1 //===- InstCombineShifts.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitShl, visitLShr, and visitAShr functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/Analysis/InstructionSimplify.h" 15 #include "llvm/IR/IntrinsicInst.h" 16 #include "llvm/IR/PatternMatch.h" 17 #include "llvm/Transforms/InstCombine/InstCombiner.h" 18 using namespace llvm; 19 using namespace PatternMatch; 20 21 #define DEBUG_TYPE "instcombine" 22 23 bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1, 24 Value *ShAmt1) { 25 // We have two shift amounts from two different shifts. The types of those 26 // shift amounts may not match. If that's the case let's bailout now.. 27 if (ShAmt0->getType() != ShAmt1->getType()) 28 return false; 29 30 // As input, we have the following pattern: 31 // Sh0 (Sh1 X, Q), K 32 // We want to rewrite that as: 33 // Sh x, (Q+K) iff (Q+K) u< bitwidth(x) 34 // While we know that originally (Q+K) would not overflow 35 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 36 // shift amounts. so it may now overflow in smaller bitwidth. 37 // To ensure that does not happen, we need to ensure that the total maximal 38 // shift amount is still representable in that smaller bit width. 39 unsigned MaximalPossibleTotalShiftAmount = 40 (Sh0->getType()->getScalarSizeInBits() - 1) + 41 (Sh1->getType()->getScalarSizeInBits() - 1); 42 APInt MaximalRepresentableShiftAmount = 43 APInt::getAllOnes(ShAmt0->getType()->getScalarSizeInBits()); 44 return MaximalRepresentableShiftAmount.uge(MaximalPossibleTotalShiftAmount); 45 } 46 47 // Given pattern: 48 // (x shiftopcode Q) shiftopcode K 49 // we should rewrite it as 50 // x shiftopcode (Q+K) iff (Q+K) u< bitwidth(x) and 51 // 52 // This is valid for any shift, but they must be identical, and we must be 53 // careful in case we have (zext(Q)+zext(K)) and look past extensions, 54 // (Q+K) must not overflow or else (Q+K) u< bitwidth(x) is bogus. 55 // 56 // AnalyzeForSignBitExtraction indicates that we will only analyze whether this 57 // pattern has any 2 right-shifts that sum to 1 less than original bit width. 58 Value *InstCombinerImpl::reassociateShiftAmtsOfTwoSameDirectionShifts( 59 BinaryOperator *Sh0, const SimplifyQuery &SQ, 60 bool AnalyzeForSignBitExtraction) { 61 // Look for a shift of some instruction, ignore zext of shift amount if any. 62 Instruction *Sh0Op0; 63 Value *ShAmt0; 64 if (!match(Sh0, 65 m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0))))) 66 return nullptr; 67 68 // If there is a truncation between the two shifts, we must make note of it 69 // and look through it. The truncation imposes additional constraints on the 70 // transform. 71 Instruction *Sh1; 72 Value *Trunc = nullptr; 73 match(Sh0Op0, 74 m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)), 75 m_Instruction(Sh1))); 76 77 // Inner shift: (x shiftopcode ShAmt1) 78 // Like with other shift, ignore zext of shift amount if any. 79 Value *X, *ShAmt1; 80 if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1))))) 81 return nullptr; 82 83 // Verify that it would be safe to try to add those two shift amounts. 84 if (!canTryToConstantAddTwoShiftAmounts(Sh0, ShAmt0, Sh1, ShAmt1)) 85 return nullptr; 86 87 // We are only looking for signbit extraction if we have two right shifts. 88 bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) && 89 match(Sh1, m_Shr(m_Value(), m_Value())); 90 // ... and if it's not two right-shifts, we know the answer already. 91 if (AnalyzeForSignBitExtraction && !HadTwoRightShifts) 92 return nullptr; 93 94 // The shift opcodes must be identical, unless we are just checking whether 95 // this pattern can be interpreted as a sign-bit-extraction. 96 Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode(); 97 bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode(); 98 if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction) 99 return nullptr; 100 101 // If we saw truncation, we'll need to produce extra instruction, 102 // and for that one of the operands of the shift must be one-use, 103 // unless of course we don't actually plan to produce any instructions here. 104 if (Trunc && !AnalyzeForSignBitExtraction && 105 !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 106 return nullptr; 107 108 // Can we fold (ShAmt0+ShAmt1) ? 109 auto *NewShAmt = dyn_cast_or_null<Constant>( 110 simplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false, 111 SQ.getWithInstruction(Sh0))); 112 if (!NewShAmt) 113 return nullptr; // Did not simplify. 114 unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits(); 115 unsigned XBitWidth = X->getType()->getScalarSizeInBits(); 116 // Is the new shift amount smaller than the bit width of inner/new shift? 117 if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 118 APInt(NewShAmtBitWidth, XBitWidth)))) 119 return nullptr; // FIXME: could perform constant-folding. 120 121 // If there was a truncation, and we have a right-shift, we can only fold if 122 // we are left with the original sign bit. Likewise, if we were just checking 123 // that this is a sighbit extraction, this is the place to check it. 124 // FIXME: zero shift amount is also legal here, but we can't *easily* check 125 // more than one predicate so it's not really worth it. 126 if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) { 127 // If it's not a sign bit extraction, then we're done. 128 if (!match(NewShAmt, 129 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 130 APInt(NewShAmtBitWidth, XBitWidth - 1)))) 131 return nullptr; 132 // If it is, and that was the question, return the base value. 133 if (AnalyzeForSignBitExtraction) 134 return X; 135 } 136 137 assert(IdenticalShOpcodes && "Should not get here with different shifts."); 138 139 // All good, we can do this fold. 140 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType()); 141 142 BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt); 143 144 // The flags can only be propagated if there wasn't a trunc. 145 if (!Trunc) { 146 // If the pattern did not involve trunc, and both of the original shifts 147 // had the same flag set, preserve the flag. 148 if (ShiftOpcode == Instruction::BinaryOps::Shl) { 149 NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() && 150 Sh1->hasNoUnsignedWrap()); 151 NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() && 152 Sh1->hasNoSignedWrap()); 153 } else { 154 NewShift->setIsExact(Sh0->isExact() && Sh1->isExact()); 155 } 156 } 157 158 Instruction *Ret = NewShift; 159 if (Trunc) { 160 Builder.Insert(NewShift); 161 Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType()); 162 } 163 164 return Ret; 165 } 166 167 // If we have some pattern that leaves only some low bits set, and then performs 168 // left-shift of those bits, if none of the bits that are left after the final 169 // shift are modified by the mask, we can omit the mask. 170 // 171 // There are many variants to this pattern: 172 // a) (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt 173 // b) (x & (~(-1 << MaskShAmt))) << ShiftShAmt 174 // c) (x & (-1 l>> MaskShAmt)) << ShiftShAmt 175 // d) (x & ((-1 << MaskShAmt) l>> MaskShAmt)) << ShiftShAmt 176 // e) ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt 177 // f) ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt 178 // All these patterns can be simplified to just: 179 // x << ShiftShAmt 180 // iff: 181 // a,b) (MaskShAmt+ShiftShAmt) u>= bitwidth(x) 182 // c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt) 183 static Instruction * 184 dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift, 185 const SimplifyQuery &Q, 186 InstCombiner::BuilderTy &Builder) { 187 assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl && 188 "The input must be 'shl'!"); 189 190 Value *Masked, *ShiftShAmt; 191 match(OuterShift, 192 m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt)))); 193 194 // *If* there is a truncation between an outer shift and a possibly-mask, 195 // then said truncation *must* be one-use, else we can't perform the fold. 196 Value *Trunc; 197 if (match(Masked, m_CombineAnd(m_Trunc(m_Value(Masked)), m_Value(Trunc))) && 198 !Trunc->hasOneUse()) 199 return nullptr; 200 201 Type *NarrowestTy = OuterShift->getType(); 202 Type *WidestTy = Masked->getType(); 203 bool HadTrunc = WidestTy != NarrowestTy; 204 205 // The mask must be computed in a type twice as wide to ensure 206 // that no bits are lost if the sum-of-shifts is wider than the base type. 207 Type *ExtendedTy = WidestTy->getExtendedType(); 208 209 Value *MaskShAmt; 210 211 // ((1 << MaskShAmt) - 1) 212 auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes()); 213 // (~(-1 << maskNbits)) 214 auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes()); 215 // (-1 l>> MaskShAmt) 216 auto MaskC = m_LShr(m_AllOnes(), m_Value(MaskShAmt)); 217 // ((-1 << MaskShAmt) l>> MaskShAmt) 218 auto MaskD = 219 m_LShr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt)); 220 221 Value *X; 222 Constant *NewMask; 223 224 if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) { 225 // Peek through an optional zext of the shift amount. 226 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt))); 227 228 // Verify that it would be safe to try to add those two shift amounts. 229 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked, 230 MaskShAmt)) 231 return nullptr; 232 233 // Can we simplify (MaskShAmt+ShiftShAmt) ? 234 auto *SumOfShAmts = dyn_cast_or_null<Constant>(simplifyAddInst( 235 MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q)); 236 if (!SumOfShAmts) 237 return nullptr; // Did not simplify. 238 // In this pattern SumOfShAmts correlates with the number of low bits 239 // that shall remain in the root value (OuterShift). 240 241 // An extend of an undef value becomes zero because the high bits are never 242 // completely unknown. Replace the `undef` shift amounts with final 243 // shift bitwidth to ensure that the value remains undef when creating the 244 // subsequent shift op. 245 SumOfShAmts = Constant::replaceUndefsWith( 246 SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(), 247 ExtendedTy->getScalarSizeInBits())); 248 auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy); 249 // And compute the mask as usual: ~(-1 << (SumOfShAmts)) 250 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy); 251 auto *ExtendedInvertedMask = 252 ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts); 253 NewMask = ConstantExpr::getNot(ExtendedInvertedMask); 254 } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) || 255 match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)), 256 m_Deferred(MaskShAmt)))) { 257 // Peek through an optional zext of the shift amount. 258 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt))); 259 260 // Verify that it would be safe to try to add those two shift amounts. 261 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked, 262 MaskShAmt)) 263 return nullptr; 264 265 // Can we simplify (ShiftShAmt-MaskShAmt) ? 266 auto *ShAmtsDiff = dyn_cast_or_null<Constant>(simplifySubInst( 267 ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q)); 268 if (!ShAmtsDiff) 269 return nullptr; // Did not simplify. 270 // In this pattern ShAmtsDiff correlates with the number of high bits that 271 // shall be unset in the root value (OuterShift). 272 273 // An extend of an undef value becomes zero because the high bits are never 274 // completely unknown. Replace the `undef` shift amounts with negated 275 // bitwidth of innermost shift to ensure that the value remains undef when 276 // creating the subsequent shift op. 277 unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits(); 278 ShAmtsDiff = Constant::replaceUndefsWith( 279 ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(), 280 -WidestTyBitWidth)); 281 auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt( 282 ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(), 283 WidestTyBitWidth, 284 /*isSigned=*/false), 285 ShAmtsDiff), 286 ExtendedTy); 287 // And compute the mask as usual: (-1 l>> (NumHighBitsToClear)) 288 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy); 289 NewMask = 290 ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear); 291 } else 292 return nullptr; // Don't know anything about this pattern. 293 294 NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy); 295 296 // Does this mask has any unset bits? If not then we can just not apply it. 297 bool NeedMask = !match(NewMask, m_AllOnes()); 298 299 // If we need to apply a mask, there are several more restrictions we have. 300 if (NeedMask) { 301 // The old masking instruction must go away. 302 if (!Masked->hasOneUse()) 303 return nullptr; 304 // The original "masking" instruction must not have been`ashr`. 305 if (match(Masked, m_AShr(m_Value(), m_Value()))) 306 return nullptr; 307 } 308 309 // If we need to apply truncation, let's do it first, since we can. 310 // We have already ensured that the old truncation will go away. 311 if (HadTrunc) 312 X = Builder.CreateTrunc(X, NarrowestTy); 313 314 // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits. 315 // We didn't change the Type of this outermost shift, so we can just do it. 316 auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X, 317 OuterShift->getOperand(1)); 318 if (!NeedMask) 319 return NewShift; 320 321 Builder.Insert(NewShift); 322 return BinaryOperator::Create(Instruction::And, NewShift, NewMask); 323 } 324 325 /// If we have a shift-by-constant of a bitwise logic op that itself has a 326 /// shift-by-constant operand with identical opcode, we may be able to convert 327 /// that into 2 independent shifts followed by the logic op. This eliminates a 328 /// a use of an intermediate value (reduces dependency chain). 329 static Instruction *foldShiftOfShiftedLogic(BinaryOperator &I, 330 InstCombiner::BuilderTy &Builder) { 331 assert(I.isShift() && "Expected a shift as input"); 332 auto *LogicInst = dyn_cast<BinaryOperator>(I.getOperand(0)); 333 if (!LogicInst || !LogicInst->isBitwiseLogicOp() || !LogicInst->hasOneUse()) 334 return nullptr; 335 336 Constant *C0, *C1; 337 if (!match(I.getOperand(1), m_Constant(C1))) 338 return nullptr; 339 340 Instruction::BinaryOps ShiftOpcode = I.getOpcode(); 341 Type *Ty = I.getType(); 342 343 // Find a matching one-use shift by constant. The fold is not valid if the sum 344 // of the shift values equals or exceeds bitwidth. 345 // TODO: Remove the one-use check if the other logic operand (Y) is constant. 346 Value *X, *Y; 347 auto matchFirstShift = [&](Value *V) { 348 APInt Threshold(Ty->getScalarSizeInBits(), Ty->getScalarSizeInBits()); 349 return match(V, m_BinOp(ShiftOpcode, m_Value(), m_Value())) && 350 match(V, m_OneUse(m_Shift(m_Value(X), m_Constant(C0)))) && 351 match(ConstantExpr::getAdd(C0, C1), 352 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold)); 353 }; 354 355 // Logic ops are commutative, so check each operand for a match. 