten below based on the other select operands. If an 1673 // element of the select condition is known undef, then we are free to 1674 // choose the output value from either arm of the select. If we know that 1675 // one of those values is undef, then the output can be undef. 1676 simplifyAndSetOp(I, 0, DemandedElts, PoisonElts); 1677 } 1678 1679 // Next, see if we can transform the arms of the select. 1680 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1681 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1682 for (unsigned i = 0; i < VWidth; i++) { 1683 // isNullValue() always returns false when called on a ConstantExpr. 1684 // Skip constant expressions to avoid propagating incorrect information. 1685 Constant *CElt = CV->getAggregateElement(i); 1686 if (isa<ConstantExpr>(CElt)) 1687 continue; 1688 // TODO: If a select condition element is undef, we can demand from 1689 // either side. If one side is known undef, choosing that side would 1690 // propagate undef. 1691 if (CElt->isNullValue()) 1692 DemandedLHS.clearBit(i); 1693 else 1694 DemandedRHS.clearBit(i); 1695 } 1696 } 1697 1698 simplifyAndSetOp(I, 1, DemandedLHS, PoisonElts2); 1699 simplifyAndSetOp(I, 2, DemandedRHS, PoisonElts3); 1700 1701 // Output elements are undefined if the element from each arm is undefined. 1702 // TODO: This can be improved. See comment in select condition handling. 1703 PoisonElts = PoisonElts2 & PoisonElts3; 1704 break; 1705 } 1706 case Instruction::BitCast: { 1707 // Vector->vector casts only. 1708 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1709 if (!VTy) break; 1710 unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements(); 1711 APInt InputDemandedElts(InVWidth, 0); 1712 PoisonElts2 = APInt(InVWidth, 0); 1713 unsigned Ratio; 1714 1715 if (VWidth == InVWidth) { 1716 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1717 // elements as are demanded of us. 1718 Ratio = 1; 1719 InputDemandedElts = DemandedElts; 1720 } else if ((VWidth % InVWidth) == 0) { 1721 // If the number of elements in the output is a multiple of the number of 1722 // elements in the input then an input element is live if any of the 1723 // corresponding output elements are live. 1724 Ratio = VWidth / InVWidth; 1725 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1726 if (DemandedElts[OutIdx]) 1727 InputDemandedElts.setBit(OutIdx / Ratio); 1728 } else if ((InVWidth % VWidth) == 0) { 1729 // If the number of elements in the input is a multiple of the number of 1730 // elements in the output then an input element is live if the 1731 // corresponding output element is live. 1732 Ratio = InVWidth / VWidth; 1733 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1734 if (DemandedElts[InIdx / Ratio]) 1735 InputDemandedElts.setBit(InIdx); 1736 } else { 1737 // Unsupported so far. 1738 break; 1739 } 1740 1741 simplifyAndSetOp(I, 0, InputDemandedElts, PoisonElts2); 1742 1743 if (VWidth == InVWidth) { 1744 PoisonElts = PoisonElts2; 1745 } else if ((VWidth % InVWidth) == 0) { 1746 // If the number of elements in the output is a multiple of the number of 1747 // elements in the input then an output element is undef if the 1748 // corresponding input element is undef. 1749 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1750 if (PoisonElts2[OutIdx / Ratio]) 1751 PoisonElts.setBit(OutIdx); 1752 } else if ((InVWidth % VWidth) == 0) { 1753 // If the number of elements in the input is a multiple of the number of 1754 // elements in the output then an output element is undef if all of the 1755 // corresponding input elements are undef. 1756 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1757 APInt SubUndef = PoisonElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1758 if (SubUndef.popcount() == Ratio) 1759 PoisonElts.setBit(OutIdx); 1760 } 1761 } else { 1762 llvm_unreachable("Unimp"); 1763 } 1764 break; 1765 } 1766 case Instruction::FPTrunc: 1767 case Instruction::FPExt: 1768 simplifyAndSetOp(I, 0, DemandedElts, PoisonElts); 1769 break; 1770 1771 case Instruction::Call: { 1772 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1773 if (!II) break; 1774 switch (II->getIntrinsicID()) { 1775 case Intrinsic::masked_gather: // fallthrough 1776 case Intrinsic::masked_load: { 1777 // Subtlety: If we load from a pointer, the pointer must be valid 1778 // regardless of whether the element is demanded. Doing otherwise risks 1779 // segfaults which didn't exist in the original program. 