1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/IR/GetElementPtrTypeIterator.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 #include "llvm/Transforms/InstCombine/InstCombiner.h" 21 22 using namespace llvm; 23 using namespace llvm::PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 static cl::opt<bool> 28 VerifyKnownBits("instcombine-verify-known-bits", 29 cl::desc("Verify that computeKnownBits() and " 30 "SimplifyDemandedBits() are consistent"), 31 cl::Hidden, cl::init(false)); 32 33 /// Check to see if the specified operand of the specified instruction is a 34 /// constant integer. If so, check to see if there are any bits set in the 35 /// constant that are not demanded. If so, shrink the constant and return true. 36 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 37 const APInt &Demanded) { 38 assert(I && "No instruction?"); 39 assert(OpNo < I->getNumOperands() && "Operand index too large"); 40 41 // The operand must be a constant integer or splat integer. 42 Value *Op = I->getOperand(OpNo); 43 const APInt *C; 44 if (!match(Op, m_APInt(C))) 45 return false; 46 47 // If there are no bits set that aren't demanded, nothing to do. 48 if (C->isSubsetOf(Demanded)) 49 return false; 50 51 // This instruction is producing bits that are not demanded. Shrink the RHS. 52 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 53 54 return true; 55 } 56 57 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 58 /// returns the element type's bitwidth. 59 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 60 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 61 return BitWidth; 62 63 return DL.getPointerTypeSizeInBits(Ty); 64 } 65 66 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 67 /// the instruction has any properties that allow us to simplify its operands. 68 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst, 69 KnownBits &Known) { 70 APInt DemandedMask(APInt::getAllOnes(Known.getBitWidth())); 71 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 72 0, &Inst); 73 if (!V) return false; 74 if (V == &Inst) return true; 75 replaceInstUsesWith(Inst, V); 76 return true; 77 } 78 79 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 80 /// the instruction has any properties that allow us to simplify its operands. 81 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) { 82 KnownBits Known(getBitWidth(Inst.getType(), DL)); 83 return SimplifyDemandedInstructionBits(Inst, Known); 84 } 85 86 /// This form of SimplifyDemandedBits simplifies the specified instruction 87 /// operand if possible, updating it in place. It returns true if it made any 88 /// change and false otherwise. 89 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 90 const APInt &DemandedMask, 91 KnownBits &Known, unsigned Depth) { 92 Use &U = I->getOperandUse(OpNo); 93 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 94 Depth, I); 95 if (!NewVal) return false; 96 if (Instruction* OpInst = dyn_cast<Instruction>(U)) 97 salvageDebugInfo(*OpInst); 98 99 replaceUse(U, NewVal); 100 return true; 101 } 102 103 /// This function attempts to replace V with a simpler value based on the 104 /// demanded bits. When this function is called, it is known that only the bits 105 /// set in DemandedMask of the result of V are ever used downstream. 106 /// Consequently, depending on the mask and V, it may be possible to replace V 107 /// with a constant or one of its operands. In such cases, this function does 108 /// the replacement and returns true. In all other cases, it returns false after 109 /// analyzing the expression and setting KnownOne and known to be one in the 110 /// expression. Known.Zero contains all the bits that are known to be zero in 111 /// the expression. These are provided to potentially allow the caller (which 112 /// might recursively be SimplifyDemandedBits itself) to simplify the 113 /// expression. 114 /// Known.One and Known.Zero always follow the invariant that: 115 /// Known.One & Known.Zero == 0. 116 /// That is, a bit can't be both 1 and 0. The bits in Known.One and Known.Zero 117 /// are accurate even for bits not in DemandedMask. Note 118 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 119 /// be the same. 120 /// 121 /// This returns null if it did not change anything and it permits no 122 /// simplification. This returns V itself if it did some simplification of V's 123 /// operands based on the information about what bits are demanded. This returns 124 /// some other non-null value if it found out that V is equal to another value 125 /// in the context where the specified bits are demanded, but not for all users. 126 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 127 KnownBits &Known, 128 unsigned Depth, 129 Instruction *CxtI) { 130 assert(V != nullptr && "Null pointer of Value???"); 131 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 132 uint32_t BitWidth = DemandedMask.getBitWidth(); 133 Type *VTy = V->getType(); 134 assert( 135 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 136 Known.getBitWidth() == BitWidth && 137 "Value *V, DemandedMask and Known must have same BitWidth"); 138 139 if (isa<Constant>(V)) { 140 computeKnownBits(V, Known, Depth, CxtI); 141 return nullptr; 142 } 143 144 Known.resetAll(); 145 if (DemandedMask.isZero()) // Not demanding any bits from V. 146 return UndefValue::get(VTy); 147 148 if (Depth == MaxAnalysisRecursionDepth) 149 return nullptr; 150 151 Instruction *I = dyn_cast<Instruction>(V); 152 if (!I) { 153 computeKnownBits(V, Known, Depth, CxtI); 154 return nullptr; // Only analyze instructions. 155 } 156 157 // If there are multiple uses of this value and we aren't at the root, then 158 // we can't do any simplifications of the operands, because DemandedMask 159 // only reflects the bits demanded by *one* of the users. 160 if (Depth != 0 && !I->hasOneUse()) 161 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 162 163 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 164 // If this is the root being simplified, allow it to have multiple uses, 165 // just set the DemandedMask to all bits so that we can try to simplify the 166 // operands. This allows visitTruncInst (for example) to simplify the 167 // operand of a trunc without duplicating all the logic below. 168 if (Depth == 0 && !V->hasOneUse()) 169 DemandedMask.setAllBits(); 170 171 // Update flags after simplifying an operand based on the fact that some high 172 // order bits are not demanded. 173 auto disableWrapFlagsBasedOnUnusedHighBits = [](Instruction *I, 174 unsigned NLZ) { 175 if (NLZ > 0) { 176 // Disable the nsw and nuw flags here: We can no longer guarantee that 177 // we won't wrap after simplification. Removing the nsw/nuw flags is 178 // legal here because the top bit is not demanded. 179 I->setHasNoSignedWrap(false); 180 I->setHasNoUnsignedWrap(false); 181 } 182 return I; 183 }; 184 185 // If the high-bits of an ADD/SUB/MUL are not demanded, then we do not care 186 // about the high bits of the operands. 187 auto simplifyOperandsBasedOnUnusedHighBits = [&](APInt &DemandedFromOps) { 188 unsigned NLZ = DemandedMask.countl_zero(); 189 // Right fill the mask of bits for the operands to demand the most 190 // significant bit and all those below it. 191 DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ); 192 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 193 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 194 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 195 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 196 disableWrapFlagsBasedOnUnusedHighBits(I, NLZ); 197 return true; 198 } 199 return false; 200 }; 201 202 switch (I->getOpcode()) { 203 default: 204 computeKnownBits(I, Known, Depth, CxtI); 205 break; 206 case Instruction::And: { 207 // If either the LHS or the RHS are Zero, the result is zero. 208 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 209 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 210 Depth + 1)) 211 return I; 212 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 213 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 214 215 Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown, 216 Depth, SQ.getWithInstruction(CxtI)); 217 218 // If the client is only demanding bits that we know, return the known 219 // constant. 220 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 221 return Constant::getIntegerValue(VTy, Known.One); 222 223 // If all of the demanded bits are known 1 on one side, return the other. 224 // These bits cannot contribute to the result of the 'and'. 