356 if (matchFirstShift(LogicInst->getOperand(0))) 357 Y = LogicInst->getOperand(1); 358 else if (matchFirstShift(LogicInst->getOperand(1))) 359 Y = LogicInst->getOperand(0); 360 else 361 return nullptr; 362 363 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1) 364 Constant *ShiftSumC = ConstantExpr::getAdd(C0, C1); 365 Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC); 366 Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, I.getOperand(1)); 367 return BinaryOperator::Create(LogicInst->getOpcode(), NewShift1, NewShift2); 368 } 369 370 Instruction *InstCombinerImpl::commonShiftTransforms(BinaryOperator &I) { 371 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 372 return Phi; 373 374 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 375 assert(Op0->getType() == Op1->getType()); 376 Type *Ty = I.getType(); 377 378 // If the shift amount is a one-use `sext`, we can demote it to `zext`. 379 Value *Y; 380 if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) { 381 Value *NewExt = Builder.CreateZExt(Y, Ty, Op1->getName()); 382 return BinaryOperator::Create(I.getOpcode(), Op0, NewExt); 383 } 384 385 // See if we can fold away this shift. 386 if (SimplifyDemandedInstructionBits(I)) 387 return &I; 388 389 // Try to fold constant and into select arguments. 390 if (isa<Constant>(Op0)) 391 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 392 if (Instruction *R = FoldOpIntoSelect(I, SI)) 393 return R; 394 395 if (Constant *CUI = dyn_cast<Constant>(Op1)) 396 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I)) 397 return Res; 398 399 if (auto *NewShift = cast_or_null<Instruction>( 400 reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ))) 401 return NewShift; 402 403 // Pre-shift a constant shifted by a variable amount with constant offset: 404 // C shift (A add nuw C1) --> (C shift C1) shift A 405 Value *A; 406 Constant *C, *C1; 407 if (match(Op0, m_Constant(C)) && 408 match(Op1, m_NUWAdd(m_Value(A), m_Constant(C1)))) { 409 Value *NewC = Builder.CreateBinOp(I.getOpcode(), C, C1); 410 return BinaryOperator::Create(I.getOpcode(), NewC, A); 411 } 412 413 unsigned BitWidth = Ty->getScalarSizeInBits(); 414 415 const APInt *AC, *AddC; 416 // Try to pre-shift a constant shifted by a variable amount added with a 417 // negative number: 418 // C << (X - AddC) --> (C >> AddC) << X 419 // and 420 // C >> (X - AddC) --> (C << AddC) >> X 421 if (match(Op0, m_APInt(AC)) && match(Op1, m_Add(m_Value(A), m_APInt(AddC))) && 422 AddC->isNegative() && (-*AddC).ult(BitWidth)) { 423 assert(!AC->isZero() && "Expected simplify of shifted zero"); 424 unsigned PosOffset = (-*AddC).getZExtValue(); 425 426 auto isSuitableForPreShift = [PosOffset, &I, AC]() { 427 switch (I.getOpcode()) { 428 default: 429 return false; 430 case Instruction::Shl: 431 return (I.hasNoSignedWrap() || I.hasNoUnsignedWrap()) && 432 AC->eq(AC->lshr(PosOffset).shl(PosOffset)); 433 case Instruction::LShr: 434 return I.isExact() && AC->eq(AC->shl(PosOffset).lshr(PosOffset)); 435 case Instruction::AShr: 436 return I.isExact() && AC->eq(AC->shl(PosOffset).ashr(PosOffset)); 437 } 438 }; 439 if (isSuitableForPreShift()) { 440 Constant *NewC = ConstantInt::get(Ty, I.getOpcode() == Instruction::Shl 441 ? AC->lshr(PosOffset) 442 : AC->shl(PosOffset)); 443 BinaryOperator *NewShiftOp = 444 BinaryOperator::Create(I.getOpcode(), NewC, A); 445 if (I.getOpcode() == Instruction::Shl) { 446 NewShiftOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 447 } else { 448 NewShiftOp->setIsExact(); 449 } 450 return NewShiftOp; 451 } 452 } 453 454 // X shift (A srem C) -> X shift (A and (C - 1)) iff C is a power of 2. 455 // Because shifts by negative values (which could occur if A were negative) 456 // are undefined. 457 if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Constant(C))) && 458 match(C, m_Power2())) { 459 // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't 460 // demand the sign bit (and many others) here?? 461 Constant *Mask = ConstantExpr::getSub(C, ConstantInt::get(Ty, 1)); 462 Value *Rem = Builder.CreateAnd(A, Mask, Op1->getName()); 463 return replaceOperand(I, 1, Rem); 464 } 465 466 if (Instruction *Logic = foldShiftOfShiftedLogic(I, Builder)) 467 return Logic; 468 469 return nullptr; 470 } 471 472 /// Return true if we can simplify two logical (either left or right) shifts 473 /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2. 474 static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl, 475 Instruction *InnerShift, 476 InstCombinerImpl &IC, Instruction *CxtI) { 477 assert(InnerShift->isLogicalShift() && "Unexpected instruction type"); 478 479 // We need constant scalar or constant splat shifts. 480 const APInt *InnerShiftConst; 481 if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst))) 482 return false; 483 484 // Two logical shifts in the same direction: 485 // shl (shl X, C1), C2 --> shl X, C1 + C2 486 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2 487 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl; 488 if (IsInnerShl == IsOuterShl) 489 return true; 490 491 // Equal shift amounts in opposite directions become bitwise 'and': 492 // lshr (shl X, C), C --> and X, C' 493 // shl (lshr X, C), C --> and X, C' 494 if (*InnerShiftConst == OuterShAmt) 495 return true; 496 497 // If the 2nd shift is bigger than the 1st, we can fold: 498 // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3 499 // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3 500 // but it isn't profitable unless we know the and'd out bits are already zero. 501 // Also, check that the inner shift is valid (less than the type width) or 502 // we'll crash trying to produce the bit mask for the 'and'. 503 unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits(); 504 if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) { 505 unsigned InnerShAmt = InnerShiftConst->getZExtValue(); 506 unsigned MaskShift = 507 IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt; 508 APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift; 509 if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI)) 510 return true; 511 } 512 513 return false; 514 } 515 516 /// See if we can compute the specified value, but shifted logically to the left 517 /// or right by some number of bits. This should return true if the expression 518 /// can be computed for the same cost as the current expression tree. This is 519 /// used to eliminate extraneous shifting from things like: 520 /// %C = shl i128 %A, 64 521 /// %D = shl i128 %B, 96 522 /// %E = or i128 %C, %D 523 /// %F = lshr i128 %E, 64 524 /// where the client will ask if E can be computed shifted right by 64-bits. If 525 /// this succeeds, getShiftedValue() will be called to produce the value. 526 static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift, 527 InstCombinerImpl &IC, Instruction *CxtI) { 528 // We can always evaluate constants shifted. 529 if (isa<Constant>(V)) 530 return true; 531 532 Instruction *I = dyn_cast<Instruction>(V); 533 if (!I) return false; 534 535 // We can't mutate something that has multiple uses: doing so would 536 // require duplicating the instruction in general, which isn't profitable. 