xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp (revision fcaf7f8644a9988098ac6be2165bce3ea4786e91)
1 //===- InstCombineShifts.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitShl, visitLShr, and visitAShr functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/InstructionSimplify.h"
15 #include "llvm/IR/IntrinsicInst.h"
16 #include "llvm/IR/PatternMatch.h"
17 #include "llvm/Transforms/InstCombine/InstCombiner.h"
18 using namespace llvm;
19 using namespace PatternMatch;
20 
21 #define DEBUG_TYPE "instcombine"
22 
23 bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1,
24                                         Value *ShAmt1) {
25   // We have two shift amounts from two different shifts. The types of those
26   // shift amounts may not match. If that's the case let's bailout now..
27   if (ShAmt0->getType() != ShAmt1->getType())
28     return false;
29 
30   // As input, we have the following pattern:
31   //   Sh0 (Sh1 X, Q), K
32   // We want to rewrite that as:
33   //   Sh x, (Q+K)  iff (Q+K) u< bitwidth(x)
34   // While we know that originally (Q+K) would not overflow
35   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
36   // shift amounts. so it may now overflow in smaller bitwidth.
37   // To ensure that does not happen, we need to ensure that the total maximal
38   // shift amount is still representable in that smaller bit width.
39   unsigned MaximalPossibleTotalShiftAmount =
40       (Sh0->getType()->getScalarSizeInBits() - 1) +
41       (Sh1->getType()->getScalarSizeInBits() - 1);
42   APInt MaximalRepresentableShiftAmount =
43       APInt::getAllOnes(ShAmt0->getType()->getScalarSizeInBits());
44   return MaximalRepresentableShiftAmount.uge(MaximalPossibleTotalShiftAmount);
45 }
46 
47 // Given pattern:
48 //   (x shiftopcode Q) shiftopcode K
49 // we should rewrite it as
50 //   x shiftopcode (Q+K)  iff (Q+K) u< bitwidth(x) and
51 //
52 // This is valid for any shift, but they must be identical, and we must be
53 // careful in case we have (zext(Q)+zext(K)) and look past extensions,
54 // (Q+K) must not overflow or else (Q+K) u< bitwidth(x) is bogus.
55 //
56 // AnalyzeForSignBitExtraction indicates that we will only analyze whether this
57 // pattern has any 2 right-shifts that sum to 1 less than original bit width.
58 Value *InstCombinerImpl::reassociateShiftAmtsOfTwoSameDirectionShifts(
59     BinaryOperator *Sh0, const SimplifyQuery &SQ,
60     bool AnalyzeForSignBitExtraction) {
61   // Look for a shift of some instruction, ignore zext of shift amount if any.
62   Instruction *Sh0Op0;
63   Value *ShAmt0;
64   if (!match(Sh0,
65              m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0)))))
66     return nullptr;
67 
68   // If there is a truncation between the two shifts, we must make note of it
69   // and look through it. The truncation imposes additional constraints on the
70   // transform.
71   Instruction *Sh1;
72   Value *Trunc = nullptr;
73   match(Sh0Op0,
74         m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)),
75                     m_Instruction(Sh1)));
76 
77   // Inner shift: (x shiftopcode ShAmt1)
78   // Like with other shift, ignore zext of shift amount if any.
79   Value *X, *ShAmt1;
80   if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1)))))
81     return nullptr;
82 
83   // Verify that it would be safe to try to add those two shift amounts.
84   if (!canTryToConstantAddTwoShiftAmounts(Sh0, ShAmt0, Sh1, ShAmt1))
85     return nullptr;
86 
87   // We are only looking for signbit extraction if we have two right shifts.
88   bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) &&
89                            match(Sh1, m_Shr(m_Value(), m_Value()));
90   // ... and if it's not two right-shifts, we know the answer already.
91   if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
92     return nullptr;
93 
94   // The shift opcodes must be identical, unless we are just checking whether
95   // this pattern can be interpreted as a sign-bit-extraction.
96   Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode();
97   bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode();
98   if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
99     return nullptr;
100 
101   // If we saw truncation, we'll need to produce extra instruction,
102   // and for that one of the operands of the shift must be one-use,
103   // unless of course we don't actually plan to produce any instructions here.
104   if (Trunc && !AnalyzeForSignBitExtraction &&
105       !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
106     return nullptr;
107 
108   // Can we fold (ShAmt0+ShAmt1) ?
109   auto *NewShAmt = dyn_cast_or_null<Constant>(
110       simplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false,
111                       SQ.getWithInstruction(Sh0)));
112   if (!NewShAmt)
113     return nullptr; // Did not simplify.
114   unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
115   unsigned XBitWidth = X->getType()->getScalarSizeInBits();
116   // Is the new shift amount smaller than the bit width of inner/new shift?
117   if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
118                                           APInt(NewShAmtBitWidth, XBitWidth))))
119     return nullptr; // FIXME: could perform constant-folding.
120 
121   // If there was a truncation, and we have a right-shift, we can only fold if
122   // we are left with the original sign bit. Likewise, if we were just checking
123   // that this is a sighbit extraction, this is the place to check it.
124   // FIXME: zero shift amount is also legal here, but we can't *easily* check
125   // more than one predicate so it's not really worth it.
126   if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
127     // If it's not a sign bit extraction, then we're done.
128     if (!match(NewShAmt,
129                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
130                                   APInt(NewShAmtBitWidth, XBitWidth - 1))))
131       return nullptr;
132     // If it is, and that was the question, return the base value.
133     if (AnalyzeForSignBitExtraction)
134       return X;
135   }
136 
137   assert(IdenticalShOpcodes && "Should not get here with different shifts.");
138 
139   // All good, we can do this fold.
140   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType());
141 
142   BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt);
143 
144   // The flags can only be propagated if there wasn't a trunc.
145   if (!Trunc) {
146     // If the pattern did not involve trunc, and both of the original shifts
147     // had the same flag set, preserve the flag.
148     if (ShiftOpcode == Instruction::BinaryOps::Shl) {
149       NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() &&
150                                      Sh1->hasNoUnsignedWrap());
151       NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() &&
152                                    Sh1->hasNoSignedWrap());
153     } else {
154       NewShift->setIsExact(Sh0->isExact() && Sh1->isExact());
155     }
156   }
157 
158   Instruction *Ret = NewShift;
159   if (Trunc) {
160     Builder.Insert(NewShift);
161     Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType());
162   }
163 
164   return Ret;
165 }
166 
167 // If we have some pattern that leaves only some low bits set, and then performs
168 // left-shift of those bits, if none of the bits that are left after the final
169 // shift are modified by the mask, we can omit the mask.
170 //
171 // There are many variants to this pattern:
172 //   a)  (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt
173 //   b)  (x & (~(-1 << MaskShAmt))) << ShiftShAmt
174 //   c)  (x & (-1 l>> MaskShAmt)) << ShiftShAmt
175 //   d)  (x & ((-1 << MaskShAmt) l>> MaskShAmt)) << ShiftShAmt
176 //   e)  ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt
177 //   f)  ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt
178 // All these patterns can be simplified to just:
179 //   x << ShiftShAmt
180 // iff:
181 //   a,b)     (MaskShAmt+ShiftShAmt) u>= bitwidth(x)
182 //   c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt)
183 static Instruction *
184 dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift,
185                                      const SimplifyQuery &Q,
186                                      InstCombiner::BuilderTy &Builder) {
187   assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl &&
188          "The input must be 'shl'!");
189 
190   Value *Masked, *ShiftShAmt;
191   match(OuterShift,
192         m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt))));
193 
194   // *If* there is a truncation between an outer shift and a possibly-mask,
195   // then said truncation *must* be one-use, else we can't perform the fold.