225 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 226 return I->getOperand(0); 227 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 228 return I->getOperand(1); 229 230 // If the RHS is a constant, see if we can simplify it. 231 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 232 return I; 233 234 break; 235 } 236 case Instruction::Or: { 237 // If either the LHS or the RHS are One, the result is One. 238 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 239 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 240 Depth + 1)) { 241 // Disjoint flag may not longer hold. 242 I->dropPoisonGeneratingFlags(); 243 return I; 244 } 245 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 246 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 247 248 Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown, 249 Depth, SQ.getWithInstruction(CxtI)); 250 251 // If the client is only demanding bits that we know, return the known 252 // constant. 253 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 254 return Constant::getIntegerValue(VTy, Known.One); 255 256 // If all of the demanded bits are known zero on one side, return the other. 257 // These bits cannot contribute to the result of the 'or'. 258 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 259 return I->getOperand(0); 260 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 261 return I->getOperand(1); 262 263 // If the RHS is a constant, see if we can simplify it. 264 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 265 return I; 266 267 // Infer disjoint flag if no common bits are set. 268 if (!cast<PossiblyDisjointInst>(I)->isDisjoint()) { 269 WithCache<const Value *> LHSCache(I->getOperand(0), LHSKnown), 270 RHSCache(I->getOperand(1), RHSKnown); 271 if (haveNoCommonBitsSet(LHSCache, RHSCache, SQ.getWithInstruction(I))) { 272 cast<PossiblyDisjointInst>(I)->setIsDisjoint(true); 273 return I; 274 } 275 } 276 277 break; 278 } 279 case Instruction::Xor: { 280 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 281 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 282 return I; 283 Value *LHS, *RHS; 284 if (DemandedMask == 1 && 285 match(I->getOperand(0), m_Intrinsic<Intrinsic::ctpop>(m_Value(LHS))) && 286 match(I->getOperand(1), m_Intrinsic<Intrinsic::ctpop>(m_Value(RHS)))) { 287 // (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1 288 IRBuilderBase::InsertPointGuard Guard(Builder); 289 Builder.SetInsertPoint(I); 290 auto *Xor = Builder.CreateXor(LHS, RHS); 291 return Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, Xor); 292 } 293 294 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 295 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 296 297 Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown, 298 Depth, SQ.getWithInstruction(CxtI)); 299 300 // If the client is only demanding bits that we know, return the known 301 // constant. 302 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 303 return Constant::getIntegerValue(VTy, Known.One); 304 305 // If all of the demanded bits are known zero on one side, return the other. 306 // These bits cannot contribute to the result of the 'xor'. 307 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 308 return I->getOperand(0); 309 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 310 return I->getOperand(1); 311 312 // If all of the demanded bits are known to be zero on one side or the 313 // other, turn this into an *inclusive* or. 314 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 315 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 316 Instruction *Or = 317 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1)); 318 if (DemandedMask.isAllOnes()) 319 cast<PossiblyDisjointInst>(Or)->setIsDisjoint(true); 320 Or->takeName(I); 321 return InsertNewInstWith(Or, I->getIterator()); 322 } 323 324 // If all of the demanded bits on one side are known, and all of the set 325 // bits on that side are also known to be set on the other side, turn this 326 // into an AND, as we know the bits will be cleared. 327 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 328 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 329 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 330 Constant *AndC = Constant::getIntegerValue(VTy, 331 ~RHSKnown.One & DemandedMask); 332 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 333 return InsertNewInstWith(And, I->getIterator()); 334 } 335 336 // If the RHS is a constant, see if we can change it. Don't alter a -1 337 // constant because that's a canonical 'not' op, and that is better for 338 // combining, SCEV, and codegen. 339 const APInt *C; 340 if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnes()) { 341 if ((*C | ~DemandedMask).isAllOnes()) { 342 // Force bits to 1 to create a 'not' op. 343 I->setOperand(1, ConstantInt::getAllOnesValue(VTy)); 344 return I; 345 } 346 // If we can't turn this into a 'not', try to shrink the constant. 347 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 348 return I; 349 } 350 351 // If our LHS is an 'and' and if it has one use, and if any of the bits we 352 // are flipping are known to be set, then the xor is just resetting those 353 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 354 // simplifying both of them. 355 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) { 356 ConstantInt *AndRHS, *XorRHS; 357 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 358 match(I->getOperand(1), m_ConstantInt(XorRHS)) && 359 match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) && 360 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 361 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 362 363 Constant *AndC = ConstantInt::get(VTy, NewMask & AndRHS->getValue()); 364 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 365 InsertNewInstWith(NewAnd, I->getIterator()); 366 367 Constant *XorC = ConstantInt::get(VTy, NewMask & XorRHS->getValue()); 368 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 369 return InsertNewInstWith(NewXor, I->getIterator()); 370 } 371 } 372 break; 373 } 374 case Instruction::Select: { 375 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 376 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 377 return I; 378 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 379 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 380 381 // If the operands are constants, see if we can simplify them. 382 // This is similar to ShrinkDemandedConstant, but for a select we want to 383 // try to keep the selected constants the same as icmp value constants, if 384 // we can. This helps not break apart (or helps put back together) 385 // canonical patterns like min and max. 386 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, 387 const APInt &DemandedMask) { 388 const APInt *SelC; 389 if (!match(I->getOperand(OpNo), m_APInt(SelC))) 390 return false; 391 392 // Get the constant out of the ICmp, if there is one. 393 // Only try this when exactly 1 operand is a constant (if both operands 394 // are constant, the icmp should eventually simplify). Otherwise, we may 395 // invert the transform that reduces set bits and infinite-loop. 396 Value *X; 397 const APInt *CmpC; 398 ICmpInst::Predicate Pred; 399 if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) || 400 isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth()) 401 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 402 403 // If the constant is already the same as the ICmp, leave it as-is. 404 if (*CmpC == *SelC) 405 return false; 406 // If the constants are not already the same, but can be with the demand 407 // mask, use the constant value from the ICmp. 408 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { 409 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC)); 410 return true; 411 } 412 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 413 }; 414 if (CanonicalizeSelectConstant(I, 1, DemandedMask) || 415 CanonicalizeSelectConstant(I, 2, DemandedMask)) 416 return I; 417 418 // Only known if known in both the LHS and RHS. 419 Known = LHSKnown.intersectWith(RHSKnown); 420 break; 421 } 422 case Instruction::Trunc: { 423 // If we do not demand the high bits of a right-shifted and truncated value, 424 // then we may be able to truncate it before the shift. 425 Value *X; 426 const APInt *C; 427 if (match(I->getOperand(0), m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) { 428 // The shift amount must be valid (not poison) in the narrow type, and 429 // it must not be greater than the high bits demanded of the result. 430 if (C->ult(VTy->getScalarSizeInBits()) && 431 C->ule(DemandedMask.countl_zero())) { 432 // trunc (lshr X, C) --> lshr (trunc X), C 433 IRBuilderBase::InsertPointGuard Guard(Builder); 434 Builder.SetInsertPoint(I); 435 Value *Trunc = Builder.CreateTrunc(X, VTy); 436 return Builder.CreateLShr(Trunc, C->getZExtValue()); 437 } 438 } 439 } 440 [[fallthrough]]; 441 case Instruction::ZExt: { 442 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 443 444 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 445 KnownBits InputKnown(SrcBitWidth); 446 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) { 447 // For zext nneg, we may have dropped the instruction which made the 448 // input non-negative. 449 I->dropPoisonGeneratingFlags(); 450 return I; 451 } 452 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); 453 if (I->getOpcode() == Instruction::ZExt && I->hasNonNeg() && 454 !InputKnown.isNegative()) 455 InputKnown.makeNonNegative(); 456 Known = InputKnown.zextOrTrunc(BitWidth); 457 458 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 459 break; 460 } 461 case Instruction::SExt: { 462 // Compute the bits in the result that are not present in the input. 