537 if (!I->hasOneUse()) return false; 538 539 switch (I->getOpcode()) { 540 default: return false; 541 case Instruction::And: 542 case Instruction::Or: 543 case Instruction::Xor: 544 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. 545 return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) && 546 canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I); 547 548 case Instruction::Shl: 549 case Instruction::LShr: 550 return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI); 551 552 case Instruction::Select: { 553 SelectInst *SI = cast<SelectInst>(I); 554 Value *TrueVal = SI->getTrueValue(); 555 Value *FalseVal = SI->getFalseValue(); 556 return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) && 557 canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI); 558 } 559 case Instruction::PHI: { 560 // We can change a phi if we can change all operands. Note that we never 561 // get into trouble with cyclic PHIs here because we only consider 562 // instructions with a single use. 563 PHINode *PN = cast<PHINode>(I); 564 for (Value *IncValue : PN->incoming_values()) 565 if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN)) 566 return false; 567 return true; 568 } 569 case Instruction::Mul: { 570 const APInt *MulConst; 571 // We can fold (shr (mul X, -(1 << C)), C) -> (and (neg X), C`) 572 return !IsLeftShift && match(I->getOperand(1), m_APInt(MulConst)) && 573 MulConst->isNegatedPowerOf2() && 574 MulConst->countTrailingZeros() == NumBits; 575 } 576 } 577 } 578 579 /// Fold OuterShift (InnerShift X, C1), C2. 580 /// See canEvaluateShiftedShift() for the constraints on these instructions. 581 static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt, 582 bool IsOuterShl, 583 InstCombiner::BuilderTy &Builder) { 584 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl; 585 Type *ShType = InnerShift->getType(); 586 unsigned TypeWidth = ShType->getScalarSizeInBits(); 587 588 // We only accept shifts-by-a-constant in canEvaluateShifted(). 589 const APInt *C1; 590 match(InnerShift->getOperand(1), m_APInt(C1)); 591 unsigned InnerShAmt = C1->getZExtValue(); 592 593 // Change the shift amount and clear the appropriate IR flags. 594 auto NewInnerShift = [&](unsigned ShAmt) { 595 InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt)); 596 if (IsInnerShl) { 597 InnerShift->setHasNoUnsignedWrap(false); 598 InnerShift->setHasNoSignedWrap(false); 599 } else { 600 InnerShift->setIsExact(false); 601 } 602 return InnerShift; 603 }; 604 605 // Two logical shifts in the same direction: 606 // shl (shl X, C1), C2 --> shl X, C1 + C2 607 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2 608 if (IsInnerShl == IsOuterShl) { 609 // If this is an oversized composite shift, then unsigned shifts get 0. 610 if (InnerShAmt + OuterShAmt >= TypeWidth) 611 return Constant::getNullValue(ShType); 612 613 return NewInnerShift(InnerShAmt + OuterShAmt); 614 } 615 616 // Equal shift amounts in opposite directions become bitwise 'and': 617 // lshr (shl X, C), C --> and X, C' 618 // shl (lshr X, C), C --> and X, C' 619 if (InnerShAmt == OuterShAmt) { 620 APInt Mask = IsInnerShl 621 ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt) 622 : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt); 623 Value *And = Builder.CreateAnd(InnerShift->getOperand(0), 624 ConstantInt::get(ShType, Mask)); 625 if (auto *AndI = dyn_cast<Instruction>(And)) { 626 AndI->moveBefore(InnerShift); 627 AndI->takeName(InnerShift); 628 } 629 return And; 630 } 631 632 assert(InnerShAmt > OuterShAmt && 633 "Unexpected opposite direction logical shift pair"); 634 635 // In general, we would need an 'and' for this transform, but 636 // canEvaluateShiftedShift() guarantees that the masked-off bits are not used. 637 // lshr (shl X, C1), C2 --> shl X, C1 - C2 638 // shl (lshr X, C1), C2 --> lshr X, C1 - C2 639 return NewInnerShift(InnerShAmt - OuterShAmt); 640 } 641 642 /// When canEvaluateShifted() returns true for an expression, this function 643 /// inserts the new computation that produces the shifted value. 644 static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift, 645 InstCombinerImpl &IC, const DataLayout &DL) { 646 // We can always evaluate constants shifted. 647 if (Constant *C = dyn_cast<Constant>(V)) { 648 if (isLeftShift) 649 return IC.Builder.CreateShl(C, NumBits); 650 else 651 return IC.Builder.CreateLShr(C, NumBits); 652 } 653 654 Instruction *I = cast<Instruction>(V); 655 IC.addToWorklist(I); 656 657 switch (I->getOpcode()) { 658 default: llvm_unreachable("Inconsistency with CanEvaluateShifted"); 659 case Instruction::And: 660 case Instruction::Or: 661 case Instruction::Xor: 662 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. 663 I->setOperand( 664 0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL)); 665 I->setOperand( 666 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL)); 667 return I; 668 669 case Instruction::Shl: 670 case Instruction::LShr: 671 return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift, 672 IC.Builder); 673 674 case Instruction::Select: 675 I->setOperand( 676 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL)); 677 I->setOperand( 678 2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL)); 679 return I; 680 case Instruction::PHI: { 681 // We can change a phi if we can change all operands. Note that we never 682 // get into trouble with cyclic PHIs here because we only consider 683 // instructions with a single use. 684 PHINode *PN = cast<PHINode>(I); 685 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 686 PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits, 687 isLeftShift, IC, DL)); 688 return PN; 689 } 690 case Instruction::Mul: { 691 assert(!isLeftShift && "Unexpected shift direction!"); 692 auto *Neg = BinaryOperator::CreateNeg(I->getOperand(0)); 693 IC.InsertNewInstWith(Neg, *I); 694 unsigned TypeWidth = I->getType()->getScalarSizeInBits(); 695 APInt Mask = APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits); 696 auto *And = BinaryOperator::CreateAnd(Neg, 697 ConstantInt::get(I->getType(), Mask)); 698 And->takeName(I); 699 return IC.InsertNewInstWith(And, *I); 700 } 701 } 702 } 703 704 // If this is a bitwise operator or add with a constant RHS we might be able 705 // to pull it through a shift. 706 static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift, 707 BinaryOperator *BO) { 708 switch (BO->getOpcode()) { 709 default: 710 return false; // Do not perform transform! 711 case Instruction::Add: 712 return Shift.getOpcode() == Instruction::Shl; 713 case Instruction::Or: 714 case Instruction::And: 715 return true; 716 case Instruction::Xor: 717 // Do not change a 'not' of logical shift because that would create a normal 718 // 'xor'. The 'not' is likely better for analysis, SCEV, and codegen. 719 return !(Shift.isLogicalShift() && match(BO, m_Not(m_Value()))); 720 } 721 } 722 723 Instruction *InstCombinerImpl::FoldShiftByConstant(Value *Op0, Constant *C1, 724 BinaryOperator &I) { 725 // (C2 << X) << C1 --> (C2 << C1) << X 726 // (C2 >> X) >> C1 --> (C2 >> C1) >> X 727 Constant *C2; 728 Value *X; 729 if (match(Op0, m_BinOp(I.getOpcode(), m_Constant(C2), m_Value(X)))) 730 return BinaryOperator::Create( 731 I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), C2, C1), X); 732 733 const APInt *Op1C; 734 if (!match(C1, m_APInt(Op1C))) 735 return nullptr; 736 737 // See if we can propagate this shift into the input, this covers the trivial 738 // cast of lshr(shl(x,c1),c2) as well as other more complex cases. 