196   Value *Trunc;
197   if (match(Masked, m_CombineAnd(m_Trunc(m_Value(Masked)), m_Value(Trunc))) &&
198       !Trunc->hasOneUse())
199     return nullptr;
200 
201   Type *NarrowestTy = OuterShift->getType();
202   Type *WidestTy = Masked->getType();
203   bool HadTrunc = WidestTy != NarrowestTy;
204 
205   // The mask must be computed in a type twice as wide to ensure
206   // that no bits are lost if the sum-of-shifts is wider than the base type.
207   Type *ExtendedTy = WidestTy->getExtendedType();
208 
209   Value *MaskShAmt;
210 
211   // ((1 << MaskShAmt) - 1)
212   auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes());
213   // (~(-1 << maskNbits))
214   auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes());
215   // (-1 l>> MaskShAmt)
216   auto MaskC = m_LShr(m_AllOnes(), m_Value(MaskShAmt));
217   // ((-1 << MaskShAmt) l>> MaskShAmt)
218   auto MaskD =
219       m_LShr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt));
220 
221   Value *X;
222   Constant *NewMask;
223 
224   if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) {
225     // Peek through an optional zext of the shift amount.
226     match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
227 
228     // Verify that it would be safe to try to add those two shift amounts.
229     if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
230                                             MaskShAmt))
231       return nullptr;
232 
233     // Can we simplify (MaskShAmt+ShiftShAmt) ?
234     auto *SumOfShAmts = dyn_cast_or_null<Constant>(simplifyAddInst(
235         MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
236     if (!SumOfShAmts)
237       return nullptr; // Did not simplify.
238     // In this pattern SumOfShAmts correlates with the number of low bits
239     // that shall remain in the root value (OuterShift).
240 
241     // An extend of an undef value becomes zero because the high bits are never
242     // completely unknown. Replace the `undef` shift amounts with final
243     // shift bitwidth to ensure that the value remains undef when creating the
244     // subsequent shift op.
245     SumOfShAmts = Constant::replaceUndefsWith(
246         SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(),
247                                       ExtendedTy->getScalarSizeInBits()));
248     auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy);
249     // And compute the mask as usual: ~(-1 << (SumOfShAmts))
250     auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
251     auto *ExtendedInvertedMask =
252         ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts);
253     NewMask = ConstantExpr::getNot(ExtendedInvertedMask);
254   } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) ||
255              match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)),
256                                  m_Deferred(MaskShAmt)))) {
257     // Peek through an optional zext of the shift amount.
258     match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
259 
260     // Verify that it would be safe to try to add those two shift amounts.
261     if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
262                                             MaskShAmt))
263       return nullptr;
264 
265     // Can we simplify (ShiftShAmt-MaskShAmt) ?
266     auto *ShAmtsDiff = dyn_cast_or_null<Constant>(simplifySubInst(
267         ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
268     if (!ShAmtsDiff)
269       return nullptr; // Did not simplify.
270     // In this pattern ShAmtsDiff correlates with the number of high bits that
271     // shall be unset in the root value (OuterShift).
272 
273     // An extend of an undef value becomes zero because the high bits are never
274     // completely unknown. Replace the `undef` shift amounts with negated
275     // bitwidth of innermost shift to ensure that the value remains undef when
276     // creating the subsequent shift op.
277     unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits();
278     ShAmtsDiff = Constant::replaceUndefsWith(
279         ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(),
280                                      -WidestTyBitWidth));
281     auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt(
282         ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(),
283                                               WidestTyBitWidth,
284                                               /*isSigned=*/false),
285                              ShAmtsDiff),
286         ExtendedTy);
287     // And compute the mask as usual: (-1 l>> (NumHighBitsToClear))
288     auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
289     NewMask =
290         ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear);
291   } else
292     return nullptr; // Don't know anything about this pattern.
293 
294   NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy);
295 
296   // Does this mask has any unset bits? If not then we can just not apply it.
297   bool NeedMask = !match(NewMask, m_AllOnes());
298 
299   // If we need to apply a mask, there are several more restrictions we have.
300   if (NeedMask) {
301     // The old masking instruction must go away.
302     if (!Masked->hasOneUse())
303       return nullptr;
304     // The original "masking" instruction must not have been`ashr`.
305     if (match(Masked, m_AShr(m_Value(), m_Value())))
306       return nullptr;
307   }
308 
309   // If we need to apply truncation, let's do it first, since we can.
310   // We have already ensured that the old truncation will go away.
311   if (HadTrunc)
312     X = Builder.CreateTrunc(X, NarrowestTy);
313 
314   // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits.
315   // We didn't change the Type of this outermost shift, so we can just do it.
316   auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X,
317                                           OuterShift->getOperand(1));
318   if (!NeedMask)
319     return NewShift;
320 
321   Builder.Insert(NewShift);
322   return BinaryOperator::Create(Instruction::And, NewShift, NewMask);
323 }
324 
325 /// If we have a shift-by-constant of a bitwise logic op that itself has a
326 /// shift-by-constant operand with identical opcode, we may be able to convert
327 /// that into 2 independent shifts followed by the logic op. This eliminates a
328 /// a use of an intermediate value (reduces dependency chain).
329 static Instruction *foldShiftOfShiftedLogic(BinaryOperator &I,
330                                             InstCombiner::BuilderTy &Builder) {
331   assert(I.isShift() && "Expected a shift as input");
332   auto *LogicInst = dyn_cast<BinaryOperator>(I.getOperand(0));
333   if (!LogicInst || !LogicInst->isBitwiseLogicOp() || !LogicInst->hasOneUse())
334     return nullptr;
335 
336   Constant *C0, *C1;
337   if (!match(I.getOperand(1), m_Constant(C1)))
338     return nullptr;
339 
340   Instruction::BinaryOps ShiftOpcode = I.getOpcode();
341   Type *Ty = I.getType();
342 
343   // Find a matching one-use shift by constant. The fold is not valid if the sum
344   // of the shift values equals or exceeds bitwidth.
345   // TODO: Remove the one-use check if the other logic operand (Y) is constant.
346   Value *X, *Y;
347   auto matchFirstShift = [&](Value *V) {
348     APInt Threshold(Ty->getScalarSizeInBits(), Ty->getScalarSizeInBits());
349     return match(V, m_BinOp(ShiftOpcode, m_Value(), m_Value())) &&
350            match(V, m_OneUse(m_Shift(m_Value(X), m_Constant(C0)))) &&
351            match(ConstantExpr::getAdd(C0, C1),
352                  m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
353   };
354 
355   // Logic ops are commutative, so check each operand for a match.
356   if (matchFirstShift(LogicInst->getOperand(0)))
357     Y = LogicInst->getOperand(1);
358   else if (matchFirstShift(LogicInst->getOperand(1)))
359     Y = LogicInst->getOperand(0);
360   else
361     return nullptr;
362 
363   // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
364   Constant *ShiftSumC = ConstantExpr::getAdd(C0, C1);
365   Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC);
366   Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, I.getOperand(1));
367   return BinaryOperator::Create(LogicInst->getOpcode(), NewShift1, NewShift2);
368 }
369 
370 Instruction *InstCombinerImpl::commonShiftTransforms(BinaryOperator &I) {
371   if (Instruction *Phi = foldBinopWithPhiOperands(I))
372     return Phi;
373 
374   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
375   assert(Op0->getType() == Op1->getType());
376   Type *Ty = I.getType();
377 
378   // If the shift amount is a one-use `sext`, we can demote it to `zext`.