463 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 464 465 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 466 467 // If any of the sign extended bits are demanded, we know that the sign 468 // bit is demanded. 469 if (DemandedMask.getActiveBits() > SrcBitWidth) 470 InputDemandedBits.setBit(SrcBitWidth-1); 471 472 KnownBits InputKnown(SrcBitWidth); 473 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 474 return I; 475 476 // If the input sign bit is known zero, or if the NewBits are not demanded 477 // convert this into a zero extension. 478 if (InputKnown.isNonNegative() || 479 DemandedMask.getActiveBits() <= SrcBitWidth) { 480 // Convert to ZExt cast. 481 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy); 482 NewCast->takeName(I); 483 return InsertNewInstWith(NewCast, I->getIterator()); 484 } 485 486 // If the sign bit of the input is known set or clear, then we know the 487 // top bits of the result. 488 Known = InputKnown.sext(BitWidth); 489 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 490 break; 491 } 492 case Instruction::Add: { 493 if ((DemandedMask & 1) == 0) { 494 // If we do not need the low bit, try to convert bool math to logic: 495 // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN 496 Value *X, *Y; 497 if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))), 498 m_OneUse(m_SExt(m_Value(Y))))) && 499 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 500 // Truth table for inputs and output signbits: 501 // X:0 | X:1 502 // ---------- 503 // Y:0 | 0 | 0 | 504 // Y:1 | -1 | 0 | 505 // ---------- 506 IRBuilderBase::InsertPointGuard Guard(Builder); 507 Builder.SetInsertPoint(I); 508 Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y); 509 return Builder.CreateSExt(AndNot, VTy); 510 } 511 512 // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN 513 // TODO: Relax the one-use checks because we are removing an instruction? 514 if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))), 515 m_OneUse(m_SExt(m_Value(Y))))) && 516 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 517 // Truth table for inputs and output signbits: 518 // X:0 | X:1 519 // ----------- 520 // Y:0 | -1 | -1 | 521 // Y:1 | -1 | 0 | 522 // ----------- 523 IRBuilderBase::InsertPointGuard Guard(Builder); 524 Builder.SetInsertPoint(I); 525 Value *Or = Builder.CreateOr(X, Y); 526 return Builder.CreateSExt(Or, VTy); 527 } 528 } 529 530 // Right fill the mask of bits for the operands to demand the most 531 // significant bit and all those below it. 532 unsigned NLZ = DemandedMask.countl_zero(); 533 APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ); 534 if (ShrinkDemandedConstant(I, 1, DemandedFromOps) || 535 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) 536 return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ); 537 538 // If low order bits are not demanded and known to be zero in one operand, 539 // then we don't need to demand them from the other operand, since they 540 // can't cause overflow into any bits that are demanded in the result. 541 unsigned NTZ = (~DemandedMask & RHSKnown.Zero).countr_one(); 542 APInt DemandedFromLHS = DemandedFromOps; 543 DemandedFromLHS.clearLowBits(NTZ); 544 if (ShrinkDemandedConstant(I, 0, DemandedFromLHS) || 545 SimplifyDemandedBits(I, 0, DemandedFromLHS, LHSKnown, Depth + 1)) 546 return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ); 547 548 // If we are known to be adding zeros to every bit below 549 // the highest demanded bit, we just return the other side. 550 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 551 return I->getOperand(0); 552 if (DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 553 return I->getOperand(1); 554 555 // (add X, C) --> (xor X, C) IFF C is equal to the top bit of the DemandMask 556 { 557 const APInt *C; 558 if (match(I->getOperand(1), m_APInt(C)) && 559 C->isOneBitSet(DemandedMask.getActiveBits() - 1)) { 560 IRBuilderBase::InsertPointGuard Guard(Builder); 561 Builder.SetInsertPoint(I); 562 return Builder.CreateXor(I->getOperand(0), ConstantInt::get(VTy, *C)); 563 } 564 } 565 566 // Otherwise just compute the known bits of the result. 567 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 568 Known = KnownBits::computeForAddSub(true, NSW, LHSKnown, RHSKnown); 569 break; 570 } 571 case Instruction::Sub: { 572 // Right fill the mask of bits for the operands to demand the most 573 // significant bit and all those below it. 574 unsigned NLZ = DemandedMask.countl_zero(); 575 APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ); 576 if (ShrinkDemandedConstant(I, 1, DemandedFromOps) || 577 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) 578 return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ); 579 580 // If low order bits are not demanded and are known to be zero in RHS, 581 // then we don't need to demand them from LHS, since they can't cause a 582 // borrow from any bits that are demanded in the result. 583 unsigned NTZ = (~DemandedMask & RHSKnown.Zero).countr_one(); 584 APInt DemandedFromLHS = DemandedFromOps; 585 DemandedFromLHS.clearLowBits(NTZ); 586 if (ShrinkDemandedConstant(I, 0, DemandedFromLHS) || 587 SimplifyDemandedBits(I, 0, DemandedFromLHS, LHSKnown, Depth + 1)) 588 return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ); 589 590 // If we are known to be subtracting zeros from every bit below 591 // the highest demanded bit, we just return the other side. 592 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 593 return I->getOperand(0); 594 // We can't do this with the LHS for subtraction, unless we are only 595 // demanding the LSB. 596 if (DemandedFromOps.isOne() && DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 597 return I->getOperand(1); 598 599 // Otherwise just compute the known bits of the result. 600 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 601 Known = KnownBits::computeForAddSub(false, NSW, LHSKnown, RHSKnown); 602 break; 603 } 604 case Instruction::Mul: { 605 APInt DemandedFromOps; 606 if (simplifyOperandsBasedOnUnusedHighBits(DemandedFromOps)) 607 return I; 608 609 if (DemandedMask.isPowerOf2()) { 610 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 611 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 612 // odd (has LSB set), then the left-shifted low bit of X is the answer. 613 unsigned CTZ = DemandedMask.countr_zero(); 614 const APInt *C; 615 if (match(I->getOperand(1), m_APInt(C)) && C->countr_zero() == CTZ) { 616 Constant *ShiftC = ConstantInt::get(VTy, CTZ); 617 Instruction *Shl = BinaryOperator::CreateShl(I->getOperand(0), ShiftC); 618 return InsertNewInstWith(Shl, I->getIterator()); 619 } 620 } 621 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 622 // X * X is odd iff X is odd. 623 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 624 if (I->getOperand(0) == I->getOperand(1) && DemandedMask.ult(4)) { 625 Constant *One = ConstantInt::get(VTy, 1); 626 Instruction *And1 = BinaryOperator::CreateAnd(I->getOperand(0), One); 627 return InsertNewInstWith(And1, I->getIterator()); 628 } 629 630 computeKnownBits(I, Known, Depth, CxtI); 631 break; 632 } 633 case Instruction::Shl: { 634 const APInt *SA; 635 if (match(I->getOperand(1), m_APInt(SA))) { 636 const APInt *ShrAmt; 637 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 638 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 639 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 640 DemandedMask, Known)) 641 return R; 642 643 // TODO: If we only want bits that already match the signbit then we don't 644 // need to shift. 645 646 // If we can pre-shift a right-shifted constant to the left without 647 // losing any high bits amd we don't demand the low bits, then eliminate 648 // the left-shift: 649 // (C >> X) << LeftShiftAmtC --> (C << RightShiftAmtC) >> X 650 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 651 Value *X; 652 Constant *C; 653 if (DemandedMask.countr_zero() >= ShiftAmt && 654 match(I->getOperand(0), m_LShr(m_ImmConstant(C), m_Value(X)))) { 655 Constant *LeftShiftAmtC = ConstantInt::get(VTy, ShiftAmt); 656 Constant *NewC = ConstantFoldBinaryOpOperands(Instruction::Shl, C, 657 LeftShiftAmtC, DL); 658 if (ConstantFoldBinaryOpOperands(Instruction::LShr, NewC, LeftShiftAmtC, 659 DL) == C) { 660 Instruction *Lshr = BinaryOperator::CreateLShr(NewC, X); 661 return InsertNewInstWith(Lshr, I->getIterator()); 662 } 663 } 664 665 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 666 667 // If the shift is NUW/NSW, then it does demand the high bits. 668 ShlOperator *IOp = cast<ShlOperator>(I); 669 if (IOp->hasNoSignedWrap()) 670 DemandedMaskIn.setHighBits(ShiftAmt+1); 671 else if (IOp->hasNoUnsignedWrap()) 672 DemandedMaskIn.setHighBits(ShiftAmt); 673 674 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 675 return I; 676 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 677 678 Known = KnownBits::shl(Known, 679 KnownBits::makeConstant(APInt(BitWidth, ShiftAmt)), 680 /* NUW */ IOp->hasNoUnsignedWrap(), 681 /* NSW */ IOp->hasNoSignedWrap()); 682 } else { 683 // This is a variable shift, so we can't shift the demand mask by a known 684 // amount. But if we are not demanding high bits, then we are not 685 // demanding those bits from the pre-shifted operand either. 