739 bool IsLeftShift = I.getOpcode() == Instruction::Shl; 740 if (I.getOpcode() != Instruction::AShr && 741 canEvaluateShifted(Op0, Op1C->getZExtValue(), IsLeftShift, *this, &I)) { 742 LLVM_DEBUG( 743 dbgs() << "ICE: GetShiftedValue propagating shift through expression" 744 " to eliminate shift:\n IN: " 745 << *Op0 << "\n SH: " << I << "\n"); 746 747 return replaceInstUsesWith( 748 I, getShiftedValue(Op0, Op1C->getZExtValue(), IsLeftShift, *this, DL)); 749 } 750 751 // See if we can simplify any instructions used by the instruction whose sole 752 // purpose is to compute bits we don't care about. 753 Type *Ty = I.getType(); 754 unsigned TypeBits = Ty->getScalarSizeInBits(); 755 assert(!Op1C->uge(TypeBits) && 756 "Shift over the type width should have been removed already"); 757 (void)TypeBits; 758 759 if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I)) 760 return FoldedShift; 761 762 if (!Op0->hasOneUse()) 763 return nullptr; 764 765 if (auto *Op0BO = dyn_cast<BinaryOperator>(Op0)) { 766 // If the operand is a bitwise operator with a constant RHS, and the 767 // shift is the only use, we can pull it out of the shift. 768 const APInt *Op0C; 769 if (match(Op0BO->getOperand(1), m_APInt(Op0C))) { 770 if (canShiftBinOpWithConstantRHS(I, Op0BO)) { 771 Value *NewRHS = 772 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(1), C1); 773 774 Value *NewShift = 775 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), C1); 776 NewShift->takeName(Op0BO); 777 778 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, NewRHS); 779 } 780 } 781 } 782 783 // If we have a select that conditionally executes some binary operator, 784 // see if we can pull it the select and operator through the shift. 785 // 786 // For example, turning: 787 // shl (select C, (add X, C1), X), C2 788 // Into: 789 // Y = shl X, C2 790 // select C, (add Y, C1 << C2), Y 791 Value *Cond; 792 BinaryOperator *TBO; 793 Value *FalseVal; 794 if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)), 795 m_Value(FalseVal)))) { 796 const APInt *C; 797 if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal && 798 match(TBO->getOperand(1), m_APInt(C)) && 799 canShiftBinOpWithConstantRHS(I, TBO)) { 800 Value *NewRHS = 801 Builder.CreateBinOp(I.getOpcode(), TBO->getOperand(1), C1); 802 803 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), FalseVal, C1); 804 Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift, NewRHS); 805 return SelectInst::Create(Cond, NewOp, NewShift); 806 } 807 } 808 809 BinaryOperator *FBO; 810 Value *TrueVal; 811 if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal), 812 m_OneUse(m_BinOp(FBO))))) { 813 const APInt *C; 814 if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal && 815 match(FBO->getOperand(1), m_APInt(C)) && 816 canShiftBinOpWithConstantRHS(I, FBO)) { 817 Value *NewRHS = 818 Builder.CreateBinOp(I.getOpcode(), FBO->getOperand(1), C1); 819 820 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), TrueVal, C1); 821 Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift, NewRHS); 822 return SelectInst::Create(Cond, NewShift, NewOp); 823 } 824 } 825 826 return nullptr; 827 } 828 829 Instruction *InstCombinerImpl::visitShl(BinaryOperator &I) { 830 const SimplifyQuery Q = SQ.getWithInstruction(&I); 831 832 if (Value *V = simplifyShlInst(I.getOperand(0), I.getOperand(1), 833 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q)) 834 return replaceInstUsesWith(I, V); 835 836 if (Instruction *X = foldVectorBinop(I)) 837 return X; 838 839 if (Instruction *V = commonShiftTransforms(I)) 840 return V; 841 842 if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder)) 843 return V; 844 845 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 846 Type *Ty = I.getType(); 847 unsigned BitWidth = Ty->getScalarSizeInBits(); 848 849 const APInt *C; 850 if (match(Op1, m_APInt(C))) { 851 unsigned ShAmtC = C->getZExtValue(); 852 853 // shl (zext X), C --> zext (shl X, C) 854 // This is only valid if X would have zeros shifted out. 855 Value *X; 856 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) { 857 unsigned SrcWidth = X->getType()->getScalarSizeInBits(); 858 if (ShAmtC < SrcWidth && 859 MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmtC), 0, &I)) 860 return new ZExtInst(Builder.CreateShl(X, ShAmtC), Ty); 861 } 862 863 // (X >> C) << C --> X & (-1 << C) 864 if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) { 865 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 866 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask)); 867 } 868 869 const APInt *C1; 870 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(C1)))) && 871 C1->ult(BitWidth)) { 872 unsigned ShrAmt = C1->getZExtValue(); 873 if (ShrAmt < ShAmtC) { 874 // If C1 < C: (X >>?,exact C1) << C --> X << (C - C1) 875 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt); 876 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); 877 NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 878 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap()); 879 return NewShl; 880 } 881 if (ShrAmt > ShAmtC) { 882 // If C1 > C: (X >>?exact C1) << C --> X >>?exact (C1 - C) 883 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC); 884 auto *NewShr = BinaryOperator::Create( 885 cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff); 886 NewShr->setIsExact(true); 887 return NewShr; 888 } 889 } 890 891 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_APInt(C1)))) && 892 C1->ult(BitWidth)) { 893 unsigned ShrAmt = C1->getZExtValue(); 894 if (ShrAmt < ShAmtC) { 895 // If C1 < C: (X >>? C1) << C --> (X << (C - C1)) & (-1 << C) 896 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt); 897 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); 898 NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 899 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap()); 900 Builder.Insert(NewShl); 901 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 902 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask)); 903 } 904 if (ShrAmt > ShAmtC) { 905 // If C1 > C: (X >>? C1) << C --> (X >>? (C1 - C)) & (-1 << C) 906 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC); 907 auto *OldShr = cast<BinaryOperator>(Op0); 908 auto *NewShr = 909 BinaryOperator::Create(OldShr->getOpcode(), X, ShiftDiff); 910 NewShr->setIsExact(OldShr->isExact()); 911 Builder.Insert(NewShr); 912 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 913 return BinaryOperator::CreateAnd(NewShr, ConstantInt::get(Ty, Mask)); 914 } 915 } 916 917 // Similar to above, but look through an intermediate trunc instruction. 918 BinaryOperator *Shr; 919 if (match(Op0, m_OneUse(m_Trunc(m_OneUse(m_BinOp(Shr))))) && 920 match(Shr, m_Shr(m_Value(X), m_APInt(C1)))) { 921 // The larger shift direction survives through the transform. 