379   Value *Y;
380   if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) {
381     Value *NewExt = Builder.CreateZExt(Y, Ty, Op1->getName());
382     return BinaryOperator::Create(I.getOpcode(), Op0, NewExt);
383   }
384 
385   // See if we can fold away this shift.
386   if (SimplifyDemandedInstructionBits(I))
387     return &I;
388 
389   // Try to fold constant and into select arguments.
390   if (isa<Constant>(Op0))
391     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
392       if (Instruction *R = FoldOpIntoSelect(I, SI))
393         return R;
394 
395   if (Constant *CUI = dyn_cast<Constant>(Op1))
396     if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
397       return Res;
398 
399   if (auto *NewShift = cast_or_null<Instruction>(
400           reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ)))
401     return NewShift;
402 
403   // Pre-shift a constant shifted by a variable amount with constant offset:
404   // C shift (A add nuw C1) --> (C shift C1) shift A
405   Value *A;
406   Constant *C, *C1;
407   if (match(Op0, m_Constant(C)) &&
408       match(Op1, m_NUWAdd(m_Value(A), m_Constant(C1)))) {
409     Value *NewC = Builder.CreateBinOp(I.getOpcode(), C, C1);
410     return BinaryOperator::Create(I.getOpcode(), NewC, A);
411   }
412 
413   unsigned BitWidth = Ty->getScalarSizeInBits();
414 
415   const APInt *AC, *AddC;
416   // Try to pre-shift a constant shifted by a variable amount added with a
417   // negative number:
418   // C << (X - AddC) --> (C >> AddC) << X
419   // and
420   // C >> (X - AddC) --> (C << AddC) >> X
421   if (match(Op0, m_APInt(AC)) && match(Op1, m_Add(m_Value(A), m_APInt(AddC))) &&
422       AddC->isNegative() && (-*AddC).ult(BitWidth)) {
423     assert(!AC->isZero() && "Expected simplify of shifted zero");
424     unsigned PosOffset = (-*AddC).getZExtValue();
425 
426     auto isSuitableForPreShift = [PosOffset, &I, AC]() {
427       switch (I.getOpcode()) {
428       default:
429         return false;
430       case Instruction::Shl:
431         return (I.hasNoSignedWrap() || I.hasNoUnsignedWrap()) &&
432                AC->eq(AC->lshr(PosOffset).shl(PosOffset));
433       case Instruction::LShr:
434         return I.isExact() && AC->eq(AC->shl(PosOffset).lshr(PosOffset));
435       case Instruction::AShr:
436         return I.isExact() && AC->eq(AC->shl(PosOffset).ashr(PosOffset));
437       }
438     };
439     if (isSuitableForPreShift()) {
440       Constant *NewC = ConstantInt::get(Ty, I.getOpcode() == Instruction::Shl
441                                                 ? AC->lshr(PosOffset)
442                                                 : AC->shl(PosOffset));
443       BinaryOperator *NewShiftOp =
444           BinaryOperator::Create(I.getOpcode(), NewC, A);
445       if (I.getOpcode() == Instruction::Shl) {
446         NewShiftOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
447       } else {
448         NewShiftOp->setIsExact();
449       }
450       return NewShiftOp;
451     }
452   }
453 
454   // X shift (A srem C) -> X shift (A and (C - 1)) iff C is a power of 2.
455   // Because shifts by negative values (which could occur if A were negative)
456   // are undefined.
457   if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Constant(C))) &&
458       match(C, m_Power2())) {
459     // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
460     // demand the sign bit (and many others) here??
461     Constant *Mask = ConstantExpr::getSub(C, ConstantInt::get(Ty, 1));
462     Value *Rem = Builder.CreateAnd(A, Mask, Op1->getName());
463     return replaceOperand(I, 1, Rem);
464   }
465 
466   if (Instruction *Logic = foldShiftOfShiftedLogic(I, Builder))
467     return Logic;
468 
469   return nullptr;
470 }
471 
472 /// Return true if we can simplify two logical (either left or right) shifts
473 /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
474 static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
475                                     Instruction *InnerShift,
476                                     InstCombinerImpl &IC, Instruction *CxtI) {
477   assert(InnerShift->isLogicalShift() && "Unexpected instruction type");
478 
479   // We need constant scalar or constant splat shifts.
480   const APInt *InnerShiftConst;
481   if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
482     return false;
483 
484   // Two logical shifts in the same direction:
485   // shl (shl X, C1), C2 -->  shl X, C1 + C2
486   // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
487   bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
488   if (IsInnerShl == IsOuterShl)
489     return true;
490 
491   // Equal shift amounts in opposite directions become bitwise 'and':
492   // lshr (shl X, C), C --> and X, C'
493   // shl (lshr X, C), C --> and X, C'
494   if (*InnerShiftConst == OuterShAmt)
495     return true;
496 
497   // If the 2nd shift is bigger than the 1st, we can fold:
498   // lshr (shl X, C1), C2 -->  and (shl X, C1 - C2), C3
499   // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
500   // but it isn't profitable unless we know the and'd out bits are already zero.
501   // Also, check that the inner shift is valid (less than the type width) or
502   // we'll crash trying to produce the bit mask for the 'and'.
503   unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
504   if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) {
505     unsigned InnerShAmt = InnerShiftConst->getZExtValue();
506     unsigned MaskShift =
507         IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
508     APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
509     if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
510       return true;
511   }
512 
513   return false;
514 }
515 
516 /// See if we can compute the specified value, but shifted logically to the left
517 /// or right by some number of bits. This should return true if the expression
518 /// can be computed for the same cost as the current expression tree. This is
519 /// used to eliminate extraneous shifting from things like:
520 ///      %C = shl i128 %A, 64
521 ///      %D = shl i128 %B, 96
522 ///      %E = or i128 %C, %D
523 ///      %F = lshr i128 %E, 64
524 /// where the client will ask if E can be computed shifted right by 64-bits. If
525 /// this succeeds, getShiftedValue() will be called to produce the value.
526 static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
527                                InstCombinerImpl &IC, Instruction *CxtI) {
528   // We can always evaluate constants shifted.
529   if (isa<Constant>(V))
530     return true;
531 
532   Instruction *I = dyn_cast<Instruction>(V);
533   if (!I) return false;
534 
535   // We can't mutate something that has multiple uses: doing so would
536   // require duplicating the instruction in general, which isn't profitable.
537   if (!I->hasOneUse()) return false;
538 
539   switch (I->getOpcode()) {
540   default: return false;
541   case Instruction::And:
542   case Instruction::Or:
543   case Instruction::Xor:
544     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
545     return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
546            canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);
547 
548   case Instruction::Shl:
549   case Instruction::LShr:
550     return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);
551 
552   case Instruction::Select: {
553     SelectInst *SI = cast<SelectInst>(I);
554     Value *TrueVal = SI->getTrueValue();
555     Value *FalseVal = SI->getFalseValue();
556     return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
557            canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
558   }
559   case Instruction::PHI: {
560     // We can change a phi if we can change all operands.  Note that we never
561     // get into trouble with cyclic PHIs here because we only consider
562     // instructions with a single use.