686 if (unsigned CTLZ = DemandedMask.countl_zero()) { 687 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); 688 if (SimplifyDemandedBits(I, 0, DemandedFromOp, Known, Depth + 1)) { 689 // We can't guarantee that nsw/nuw hold after simplifying the operand. 690 I->dropPoisonGeneratingFlags(); 691 return I; 692 } 693 } 694 computeKnownBits(I, Known, Depth, CxtI); 695 } 696 break; 697 } 698 case Instruction::LShr: { 699 const APInt *SA; 700 if (match(I->getOperand(1), m_APInt(SA))) { 701 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 702 703 // If we are just demanding the shifted sign bit and below, then this can 704 // be treated as an ASHR in disguise. 705 if (DemandedMask.countl_zero() >= ShiftAmt) { 706 // If we only want bits that already match the signbit then we don't 707 // need to shift. 708 unsigned NumHiDemandedBits = BitWidth - DemandedMask.countr_zero(); 709 unsigned SignBits = 710 ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 711 if (SignBits >= NumHiDemandedBits) 712 return I->getOperand(0); 713 714 // If we can pre-shift a left-shifted constant to the right without 715 // losing any low bits (we already know we don't demand the high bits), 716 // then eliminate the right-shift: 717 // (C << X) >> RightShiftAmtC --> (C >> RightShiftAmtC) << X 718 Value *X; 719 Constant *C; 720 if (match(I->getOperand(0), m_Shl(m_ImmConstant(C), m_Value(X)))) { 721 Constant *RightShiftAmtC = ConstantInt::get(VTy, ShiftAmt); 722 Constant *NewC = ConstantFoldBinaryOpOperands(Instruction::LShr, C, 723 RightShiftAmtC, DL); 724 if (ConstantFoldBinaryOpOperands(Instruction::Shl, NewC, 725 RightShiftAmtC, DL) == C) { 726 Instruction *Shl = BinaryOperator::CreateShl(NewC, X); 727 return InsertNewInstWith(Shl, I->getIterator()); 728 } 729 } 730 } 731 732 // Unsigned shift right. 733 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 734 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) { 735 // exact flag may not longer hold. 736 I->dropPoisonGeneratingFlags(); 737 return I; 738 } 739 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 740 Known.Zero.lshrInPlace(ShiftAmt); 741 Known.One.lshrInPlace(ShiftAmt); 742 if (ShiftAmt) 743 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 744 } else { 745 computeKnownBits(I, Known, Depth, CxtI); 746 } 747 break; 748 } 749 case Instruction::AShr: { 750 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 751 752 // If we only want bits that already match the signbit then we don't need 753 // to shift. 754 unsigned NumHiDemandedBits = BitWidth - DemandedMask.countr_zero(); 755 if (SignBits >= NumHiDemandedBits) 756 return I->getOperand(0); 757 758 // If this is an arithmetic shift right and only the low-bit is set, we can 759 // always convert this into a logical shr, even if the shift amount is 760 // variable. The low bit of the shift cannot be an input sign bit unless 761 // the shift amount is >= the size of the datatype, which is undefined. 762 if (DemandedMask.isOne()) { 763 // Perform the logical shift right. 764 Instruction *NewVal = BinaryOperator::CreateLShr( 765 I->getOperand(0), I->getOperand(1), I->getName()); 766 return InsertNewInstWith(NewVal, I->getIterator()); 767 } 768 769 const APInt *SA; 770 if (match(I->getOperand(1), m_APInt(SA))) { 771 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 772 773 // Signed shift right. 774 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 775 // If any of the high bits are demanded, we should set the sign bit as 776 // demanded. 777 if (DemandedMask.countl_zero() <= ShiftAmt) 778 DemandedMaskIn.setSignBit(); 779 780 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) { 781 // exact flag may not longer hold. 782 I->dropPoisonGeneratingFlags(); 783 return I; 784 } 785 786 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 787 // Compute the new bits that are at the top now plus sign bits. 788 APInt HighBits(APInt::getHighBitsSet( 789 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 790 Known.Zero.lshrInPlace(ShiftAmt); 791 Known.One.lshrInPlace(ShiftAmt); 792 793 // If the input sign bit is known to be zero, or if none of the top bits 794 // are demanded, turn this into an unsigned shift right. 795 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 796 if (Known.Zero[BitWidth-ShiftAmt-1] || 797 !DemandedMask.intersects(HighBits)) { 798 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 799 I->getOperand(1)); 800 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 801 LShr->takeName(I); 802 return InsertNewInstWith(LShr, I->getIterator()); 803 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 804 Known.One |= HighBits; 805 } 806 } else { 807 computeKnownBits(I, Known, Depth, CxtI); 808 } 809 break; 810 } 811 case Instruction::UDiv: { 812 // UDiv doesn't demand low bits that are zero in the divisor. 813 const APInt *SA; 814 if (match(I->getOperand(1), m_APInt(SA))) { 815 // TODO: Take the demanded mask of the result into account. 816 unsigned RHSTrailingZeros = SA->countr_zero(); 817 APInt DemandedMaskIn = 818 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 819 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) { 820 // We can't guarantee that "exact" is still true after changing the 821 // the dividend. 822 I->dropPoisonGeneratingFlags(); 823 return I; 824 } 825 826 Known = KnownBits::udiv(LHSKnown, KnownBits::makeConstant(*SA), 827 cast<BinaryOperator>(I)->isExact()); 828 } else { 829 computeKnownBits(I, Known, Depth, CxtI); 830 } 831 break; 832 } 833 case Instruction::SRem: { 834 const APInt *Rem; 835 if (match(I->getOperand(1), m_APInt(Rem))) { 836 // X % -1 demands all the bits because we don't want to introduce 837 // INT_MIN % -1 (== undef) by accident. 838 if (Rem->isAllOnes()) 839 break; 840 APInt RA = Rem->abs(); 841 if (RA.isPowerOf2()) { 842 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 843 return I->getOperand(0); 844 845 APInt LowBits = RA - 1; 846 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 847 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 848 return I; 849 850 // The low bits of LHS are unchanged by the srem. 851 Known.Zero = LHSKnown.Zero & LowBits; 852 Known.One = LHSKnown.One & LowBits; 853 854 // If LHS is non-negative or has all low bits zero, then the upper bits 855 // are all zero. 856 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 857 Known.Zero |= ~LowBits; 858 859 // If LHS is negative and not all low bits are zero, then the upper bits 860 // are all one. 861 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 862 Known.One |= ~LowBits; 863 864 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 865 break; 866 } 867 } 868 869 computeKnownBits(I, Known, Depth, CxtI); 870 break; 871 } 872 case Instruction::URem: { 873 APInt AllOnes = APInt::getAllOnes(BitWidth); 874 if (SimplifyDemandedBits(I, 0, AllOnes, LHSKnown, Depth + 1) || 875 SimplifyDemandedBits(I, 1, AllOnes, RHSKnown, Depth + 1)) 876 return I; 877 878 Known = KnownBits::urem(LHSKnown, RHSKnown); 879 break; 880 } 881 case Instruction::Call: { 882 bool KnownBitsComputed = false; 883 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 884 switch (II->getIntrinsicID()) { 885 case Intrinsic::abs: { 886 if (DemandedMask == 1) 887 return II->getArgOperand(0); 888 break; 889 } 890 case Intrinsic::ctpop: { 891 // Checking if the number of clear bits is odd (parity)? If the type has 892 // an even number of bits, that's the same as checking if the number of 893 // set bits is odd, so we can eliminate the 'not' op. 894 Value *X; 895 if (DemandedMask == 1 && VTy->getScalarSizeInBits() % 2 == 0 && 896 match(II->getArgOperand(0), m_Not(m_Value(X)))) { 897 Function *Ctpop = Intrinsic::getDeclaration( 898 II->getModule(), Intrinsic::ctpop, VTy); 899 return InsertNewInstWith(CallInst::Create(Ctpop, {X}), I->getIterator()); 900 } 901 break; 902 } 903 case Intrinsic::bswap: { 904 // If the only bits demanded come from one byte of the bswap result, 905 // just shift the input byte into position to eliminate the bswap. 906 unsigned NLZ = DemandedMask.countl_zero(); 907 unsigned NTZ = DemandedMask.countr_zero(); 908 909 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 910 // we need all the bits down to bit 8. Likewise, round NLZ. If we 911 // have 14 leading zeros, round to 8. 912 NLZ = alignDown(NLZ, 8); 913 NTZ = alignDown(NTZ, 8); 914 // If we need exactly one byte, we can do this transformation. 915 if (BitWidth - NLZ - NTZ == 8) { 916 // Replace this with either a left or right shift to get the byte into 917 // the right place. 