1 //===- InstCombineShifts.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitShl, visitLShr, and visitAShr functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/Analysis/InstructionSimplify.h" 15 #include "llvm/IR/IntrinsicInst.h" 16 #include "llvm/IR/PatternMatch.h" 17 #include "llvm/Transforms/InstCombine/InstCombiner.h" 18 using namespace llvm; 19 using namespace PatternMatch; 20 21 #define DEBUG_TYPE "instcombine" 22 23 bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1, 24 Value *ShAmt1) { 25 // We have two shift amounts from two different shifts. The types of those 26 // shift amounts may not match. If that's the case let's bailout now.. 27 if (ShAmt0->getType() != ShAmt1->getType()) 28 return false; 29 30 // As input, we have the following pattern: 31 // Sh0 (Sh1 X, Q), K 32 // We want to rewrite that as: 33 // Sh x, (Q+K) iff (Q+K) u< bitwidth(x) 34 // While we know that originally (Q+K) would not overflow 35 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 36 // shift amounts. so it may now overflow in smaller bitwidth. 37 // To ensure that does not happen, we need to ensure that the total maximal 38 // shift amount is still representable in that smaller bit width. 39 unsigned MaximalPossibleTotalShiftAmount = 40 (Sh0->getType()->getScalarSizeInBits() - 1) + 41 (Sh1->getType()->getScalarSizeInBits() - 1); 42 APInt MaximalRepresentableShiftAmount = 43 APInt::getAllOnes(ShAmt0->getType()->getScalarSizeInBits()); 44 return MaximalRepresentableShiftAmount.uge(MaximalPossibleTotalShiftAmount); 45 } 46 47 // Given pattern: 48 // (x shiftopcode Q) shiftopcode K 49 // we should rewrite it as 50 // x shiftopcode (Q+K) iff (Q+K) u< bitwidth(x) and 51 // 52 // This is valid for any shift, but they must be identical, and we must be 53 // careful in case we have (zext(Q)+zext(K)) and look past extensions, 54 // (Q+K) must not overflow or else (Q+K) u< bitwidth(x) is bogus. 55 // 56 // AnalyzeForSignBitExtraction indicates that we will only analyze whether this 57 // pattern has any 2 right-shifts that sum to 1 less than original bit width. 58 Value *InstCombinerImpl::reassociateShiftAmtsOfTwoSameDirectionShifts( 59 BinaryOperator *Sh0, const SimplifyQuery &SQ, 60 bool AnalyzeForSignBitExtraction) { 61 // Look for a shift of some instruction, ignore zext of shift amount if any. 62 Instruction *Sh0Op0; 63 Value *ShAmt0; 64 if (!match(Sh0, 65 m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0))))) 66 return nullptr; 67 68 // If there is a truncation between the two shifts, we must make note of it 69 // and look through it. The truncation imposes additional constraints on the 70 // transform. 71 Instruction *Sh1; 72 Value *Trunc = nullptr; 73 match(Sh0Op0, 74 m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)), 75 m_Instruction(Sh1))); 76 77 // Inner shift: (x shiftopcode ShAmt1) 78 // Like with other shift, ignore zext of shift amount if any. 79 Value *X, *ShAmt1; 80 if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1))))) 81 return nullptr; 82 83 // Verify that it would be safe to try to add those two shift amounts. 84 if (!canTryToConstantAddTwoShiftAmounts(Sh0, ShAmt0, Sh1, ShAmt1)) 85 return nullptr; 86 87 // We are only looking for signbit extraction if we have two right shifts. 88 bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) && 89 match(Sh1, m_Shr(m_Value(), m_Value())); 90 // ... and if it's not two right-shifts, we know the answer already. 91 if (AnalyzeForSignBitExtraction && !HadTwoRightShifts) 92 return nullptr; 93 94 // The shift opcodes must be identical, unless we are just checking whether 95 // this pattern can be interpreted as a sign-bit-extraction. 96 Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode(); 97 bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode(); 98 if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction) 99 return nullptr; 100 101 // If we saw truncation, we'll need to produce extra instruction, 102 // and for that one of the operands of the shift must be one-use, 103 // unless of course we don't actually plan to produce any instructions here. 104 if (Trunc && !AnalyzeForSignBitExtraction && 105 !