563     PHINode *PN = cast<PHINode>(I);
564     for (Value *IncValue : PN->incoming_values())
565       if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
566         return false;
567     return true;
568   }
569   case Instruction::Mul: {
570     const APInt *MulConst;
571     // We can fold (shr (mul X, -(1 << C)), C) -> (and (neg X), C`)
572     return !IsLeftShift && match(I->getOperand(1), m_APInt(MulConst)) &&
573            MulConst->isNegatedPowerOf2() &&
574            MulConst->countTrailingZeros() == NumBits;
575   }
576   }
577 }
578 
579 /// Fold OuterShift (InnerShift X, C1), C2.
580 /// See canEvaluateShiftedShift() for the constraints on these instructions.
581 static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
582                                bool IsOuterShl,
583                                InstCombiner::BuilderTy &Builder) {
584   bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
585   Type *ShType = InnerShift->getType();
586   unsigned TypeWidth = ShType->getScalarSizeInBits();
587 
588   // We only accept shifts-by-a-constant in canEvaluateShifted().
589   const APInt *C1;
590   match(InnerShift->getOperand(1), m_APInt(C1));
591   unsigned InnerShAmt = C1->getZExtValue();
592 
593   // Change the shift amount and clear the appropriate IR flags.
594   auto NewInnerShift = [&](unsigned ShAmt) {
595     InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
596     if (IsInnerShl) {
597       InnerShift->setHasNoUnsignedWrap(false);
598       InnerShift->setHasNoSignedWrap(false);
599     } else {
600       InnerShift->setIsExact(false);
601     }
602     return InnerShift;
603   };
604 
605   // Two logical shifts in the same direction:
606   // shl (shl X, C1), C2 -->  shl X, C1 + C2
607   // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
608   if (IsInnerShl == IsOuterShl) {
609     // If this is an oversized composite shift, then unsigned shifts get 0.
610     if (InnerShAmt + OuterShAmt >= TypeWidth)
611       return Constant::getNullValue(ShType);
612 
613     return NewInnerShift(InnerShAmt + OuterShAmt);
614   }
615 
616   // Equal shift amounts in opposite directions become bitwise 'and':
617   // lshr (shl X, C), C --> and X, C'
618   // shl (lshr X, C), C --> and X, C'
619   if (InnerShAmt == OuterShAmt) {
620     APInt Mask = IsInnerShl
621                      ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
622                      : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
623     Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
624                                    ConstantInt::get(ShType, Mask));
625     if (auto *AndI = dyn_cast<Instruction>(And)) {
626       AndI->moveBefore(InnerShift);
627       AndI->takeName(InnerShift);
628     }
629     return And;
630   }
631 
632   assert(InnerShAmt > OuterShAmt &&
633          "Unexpected opposite direction logical shift pair");
634 
635   // In general, we would need an 'and' for this transform, but
636   // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
637   // lshr (shl X, C1), C2 -->  shl X, C1 - C2
638   // shl (lshr X, C1), C2 --> lshr X, C1 - C2
639   return NewInnerShift(InnerShAmt - OuterShAmt);
640 }
641 
642 /// When canEvaluateShifted() returns true for an expression, this function
643 /// inserts the new computation that produces the shifted value.
644 static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
645                               InstCombinerImpl &IC, const DataLayout &DL) {
646   // We can always evaluate constants shifted.
647   if (Constant *C = dyn_cast<Constant>(V)) {
648     if (isLeftShift)
649       return IC.Builder.CreateShl(C, NumBits);
650     else
651       return IC.Builder.CreateLShr(C, NumBits);
652   }
653 
654   Instruction *I = cast<Instruction>(V);
655   IC.addToWorklist(I);
656 
657   switch (I->getOpcode()) {
658   default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
659   case Instruction::And:
660   case Instruction::Or:
661   case Instruction::Xor:
662     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
663     I->setOperand(
664         0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
665     I->setOperand(
666         1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
667     return I;
668 
669   case Instruction::Shl:
670   case Instruction::LShr:
671     return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
672                             IC.Builder);
673 
674   case Instruction::Select:
675     I->setOperand(
676         1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
677     I->setOperand(
678         2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
679     return I;
680   case Instruction::PHI: {
681     // We can change a phi if we can change all operands.  Note that we never
682     // get into trouble with cyclic PHIs here because we only consider
683     // instructions with a single use.
684     PHINode *PN = cast<PHINode>(I);
685     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
686       PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits,
687                                               isLeftShift, IC, DL));
688     return PN;
689   }
690   case Instruction::Mul: {
691     assert(!isLeftShift && "Unexpected shift direction!");
692     auto *Neg = BinaryOperator::CreateNeg(I->getOperand(0));
693     IC.InsertNewInstWith(Neg, *I);
694     unsigned TypeWidth = I->getType()->getScalarSizeInBits();
695     APInt Mask = APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits);
696     auto *And = BinaryOperator::CreateAnd(Neg,
697                                           ConstantInt::get(I->getType(), Mask));
698     And->takeName(I);
699     return IC.InsertNewInstWith(And, *I);
700   }
701   }
702 }
703 
704 // If this is a bitwise operator or add with a constant RHS we might be able
705 // to pull it through a shift.
706 static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift,
707                                          BinaryOperator *BO) {
708   switch (BO->getOpcode()) {
709   default:
710     return false; // Do not perform transform!
711   case Instruction::Add:
712     return Shift.getOpcode() == Instruction::Shl;
713   case Instruction::Or:
714   case Instruction::And:
715     return true;
716   case Instruction::Xor:
717     // Do not change a 'not' of logical shift because that would create a normal
718     // 'xor'. The 'not' is likely better for analysis, SCEV, and codegen.
719     return !(Shift.isLogicalShift() && match(BO, m_Not(m_Value())));
720   }
721 }
722 
723 Instruction *InstCombinerImpl::FoldShiftByConstant(Value *Op0, Constant *C1,
724                                                    BinaryOperator &I) {
725   // (C2 << X) << C1 --> (C2 << C1) << X
726   // (C2 >> X) >> C1 --> (C2 >> C1) >> X
727   Constant *C2;
728   Value *X;
729   if (match(Op0, m_BinOp(I.getOpcode(), m_Constant(C2), m_Value(X))))
730     return BinaryOperator::Create(
731         I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), C2, C1), X);
732 
733   const APInt *Op1C;
734   if (!match(C1, m_APInt(Op1C)))
735     return nullptr;
736 
737   // See if we can propagate this shift into the input, this covers the trivial
738   // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
739   bool IsLeftShift = I.getOpcode() == Instruction::Shl;
740   if (I.getOpcode() != Instruction::AShr &&
741       canEvaluateShifted(Op0, Op1C->getZExtValue(), IsLeftShift, *this, &I)) {
742     LLVM_DEBUG(
743         dbgs() << "ICE: GetShiftedValue propagating shift through expression"
744                   " to eliminate shift:\n  IN: "
745                << *Op0 << "\n  SH: " << I << "\n");
746 
747     return replaceInstUsesWith(
748         I, getShiftedValue(Op0, Op1C->getZExtValue(), IsLeftShift, *this, DL));
749   }
750 
751   // See if we can simplify any instructions used by the instruction whose sole
752   // purpose is to compute bits we don't care about.
753   Type *Ty = I.getType();
754   unsigned TypeBits = Ty->getScalarSizeInBits();
755   assert(!Op1C->uge(TypeBits) &&
756          "Shift over the type width should have been removed already");
757   (void)TypeBits;
758 
759   if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I))
760     return FoldedShift;
761 
762   if (!Op0->hasOneUse())
763     return nullptr;
764 
765   if (auto *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
766     // If the operand is a bitwise operator with a constant RHS, and the
767     // shift is the only use, we can pull it out of the shift.
