xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp (revision f976241773df2260e6170317080761d1c5814fe5)
1 //===- InstCombineShifts.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitShl, visitLShr, and visitAShr functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/ConstantFolding.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/PatternMatch.h"
18 using namespace llvm;
19 using namespace PatternMatch;
20 
21 #define DEBUG_TYPE "instcombine"
22 
23 // Given pattern:
24 //   (x shiftopcode Q) shiftopcode K
25 // we should rewrite it as
26 //   x shiftopcode (Q+K)  iff (Q+K) u< bitwidth(x)
27 // This is valid for any shift, but they must be identical.
28 static Instruction *
29 reassociateShiftAmtsOfTwoSameDirectionShifts(BinaryOperator *Sh0,
30                                              const SimplifyQuery &SQ) {
31   // Look for:  (x shiftopcode ShAmt0) shiftopcode ShAmt1
32   Value *X, *ShAmt1, *ShAmt0;
33   Instruction *Sh1;
34   if (!match(Sh0, m_Shift(m_CombineAnd(m_Shift(m_Value(X), m_Value(ShAmt1)),
35                                        m_Instruction(Sh1)),
36                           m_Value(ShAmt0))))
37     return nullptr;
38 
39   // The shift opcodes must be identical.
40   Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode();
41   if (ShiftOpcode != Sh1->getOpcode())
42     return nullptr;
43   // Can we fold (ShAmt0+ShAmt1) ?
44   Value *NewShAmt = SimplifyBinOp(Instruction::BinaryOps::Add, ShAmt0, ShAmt1,
45                                   SQ.getWithInstruction(Sh0));
46   if (!NewShAmt)
47     return nullptr; // Did not simplify.
48   // Is the new shift amount smaller than the bit width?
49   // FIXME: could also rely on ConstantRange.
50   unsigned BitWidth = X->getType()->getScalarSizeInBits();
51   if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
52                                           APInt(BitWidth, BitWidth))))
53     return nullptr;
54   // All good, we can do this fold.
55   BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt);
56   // If both of the original shifts had the same flag set, preserve the flag.
57   if (ShiftOpcode == Instruction::BinaryOps::Shl) {
58     NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() &&
59                                    Sh1->hasNoUnsignedWrap());
60     NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() &&
61                                  Sh1->hasNoSignedWrap());
62   } else {
63     NewShift->setIsExact(Sh0->isExact() && Sh1->isExact());
64   }
65   return NewShift;
66 }
67 
68 Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
69   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
70   assert(Op0->getType() == Op1->getType());
71 
72   // See if we can fold away this shift.
73   if (SimplifyDemandedInstructionBits(I))
74     return &I;
75 
76   // Try to fold constant and into select arguments.
77   if (isa<Constant>(Op0))
78     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
79       if (Instruction *R = FoldOpIntoSelect(I, SI))
80         return R;
81 
82   if (Constant *CUI = dyn_cast<Constant>(Op1))
83     if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
84       return Res;
85 
86   if (Instruction *NewShift =
87           reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ))
88     return NewShift;
89 
90   // (C1 shift (A add C2)) -> (C1 shift C2) shift A)
91   // iff A and C2 are both positive.
92   Value *A;
93   Constant *C;
94   if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C))))
95     if (isKnownNonNegative(A, DL, 0, &AC, &I, &DT) &&
96         isKnownNonNegative(C, DL, 0, &AC, &I, &DT))
97       return BinaryOperator::Create(
98           I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), Op0, C), A);
99 
100   // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
101   // Because shifts by negative values (which could occur if A were negative)
102   // are undefined.
103   const APInt *B;
104   if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
105     // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
106     // demand the sign bit (and many others) here??
107     Value *Rem = Builder.CreateAnd(A, ConstantInt::get(I.getType(), *B - 1),
108                                    Op1->getName());
109     I.setOperand(1, Rem);
110     return &I;
111   }
112 
113   return nullptr;
114 }
115 
116 /// Return true if we can simplify two logical (either left or right) shifts
117 /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
118 static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
119                                     Instruction *InnerShift, InstCombiner &IC,
120                                     Instruction *CxtI) {
121   assert(InnerShift->isLogicalShift() && "Unexpected instruction type");
122 
123   // We need constant scalar or constant splat shifts.