922 unsigned ShrAmtC = C1->getZExtValue(); 923 unsigned ShDiff = ShrAmtC > ShAmtC ? ShrAmtC - ShAmtC : ShAmtC - ShrAmtC; 924 Constant *ShiftDiffC = ConstantInt::get(X->getType(), ShDiff); 925 auto ShiftOpc = ShrAmtC > ShAmtC ? Shr->getOpcode() : Instruction::Shl; 926 927 // If C1 > C: 928 // (trunc (X >> C1)) << C --> (trunc (X >> (C1 - C))) && (-1 << C) 929 // If C > C1: 930 // (trunc (X >> C1)) << C --> (trunc (X << (C - C1))) && (-1 << C) 931 Value *NewShift = Builder.CreateBinOp(ShiftOpc, X, ShiftDiffC, "sh.diff"); 932 Value *Trunc = Builder.CreateTrunc(NewShift, Ty, "tr.sh.diff"); 933 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 934 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, Mask)); 935 } 936 937 if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) { 938 unsigned AmtSum = ShAmtC + C1->getZExtValue(); 939 // Oversized shifts are simplified to zero in InstSimplify. 940 if (AmtSum < BitWidth) 941 // (X << C1) << C2 --> X << (C1 + C2) 942 return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum)); 943 } 944 945 // If we have an opposite shift by the same amount, we may be able to 946 // reorder binops and shifts to eliminate math/logic. 947 auto isSuitableBinOpcode = [](Instruction::BinaryOps BinOpcode) { 948 switch (BinOpcode) { 949 default: 950 return false; 951 case Instruction::Add: 952 case Instruction::And: 953 case Instruction::Or: 954 case Instruction::Xor: 955 case Instruction::Sub: 956 // NOTE: Sub is not commutable and the tranforms below may not be valid 957 // when the shift-right is operand 1 (RHS) of the sub. 958 return true; 959 } 960 }; 961 BinaryOperator *Op0BO; 962 if (match(Op0, m_OneUse(m_BinOp(Op0BO))) && 963 isSuitableBinOpcode(Op0BO->getOpcode())) { 964 // Commute so shift-right is on LHS of the binop. 965 // (Y bop (X >> C)) << C -> ((X >> C) bop Y) << C 966 // (Y bop ((X >> C) & CC)) << C -> (((X >> C) & CC) bop Y) << C 967 Value *Shr = Op0BO->getOperand(0); 968 Value *Y = Op0BO->getOperand(1); 969 Value *X; 970 const APInt *CC; 971 if (Op0BO->isCommutative() && Y->hasOneUse() && 972 (match(Y, m_Shr(m_Value(), m_Specific(Op1))) || 973 match(Y, m_And(m_OneUse(m_Shr(m_Value(), m_Specific(Op1))), 974 m_APInt(CC))))) 975 std::swap(Shr, Y); 976 977 // ((X >> C) bop Y) << C -> (X bop (Y << C)) & (~0 << C) 978 if (match(Shr, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) { 979 // Y << C 980 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName()); 981 // (X bop (Y << C)) 982 Value *B = 983 Builder.CreateBinOp(Op0BO->getOpcode(), X, YS, Shr->getName()); 984 unsigned Op1Val = C->getLimitedValue(BitWidth); 985 APInt Bits = APInt::getHighBitsSet(BitWidth, BitWidth - Op1Val); 986 Constant *Mask = ConstantInt::get(Ty, Bits); 987 return BinaryOperator::CreateAnd(B, Mask); 988 } 989 990 // (((X >> C) & CC) bop Y) << C -> (X & (CC << C)) bop (Y << C) 991 if (match(Shr, 992 m_OneUse(m_And(m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))), 993 m_APInt(CC))))) { 994 // Y << C 995 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName()); 996 // X & (CC << C) 997 Value *M = Builder.CreateAnd(X, ConstantInt::get(Ty, CC->shl(*C)), 998 X->getName() + ".mask"); 999 return BinaryOperator::Create(Op0BO->getOpcode(), M, YS); 1000 } 1001 } 1002 1003 // (C1 - X) << C --> (C1 << C) - (X << C) 1004 if (match(Op0, m_OneUse(m_Sub(m_APInt(C1), m_Value(X))))) { 1005 Constant *NewLHS = ConstantInt::get(Ty, C1->shl(*C)); 1006 Value *NewShift = Builder.CreateShl(X, Op1); 1007 return BinaryOperator::CreateSub(NewLHS, NewShift); 1008 } 1009 1010 // If the shifted-out value is known-zero, then this is a NUW shift. 1011 if (!I.hasNoUnsignedWrap() && 1012 MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmtC), 0, 1013 &I)) { 1014 I.setHasNoUnsignedWrap(); 1015 return &I; 1016 } 1017 1018 // If the shifted-out value is all signbits, then this is a NSW shift. 1019 if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmtC) { 1020 I.setHasNoSignedWrap(); 1021 return &I; 1022 } 1023 } 1024 1025 // Transform (x >> y) << y to x & (-1 << y) 1026 // Valid for any type of right-shift. 1027 Value *X; 1028 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) { 1029 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); 1030 Value *Mask = Builder.CreateShl(AllOnes, Op1); 1031 return BinaryOperator::CreateAnd(Mask, X); 1032 } 1033 1034 Constant *C1; 1035 if (match(Op1, m_Constant(C1))) { 1036 Constant *C2; 1037 Value *X; 1038 // (X * C2) << C1 --> X * (C2 << C1) 1039 if (match(Op0, m_Mul(m_Value(X), m_Constant(C2)))) 1040 return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1)); 1041 1042 // shl (zext i1 X), C1 --> select (X, 1 << C1, 0) 1043 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 1044 auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1); 1045 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty)); 1046 } 1047 } 1048 1049 // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1 1050 if (match(Op0, m_One()) && 1051 match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X)))) 1052 return BinaryOperator::CreateLShr( 1053 ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X); 1054 1055 return nullptr; 1056 } 1057 1058 Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) { 1059 if (Value *V = simplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), 1060 SQ.getWithInstruction(&I))) 1061 return replaceInstUsesWith(I, V); 1062 1063 if (Instruction *X = foldVectorBinop(I)) 1064 return X; 1065 1066 if (Instruction *R = commonShiftTransforms(I)) 1067 return R; 1068 1069 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1070 Type *Ty = I.getType(); 1071 const APInt *C; 1072 if (match(Op1, m_APInt(C))) { 1073 unsigned ShAmtC = C->getZExtValue(); 1074 unsigned BitWidth = Ty->getScalarSizeInBits(); 1075 auto *II = dyn_cast<IntrinsicInst>(Op0); 1076 if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmtC && 1077 (II->getIntrinsicID() == Intrinsic::ctlz || 1078 II->getIntrinsicID() == Intrinsic::cttz || 1079 II->getIntrinsicID() == Intrinsic::ctpop)) { 1080 // ctlz.i32(x)>>5 --> zext(x == 0) 1081 // cttz.i32(x)>>5 --> zext(x == 0) 1082 // ctpop.i32(x)>>5 --> zext(x == -1) 1083 bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop; 1084 Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0); 1085 Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS); 1086 return new ZExtInst(Cmp, Ty); 1087 } 1088 1089 Value *X; 1090 const APInt *C1; 1091 if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) { 1092 if (C1->ult(ShAmtC)) { 1093 unsigned ShlAmtC = C1->getZExtValue(); 1094 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShlAmtC); 1095 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) { 1096 // (X <<nuw C1) >>u C --> X >>u (C - C1) 1097 auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff); 1098 NewLShr->setIsExact(I.isExact()); 1099 return NewLShr; 1100 } 1101 if (Op0->hasOneUse()) { 1102 // (X << C1) >>u C --> (X >>u (C - C1)) & (-1 >> C) 1103 Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact()); 1104 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1105 return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask)); 1106 } 1107 } else if (C1->ugt(ShAmtC)) { 1108 unsigned ShlAmtC = C1->getZExtValue(); 1109 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmtC - ShAmtC); 1110 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) { 1111 // (X <<nuw C1) >>u C --> X <<nuw (C1 - C) 1112 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); 1113 NewShl->setHasNoUnsignedWrap(true); 1114 return NewShl; 1115 } 1116 if (Op0->hasOneUse()) { 1117 // (X << C1) >>u C --> X << (C1 - C) & (-1 >> C) 1118 Value *NewShl = Builder.CreateShl(X, ShiftDiff); 1119 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1120 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask)); 1121 } 1122 } else { 1123 assert(*C1 == ShAmtC); 1124 // (X << C) >>u C --> X & (-1 >>u C) 1125 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1126 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask)); 1127 } 1128 } 1129 1130 // ((X << C) + Y) >>u C --> (X + (Y >>u C)) & (-1 >>u C) 1131 // TODO: Consolidate with the more general transform that starts from shl 1132 // (the shifts are in the opposite order). 