918 Instruction *NewVal; 919 if (NLZ > NTZ) 920 NewVal = BinaryOperator::CreateLShr( 921 II->getArgOperand(0), ConstantInt::get(VTy, NLZ - NTZ)); 922 else 923 NewVal = BinaryOperator::CreateShl( 924 II->getArgOperand(0), ConstantInt::get(VTy, NTZ - NLZ)); 925 NewVal->takeName(I); 926 return InsertNewInstWith(NewVal, I->getIterator()); 927 } 928 break; 929 } 930 case Intrinsic::ptrmask: { 931 unsigned MaskWidth = I->getOperand(1)->getType()->getScalarSizeInBits(); 932 RHSKnown = KnownBits(MaskWidth); 933 // If either the LHS or the RHS are Zero, the result is zero. 934 if (SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1) || 935 SimplifyDemandedBits( 936 I, 1, (DemandedMask & ~LHSKnown.Zero).zextOrTrunc(MaskWidth), 937 RHSKnown, Depth + 1)) 938 return I; 939 940 // TODO: Should be 1-extend 941 RHSKnown = RHSKnown.anyextOrTrunc(BitWidth); 942 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 943 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 944 945 Known = LHSKnown & RHSKnown; 946 KnownBitsComputed = true; 947 948 // If the client is only demanding bits we know to be zero, return 949 // `llvm.ptrmask(p, 0)`. We can't return `null` here due to pointer 950 // provenance, but making the mask zero will be easily optimizable in 951 // the backend. 952 if (DemandedMask.isSubsetOf(Known.Zero) && 953 !match(I->getOperand(1), m_Zero())) 954 return replaceOperand( 955 *I, 1, Constant::getNullValue(I->getOperand(1)->getType())); 956 957 // Mask in demanded space does nothing. 958 // NOTE: We may have attributes associated with the return value of the 959 // llvm.ptrmask intrinsic that will be lost when we just return the 960 // operand. We should try to preserve them. 961 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 962 return I->getOperand(0); 963 964 // If the RHS is a constant, see if we can simplify it. 965 if (ShrinkDemandedConstant( 966 I, 1, (DemandedMask & ~LHSKnown.Zero).zextOrTrunc(MaskWidth))) 967 return I; 968 969 break; 970 } 971 972 case Intrinsic::fshr: 973 case Intrinsic::fshl: { 974 const APInt *SA; 975 if (!match(I->getOperand(2), m_APInt(SA))) 976 break; 977 978 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 979 // defined, so no need to special-case zero shifts here. 980 uint64_t ShiftAmt = SA->urem(BitWidth); 981 if (II->getIntrinsicID() == Intrinsic::fshr) 982 ShiftAmt = BitWidth - ShiftAmt; 983 984 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 985 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 986 if (I->getOperand(0) != I->getOperand(1)) { 987 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, 988 Depth + 1) || 989 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 990 return I; 991 } else { // fshl is a rotate 992 // Avoid converting rotate into funnel shift. 993 // Only simplify if one operand is constant. 994 LHSKnown = computeKnownBits(I->getOperand(0), Depth + 1, I); 995 if (DemandedMaskLHS.isSubsetOf(LHSKnown.Zero | LHSKnown.One) && 996 !match(I->getOperand(0), m_SpecificInt(LHSKnown.One))) { 997 replaceOperand(*I, 0, Constant::getIntegerValue(VTy, LHSKnown.One)); 998 return I; 999 } 1000 1001 RHSKnown = computeKnownBits(I->getOperand(1), Depth + 1, I); 1002 if (DemandedMaskRHS.isSubsetOf(RHSKnown.Zero | RHSKnown.One) && 1003 !match(I->getOperand(1), m_SpecificInt(RHSKnown.One))) { 1004 replaceOperand(*I, 1, Constant::getIntegerValue(VTy, RHSKnown.One)); 1005 return I; 1006 } 1007 } 1008 1009 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 1010 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 1011 Known.One = LHSKnown.One.shl(ShiftAmt) | 1012 RHSKnown.One.lshr(BitWidth - ShiftAmt); 1013 KnownBitsComputed = true; 1014 break; 1015 } 1016 case Intrinsic::umax: { 1017 // UMax(A, C) == A if ... 1018 // The lowest non-zero bit of DemandMask is higher than the highest 1019 // non-zero bit of C. 1020 const APInt *C; 1021 unsigned CTZ = DemandedMask.countr_zero(); 1022 if (match(II->getArgOperand(1), m_APInt(C)) && 1023 CTZ >= C->getActiveBits()) 1024 return II->getArgOperand(0); 1025 break; 1026 } 1027 case Intrinsic::umin: { 1028 // UMin(A, C) == A if ... 1029 // The lowest non-zero bit of DemandMask is higher than the highest 1030 // non-one bit of C. 1031 // This comes from using DeMorgans on the above umax example. 1032 const APInt *C; 1033 unsigned CTZ = DemandedMask.countr_zero(); 1034 if (match(II->getArgOperand(1), m_APInt(C)) && 1035 CTZ >= C->getBitWidth() - C->countl_one()) 1036 return II->getArgOperand(0); 1037 break; 1038 } 1039 default: { 1040 // Handle target specific intrinsics 1041 std::optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic( 1042 *II, DemandedMask, Known, KnownBitsComputed); 1043 if (V) 1044 return *V; 1045 break; 1046 } 1047 } 1048 } 1049 1050 if (!KnownBitsComputed) 1051 computeKnownBits(V, Known, Depth, CxtI); 1052 break; 1053 } 1054 } 1055 1056 if (V->getType()->isPointerTy()) { 1057 Align Alignment = V->getPointerAlignment(DL); 1058 Known.Zero.setLowBits(Log2(Alignment)); 1059 } 1060 1061 // If the client is only demanding bits that we know, return the known 1062 // constant. We can't directly simplify pointers as a constant because of 1063 // pointer provenance. 1064 // TODO: We could return `(inttoptr const)` for pointers. 1065 if (!V->getType()->isPointerTy() && DemandedMask.isSubsetOf(Known.Zero | Known.One)) 1066 return Constant::getIntegerValue(VTy, Known.One); 1067 1068 if (VerifyKnownBits) { 1069 KnownBits ReferenceKnown = computeKnownBits(V, Depth, CxtI); 1070 if (Known != ReferenceKnown) { 1071 errs() << "Mismatched known bits for " << *V << " in " 1072 << I->getFunction()->getName() << "\n"; 1073 errs() << "computeKnownBits(): " << ReferenceKnown << "\n"; 1074 errs() << "SimplifyDemandedBits(): " << Known << "\n"; 1075 std::abort(); 1076 } 1077 } 1078 1079 return nullptr; 1080 } 1081 1082 /// Helper routine of SimplifyDemandedUseBits. It computes Known 1083 /// bits. It also tries to handle simplifications that can be done based on 1084 /// DemandedMask, but without modifying the Instruction. 1085 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits( 1086 Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth, 1087 Instruction *CxtI) { 1088 unsigned BitWidth = DemandedMask.getBitWidth(); 1089 Type *ITy = I->getType(); 1090 1091 KnownBits LHSKnown(BitWidth); 1092 KnownBits RHSKnown(BitWidth); 1093 1094 // Despite the fact that we can't simplify this instruction in all User's 1095 // context, we can at least compute the known bits, and we can 1096 // do simplifications that apply to *just* the one user if we know that 1097 // this instruction has a simpler value in that context. 1098 switch (I->getOpcode()) { 1099 case Instruction::And: { 1100 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 1101 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 1102 Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown, 1103 Depth, SQ.getWithInstruction(CxtI)); 1104 computeKnownBitsFromContext(I, Known, Depth, SQ.getWithInstruction(CxtI)); 1105 1106 // If the client is only demanding bits that we know, return the known 1107 // constant. 1108 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 1109 return Constant::getIntegerValue(ITy, Known.One); 1110 1111 // If all of the demanded bits are known 1 on one side, return the other. 1112 // These bits cannot contribute to the result of the 'and' in this context. 1113 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 1114 return I->getOperand(0); 1115 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 1116 return I->getOperand(1); 1117 1118 break; 1119 } 1120 case Instruction::Or: { 1121 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 1122 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 1123 Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown, 1124 Depth, SQ.getWithInstruction(CxtI)); 1125 computeKnownBitsFromContext(I, Known, Depth, SQ.getWithInstruction(CxtI)); 1126 1127 // If the client is only demanding bits that we know, return the known 1128 // constant. 1129 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 1130 return Constant::getIntegerValue(ITy, Known.One); 1131 1132 // We can simplify (X|Y) -> X or Y in the user's context if we know that 1133 // only bits from X or Y are demanded. 1134 // If all of the demanded bits are known zero on one side, return the other. 1135 // These bits cannot contribute to the result of the 'or' in this context. 1136 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 1137 return I->getOperand(0); 1138 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 1139 return I->getOperand(1); 1140 1141 break; 1142 } 1143 case Instruction::Xor: { 1144 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 1145 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 1146 Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown, 1147 Depth, SQ.getWithInstruction(CxtI)); 1148 computeKnownBitsFromContext(I, Known, Depth, SQ.getWithInstruction(CxtI)); 1149 1150 // If the client is only demanding bits that we know, return the known 1151 // constant. 