124   const APInt *InnerShiftConst;
125   if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
126     return false;
127 
128   // Two logical shifts in the same direction:
129   // shl (shl X, C1), C2 -->  shl X, C1 + C2
130   // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
131   bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
132   if (IsInnerShl == IsOuterShl)
133     return true;
134 
135   // Equal shift amounts in opposite directions become bitwise 'and':
136   // lshr (shl X, C), C --> and X, C'
137   // shl (lshr X, C), C --> and X, C'
138   if (*InnerShiftConst == OuterShAmt)
139     return true;
140 
141   // If the 2nd shift is bigger than the 1st, we can fold:
142   // lshr (shl X, C1), C2 -->  and (shl X, C1 - C2), C3
143   // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
144   // but it isn't profitable unless we know the and'd out bits are already zero.
145   // Also, check that the inner shift is valid (less than the type width) or
146   // we'll crash trying to produce the bit mask for the 'and'.
147   unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
148   if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) {
149     unsigned InnerShAmt = InnerShiftConst->getZExtValue();
150     unsigned MaskShift =
151         IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
152     APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
153     if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
154       return true;
155   }
156 
157   return false;
158 }
159 
160 /// See if we can compute the specified value, but shifted logically to the left
161 /// or right by some number of bits. This should return true if the expression
162 /// can be computed for the same cost as the current expression tree. This is
163 /// used to eliminate extraneous shifting from things like:
164 ///      %C = shl i128 %A, 64
165 ///      %D = shl i128 %B, 96
166 ///      %E = or i128 %C, %D
167 ///      %F = lshr i128 %E, 64
168 /// where the client will ask if E can be computed shifted right by 64-bits. If
169 /// this succeeds, getShiftedValue() will be called to produce the value.
170 static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
171                                InstCombiner &IC, Instruction *CxtI) {
172   // We can always evaluate constants shifted.
173   if (isa<Constant>(V))
174     return true;
175 
176   Instruction *I = dyn_cast<Instruction>(V);
177   if (!I) return false;
178 
179   // If this is the opposite shift, we can directly reuse the input of the shift
180   // if the needed bits are already zero in the input.  This allows us to reuse
181   // the value which means that we don't care if the shift has multiple uses.
182   //  TODO:  Handle opposite shift by exact value.
183   ConstantInt *CI = nullptr;
184   if ((IsLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
185       (!IsLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
186     if (CI->getValue() == NumBits) {
187       // TODO: Check that the input bits are already zero with MaskedValueIsZero
188 #if 0
189       // If this is a truncate of a logical shr, we can truncate it to a smaller
190       // lshr iff we know that the bits we would otherwise be shifting in are
191       // already zeros.
192       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
193       uint32_t BitWidth = Ty->getScalarSizeInBits();
194       if (MaskedValueIsZero(I->getOperand(0),
195             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
196           CI->getLimitedValue(BitWidth) < BitWidth) {
197         return CanEvaluateTruncated(I->getOperand(0), Ty);
198       }
199 #endif
200 
201     }
202   }
203 
204   // We can't mutate something that has multiple uses: doing so would
205   // require duplicating the instruction in general, which isn't profitable.
206   if (!I->hasOneUse()) return false;
207 
208   switch (I->getOpcode()) {
209   default: return false;
210   case Instruction::And:
211   case Instruction::Or:
212   case Instruction::Xor:
213     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
214     return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
215            canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);
216 
217   case Instruction::Shl:
218   case Instruction::LShr:
219     return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);
220 
221   case Instruction::Select: {
222     SelectInst *SI = cast<SelectInst>(I);
223     Value *TrueVal = SI->getTrueValue();
224     Value *FalseVal = SI->getFalseValue();
225     return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
226            canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
227   }
228   case Instruction::PHI: {
229     // We can change a phi if we can change all operands.  Note that we never
230     // get into trouble with cyclic PHIs here because we only consider
231     // instructions with a single use.