1780 APInt DemandedPtrs(APInt::getAllOnes(VWidth)), 1781 DemandedPassThrough(DemandedElts); 1782 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) 1783 for (unsigned i = 0; i < VWidth; i++) { 1784 Constant *CElt = CV->getAggregateElement(i); 1785 if (CElt->isNullValue()) 1786 DemandedPtrs.clearBit(i); 1787 else if (CElt->isAllOnesValue()) 1788 DemandedPassThrough.clearBit(i); 1789 } 1790 if (II->getIntrinsicID() == Intrinsic::masked_gather) 1791 simplifyAndSetOp(II, 0, DemandedPtrs, PoisonElts2); 1792 simplifyAndSetOp(II, 3, DemandedPassThrough, PoisonElts3); 1793 1794 // Output elements are undefined if the element from both sources are. 1795 // TODO: can strengthen via mask as well. 1796 PoisonElts = PoisonElts2 & PoisonElts3; 1797 break; 1798 } 1799 default: { 1800 // Handle target specific intrinsics 1801 std::optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic( 1802 *II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3, 1803 simplifyAndSetOp); 1804 if (V) 1805 return *V; 1806 break; 1807 } 1808 } // switch on IntrinsicID 1809 break; 1810 } // case Call 1811 } // switch on Opcode 1812 1813 // TODO: We bail completely on integer div/rem and shifts because they have 1814 // UB/poison potential, but that should be refined. 1815 BinaryOperator *BO; 1816 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1817 Value *X = BO->getOperand(0); 1818 Value *Y = BO->getOperand(1); 1819 1820 // Look for an equivalent binop except that one operand has been shuffled. 1821 // If the demand for this binop only includes elements that are the same as 1822 // the other binop, then we may be able to replace this binop with a use of 1823 // the earlier one. 1824 // 1825 // Example: 1826 // %other_bo = bo (shuf X, {0}), Y 1827 // %this_extracted_bo = extelt (bo X, Y), 0 1828 // --> 1829 // %other_bo = bo (shuf X, {0}), Y 1830 // %this_extracted_bo = extelt %other_bo, 0 1831 // 1832 // TODO: Handle demand of an arbitrary single element or more than one 1833 // element instead of just element 0. 1834 // TODO: Unlike general demanded elements transforms, this should be safe 1835 // for any (div/rem/shift) opcode too. 1836 if (DemandedElts == 1 && !X->hasOneUse() && !Y->hasOneUse() && 1837 BO->hasOneUse() ) { 1838 1839 auto findShufBO = [&](bool MatchShufAsOp0) -> User * { 1840 // Try to use shuffle-of-operand in place of an operand: 1841 // bo X, Y --> bo (shuf X), Y 1842 // bo X, Y --> bo X, (shuf Y) 1843 BinaryOperator::BinaryOps Opcode = BO->getOpcode(); 1844 Value *ShufOp = MatchShufAsOp0 ? X : Y; 1845 Value *OtherOp = MatchShufAsOp0 ? Y : X; 1846 for (User *U : OtherOp->users()) { 1847 auto Shuf = m_Shuffle(m_Specific(ShufOp), m_Value(), m_ZeroMask()); 1848 if (BO->isCommutative() 1849 ? match(U, m_c_BinOp(Opcode, Shuf, m_Specific(OtherOp))) 1850 : MatchShufAsOp0 1851 ? match(U, m_BinOp(Opcode, Shuf, m_Specific(OtherOp))) 1852 : match(U, m_BinOp(Opcode, m_Specific(OtherOp), Shuf))) 1853 if (DT.dominates(U, I)) 1854 return U; 1855 } 1856 return nullptr; 1857 }; 1858 1859 if (User *ShufBO = findShufBO(/* MatchShufAsOp0 */ true)) 1860 return ShufBO; 1861 if (User *ShufBO = findShufBO(/* MatchShufAsOp0 */ false)) 1862 return ShufBO; 1863 } 1864 1865 simplifyAndSetOp(I, 0, DemandedElts, PoisonElts); 1866 simplifyAndSetOp(I, 1, DemandedElts, PoisonElts2); 1867 1868 // Output elements are undefined if both are undefined. Consider things 1869 // like undef & 0. The result is known zero, not undef. 1870 PoisonElts &= PoisonElts2; 1871 } 1872 1873 // If we've proven all of the lanes poison, return a poison value. 1874 // TODO: Intersect w/demanded lanes 1875 if (PoisonElts.isAllOnes()) 1876 return PoisonValue::get(I->getType()); 1877 1878 return MadeChange ? I : nullptr; 1879 } 1880