1152 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 1153 return Constant::getIntegerValue(ITy, Known.One); 1154 1155 // We can simplify (X^Y) -> X or Y in the user's context if we know that 1156 // only bits from X or Y are demanded. 1157 // If all of the demanded bits are known zero on one side, return the other. 1158 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 1159 return I->getOperand(0); 1160 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 1161 return I->getOperand(1); 1162 1163 break; 1164 } 1165 case Instruction::Add: { 1166 unsigned NLZ = DemandedMask.countl_zero(); 1167 APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ); 1168 1169 // If an operand adds zeros to every bit below the highest demanded bit, 1170 // that operand doesn't change the result. Return the other side. 1171 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 1172 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 1173 return I->getOperand(0); 1174 1175 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 1176 if (DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 1177 return I->getOperand(1); 1178 1179 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1180 Known = KnownBits::computeForAddSub(/*Add*/ true, NSW, LHSKnown, RHSKnown); 1181 computeKnownBitsFromContext(I, Known, Depth, SQ.getWithInstruction(CxtI)); 1182 break; 1183 } 1184 case Instruction::Sub: { 1185 unsigned NLZ = DemandedMask.countl_zero(); 1186 APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ); 1187 1188 // If an operand subtracts zeros from every bit below the highest demanded 1189 // bit, that operand doesn't change the result. Return the other side. 1190 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 1191 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 1192 return I->getOperand(0); 1193 1194 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1195 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 1196 Known = KnownBits::computeForAddSub(/*Add*/ false, NSW, LHSKnown, RHSKnown); 1197 computeKnownBitsFromContext(I, Known, Depth, SQ.getWithInstruction(CxtI)); 1198 break; 1199 } 1200 case Instruction::AShr: { 1201 // Compute the Known bits to simplify things downstream. 1202 computeKnownBits(I, Known, Depth, CxtI); 1203 1204 // If this user is only demanding bits that we know, return the known 1205 // constant. 1206 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 1207 return Constant::getIntegerValue(ITy, Known.One); 1208 1209 // If the right shift operand 0 is a result of a left shift by the same 1210 // amount, this is probably a zero/sign extension, which may be unnecessary, 1211 // if we do not demand any of the new sign bits. So, return the original 1212 // operand instead. 1213 const APInt *ShiftRC; 1214 const APInt *ShiftLC; 1215 Value *X; 1216 unsigned BitWidth = DemandedMask.getBitWidth(); 1217 if (match(I, 1218 m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) && 1219 ShiftLC == ShiftRC && ShiftLC->ult(BitWidth) && 1220 DemandedMask.isSubsetOf(APInt::getLowBitsSet( 1221 BitWidth, BitWidth - ShiftRC->getZExtValue()))) { 1222 return X; 1223 } 1224 1225 break; 1226 } 1227 default: 1228 // Compute the Known bits to simplify things downstream. 1229 computeKnownBits(I, Known, Depth, CxtI); 1230 1231 // If this user is only demanding bits that we know, return the known 1232 // constant. 1233 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 1234 return Constant::getIntegerValue(ITy, Known.One); 1235 1236 break; 1237 } 1238 1239 return nullptr; 1240 } 1241 1242 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 1243 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 1244 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 1245 /// of "C2-C1". 1246 /// 1247 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 1248 /// ..., bn}, without considering the specific value X is holding. 1249 /// This transformation is legal iff one of following conditions is hold: 1250 /// 1) All the bit in S are 0, in this case E1 == E2. 1251 /// 2) We don't care those bits in S, per the input DemandedMask. 1252 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 1253 /// rest bits. 1254 /// 1255 /// Currently we only test condition 2). 1256 /// 1257 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 1258 /// not successful. 1259 Value *InstCombinerImpl::simplifyShrShlDemandedBits( 1260 Instruction *Shr, const APInt &ShrOp1, Instruction *Shl, 1261 const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) { 1262 if (!ShlOp1 || !ShrOp1) 1263 return nullptr; // No-op. 1264 1265 Value *VarX = Shr->getOperand(0); 1266 Type *Ty = VarX->getType(); 1267 unsigned BitWidth = Ty->getScalarSizeInBits(); 1268 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 1269 return nullptr; // Undef. 1270 1271 unsigned ShlAmt = ShlOp1.getZExtValue(); 1272 unsigned ShrAmt = ShrOp1.getZExtValue(); 1273 1274 Known.One.clearAllBits(); 1275 Known.Zero.setLowBits(ShlAmt - 1); 1276 Known.Zero &= DemandedMask; 1277 1278 APInt BitMask1(APInt::getAllOnes(BitWidth)); 1279 APInt BitMask2(APInt::getAllOnes(BitWidth)); 1280 1281 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 1282 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 1283 (BitMask1.ashr(ShrAmt) << ShlAmt); 1284 1285 if (ShrAmt <= ShlAmt) { 1286 BitMask2 <<= (ShlAmt - ShrAmt); 1287 } else { 1288 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 1289 BitMask2.ashr(ShrAmt - ShlAmt); 1290 } 1291 1292 // Check if condition-2 (see the comment to this function) is satified. 1293 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 1294 if (ShrAmt == ShlAmt) 1295 return VarX; 1296 1297 if (!Shr->hasOneUse()) 1298 return nullptr; 1299 1300 BinaryOperator *New; 1301 if (ShrAmt < ShlAmt) { 1302 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 1303 New = BinaryOperator::CreateShl(VarX, Amt); 1304 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 1305 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 1306 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 1307 } else { 1308 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 1309 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 1310 BinaryOperator::CreateAShr(VarX, Amt); 1311 if (cast<BinaryOperator>(Shr)->isExact()) 1312 New->setIsExact(true); 1313 } 1314 1315 return InsertNewInstWith(New, Shl->getIterator()); 1316 } 1317 1318 return nullptr; 1319 } 1320 1321 /// The specified value produces a vector with any number of elements. 1322 /// This method analyzes which elements of the operand are poison and 1323 /// returns that information in PoisonElts. 1324 /// 1325 /// DemandedElts contains the set of elements that are actually used by the 1326 /// caller, and by default (AllowMultipleUsers equals false) the value is 1327 /// simplified only if it has a single caller. If AllowMultipleUsers is set 1328 /// to true, DemandedElts refers to the union of sets of elements that are 1329 /// used by all callers. 1330 /// 1331 /// If the information about demanded elements can be used to simplify the 1332 /// operation, the operation is simplified, then the resultant value is 1333 /// returned. This returns null if no change was made. 1334 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V, 1335 APInt DemandedElts, 1336 APInt &PoisonElts, 1337 unsigned Depth, 1338 bool AllowMultipleUsers) { 1339 // Cannot analyze scalable type. The number of vector elements is not a 1340 // compile-time constant. 1341 if (isa<ScalableVectorType>(V->getType())) 1342 return nullptr; 1343 1344 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 1345 APInt EltMask(APInt::getAllOnes(VWidth)); 1346 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1347 1348 if (match(V, m_Poison())) { 1349 // If the entire vector is poison, just return this info. 1350 PoisonElts = EltMask; 1351 return nullptr; 1352 } 1353 1354 if (DemandedElts.isZero()) { // If nothing is demanded, provide poison. 1355 PoisonElts = EltMask; 1356 return PoisonValue::get(V->getType()); 1357 } 1358 1359 PoisonElts = 0; 1360 1361 if (auto *C = dyn_cast<Constant>(V)) { 1362 // Check if this is identity. If so, return 0 since we are not simplifying 1363 // anything. 1364 if (DemandedElts.isAllOnes()) 1365 return nullptr; 1366 1367 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1368 Constant *Poison = PoisonValue::get(EltTy); 1369 SmallVector<Constant*, 16> Elts; 1370 for (unsigned i = 0; i != VWidth; ++i) { 1371 if (!DemandedElts[i]) { // If not demanded, set to poison. 1372 Elts.push_back(Poison); 1373 PoisonElts.setBit(i); 1374 continue; 1375 } 1376 1377 Constant *Elt = C->getAggregateElement(i); 1378 if (!Elt) return nullptr; 1379 1380 Elts.push_back(Elt); 1381 if (isa<PoisonValue>(Elt)) // Already poison. 1382 PoisonElts.setBit(i); 1383 } 1384 1385 // If we changed the constant, return it. 1386 Constant *NewCV = ConstantVector::get(Elts); 1387 return NewCV != C ? NewCV : nullptr; 1388 } 1389 1390 // Limit search depth. 