232     PHINode *PN = cast<PHINode>(I);
233     for (Value *IncValue : PN->incoming_values())
234       if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
235         return false;
236     return true;
237   }
238   }
239 }
240 
241 /// Fold OuterShift (InnerShift X, C1), C2.
242 /// See canEvaluateShiftedShift() for the constraints on these instructions.
243 static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
244                                bool IsOuterShl,
245                                InstCombiner::BuilderTy &Builder) {
246   bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
247   Type *ShType = InnerShift->getType();
248   unsigned TypeWidth = ShType->getScalarSizeInBits();
249 
250   // We only accept shifts-by-a-constant in canEvaluateShifted().
251   const APInt *C1;
252   match(InnerShift->getOperand(1), m_APInt(C1));
253   unsigned InnerShAmt = C1->getZExtValue();
254 
255   // Change the shift amount and clear the appropriate IR flags.
256   auto NewInnerShift = [&](unsigned ShAmt) {
257     InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
258     if (IsInnerShl) {
259       InnerShift->setHasNoUnsignedWrap(false);
260       InnerShift->setHasNoSignedWrap(false);
261     } else {
262       InnerShift->setIsExact(false);
263     }
264     return InnerShift;
265   };
266 
267   // Two logical shifts in the same direction:
268   // shl (shl X, C1), C2 -->  shl X, C1 + C2
269   // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
270   if (IsInnerShl == IsOuterShl) {
271     // If this is an oversized composite shift, then unsigned shifts get 0.
272     if (InnerShAmt + OuterShAmt >= TypeWidth)
273       return Constant::getNullValue(ShType);
274 
275     return NewInnerShift(InnerShAmt + OuterShAmt);
276   }
277 
278   // Equal shift amounts in opposite directions become bitwise 'and':
279   // lshr (shl X, C), C --> and X, C'
280   // shl (lshr X, C), C --> and X, C'
281   if (InnerShAmt == OuterShAmt) {
282     APInt Mask = IsInnerShl
283                      ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
284                      : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
285     Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
286                                    ConstantInt::get(ShType, Mask));
287     if (auto *AndI = dyn_cast<Instruction>(And)) {
288       AndI->moveBefore(InnerShift);
289       AndI->takeName(InnerShift);
290     }
291     return And;
292   }
293 
294   assert(InnerShAmt > OuterShAmt &&
295          "Unexpected opposite direction logical shift pair");
296 
297   // In general, we would need an 'and' for this transform, but
298   // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
299   // lshr (shl X, C1), C2 -->  shl X, C1 - C2
300   // shl (lshr X, C1), C2 --> lshr X, C1 - C2
301   return NewInnerShift(InnerShAmt - OuterShAmt);
302 }
303 
304 /// When canEvaluateShifted() returns true for an expression, this function
305 /// inserts the new computation that produces the shifted value.
306 static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
307                               InstCombiner &IC, const DataLayout &DL) {
308   // We can always evaluate constants shifted.
309   if (Constant *C = dyn_cast<Constant>(V)) {
310     if (isLeftShift)
311       V = IC.Builder.CreateShl(C, NumBits);
312     else
313       V = IC.Builder.CreateLShr(C, NumBits);
314     // If we got a constantexpr back, try to simplify it with TD info.
315     if (auto *C = dyn_cast<Constant>(V))
316       if (auto *FoldedC =
317               ConstantFoldConstant(C, DL, &IC.getTargetLibraryInfo()))
318         V = FoldedC;
319     return V;
320   }
321 
322   Instruction *I = cast<Instruction>(V);
323   IC.Worklist.Add(I);
324 
325   switch (I->getOpcode()) {
326   default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
327   case Instruction::And:
328   case Instruction::Or:
329   case Instruction::Xor:
330     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
331     I->setOperand(
332         0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
333     I->setOperand(
334         1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
335     return I;
336 
337   case Instruction::Shl:
338   case Instruction::LShr:
339     return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
340                             IC.Builder);
341 
342   case Instruction::Select:
343     I->setOperand(
344         1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
345     I->setOperand(
346         2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
347     return I;
348   case Instruction::PHI: {
349     // We can change a phi if we can change all operands.  Note that we never
350     // get into trouble with cyclic PHIs here because we only consider
351     // instructions with a single use.