768     const APInt *Op0C;
769     if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
770       if (canShiftBinOpWithConstantRHS(I, Op0BO)) {
771         Value *NewRHS =
772             Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(1), C1);
773 
774         Value *NewShift =
775             Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), C1);
776         NewShift->takeName(Op0BO);
777 
778         return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, NewRHS);
779       }
780     }
781   }
782 
783   // If we have a select that conditionally executes some binary operator,
784   // see if we can pull it the select and operator through the shift.
785   //
786   // For example, turning:
787   //   shl (select C, (add X, C1), X), C2
788   // Into:
789   //   Y = shl X, C2
790   //   select C, (add Y, C1 << C2), Y
791   Value *Cond;
792   BinaryOperator *TBO;
793   Value *FalseVal;
794   if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)),
795                           m_Value(FalseVal)))) {
796     const APInt *C;
797     if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal &&
798         match(TBO->getOperand(1), m_APInt(C)) &&
799         canShiftBinOpWithConstantRHS(I, TBO)) {
800       Value *NewRHS =
801           Builder.CreateBinOp(I.getOpcode(), TBO->getOperand(1), C1);
802 
803       Value *NewShift = Builder.CreateBinOp(I.getOpcode(), FalseVal, C1);
804       Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift, NewRHS);
805       return SelectInst::Create(Cond, NewOp, NewShift);
806     }
807   }
808 
809   BinaryOperator *FBO;
810   Value *TrueVal;
811   if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal),
812                           m_OneUse(m_BinOp(FBO))))) {
813     const APInt *C;
814     if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal &&
815         match(FBO->getOperand(1), m_APInt(C)) &&
816         canShiftBinOpWithConstantRHS(I, FBO)) {
817       Value *NewRHS =
818           Builder.CreateBinOp(I.getOpcode(), FBO->getOperand(1), C1);
819 
820       Value *NewShift = Builder.CreateBinOp(I.getOpcode(), TrueVal, C1);
821       Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift, NewRHS);
822       return SelectInst::Create(Cond, NewShift, NewOp);
823     }
824   }
825 
826   return nullptr;
827 }
828 
829 Instruction *InstCombinerImpl::visitShl(BinaryOperator &I) {
830   const SimplifyQuery Q = SQ.getWithInstruction(&I);
831 
832   if (Value *V = simplifyShlInst(I.getOperand(0), I.getOperand(1),
833                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q))
834     return replaceInstUsesWith(I, V);
835 
836   if (Instruction *X = foldVectorBinop(I))
837     return X;
838 
839   if (Instruction *V = commonShiftTransforms(I))
840     return V;
841 
842   if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder))
843     return V;
844 
845   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
846   Type *Ty = I.getType();
847   unsigned BitWidth = Ty->getScalarSizeInBits();
848 
849   const APInt *C;
850   if (match(Op1, m_APInt(C))) {
851     unsigned ShAmtC = C->getZExtValue();
852 
853     // shl (zext X), C --> zext (shl X, C)
854     // This is only valid if X would have zeros shifted out.
855     Value *X;
856     if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
857       unsigned SrcWidth = X->getType()->getScalarSizeInBits();
858       if (ShAmtC < SrcWidth &&
859           MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmtC), 0, &I))
860         return new ZExtInst(Builder.CreateShl(X, ShAmtC), Ty);
861     }
862 
863     // (X >> C) << C --> X & (-1 << C)
864     if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
865       APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
866       return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
867     }
868 
869     const APInt *C1;
870     if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(C1)))) &&
871         C1->ult(BitWidth)) {
872       unsigned ShrAmt = C1->getZExtValue();
873       if (ShrAmt < ShAmtC) {
874         // If C1 < C: (X >>?,exact C1) << C --> X << (C - C1)
875         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
876         auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
877         NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
878         NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
879         return NewShl;
880       }
881       if (ShrAmt > ShAmtC) {
882         // If C1 > C: (X >>?exact C1) << C --> X >>?exact (C1 - C)
883         Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
884         auto *NewShr = BinaryOperator::Create(
885             cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
886         NewShr->setIsExact(true);
887         return NewShr;
888       }
889     }
890 
891     if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_APInt(C1)))) &&
892         C1->ult(BitWidth)) {
893       unsigned ShrAmt = C1->getZExtValue();
894       if (ShrAmt < ShAmtC) {
895         // If C1 < C: (X >>? C1) << C --> (X << (C - C1)) & (-1 << C)
896         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
897         auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
898         NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
899         NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
900         Builder.Insert(NewShl);
901         APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
902         return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
903       }
904       if (ShrAmt > ShAmtC) {
905         // If C1 > C: (X >>? C1) << C --> (X >>? (C1 - C)) & (-1 << C)
906         Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
907         auto *OldShr = cast<BinaryOperator>(Op0);
908         auto *NewShr =
909             BinaryOperator::Create(OldShr->getOpcode(), X, ShiftDiff);
910         NewShr->setIsExact(OldShr->isExact());
911         Builder.Insert(NewShr);
912         APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
913         return BinaryOperator::CreateAnd(NewShr, ConstantInt::get(Ty, Mask));
914       }
915     }
916 
917     // Similar to above, but look through an intermediate trunc instruction.
918     BinaryOperator *Shr;
919     if (match(Op0, m_OneUse(m_Trunc(m_OneUse(m_BinOp(Shr))))) &&
920         match(Shr, m_Shr(m_Value(X), m_APInt(C1)))) {
921       // The larger shift direction survives through the transform.
922       unsigned ShrAmtC = C1->getZExtValue();
923       unsigned ShDiff = ShrAmtC > ShAmtC ? ShrAmtC - ShAmtC : ShAmtC - ShrAmtC;
924       Constant *ShiftDiffC = ConstantInt::get(X->getType(), ShDiff);
925       auto ShiftOpc = ShrAmtC > ShAmtC ? Shr->getOpcode() : Instruction::Shl;
926 
927       // If C1 > C:
928       // (trunc (X >> C1)) << C --> (trunc (X >> (C1 - C))) && (-1 << C)
929       // If C > C1:
930       // (trunc (X >> C1)) << C --> (trunc (X << (C - C1))) && (-1 << C)
931       Value *NewShift = Builder.CreateBinOp(ShiftOpc, X, ShiftDiffC, "sh.diff");
932       Value *Trunc = Builder.CreateTrunc(NewShift, Ty, "tr.sh.diff");
933       APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
934       return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, Mask));
935     }
936 
937     if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) {
938       unsigned AmtSum = ShAmtC + C1->getZExtValue();
939       // Oversized shifts are simplified to zero in InstSimplify.
940       if (AmtSum < BitWidth)
941         // (X << C1) << C2 --> X << (C1 + C2)
942         return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum));
943     }
944 
945     // If we have an opposite shift by the same amount, we may be able to
946     // reorder binops and shifts to eliminate math/logic.
947     auto isSuitableBinOpcode = [](Instruction::BinaryOps BinOpcode) {
948       switch (BinOpcode) {
949       default:
950         return false;
951       case Instruction::Add:
952       case Instruction::And:
953       case Instruction::Or:
954       case Instruction::Xor:
955       case Instruction::Sub:
956         // NOTE: Sub is not commutable and the tranforms below may not be valid
957         //       when the shift-right is operand 1 (RHS) of the sub.