1391 if (Depth == 10) 1392 return nullptr; 1393 1394 if (!AllowMultipleUsers) { 1395 // If multiple users are using the root value, proceed with 1396 // simplification conservatively assuming that all elements 1397 // are needed. 1398 if (!V->hasOneUse()) { 1399 // Quit if we find multiple users of a non-root value though. 1400 // They'll be handled when it's their turn to be visited by 1401 // the main instcombine process. 1402 if (Depth != 0) 1403 // TODO: Just compute the PoisonElts information recursively. 1404 return nullptr; 1405 1406 // Conservatively assume that all elements are needed. 1407 DemandedElts = EltMask; 1408 } 1409 } 1410 1411 Instruction *I = dyn_cast<Instruction>(V); 1412 if (!I) return nullptr; // Only analyze instructions. 1413 1414 bool MadeChange = false; 1415 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1416 APInt Demanded, APInt &Undef) { 1417 auto *II = dyn_cast<IntrinsicInst>(Inst); 1418 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1419 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1420 replaceOperand(*Inst, OpNum, V); 1421 MadeChange = true; 1422 } 1423 }; 1424 1425 APInt PoisonElts2(VWidth, 0); 1426 APInt PoisonElts3(VWidth, 0); 1427 switch (I->getOpcode()) { 1428 default: break; 1429 1430 case Instruction::GetElementPtr: { 1431 // The LangRef requires that struct geps have all constant indices. As 1432 // such, we can't convert any operand to partial undef. 1433 auto mayIndexStructType = [](GetElementPtrInst &GEP) { 1434 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); 1435 I != E; I++) 1436 if (I.isStruct()) 1437 return true; 1438 return false; 1439 }; 1440 if (mayIndexStructType(cast<GetElementPtrInst>(*I))) 1441 break; 1442 1443 // Conservatively track the demanded elements back through any vector 1444 // operands we may have. We know there must be at least one, or we 1445 // wouldn't have a vector result to get here. Note that we intentionally 1446 // merge the undef bits here since gepping with either an poison base or 1447 // index results in poison. 1448 for (unsigned i = 0; i < I->getNumOperands(); i++) { 1449 if (i == 0 ? match(I->getOperand(i), m_Undef()) 1450 : match(I->getOperand(i), m_Poison())) { 1451 // If the entire vector is undefined, just return this info. 1452 PoisonElts = EltMask; 1453 return nullptr; 1454 } 1455 if (I->getOperand(i)->getType()->isVectorTy()) { 1456 APInt PoisonEltsOp(VWidth, 0); 1457 simplifyAndSetOp(I, i, DemandedElts, PoisonEltsOp); 1458 // gep(x, undef) is not undef, so skip considering idx ops here 1459 // Note that we could propagate poison, but we can't distinguish between 1460 // undef & poison bits ATM 1461 if (i == 0) 1462 PoisonElts |= PoisonEltsOp; 1463 } 1464 } 1465 1466 break; 1467 } 1468 case Instruction::InsertElement: { 1469 // If this is a variable index, we don't know which element it overwrites. 1470 // demand exactly the same input as we produce. 1471 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1472 if (!Idx) { 1473 // Note that we can't propagate undef elt info, because we don't know 1474 // which elt is getting updated. 1475 simplifyAndSetOp(I, 0, DemandedElts, PoisonElts2); 1476 break; 1477 } 1478 1479 // The element inserted overwrites whatever was there, so the input demanded 1480 // set is simpler than the output set. 1481 unsigned IdxNo = Idx->getZExtValue(); 1482 APInt PreInsertDemandedElts = DemandedElts; 1483 if (IdxNo < VWidth) 1484 PreInsertDemandedElts.clearBit(IdxNo); 1485 1486 // If we only demand the element that is being inserted and that element 1487 // was extracted from the same index in another vector with the same type, 1488 // replace this insert with that other vector. 1489 // Note: This is attempted before the call to simplifyAndSetOp because that 1490 // may change PoisonElts to a value that does not match with Vec. 1491 Value *Vec; 1492 if (PreInsertDemandedElts == 0 && 1493 match(I->getOperand(1), 1494 m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) && 1495 Vec->getType() == I->getType()) { 1496 return Vec; 1497 } 1498 1499 simplifyAndSetOp(I, 0, PreInsertDemandedElts, PoisonElts); 1500 1501 // If this is inserting an element that isn't demanded, remove this 1502 // insertelement. 1503 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1504 Worklist.push(I); 1505 return I->getOperand(0); 1506 } 1507 1508 // The inserted element is defined. 1509 PoisonElts.clearBit(IdxNo); 1510 break; 1511 } 1512 case Instruction::ShuffleVector: { 1513 auto *Shuffle = cast<ShuffleVectorInst>(I); 1514 assert(Shuffle->getOperand(0)->getType() == 1515 Shuffle->getOperand(1)->getType() && 1516 "Expected shuffle operands to have same type"); 1517 unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType()) 1518 ->getNumElements(); 1519 // Handle trivial case of a splat. Only check the first element of LHS 1520 // operand. 1521 if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) && 1522 DemandedElts.isAllOnes()) { 1523 if (!isa<PoisonValue>(I->getOperand(1))) { 1524 I->setOperand(1, PoisonValue::get(I->getOperand(1)->getType())); 1525 MadeChange = true; 1526 } 1527 APInt LeftDemanded(OpWidth, 1); 1528 APInt LHSPoisonElts(OpWidth, 0); 1529 simplifyAndSetOp(I, 0, LeftDemanded, LHSPoisonElts); 1530 if (LHSPoisonElts[0]) 1531 PoisonElts = EltMask; 1532 else 1533 PoisonElts.clearAllBits(); 1534 break; 1535 } 1536 1537 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); 1538 for (unsigned i = 0; i < VWidth; i++) { 1539 if (DemandedElts[i]) { 1540 unsigned MaskVal = Shuffle->getMaskValue(i); 1541 if (MaskVal != -1u) { 1542 assert(MaskVal < OpWidth * 2 && 1543 "shufflevector mask index out of range!"); 1544 if (MaskVal < OpWidth) 1545 LeftDemanded.setBit(MaskVal); 1546 else 1547 RightDemanded.setBit(MaskVal - OpWidth); 1548 } 1549 } 1550 } 1551 1552 APInt LHSPoisonElts(OpWidth, 0); 1553 simplifyAndSetOp(I, 0, LeftDemanded, LHSPoisonElts); 1554 1555 APInt RHSPoisonElts(OpWidth, 0); 1556 simplifyAndSetOp(I, 1, RightDemanded, RHSPoisonElts); 1557 1558 // If this shuffle does not change the vector length and the elements 1559 // demanded by this shuffle are an identity mask, then this shuffle is 1560 // unnecessary. 1561 // 1562 // We are assuming canonical form for the mask, so the source vector is 1563 // operand 0 and operand 1 is not used. 1564 // 1565 // Note that if an element is demanded and this shuffle mask is undefined 1566 // for that element, then the shuffle is not considered an identity 1567 // operation. The shuffle prevents poison from the operand vector from 1568 // leaking to the result by replacing poison with an undefined value. 1569 if (VWidth == OpWidth) { 1570 bool IsIdentityShuffle = true; 1571 for (unsigned i = 0; i < VWidth; i++) { 1572 unsigned MaskVal = Shuffle->getMaskValue(i); 1573 if (DemandedElts[i] && i != MaskVal) { 1574 IsIdentityShuffle = false; 1575 break; 1576 } 1577 } 1578 if (IsIdentityShuffle) 1579 return Shuffle->getOperand(0); 1580 } 1581 1582 bool NewPoisonElts = false; 1583 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1584 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1585 bool LHSUniform = true; 1586 bool RHSUniform = true; 1587 for (unsigned i = 0; i < VWidth; i++) { 1588 unsigned MaskVal = Shuffle->getMaskValue(i); 1589 if (MaskVal == -1u) { 1590 PoisonElts.setBit(i); 1591 } else if (!DemandedElts[i]) { 1592 NewPoisonElts = true; 1593 PoisonElts.setBit(i); 1594 } else if (MaskVal < OpWidth) { 1595 if (LHSPoisonElts[MaskVal]) { 1596 NewPoisonElts = true; 1597 PoisonElts.setBit(i); 1598 } else { 1599 LHSIdx = LHSIdx == -1u ? i : OpWidth; 1600 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; 1601 LHSUniform = LHSUniform && (MaskVal == i); 1602 } 1603 } else { 1604 if (RHSPoisonElts[MaskVal - OpWidth]) { 1605 NewPoisonElts = true; 1606 PoisonElts.setBit(i); 1607 } else { 1608 RHSIdx = RHSIdx == -1u ? i : OpWidth; 1609 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; 1610 RHSUniform = RHSUniform && (MaskVal - OpWidth == i); 1611 } 1612 } 1613 } 1614 1615 // Try to transform shuffle with constant vector and single element from 1616 // this constant vector to single insertelement instruction. 1617 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1618 // insertelement V, C[ci], ci-n 1619 if (OpWidth == 1620 cast<FixedVectorType>(Shuffle->getType())->getNumElements()) { 1621 Value *Op = nullptr; 1622 Constant *Value = nullptr; 1623 unsigned Idx = -1u; 1624 1625 // Find constant vector with the single element in shuffle (LHS or RHS). 1626 if (LHSIdx < OpWidth && RHSUniform) { 1627 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1628 Op = Shuffle->getOperand(1); 1629 Value = CV->getOperand(LHSValIdx); 1630 Idx = LHSIdx; 1631 } 1632 } 1633 if (RHSIdx < OpWidth && LHSUniform) { 1634 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1635 Op = Shuffle->getOperand(0); 1636 Value = CV->getOperand(RHSValIdx); 1637 Idx = RHSIdx; 1638 } 1639 } 1640 // Found constant vector with single element - convert to insertelement. 