352     PHINode *PN = cast<PHINode>(I);
353     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
354       PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits,
355                                               isLeftShift, IC, DL));
356     return PN;
357   }
358   }
359 }
360 
361 // If this is a bitwise operator or add with a constant RHS we might be able
362 // to pull it through a shift.
363 static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift,
364                                          BinaryOperator *BO) {
365   switch (BO->getOpcode()) {
366   default:
367     return false; // Do not perform transform!
368   case Instruction::Add:
369     return Shift.getOpcode() == Instruction::Shl;
370   case Instruction::Or:
371   case Instruction::Xor:
372   case Instruction::And:
373     return true;
374   }
375 }
376 
377 Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1,
378                                                BinaryOperator &I) {
379   bool isLeftShift = I.getOpcode() == Instruction::Shl;
380 
381   const APInt *Op1C;
382   if (!match(Op1, m_APInt(Op1C)))
383     return nullptr;
384 
385   // See if we can propagate this shift into the input, this covers the trivial
386   // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
387   if (I.getOpcode() != Instruction::AShr &&
388       canEvaluateShifted(Op0, Op1C->getZExtValue(), isLeftShift, *this, &I)) {
389     LLVM_DEBUG(
390         dbgs() << "ICE: GetShiftedValue propagating shift through expression"
391                   " to eliminate shift:\n  IN: "
392                << *Op0 << "\n  SH: " << I << "\n");
393 
394     return replaceInstUsesWith(
395         I, getShiftedValue(Op0, Op1C->getZExtValue(), isLeftShift, *this, DL));
396   }
397 
398   // See if we can simplify any instructions used by the instruction whose sole
399   // purpose is to compute bits we don't care about.
400   unsigned TypeBits = Op0->getType()->getScalarSizeInBits();
401 
402   assert(!Op1C->uge(TypeBits) &&
403          "Shift over the type width should have been removed already");
404 
405   if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I))
406     return FoldedShift;
407 
408   // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
409   if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
410     Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
411     // If 'shift2' is an ashr, we would have to get the sign bit into a funny
412     // place.  Don't try to do this transformation in this case.  Also, we
413     // require that the input operand is a shift-by-constant so that we have
414     // confidence that the shifts will get folded together.  We could do this
415     // xform in more cases, but it is unlikely to be profitable.
416     if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
417         isa<ConstantInt>(TrOp->getOperand(1))) {
418       // Okay, we'll do this xform.  Make the shift of shift.
419       Constant *ShAmt =
420           ConstantExpr::getZExt(cast<Constant>(Op1), TrOp->getType());
421       // (shift2 (shift1 & 0x00FF), c2)
422       Value *NSh = Builder.CreateBinOp(I.getOpcode(), TrOp, ShAmt, I.getName());
423 
424       // For logical shifts, the truncation has the effect of making the high
425       // part of the register be zeros.  Emulate this by inserting an AND to
426       // clear the top bits as needed.  This 'and' will usually be zapped by
427       // other xforms later if dead.
428       unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
429       unsigned DstSize = TI->getType()->getScalarSizeInBits();
430       APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
431 
432       // The mask we constructed says what the trunc would do if occurring
433       // between the shifts.  We want to know the effect *after* the second
434       // shift.  We know that it is a logical shift by a constant, so adjust the
435       // mask as appropriate.
436       if (I.getOpcode() == Instruction::Shl)
437         MaskV <<= Op1C->getZExtValue();
438       else {
439         assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
440         MaskV.lshrInPlace(Op1C->getZExtValue());
441       }
442 
443       // shift1 & 0x00FF
444       Value *And = Builder.CreateAnd(NSh,
445                                      ConstantInt::get(I.getContext(), MaskV),
446                                      TI->getName());
447 
448       // Return the value truncated to the interesting size.