1133 Value *Y; 1134 if (match(Op0, 1135 m_OneUse(m_c_Add(m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))), 1136 m_Value(Y))))) { 1137 Value *NewLshr = Builder.CreateLShr(Y, Op1); 1138 Value *NewAdd = Builder.CreateAdd(NewLshr, X); 1139 unsigned Op1Val = C->getLimitedValue(BitWidth); 1140 APInt Bits = APInt::getLowBitsSet(BitWidth, BitWidth - Op1Val); 1141 Constant *Mask = ConstantInt::get(Ty, Bits); 1142 return BinaryOperator::CreateAnd(NewAdd, Mask); 1143 } 1144 1145 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && 1146 (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) { 1147 assert(ShAmtC < X->getType()->getScalarSizeInBits() && 1148 "Big shift not simplified to zero?"); 1149 // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN 1150 Value *NewLShr = Builder.CreateLShr(X, ShAmtC); 1151 return new ZExtInst(NewLShr, Ty); 1152 } 1153 1154 if (match(Op0, m_SExt(m_Value(X)))) { 1155 unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits(); 1156 // lshr (sext i1 X to iN), C --> select (X, -1 >> C, 0) 1157 if (SrcTyBitWidth == 1) { 1158 auto *NewC = ConstantInt::get( 1159 Ty, APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1160 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty)); 1161 } 1162 1163 if ((!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType())) && 1164 Op0->hasOneUse()) { 1165 // Are we moving the sign bit to the low bit and widening with high 1166 // zeros? lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN 1167 if (ShAmtC == BitWidth - 1) { 1168 Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1); 1169 return new ZExtInst(NewLShr, Ty); 1170 } 1171 1172 // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN 1173 if (ShAmtC == BitWidth - SrcTyBitWidth) { 1174 // The new shift amount can't be more than the narrow source type. 1175 unsigned NewShAmt = std::min(ShAmtC, SrcTyBitWidth - 1); 1176 Value *AShr = Builder.CreateAShr(X, NewShAmt); 1177 return new ZExtInst(AShr, Ty); 1178 } 1179 } 1180 } 1181 1182 if (ShAmtC == BitWidth - 1) { 1183 // lshr i32 or(X,-X), 31 --> zext (X != 0) 1184 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X))))) 1185 return new ZExtInst(Builder.CreateIsNotNull(X), Ty); 1186 1187 // lshr i32 (X -nsw Y), 31 --> zext (X < Y) 1188 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y))))) 1189 return new ZExtInst(Builder.CreateICmpSLT(X, Y), Ty); 1190 1191 // Check if a number is negative and odd: 1192 // lshr i32 (srem X, 2), 31 --> and (X >> 31), X 1193 if (match(Op0, m_OneUse(m_SRem(m_Value(X), m_SpecificInt(2))))) { 1194 Value *Signbit = Builder.CreateLShr(X, ShAmtC); 1195 return BinaryOperator::CreateAnd(Signbit, X); 1196 } 1197 } 1198 1199 // (X >>u C1) >>u C --> X >>u (C1 + C) 1200 if (match(Op0, m_LShr(m_Value(X), m_APInt(C1)))) { 1201 // Oversized shifts are simplified to zero in InstSimplify. 1202 unsigned AmtSum = ShAmtC + C1->getZExtValue(); 1203 if (AmtSum < BitWidth) 1204 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum)); 1205 } 1206 1207 Instruction *TruncSrc; 1208 if (match(Op0, m_OneUse(m_Trunc(m_Instruction(TruncSrc)))) && 1209 match(TruncSrc, m_LShr(m_Value(X), m_APInt(C1)))) { 1210 unsigned SrcWidth = X->getType()->getScalarSizeInBits(); 1211 unsigned AmtSum = ShAmtC + C1->getZExtValue(); 1212 1213 // If the combined shift fits in the source width: 1214 // (trunc (X >>u C1)) >>u C --> and (trunc (X >>u (C1 + C)), MaskC 1215 // 1216 // If the first shift covers the number of bits truncated, then the 1217 // mask instruction is eliminated (and so the use check is relaxed). 1218 if (AmtSum < SrcWidth && 1219 (TruncSrc->hasOneUse() || C1->uge(SrcWidth - BitWidth))) { 1220 Value *SumShift = Builder.CreateLShr(X, AmtSum, "sum.shift"); 1221 Value *Trunc = Builder.CreateTrunc(SumShift, Ty, I.getName()); 1222 1223 // If the first shift does not cover the number of bits truncated, then 1224 // we require a mask to get rid of high bits in the result. 1225 APInt MaskC = APInt::getAllOnes(BitWidth).lshr(ShAmtC); 1226 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, MaskC)); 1227 } 1228 } 1229 1230 const APInt *MulC; 1231 if (match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC)))) { 1232 // Look for a "splat" mul pattern - it replicates bits across each half of 1233 // a value, so a right shift is just a mask of the low bits: 1234 // lshr i[2N] (mul nuw X, (2^N)+1), N --> and iN X, (2^N)-1 1235 // TODO: Generalize to allow more than just half-width shifts? 1236 if (BitWidth > 2 && ShAmtC * 2 == BitWidth && (*MulC - 1).isPowerOf2() && 1237 MulC->logBase2() == ShAmtC) 1238 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *MulC - 2)); 1239 1240 // The one-use check is not strictly necessary, but codegen may not be 1241 // able to invert the transform and perf may suffer with an extra mul 1242 // instruction. 1243 if (Op0->hasOneUse()) { 1244 APInt NewMulC = MulC->lshr(ShAmtC); 1245 // if c is divisible by (1 << ShAmtC): 1246 // lshr (mul nuw x, MulC), ShAmtC -> mul nuw x, (MulC >> ShAmtC) 1247 if (MulC->eq(NewMulC.shl(ShAmtC))) { 1248 auto *NewMul = 1249 BinaryOperator::CreateNUWMul(X, ConstantInt::get(Ty, NewMulC)); 1250 BinaryOperator *OrigMul = cast<BinaryOperator>(Op0); 1251 NewMul->setHasNoSignedWrap(OrigMul->hasNoSignedWrap()); 1252 return NewMul; 1253 } 1254 } 1255 } 1256 1257 // Try to narrow bswap. 1258 // In the case where the shift amount equals the bitwidth difference, the 1259 // shift is eliminated. 1260 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::bswap>( 1261 m_OneUse(m_ZExt(m_Value(X))))))) { 1262 unsigned SrcWidth = X->getType()->getScalarSizeInBits(); 1263 unsigned WidthDiff = BitWidth - SrcWidth; 1264 if (SrcWidth % 16 == 0) { 1265 Value *NarrowSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X); 1266 if (ShAmtC >= WidthDiff) { 1267 // (bswap (zext X)) >> C --> zext (bswap X >> C') 1268 Value *NewShift = Builder.CreateLShr(NarrowSwap, ShAmtC - WidthDiff); 1269 return new ZExtInst(NewShift, Ty); 1270 } else { 1271 // (bswap (zext X)) >> C --> (zext (bswap X)) << C' 1272 Value *NewZExt = Builder.CreateZExt(NarrowSwap, Ty); 1273 Constant *ShiftDiff = ConstantInt::get(Ty, WidthDiff - ShAmtC); 1274 return BinaryOperator::CreateShl(NewZExt, ShiftDiff); 1275 } 1276 } 1277 } 1278 1279 // If the shifted-out value is known-zero, then this is an exact shift. 