1641 if (Op && Value) { 1642 Instruction *New = InsertElementInst::Create( 1643 Op, Value, ConstantInt::get(Type::getInt64Ty(I->getContext()), Idx), 1644 Shuffle->getName()); 1645 InsertNewInstWith(New, Shuffle->getIterator()); 1646 return New; 1647 } 1648 } 1649 if (NewPoisonElts) { 1650 // Add additional discovered undefs. 1651 SmallVector<int, 16> Elts; 1652 for (unsigned i = 0; i < VWidth; ++i) { 1653 if (PoisonElts[i]) 1654 Elts.push_back(PoisonMaskElem); 1655 else 1656 Elts.push_back(Shuffle->getMaskValue(i)); 1657 } 1658 Shuffle->setShuffleMask(Elts); 1659 MadeChange = true; 1660 } 1661 break; 1662 } 1663 case Instruction::Select: { 1664 // If this is a vector select, try to transform the select condition based 1665 // on the current demanded elements. 1666 SelectInst *Sel = cast<SelectInst>(I); 1667 if (Sel->getCondition()->getType()->isVectorTy()) { 1668 // TODO: We are not doing anything with PoisonElts based on this call. 1669 // It is overwritten below based on the other select operands. If an 1670 // element of the select condition is known undef, then we are free to 1671 // choose the output value from either arm of the select. If we know that 1672 // one of those values is undef, then the output can be undef. 1673 simplifyAndSetOp(I, 0, DemandedElts, PoisonElts); 1674 } 1675 1676 // Next, see if we can transform the arms of the select. 1677 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1678 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1679 for (unsigned i = 0; i < VWidth; i++) { 1680 // isNullValue() always returns false when called on a ConstantExpr. 1681 // Skip constant expressions to avoid propagating incorrect information. 1682 Constant *CElt = CV->getAggregateElement(i); 1683 if (isa<ConstantExpr>(CElt)) 1684 continue; 1685 // TODO: If a select condition element is undef, we can demand from 1686 // either side. If one side is known undef, choosing that side would 1687 // propagate undef. 1688 if (CElt->isNullValue()) 1689 DemandedLHS.clearBit(i); 1690 else 1691 DemandedRHS.clearBit(i); 1692 } 1693 } 1694 1695 simplifyAndSetOp(I, 1, DemandedLHS, PoisonElts2); 1696 simplifyAndSetOp(I, 2, DemandedRHS, PoisonElts3); 1697 1698 // Output elements are undefined if the element from each arm is undefined. 1699 // TODO: This can be improved. See comment in select condition handling. 1700 PoisonElts = PoisonElts2 & PoisonElts3; 1701 break; 1702 } 1703 case Instruction::BitCast: { 1704 // Vector->vector casts only. 1705 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1706 if (!VTy) break; 1707 unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements(); 1708 APInt InputDemandedElts(InVWidth, 0); 1709 PoisonElts2 = APInt(InVWidth, 0); 1710 unsigned Ratio; 1711 1712 if (VWidth == InVWidth) { 1713 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1714 // elements as are demanded of us. 1715 Ratio = 1; 1716 InputDemandedElts = DemandedElts; 1717 } else if ((VWidth % InVWidth) == 0) { 1718 // If the number of elements in the output is a multiple of the number of 1719 // elements in the input then an input element is live if any of the 1720 // corresponding output elements are live. 1721 Ratio = VWidth / InVWidth; 1722 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1723 if (DemandedElts[OutIdx]) 1724 InputDemandedElts.setBit(OutIdx / Ratio); 1725 } else if ((InVWidth % VWidth) == 0) { 1726 // If the number of elements in the input is a multiple of the number of 1727 // elements in the output then an input element is live if the 1728 // corresponding output element is live. 1729 Ratio = InVWidth / VWidth; 1730 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1731 if (DemandedElts[InIdx / Ratio]) 1732 InputDemandedElts.setBit(InIdx); 1733 } else { 1734 // Unsupported so far. 1735 break; 1736 } 1737 1738 simplifyAndSetOp(I, 0, InputDemandedElts, PoisonElts2); 1739 1740 if (VWidth == InVWidth) { 1741 PoisonElts = PoisonElts2; 1742 } else if ((VWidth % InVWidth) == 0) { 1743 // If the number of elements in the output is a multiple of the number of 1744 // elements in the input then an output element is undef if the 1745 // corresponding input element is undef. 1746 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1747 if (PoisonElts2[OutIdx / Ratio]) 1748 PoisonElts.setBit(OutIdx); 1749 } else if ((InVWidth % VWidth) == 0) { 1750 // If the number of elements in the input is a multiple of the number of 1751 // elements in the output then an output element is undef if all of the 1752 // corresponding input elements are undef. 1753 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1754 APInt SubUndef = PoisonElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1755 if (SubUndef.popcount() == Ratio) 1756 PoisonElts.setBit(OutIdx); 1757 } 1758 } else { 1759 llvm_unreachable("Unimp"); 1760 } 1761 break; 1762 } 1763 case Instruction::FPTrunc: 1764 case Instruction::FPExt: 1765 simplifyAndSetOp(I, 0, DemandedElts, PoisonElts); 1766 break; 1767 1768 case Instruction::Call: { 1769 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1770 if (!II) break; 1771 switch (II->getIntrinsicID()) { 1772 case Intrinsic::masked_gather: // fallthrough 1773 case Intrinsic::masked_load: { 1774 // Subtlety: If we load from a pointer, the pointer must be valid 1775 // regardless of whether the element is demanded. Doing otherwise risks 1776 // segfaults which didn't exist in the original program. 1777 APInt DemandedPtrs(APInt::getAllOnes(VWidth)), 1778 DemandedPassThrough(DemandedElts); 1779 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) 1780 for (unsigned i = 0; i < VWidth; i++) { 1781 Constant *CElt = CV->getAggregateElement(i); 1782 if (CElt->isNullValue()) 1783 DemandedPtrs.clearBit(i); 1784 else if (CElt->isAllOnesValue()) 1785 DemandedPassThrough.clearBit(i); 1786 } 1787 if (II->getIntrinsicID() == Intrinsic::masked_gather) 1788 simplifyAndSetOp(II, 0, DemandedPtrs, PoisonElts2); 1789 simplifyAndSetOp(II, 3, DemandedPassThrough, PoisonElts3); 1790 1791 // Output elements are undefined if the element from both sources are. 1792 // TODO: can strengthen via mask as well. 1793 PoisonElts = PoisonElts2 & PoisonElts3; 1794 break; 1795 } 1796 default: { 1797 // Handle target specific intrinsics 1798 std::optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic( 1799 *II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3, 1800 simplifyAndSetOp); 1801 if (V) 1802 return *V; 1803 break; 1804 } 1805 } // switch on IntrinsicID 1806 break; 1807 } // case Call 1808 } // switch on Opcode 1809 1810 // TODO: We bail completely on integer div/rem and shifts because they have 1811 // UB/poison potential, but that should be refined. 1812 BinaryOperator *BO; 1813 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1814 Value *X = BO->getOperand(0); 1815 Value *Y = BO->getOperand(1); 1816 1817 // Look for an equivalent binop except that one operand has been shuffled. 1818 // If the demand for this binop only includes elements that are the same as 1819 // the other binop, then we may be able to replace this binop with a use of 1820 // the earlier one. 1821 // 1822 // Example: 1823 // %other_bo = bo (shuf X, {0}), Y 1824 // %this_extracted_bo = extelt (bo X, Y), 0 1825 // --> 1826 // %other_bo = bo (shuf X, {0}), Y 1827 // %this_extracted_bo = extelt %other_bo, 0 1828 // 1829 // TODO: Handle demand of an arbitrary single element or more than one 1830 // element instead of just element 0. 1831 // TODO: Unlike general demanded elements transforms, this should be safe 1832 // for any (div/rem/shift) opcode too. 1833 if (DemandedElts == 1 && !X->hasOneUse() && !Y->hasOneUse() && 1834 BO->hasOneUse() ) { 1835 1836 auto findShufBO = [&](bool MatchShufAsOp0) -> User * { 1837 // Try to use shuffle-of-operand in place of an operand: 1838 // bo X, Y --> bo (shuf X), Y 1839 // bo X, Y --> bo X, (shuf Y) 1840 BinaryOperator::BinaryOps Opcode = BO->getOpcode(); 1841 Value *ShufOp = MatchShufAsOp0 ? X : Y; 1842 Value *OtherOp = MatchShufAsOp0 ? Y : X; 1843 for (User *U : OtherOp->users()) { 1844 auto Shuf = m_Shuffle(m_Specific(ShufOp), m_Value(), m_ZeroMask()); 1845 if (BO->isCommutative() 1846 ? match(U, m_c_BinOp(Opcode, Shuf, m_Specific(OtherOp))) 1847 : MatchShufAsOp0 1848 ? match(U, m_BinOp(Opcode, Shuf, m_Specific(OtherOp))) 1849 : match(U, m_BinOp(Opcode, m_Specific(OtherOp), Shuf))) 1850 if (DT.dominates(U, I)) 1851 return U; 1852 } 1853 return nullptr; 1854 }; 1855 1856 if (User *ShufBO = findShufBO(/* MatchShufAsOp0 */ true)) 1857 return ShufBO; 1858 if (User *ShufBO = findShufBO(/* MatchShufAsOp0 */ false)) 1859 return ShufBO; 1860 } 1861 1862 simplifyAndSetOp(I, 0, DemandedElts, PoisonElts); 1863 simplifyAndSetOp(I, 1, DemandedElts, PoisonElts2); 1864 1865 // Output elements are undefined if both are undefined. Consider things 1866 // like undef & 0. The result is known zero, not undef. 1867 PoisonElts &= PoisonElts2; 1868 } 1869 1870 // If we've proven all of the lanes poison, return a poison value. 1871 // TODO: Intersect w/demanded lanes 1872 if (PoisonElts.isAllOnes()) 1873 return PoisonValue::get(I->getType()); 1874 1875 return MadeChange ? I : nullptr; 1876 } 1877