449       return new TruncInst(And, I.getType());
450     }
451   }
452 
453   if (Op0->hasOneUse()) {
454     if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
455       // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
456       Value *V1, *V2;
457       ConstantInt *CC;
458       switch (Op0BO->getOpcode()) {
459       default: break;
460       case Instruction::Add:
461       case Instruction::And:
462       case Instruction::Or:
463       case Instruction::Xor: {
464         // These operators commute.
465         // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
466         if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
467             match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
468                   m_Specific(Op1)))) {
469           Value *YS =         // (Y << C)
470             Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
471           // (X + (Y << C))
472           Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), YS, V1,
473                                          Op0BO->getOperand(1)->getName());
474           unsigned Op1Val = Op1C->getLimitedValue(TypeBits);
475 
476           APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
477           Constant *Mask = ConstantInt::get(I.getContext(), Bits);
478           if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
479             Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
480           return BinaryOperator::CreateAnd(X, Mask);
481         }
482 
483         // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
484         Value *Op0BOOp1 = Op0BO->getOperand(1);
485         if (isLeftShift && Op0BOOp1->hasOneUse() &&
486             match(Op0BOOp1,
487                   m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
488                         m_ConstantInt(CC)))) {
489           Value *YS =   // (Y << C)
490             Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
491           // X & (CC << C)
492           Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
493                                         V1->getName()+".mask");
494           return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
495         }
496         LLVM_FALLTHROUGH;
497       }
498 
499       case Instruction::Sub: {
500         // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
501         if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
502             match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
503                   m_Specific(Op1)))) {
504           Value *YS =  // (Y << C)
505             Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
506           // (X + (Y << C))
507           Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), V1, YS,
508                                          Op0BO->getOperand(0)->getName());
509           unsigned Op1Val = Op1C->getLimitedValue(TypeBits);
510 
511           APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
512           Constant *Mask = ConstantInt::get(I.getContext(), Bits);
513           if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
514             Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
515           return BinaryOperator::CreateAnd(X, Mask);
516         }
517 
518         // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
519         if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
520             match(Op0BO->getOperand(0),
521                   m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))),
522                         m_ConstantInt(CC))) && V2 == Op1) {
523           Value *YS = // (Y << C)
524             Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
525           // X & (CC << C)
526           Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
527                                         V1->getName()+".mask");
528 
529           return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
530         }
531 
532         break;
533       }
534       }
535 
536 
537       // If the operand is a bitwise operator with a constant RHS, and the
538       // shift is the only use, we can pull it out of the shift.
539       const APInt *Op0C;
540       if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
541         if (canShiftBinOpWithConstantRHS(I, Op0BO)) {
542           Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
543                                      cast<Constant>(Op0BO->getOperand(1)), Op1);
544 
545           Value *NewShift =
546             Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
547           NewShift->takeName(Op0BO);
548 
549           return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
550                                         NewRHS);
551         }
552       }
553 
554       // If the operand is a subtract with a constant LHS, and the shift
555       // is the only use, we can pull it out of the shift.
556       // This folds (shl (sub C1, X), C2) -> (sub (C1 << C2), (shl X, C2))
557       if (isLeftShift && Op0BO->getOpcode() == Instruction::Sub &&
558           match(Op0BO->getOperand(0), m_APInt(Op0C))) {
559         Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
560                                    cast<Constant>(Op0BO->getOperand(0)), Op1);
561 
562         Value *NewShift = Builder.CreateShl(Op0BO->getOperand(1), Op1);
563         NewShift->takeName(Op0BO);
564 
565         return BinaryOperator::CreateSub(NewRHS, NewShift);
566       }
567     }
568 
569     // If we have a select that conditionally executes some binary operator,
570     // see if we can pull it the select and operator through the shift.