958         return true;
959       }
960     };
961     BinaryOperator *Op0BO;
962     if (match(Op0, m_OneUse(m_BinOp(Op0BO))) &&
963         isSuitableBinOpcode(Op0BO->getOpcode())) {
964       // Commute so shift-right is on LHS of the binop.
965       // (Y bop (X >> C)) << C         ->  ((X >> C) bop Y) << C
966       // (Y bop ((X >> C) & CC)) << C  ->  (((X >> C) & CC) bop Y) << C
967       Value *Shr = Op0BO->getOperand(0);
968       Value *Y = Op0BO->getOperand(1);
969       Value *X;
970       const APInt *CC;
971       if (Op0BO->isCommutative() && Y->hasOneUse() &&
972           (match(Y, m_Shr(m_Value(), m_Specific(Op1))) ||
973            match(Y, m_And(m_OneUse(m_Shr(m_Value(), m_Specific(Op1))),
974                           m_APInt(CC)))))
975         std::swap(Shr, Y);
976 
977       // ((X >> C) bop Y) << C  ->  (X bop (Y << C)) & (~0 << C)
978       if (match(Shr, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
979         // Y << C
980         Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName());
981         // (X bop (Y << C))
982         Value *B =
983             Builder.CreateBinOp(Op0BO->getOpcode(), X, YS, Shr->getName());
984         unsigned Op1Val = C->getLimitedValue(BitWidth);
985         APInt Bits = APInt::getHighBitsSet(BitWidth, BitWidth - Op1Val);
986         Constant *Mask = ConstantInt::get(Ty, Bits);
987         return BinaryOperator::CreateAnd(B, Mask);
988       }
989 
990       // (((X >> C) & CC) bop Y) << C  ->  (X & (CC << C)) bop (Y << C)
991       if (match(Shr,
992                 m_OneUse(m_And(m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))),
993                                m_APInt(CC))))) {
994         // Y << C
995         Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName());
996         // X & (CC << C)
997         Value *M = Builder.CreateAnd(X, ConstantInt::get(Ty, CC->shl(*C)),
998                                      X->getName() + ".mask");
999         return BinaryOperator::Create(Op0BO->getOpcode(), M, YS);
1000       }
1001     }
1002 
1003     // (C1 - X) << C --> (C1 << C) - (X << C)
1004     if (match(Op0, m_OneUse(m_Sub(m_APInt(C1), m_Value(X))))) {
1005       Constant *NewLHS = ConstantInt::get(Ty, C1->shl(*C));
1006       Value *NewShift = Builder.CreateShl(X, Op1);
1007       return BinaryOperator::CreateSub(NewLHS, NewShift);
1008     }
1009 
1010     // If the shifted-out value is known-zero, then this is a NUW shift.
1011     if (!I.hasNoUnsignedWrap() &&
1012         MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmtC), 0,
1013                           &I)) {
1014       I.setHasNoUnsignedWrap();
1015       return &I;
1016     }
1017 
1018     // If the shifted-out value is all signbits, then this is a NSW shift.
1019     if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmtC) {
1020       I.setHasNoSignedWrap();
1021       return &I;
1022     }
1023   }
1024 
1025   // Transform  (x >> y) << y  to  x & (-1 << y)
1026   // Valid for any type of right-shift.
1027   Value *X;
1028   if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
1029     Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1030     Value *Mask = Builder.CreateShl(AllOnes, Op1);
1031     return BinaryOperator::CreateAnd(Mask, X);
1032   }
1033 
1034   Constant *C1;
1035   if (match(Op1, m_Constant(C1))) {
1036     Constant *C2;
1037     Value *X;
1038     // (X * C2) << C1 --> X * (C2 << C1)
1039     if (match(Op0, m_Mul(m_Value(X), m_Constant(C2))))
1040       return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1));
1041 
1042     // shl (zext i1 X), C1 --> select (X, 1 << C1, 0)
1043     if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1044       auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1);
1045       return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
1046     }
1047   }
1048 
1049   // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1
1050   if (match(Op0, m_One()) &&
1051       match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X))))
1052     return BinaryOperator::CreateLShr(
1053         ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X);
1054 
1055   return nullptr;
1056 }
1057 
1058 Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) {
1059   if (Value *V = simplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1060                                   SQ.getWithInstruction(&I)))
1061     return replaceInstUsesWith(I, V);
1062 
1063   if (Instruction *X = foldVectorBinop(I))
1064     return X;
1065 
1066   if (Instruction *R = commonShiftTransforms(I))
1067     return R;
1068 
1069   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1070   Type *Ty = I.getType();
1071   const APInt *C;
1072   if (match(Op1, m_APInt(C))) {
1073     unsigned ShAmtC = C->getZExtValue();
1074     unsigned BitWidth = Ty->getScalarSizeInBits();
1075     auto *II = dyn_cast<IntrinsicInst>(Op0);
1076     if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmtC &&
1077         (II->getIntrinsicID() == Intrinsic::ctlz ||
1078          II->getIntrinsicID() == Intrinsic::cttz ||
1079          II->getIntrinsicID() == Intrinsic::ctpop)) {
1080       // ctlz.i32(x)>>5  --> zext(x == 0)
1081       // cttz.i32(x)>>5  --> zext(x == 0)
1082       // ctpop.i32(x)>>5 --> zext(x == -1)
1083       bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
1084       Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
1085       Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
1086       return new ZExtInst(Cmp, Ty);
1087     }
1088 
1089     Value *X;
1090     const APInt *C1;
1091     if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) {
1092       if (C1->ult(ShAmtC)) {
1093         unsigned ShlAmtC = C1->getZExtValue();
1094         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShlAmtC);
1095         if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1096           // (X <<nuw C1) >>u C --> X >>u (C - C1)
1097           auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
1098           NewLShr->setIsExact(I.isExact());
1099           return NewLShr;
1100         }
1101         if (Op0->hasOneUse()) {
1102           // (X << C1) >>u C  --> (X >>u (C - C1)) & (-1 >> C)
1103           Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
1104           APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1105           return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
1106         }
1107       } else if (C1->ugt(ShAmtC)) {
1108         unsigned ShlAmtC = C1->getZExtValue();
1109         Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmtC - ShAmtC);
1110         if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1111           // (X <<nuw C1) >>u C --> X <<nuw (C1 - C)
1112           auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
1113           NewShl->setHasNoUnsignedWrap(true);
1114           return NewShl;
1115         }
1116         if (Op0->hasOneUse()) {
1117           // (X << C1) >>u C  --> X << (C1 - C) & (-1 >> C)
1118           Value *NewShl = Builder.CreateShl(X, ShiftDiff);
1119           APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1120           return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
1121         }
1122       } else {
1123         assert(*C1 == ShAmtC);
1124         // (X << C) >>u C --> X & (-1 >>u C)
1125         APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1126         return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
1127       }
1128     }
1129 
1130     // ((X << C) + Y) >>u C --> (X + (Y >>u C)) & (-1 >>u C)
1131     // TODO: Consolidate with the more general transform that starts from shl
1132     //       (the shifts are in the opposite order).