1280 if (!I.isExact() && 1281 MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmtC), 0, &I)) { 1282 I.setIsExact(); 1283 return &I; 1284 } 1285 } 1286 1287 // Transform (x << y) >> y to x & (-1 >> y) 1288 Value *X; 1289 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) { 1290 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); 1291 Value *Mask = Builder.CreateLShr(AllOnes, Op1); 1292 return BinaryOperator::CreateAnd(Mask, X); 1293 } 1294 1295 return nullptr; 1296 } 1297 1298 Instruction * 1299 InstCombinerImpl::foldVariableSignZeroExtensionOfVariableHighBitExtract( 1300 BinaryOperator &OldAShr) { 1301 assert(OldAShr.getOpcode() == Instruction::AShr && 1302 "Must be called with arithmetic right-shift instruction only."); 1303 1304 // Check that constant C is a splat of the element-wise bitwidth of V. 1305 auto BitWidthSplat = [](Constant *C, Value *V) { 1306 return match( 1307 C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1308 APInt(C->getType()->getScalarSizeInBits(), 1309 V->getType()->getScalarSizeInBits()))); 1310 }; 1311 1312 // It should look like variable-length sign-extension on the outside: 1313 // (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits) 1314 Value *NBits; 1315 Instruction *MaybeTrunc; 1316 Constant *C1, *C2; 1317 if (!match(&OldAShr, 1318 m_AShr(m_Shl(m_Instruction(MaybeTrunc), 1319 m_ZExtOrSelf(m_Sub(m_Constant(C1), 1320 m_ZExtOrSelf(m_Value(NBits))))), 1321 m_ZExtOrSelf(m_Sub(m_Constant(C2), 1322 m_ZExtOrSelf(m_Deferred(NBits)))))) || 1323 !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr)) 1324 return nullptr; 1325 1326 // There may or may not be a truncation after outer two shifts. 1327 Instruction *HighBitExtract; 1328 match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract))); 1329 bool HadTrunc = MaybeTrunc != HighBitExtract; 1330 1331 // And finally, the innermost part of the pattern must be a right-shift. 1332 Value *X, *NumLowBitsToSkip; 1333 if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip)))) 1334 return nullptr; 1335 1336 // Said right-shift must extract high NBits bits - C0 must be it's bitwidth. 1337 Constant *C0; 1338 if (!match(NumLowBitsToSkip, 1339 m_ZExtOrSelf( 1340 m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) || 1341 !BitWidthSplat(C0, HighBitExtract)) 1342 return nullptr; 1343 1344 // Since the NBits is identical for all shifts, if the outermost and 1345 // innermost shifts are identical, then outermost shifts are redundant. 1346 // If we had truncation, do keep it though. 1347 if (HighBitExtract->getOpcode() == OldAShr.getOpcode()) 1348 return replaceInstUsesWith(OldAShr, MaybeTrunc); 1349 1350 // Else, if there was a truncation, then we need to ensure that one 1351 // instruction will go away. 1352 if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 1353 return nullptr; 1354 1355 // Finally, bypass two innermost shifts, and perform the outermost shift on 1356 // the operands of the innermost shift. 1357 Instruction *NewAShr = 1358 BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip); 1359 NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness. 1360 if (!HadTrunc) 1361 return NewAShr; 1362 1363 Builder.Insert(NewAShr); 1364 return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType()); 1365 } 1366 1367 Instruction *InstCombinerImpl::visitAShr(BinaryOperator &I) { 1368 if (Value *V = simplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), 1369 SQ.getWithInstruction(&I))) 1370 return replaceInstUsesWith(I, V); 1371 1372 if (Instruction *X = foldVectorBinop(I)) 1373 return X; 1374 1375 if (Instruction *R = commonShiftTransforms(I)) 1376 return R; 1377 1378 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1379 Type *Ty = I.getType(); 1380 unsigned BitWidth = Ty->getScalarSizeInBits(); 1381 const APInt *ShAmtAPInt; 1382 if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) { 1383 unsigned ShAmt = ShAmtAPInt->getZExtValue(); 1384 1385 // If the shift amount equals the difference in width of the destination 1386 // and source scalar types: 1387 // ashr (shl (zext X), C), C --> sext X 1388 Value *X; 1389 if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) && 1390 ShAmt == BitWidth - X->getType()->getScalarSizeInBits()) 1391 return new SExtInst(X, Ty); 1392 1393 // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However, 1394 // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits. 1395 const APInt *ShOp1; 1396 if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) && 1397 ShOp1->ult(BitWidth)) { 1398 unsigned ShlAmt = ShOp1->getZExtValue(); 1399 if (ShlAmt < ShAmt) { 1400 // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1) 1401 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt); 1402 auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff); 1403 NewAShr->setIsExact(I.isExact()); 1404 return NewAShr; 1405 } 1406 if (ShlAmt > ShAmt) { 1407 // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2) 1408 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt); 1409 auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff); 1410 NewShl->setHasNoSignedWrap(true); 1411 return NewShl; 1412 } 1413 } 1414 1415 if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) && 1416 ShOp1->ult(BitWidth)) { 1417 unsigned AmtSum = ShAmt + ShOp1->getZExtValue(); 1418 // Oversized arithmetic shifts replicate the sign bit. 1419 AmtSum = std::min(AmtSum, BitWidth - 1); 1420 // (X >>s C1) >>s C2 --> X >>s (C1 + C2) 1421 return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum)); 1422 } 1423 1424 if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) && 1425 (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) { 1426 // ashr (sext X), C --> sext (ashr X, C') 1427 Type *SrcTy = X->getType(); 1428 ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1); 1429 Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt)); 1430 return new SExtInst(NewSh, Ty); 1431 } 1432 1433 if (ShAmt == BitWidth - 1) { 1434 // ashr i32 or(X,-X), 31 --> sext (X != 0) 1435 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X))))) 1436 return new SExtInst(Builder.CreateIsNotNull(X), Ty); 1437 1438 // ashr i32 (X -nsw Y), 31 --> sext (X < Y) 1439 Value *Y; 1440 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y))))) 1441 return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty); 1442 } 1443 1444 // If the shifted-out value is known-zero, then this is an exact shift. 1445 if (!I.isExact() && 1446 MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) { 1447 I.setIsExact(); 1448 return &I; 1449 } 1450 } 1451 1452 // Prefer `-(x & 1)` over `(x << (bitwidth(x)-1)) a>> (bitwidth(x)-1)` 1453 // as the pattern to splat the lowest bit. 1454 // FIXME: iff X is already masked, we don't need the one-use check. 1455 Value *X; 1456 if (match(Op1, m_SpecificIntAllowUndef(BitWidth - 1)) && 1457 match(Op0, m_OneUse(m_Shl(m_Value(X), 1458 m_SpecificIntAllowUndef(BitWidth - 1))))) { 1459 Constant *Mask = ConstantInt::get(Ty, 1); 1460 // Retain the knowledge about the ignored lanes. 1461 Mask = Constant::mergeUndefsWith( 1462 Constant::mergeUndefsWith(Mask, cast<Constant>(Op1)), 1463 cast<Constant>(cast<Instruction>(Op0)->getOperand(1))); 1464 X = Builder.CreateAnd(X, Mask); 1465 return BinaryOperator::CreateNeg(X); 1466 } 1467 1468 if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I)) 1469 return R; 1470 1471 // See if we can turn a signed shr into an unsigned shr. 1472 if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I)) 1473 return BinaryOperator::CreateLShr(Op0, Op1); 1474 1475 // ashr (xor %x, -1), %y --> xor (ashr %x, %y), -1 1476 if (match(Op0, m_OneUse(m_Not(m_Value(X))))) { 1477 // Note that we must drop 'exact'-ness of the shift! 1478 // Note that we can't keep undef's in -1 vector constant! 1479 auto *NewAShr = Builder.CreateAShr(X, Op1, Op0->getName() + ".not"); 1480 return BinaryOperator::CreateNot(NewAShr); 1481 } 1482 1483 return nullptr; 1484 } 1485