571     //
572     // For example, turning:
573     //   shl (select C, (add X, C1), X), C2
574     // Into:
575     //   Y = shl X, C2
576     //   select C, (add Y, C1 << C2), Y
577     Value *Cond;
578     BinaryOperator *TBO;
579     Value *FalseVal;
580     if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)),
581                             m_Value(FalseVal)))) {
582       const APInt *C;
583       if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal &&
584           match(TBO->getOperand(1), m_APInt(C)) &&
585           canShiftBinOpWithConstantRHS(I, TBO)) {
586         Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
587                                        cast<Constant>(TBO->getOperand(1)), Op1);
588 
589         Value *NewShift =
590           Builder.CreateBinOp(I.getOpcode(), FalseVal, Op1);
591         Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift,
592                                            NewRHS);
593         return SelectInst::Create(Cond, NewOp, NewShift);
594       }
595     }
596 
597     BinaryOperator *FBO;
598     Value *TrueVal;
599     if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal),
600                             m_OneUse(m_BinOp(FBO))))) {
601       const APInt *C;
602       if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal &&
603           match(FBO->getOperand(1), m_APInt(C)) &&
604           canShiftBinOpWithConstantRHS(I, FBO)) {
605         Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
606                                        cast<Constant>(FBO->getOperand(1)), Op1);
607 
608         Value *NewShift =
609           Builder.CreateBinOp(I.getOpcode(), TrueVal, Op1);
610         Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift,
611                                            NewRHS);
612         return SelectInst::Create(Cond, NewShift, NewOp);
613       }
614     }
615   }
616 
617   return nullptr;
618 }
619 
620 Instruction *InstCombiner::visitShl(BinaryOperator &I) {
621   if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
622                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
623                                  SQ.getWithInstruction(&I)))
624     return replaceInstUsesWith(I, V);
625 
626   if (Instruction *X = foldVectorBinop(I))
627     return X;
628 
629   if (Instruction *V = commonShiftTransforms(I))
630     return V;
631 
632   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
633   Type *Ty = I.getType();
634   unsigned BitWidth = Ty->getScalarSizeInBits();
635 
636   const APInt *ShAmtAPInt;
637   if (match(Op1, m_APInt(ShAmtAPInt))) {
638     unsigned ShAmt = ShAmtAPInt->getZExtValue();
639     unsigned BitWidth = Ty->getScalarSizeInBits();
640 
641     // shl (zext X), ShAmt --> zext (shl X, ShAmt)
642     // This is only valid if X would have zeros shifted out.
643     Value *X;
644     if (match(Op0, m_ZExt(m_Value(X)))) {
645       unsigned SrcWidth = X->getType()->getScalarSizeInBits();
646       if (ShAmt < SrcWidth &&
647           MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmt), 0, &I))
648         return new ZExtInst(Builder.CreateShl(X, ShAmt), Ty);
649     }
650 
651     // (X >> C) << C --> X & (-1 << C)
652     if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
653       APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt));
654       return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
655     }
656 
657     // FIXME: we do not yet transform non-exact shr's. The backend (DAGCombine)
658     // needs a few fixes for the rotate pattern recognition first.
659     const APInt *ShOp1;
660     if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(ShOp1))))) {
661       unsigned ShrAmt = ShOp1->getZExtValue();
662       if (ShrAmt < ShAmt) {
663         // If C1 < C2: (X >>?,exact C1) << C2 --> X << (C2 - C1)
664         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShrAmt);
665         auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
666         NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
667         NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
668         return NewShl;
669       }
670       if (ShrAmt > ShAmt) {
671         // If C1 > C2: (X >>?exact C1) << C2 --> X >>?exact (C1 - C2)
672         Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmt);
673         auto *NewShr = BinaryOperator::Create(
674             cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
675         NewShr->setIsExact(true);
676         return NewShr;
677       }
678     }
679 
680     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1)))) {
681       unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
682       // Oversized shifts are simplified to zero in InstSimplify.
683       if (AmtSum < BitWidth)
684         // (X << C1) << C2 --> X << (C1 + C2)
685         return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum));
686     }
687 
688     // If the shifted-out value is known-zero, then this is a NUW shift.