1133     Value *Y;
1134     if (match(Op0,
1135               m_OneUse(m_c_Add(m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))),
1136                                m_Value(Y))))) {
1137       Value *NewLshr = Builder.CreateLShr(Y, Op1);
1138       Value *NewAdd = Builder.CreateAdd(NewLshr, X);
1139       unsigned Op1Val = C->getLimitedValue(BitWidth);
1140       APInt Bits = APInt::getLowBitsSet(BitWidth, BitWidth - Op1Val);
1141       Constant *Mask = ConstantInt::get(Ty, Bits);
1142       return BinaryOperator::CreateAnd(NewAdd, Mask);
1143     }
1144 
1145     if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
1146         (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
1147       assert(ShAmtC < X->getType()->getScalarSizeInBits() &&
1148              "Big shift not simplified to zero?");
1149       // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
1150       Value *NewLShr = Builder.CreateLShr(X, ShAmtC);
1151       return new ZExtInst(NewLShr, Ty);
1152     }
1153 
1154     if (match(Op0, m_SExt(m_Value(X)))) {
1155       unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
1156       // lshr (sext i1 X to iN), C --> select (X, -1 >> C, 0)
1157       if (SrcTyBitWidth == 1) {
1158         auto *NewC = ConstantInt::get(
1159             Ty, APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1160         return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
1161       }
1162 
1163       if ((!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType())) &&
1164           Op0->hasOneUse()) {
1165         // Are we moving the sign bit to the low bit and widening with high
1166         // zeros? lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
1167         if (ShAmtC == BitWidth - 1) {
1168           Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
1169           return new ZExtInst(NewLShr, Ty);
1170         }
1171 
1172         // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
1173         if (ShAmtC == BitWidth - SrcTyBitWidth) {
1174           // The new shift amount can't be more than the narrow source type.
1175           unsigned NewShAmt = std::min(ShAmtC, SrcTyBitWidth - 1);
1176           Value *AShr = Builder.CreateAShr(X, NewShAmt);
1177           return new ZExtInst(AShr, Ty);
1178         }
1179       }
1180     }
1181 
1182     if (ShAmtC == BitWidth - 1) {
1183       // lshr i32 or(X,-X), 31 --> zext (X != 0)
1184       if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X)))))
1185         return new ZExtInst(Builder.CreateIsNotNull(X), Ty);
1186 
1187       // lshr i32 (X -nsw Y), 31 --> zext (X < Y)
1188       if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
1189         return new ZExtInst(Builder.CreateICmpSLT(X, Y), Ty);
1190 
1191       // Check if a number is negative and odd:
1192       // lshr i32 (srem X, 2), 31 --> and (X >> 31), X
1193       if (match(Op0, m_OneUse(m_SRem(m_Value(X), m_SpecificInt(2))))) {
1194         Value *Signbit = Builder.CreateLShr(X, ShAmtC);
1195         return BinaryOperator::CreateAnd(Signbit, X);
1196       }
1197     }
1198 
1199     // (X >>u C1) >>u C --> X >>u (C1 + C)
1200     if (match(Op0, m_LShr(m_Value(X), m_APInt(C1)))) {
1201       // Oversized shifts are simplified to zero in InstSimplify.
1202       unsigned AmtSum = ShAmtC + C1->getZExtValue();
1203       if (AmtSum < BitWidth)
1204         return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
1205     }
1206 
1207     Instruction *TruncSrc;
1208     if (match(Op0, m_OneUse(m_Trunc(m_Instruction(TruncSrc)))) &&
1209         match(TruncSrc, m_LShr(m_Value(X), m_APInt(C1)))) {
1210       unsigned SrcWidth = X->getType()->getScalarSizeInBits();
1211       unsigned AmtSum = ShAmtC + C1->getZExtValue();
1212 
1213       // If the combined shift fits in the source width:
1214       // (trunc (X >>u C1)) >>u C --> and (trunc (X >>u (C1 + C)), MaskC
1215       //
1216       // If the first shift covers the number of bits truncated, then the
1217       // mask instruction is eliminated (and so the use check is relaxed).
1218       if (AmtSum < SrcWidth &&
1219           (TruncSrc->hasOneUse() || C1->uge(SrcWidth - BitWidth))) {
1220         Value *SumShift = Builder.CreateLShr(X, AmtSum, "sum.shift");
1221         Value *Trunc = Builder.CreateTrunc(SumShift, Ty, I.getName());
1222 
1223         // If the first shift does not cover the number of bits truncated, then
1224         // we require a mask to get rid of high bits in the result.
1225         APInt MaskC = APInt::getAllOnes(BitWidth).lshr(ShAmtC);
1226         return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, MaskC));
1227       }
1228     }
1229 
1230     const APInt *MulC;
1231     if (match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC)))) {
1232       // Look for a "splat" mul pattern - it replicates bits across each half of
1233       // a value, so a right shift is just a mask of the low bits:
1234       // lshr i[2N] (mul nuw X, (2^N)+1), N --> and iN X, (2^N)-1
1235       // TODO: Generalize to allow more than just half-width shifts?
1236       if (BitWidth > 2 && ShAmtC * 2 == BitWidth && (*MulC - 1).isPowerOf2() &&
1237           MulC->logBase2() == ShAmtC)
1238         return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *MulC - 2));
1239 
1240       // The one-use check is not strictly necessary, but codegen may not be
1241       // able to invert the transform and perf may suffer with an extra mul
1242       // instruction.
1243       if (Op0->hasOneUse()) {
1244         APInt NewMulC = MulC->lshr(ShAmtC);
1245         // if c is divisible by (1 << ShAmtC):
1246         // lshr (mul nuw x, MulC), ShAmtC -> mul nuw x, (MulC >> ShAmtC)
1247         if (MulC->eq(NewMulC.shl(ShAmtC))) {
1248           auto *NewMul =
1249               BinaryOperator::CreateNUWMul(X, ConstantInt::get(Ty, NewMulC));
1250           BinaryOperator *OrigMul = cast<BinaryOperator>(Op0);
1251           NewMul->setHasNoSignedWrap(OrigMul->hasNoSignedWrap());
1252           return NewMul;
1253         }
1254       }
1255     }
1256 
1257     // Try to narrow bswap.
1258     // In the case where the shift amount equals the bitwidth difference, the
1259     // shift is eliminated.
1260     if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::bswap>(
1261                        m_OneUse(m_ZExt(m_Value(X))))))) {
1262       unsigned SrcWidth = X->getType()->getScalarSizeInBits();
1263       unsigned WidthDiff = BitWidth - SrcWidth;
1264       if (SrcWidth % 16 == 0) {
1265         Value *NarrowSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X);
1266         if (ShAmtC >= WidthDiff) {
1267           // (bswap (zext X)) >> C --> zext (bswap X >> C')
1268           Value *NewShift = Builder.CreateLShr(NarrowSwap, ShAmtC - WidthDiff);
1269           return new ZExtInst(NewShift, Ty);
1270         } else {
1271           // (bswap (zext X)) >> C --> (zext (bswap X)) << C'
1272           Value *NewZExt = Builder.CreateZExt(NarrowSwap, Ty);
1273           Constant *ShiftDiff = ConstantInt::get(Ty, WidthDiff - ShAmtC);
1274           return BinaryOperator::CreateShl(NewZExt, ShiftDiff);
1275         }
1276       }
1277     }
1278 
1279     // If the shifted-out value is known-zero, then this is an exact shift.