689     if (!I.hasNoUnsignedWrap() &&
690         MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmt), 0, &I)) {
691       I.setHasNoUnsignedWrap();
692       return &I;
693     }
694 
695     // If the shifted-out value is all signbits, then this is a NSW shift.
696     if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmt) {
697       I.setHasNoSignedWrap();
698       return &I;
699     }
700   }
701 
702   // Transform  (x >> y) << y  to  x & (-1 << y)
703   // Valid for any type of right-shift.
704   Value *X;
705   if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
706     Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
707     Value *Mask = Builder.CreateShl(AllOnes, Op1);
708     return BinaryOperator::CreateAnd(Mask, X);
709   }
710 
711   Constant *C1;
712   if (match(Op1, m_Constant(C1))) {
713     Constant *C2;
714     Value *X;
715     // (C2 << X) << C1 --> (C2 << C1) << X
716     if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X)))))
717       return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X);
718 
719     // (X * C2) << C1 --> X * (C2 << C1)
720     if (match(Op0, m_Mul(m_Value(X), m_Constant(C2))))
721       return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1));
722   }
723 
724   // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1
725   if (match(Op0, m_One()) &&
726       match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X))))
727     return BinaryOperator::CreateLShr(
728         ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X);
729 
730   return nullptr;
731 }
732 
733 Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
734   if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
735                                   SQ.getWithInstruction(&I)))
736     return replaceInstUsesWith(I, V);
737 
738   if (Instruction *X = foldVectorBinop(I))
739     return X;
740 
741   if (Instruction *R = commonShiftTransforms(I))
742     return R;
743 
744   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
745   Type *Ty = I.getType();
746   const APInt *ShAmtAPInt;
747   if (match(Op1, m_APInt(ShAmtAPInt))) {
748     unsigned ShAmt = ShAmtAPInt->getZExtValue();
749     unsigned BitWidth = Ty->getScalarSizeInBits();
750     auto *II = dyn_cast<IntrinsicInst>(Op0);
751     if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt &&
752         (II->getIntrinsicID() == Intrinsic::ctlz ||
753          II->getIntrinsicID() == Intrinsic::cttz ||
754          II->getIntrinsicID() == Intrinsic::ctpop)) {
755       // ctlz.i32(x)>>5  --> zext(x == 0)
756       // cttz.i32(x)>>5  --> zext(x == 0)
757       // ctpop.i32(x)>>5 --> zext(x == -1)
758       bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
759       Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
760       Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
761       return new ZExtInst(Cmp, Ty);
762     }
763 
764     Value *X;
765     const APInt *ShOp1;
766     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1))) && ShOp1->ult(BitWidth)) {
767       if (ShOp1->ult(ShAmt)) {
768         unsigned ShlAmt = ShOp1->getZExtValue();
769         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
770         if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
771           // (X <<nuw C1) >>u C2 --> X >>u (C2 - C1)
772           auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
773           NewLShr->setIsExact(I.isExact());
774           return NewLShr;
775         }
776         // (X << C1) >>u C2  --> (X >>u (C2 - C1)) & (-1 >> C2)
777         Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
778         APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
779         return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
780       }
781       if (ShOp1->ugt(ShAmt)) {
782         unsigned ShlAmt = ShOp1->getZExtValue();
783         Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
784         if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
785           // (X <<nuw C1) >>u C2 --> X <<nuw (C1 - C2)
786           auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
787           NewShl->setHasNoUnsignedWrap(true);
788           return NewShl;
789         }
790         // (X << C1) >>u C2  --> X << (C1 - C2) & (-1 >> C2)
791         Value *NewShl = Builder.CreateShl(X, ShiftDiff);
792         APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
793         return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
794       }
795       assert(*ShOp1 == ShAmt);
796       // (X << C) >>u C --> X & (-1 >>u C)
797       APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
798       return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
799     }
800 
801     if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
802         (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
803       assert(ShAmt < X->getType()->getScalarSizeInBits() &&
804              "Big shift not simplified to zero?");
805       // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
806       Value *NewLShr = Builder.CreateLShr(X, ShAmt);
807       return new ZExtInst(NewLShr, Ty);
808     }
809 
810     if (match(Op0, m_SExt(m_Value(X))) &&
811         (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
812       // Are we moving the sign bit to the low bit and widening with high zeros?
813       unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
814       if (ShAmt == BitWidth - 1) {
815         // lshr (sext i1 X to iN), N-1 --> zext X to iN
816         if (SrcTyBitWidth == 1)
817           return new ZExtInst(X, Ty);
818 
819         // lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
820         if (Op0->hasOneUse()) {
821           Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
822           return new ZExtInst(NewLShr, Ty);
823         }
824       }
825 
826       // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
827       if (ShAmt == BitWidth - SrcTyBitWidth && Op0->hasOneUse()) {
828         // The new shift amount can't be more than the narrow source type.
829         unsigned NewShAmt = std::min(ShAmt, SrcTyBitWidth - 1);
830         Value *AShr = Builder.CreateAShr(X, NewShAmt);
831         return new ZExtInst(AShr, Ty);
832       }
833     }
834 
835     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShOp1)))) {
836       unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
837       // Oversized shifts are simplified to zero in InstSimplify.
838       if (AmtSum < BitWidth)
839         // (X >>u C1) >>u C2 --> X >>u (C1 + C2)
840         return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
841     }
842 
843     // If the shifted-out value is known-zero, then this is an exact shift.
844     if (!I.isExact() &&
845         MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
846       I.setIsExact();
847       return &I;
848     }
849   }
850 
851   // Transform  (x << y) >> y  to  x & (-1 >> y)
852   Value *X;
853   if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) {
854     Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
855     Value *Mask = Builder.CreateLShr(AllOnes, Op1);
856     return BinaryOperator::CreateAnd(Mask, X);
857   }
858 
859   return nullptr;
860 }
861 
862 Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
863   if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
864                                   SQ.getWithInstruction(&I)))
865     return replaceInstUsesWith(I, V);
866 
867   if (Instruction *X = foldVectorBinop(I))
868     return X;
869 
870   if (Instruction *R = commonShiftTransforms(I))
871     return R;
872 
873   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
874   Type *Ty = I.getType();
875   unsigned BitWidth = Ty->getScalarSizeInBits();
876   const APInt *ShAmtAPInt;
877   if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) {
878     unsigned ShAmt = ShAmtAPInt->getZExtValue();
879 
880     // If the shift amount equals the difference in width of the destination
881     // and source scalar types:
882     // ashr (shl (zext X), C), C --> sext X
883     Value *X;
884     if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
885         ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
886       return new SExtInst(X, Ty);
887 
888     // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
889     // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
890     const APInt *ShOp1;
891     if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) &&
892         ShOp1->ult(BitWidth)) {
893       unsigned ShlAmt = ShOp1->getZExtValue();
894       if (ShlAmt < ShAmt) {
895         // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
896         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
897         auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
898         NewAShr->setIsExact(I.isExact());
899         return NewAShr;
900       }
901       if (ShlAmt > ShAmt) {
902         // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
903         Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
904         auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
905         NewShl->setHasNoSignedWrap(true);
906         return NewShl;
907       }
908     }
909 
910     if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) &&
911         ShOp1->ult(BitWidth)) {
912       unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
913       // Oversized arithmetic shifts replicate the sign bit.
914       AmtSum = std::min(AmtSum, BitWidth - 1);
915       // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
916       return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
917     }
918 
919     if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
920         (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
921       // ashr (sext X), C --> sext (ashr X, C')
922       Type *SrcTy = X->getType();
923       ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
924       Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
925       return new SExtInst(NewSh, Ty);
926     }
927 
928     // If the shifted-out value is known-zero, then this is an exact shift.
929     if (!I.isExact() &&
930         MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
931       I.setIsExact();
932       return &I;
933     }
934   }
935 
936   // See if we can turn a signed shr into an unsigned shr.
937   if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I))
938     return BinaryOperator::CreateLShr(Op0, Op1);
939 
940   return nullptr;
941 }
942