1280     if (!I.isExact() &&
1281         MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmtC), 0, &I)) {
1282       I.setIsExact();
1283       return &I;
1284     }
1285   }
1286 
1287   // Transform  (x << y) >> y  to  x & (-1 >> y)
1288   Value *X;
1289   if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) {
1290     Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1291     Value *Mask = Builder.CreateLShr(AllOnes, Op1);
1292     return BinaryOperator::CreateAnd(Mask, X);
1293   }
1294 
1295   return nullptr;
1296 }
1297 
1298 Instruction *
1299 InstCombinerImpl::foldVariableSignZeroExtensionOfVariableHighBitExtract(
1300     BinaryOperator &OldAShr) {
1301   assert(OldAShr.getOpcode() == Instruction::AShr &&
1302          "Must be called with arithmetic right-shift instruction only.");
1303 
1304   // Check that constant C is a splat of the element-wise bitwidth of V.
1305   auto BitWidthSplat = [](Constant *C, Value *V) {
1306     return match(
1307         C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1308                               APInt(C->getType()->getScalarSizeInBits(),
1309                                     V->getType()->getScalarSizeInBits())));
1310   };
1311 
1312   // It should look like variable-length sign-extension on the outside:
1313   //   (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits)
1314   Value *NBits;
1315   Instruction *MaybeTrunc;
1316   Constant *C1, *C2;
1317   if (!match(&OldAShr,
1318              m_AShr(m_Shl(m_Instruction(MaybeTrunc),
1319                           m_ZExtOrSelf(m_Sub(m_Constant(C1),
1320                                              m_ZExtOrSelf(m_Value(NBits))))),
1321                     m_ZExtOrSelf(m_Sub(m_Constant(C2),
1322                                        m_ZExtOrSelf(m_Deferred(NBits)))))) ||
1323       !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
1324     return nullptr;
1325 
1326   // There may or may not be a truncation after outer two shifts.
1327   Instruction *HighBitExtract;
1328   match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract)));
1329   bool HadTrunc = MaybeTrunc != HighBitExtract;
1330 
1331   // And finally, the innermost part of the pattern must be a right-shift.
1332   Value *X, *NumLowBitsToSkip;
1333   if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip))))
1334     return nullptr;
1335 
1336   // Said right-shift must extract high NBits bits - C0 must be it's bitwidth.
1337   Constant *C0;
1338   if (!match(NumLowBitsToSkip,
1339              m_ZExtOrSelf(
1340                  m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) ||
1341       !BitWidthSplat(C0, HighBitExtract))
1342     return nullptr;
1343 
1344   // Since the NBits is identical for all shifts, if the outermost and
1345   // innermost shifts are identical, then outermost shifts are redundant.
1346   // If we had truncation, do keep it though.
1347   if (HighBitExtract->getOpcode() == OldAShr.getOpcode())
1348     return replaceInstUsesWith(OldAShr, MaybeTrunc);
1349 
1350   // Else, if there was a truncation, then we need to ensure that one
1351   // instruction will go away.
1352   if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1353     return nullptr;
1354 
1355   // Finally, bypass two innermost shifts, and perform the outermost shift on
1356   // the operands of the innermost shift.
1357   Instruction *NewAShr =
1358       BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip);
1359   NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness.
1360   if (!HadTrunc)
1361     return NewAShr;
1362 
1363   Builder.Insert(NewAShr);
1364   return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType());
1365 }
1366 
1367 Instruction *InstCombinerImpl::visitAShr(BinaryOperator &I) {
1368   if (Value *V = simplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1369                                   SQ.getWithInstruction(&I)))
1370     return replaceInstUsesWith(I, V);
1371 
1372   if (Instruction *X = foldVectorBinop(I))
1373     return X;
1374 
1375   if (Instruction *R = commonShiftTransforms(I))
1376     return R;
1377 
1378   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1379   Type *Ty = I.getType();
1380   unsigned BitWidth = Ty->getScalarSizeInBits();
1381   const APInt *ShAmtAPInt;
1382   if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) {
1383     unsigned ShAmt = ShAmtAPInt->getZExtValue();
1384 
1385     // If the shift amount equals the difference in width of the destination
1386     // and source scalar types:
1387     // ashr (shl (zext X), C), C --> sext X
1388     Value *X;
1389     if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
1390         ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
1391       return new SExtInst(X, Ty);
1392 
1393     // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
1394     // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
1395     const APInt *ShOp1;
1396     if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) &&
1397         ShOp1->ult(BitWidth)) {
1398       unsigned ShlAmt = ShOp1->getZExtValue();
1399       if (ShlAmt < ShAmt) {
1400         // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
1401         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
1402         auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
1403         NewAShr->setIsExact(I.isExact());
1404         return NewAShr;
1405       }
1406       if (ShlAmt > ShAmt) {
1407         // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
1408         Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
1409         auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
1410         NewShl->setHasNoSignedWrap(true);
1411         return NewShl;
1412       }
1413     }
1414 
1415     if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) &&
1416         ShOp1->ult(BitWidth)) {
1417       unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
1418       // Oversized arithmetic shifts replicate the sign bit.
1419       AmtSum = std::min(AmtSum, BitWidth - 1);
1420       // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
1421       return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
1422     }
1423 
1424     if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
1425         (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
1426       // ashr (sext X), C --> sext (ashr X, C')
1427       Type *SrcTy = X->getType();
1428       ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
1429       Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
1430       return new SExtInst(NewSh, Ty);
1431     }
1432 
1433     if (ShAmt == BitWidth - 1) {
1434       // ashr i32 or(X,-X), 31 --> sext (X != 0)
1435       if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X)))))
1436         return new SExtInst(Builder.CreateIsNotNull(X), Ty);
1437 
1438       // ashr i32 (X -nsw Y), 31 --> sext (X < Y)
1439       Value *Y;
1440       if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
1441         return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty);
1442     }
1443 
1444     // If the shifted-out value is known-zero, then this is an exact shift.
1445     if (!I.isExact() &&
1446         MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
1447       I.setIsExact();
1448       return &I;
1449     }
1450   }
1451 
1452   // Prefer `-(x & 1)` over `(x << (bitwidth(x)-1)) a>> (bitwidth(x)-1)`
1453   // as the pattern to splat the lowest bit.
1454   // FIXME: iff X is already masked, we don't need the one-use check.
1455   Value *X;
1456   if (match(Op1, m_SpecificIntAllowUndef(BitWidth - 1)) &&
1457       match(Op0, m_OneUse(m_Shl(m_Value(X),
1458                                 m_SpecificIntAllowUndef(BitWidth - 1))))) {
1459     Constant *Mask = ConstantInt::get(Ty, 1);
1460     // Retain the knowledge about the ignored lanes.
1461     Mask = Constant::mergeUndefsWith(
1462         Constant::mergeUndefsWith(Mask, cast<Constant>(Op1)),
1463         cast<Constant>(cast<Instruction>(Op0)->getOperand(1)));
1464     X = Builder.CreateAnd(X, Mask);
1465     return BinaryOperator::CreateNeg(X);
1466   }
1467 
1468   if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I))
1469     return R;
1470 
1471   // See if we can turn a signed shr into an unsigned shr.
1472   if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I))
1473     return BinaryOperator::CreateLShr(Op0, Op1);
1474 
1475   // ashr (xor %x, -1), %y  -->  xor (ashr %x, %y), -1
1476   if (match(Op0, m_OneUse(m_Not(m_Value(X))))) {
1477     // Note that we must drop 'exact'-ness of the shift!
1478     // Note that we can't keep undef's in -1 vector constant!
1479     auto *NewAShr = Builder.CreateAShr(X, Op1, Op0->getName() + ".not");
1480     return BinaryOperator::CreateNot(NewAShr);
1481   }
1482 
1483   return nullptr;
1484 }
1485