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 106 return nullptr; 107 108 // Can we fold (ShAmt0+ShAmt1) ? 109 auto *NewShAmt = dyn_cast_or_null<Constant>( 110 simplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false, 111 SQ.getWithInstruction(Sh0))); 112 if (!NewShAmt) 113 return nullptr; // Did not simplify. 114 unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits(); 115 unsigned XBitWidth = X->getType()->getScalarSizeInBits(); 116 // Is the new shift amount smaller than the bit width of inner/new shift? 117 if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 118 APInt(NewShAmtBitWidth, XBitWidth)))) 119 return nullptr; // FIXME: could perform constant-folding. 120 121 // If there was a truncation, and we have a right-shift, we can only fold if 122 // we are left with the original sign bit. Likewise, if we were just checking 123 // that this is a sighbit extraction, this is the place to check it. 124 // FIXME: zero shift amount is also legal here, but we can't *easily* check 125 // more than one predicate so it's not really worth it. 126 if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) { 127 // If it's not a sign bit extraction, then we're done. 128 if (!match(NewShAmt, 129 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 130 APInt(NewShAmtBitWidth, XBitWidth - 1)))) 131 return nullptr; 132 // If it is, and that was the question, return the base value. 133 if (AnalyzeForSignBitExtraction) 134 return X; 135 } 136 137 assert(IdenticalShOpcodes && "Should not get here with different shifts."); 138 139 // All good, we can do this fold. 140 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType()); 141 142 BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt); 143 144 // The flags can only be propagated if there wasn't a trunc. 145 if (!Trunc) { 146 // If the pattern did not involve trunc, and both of the original shifts 147 // had the same flag set, preserve the flag. 148 if (ShiftOpcode == Instruction::BinaryOps::Shl) { 149 NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() && 150 Sh1->hasNoUnsignedWrap()); 151 NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() && 152 Sh1->hasNoSignedWrap()); 153 } else { 154 NewShift->setIsExact(Sh0->isExact() && Sh1->isExact()); 155 } 156 } 157 158 Instruction *Ret = NewShift; 159 if (Trunc) { 160 Builder.Insert(NewShift); 161 Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType()); 162 } 163 164 return Ret; 165 } 166 167 // If we have some pattern that leaves only some low bits set, and then performs 168 // left-shift of those bits, if none of the bits that are left after the final 169 // shift are modified by the mask, we can omit the mask. 170 // 171 // There are many variants to this pattern: 172 // a) (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt 173 // b) (x & (~(-1 << MaskShAmt))) << ShiftShAmt 174 // c) (x & (-1 l>> MaskShAmt)) << ShiftShAmt 175 // d) (x & ((-1 << MaskShAmt) l>> MaskShAmt)) << ShiftShAmt 176 // e) ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt 177 // f) ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt 178 // All these patterns can be simplified to just: 179 // x << ShiftShAmt 180 // iff: 181 // a,b) (MaskShAmt+ShiftShAmt) u>= bitwidth(x) 182 // c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt) 183 static Instruction * 184 dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift, 185 const SimplifyQuery &Q, 186 InstCombiner::BuilderTy &Builder) { 187 assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl && 188 "The input must be 'shl'!"); 189 190 Value *Masked, *ShiftShAmt; 191 match(OuterShift, 192 m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt)))); 193 194 // *If* there is a truncation between an outer shift and a possibly-mask, 195 // then said truncation *must* be one-use, else we can't perform the fold. 196 Value *Trunc; 197 if (match(Masked, m_CombineAnd(m_Trunc(m_Value(Masked)), m_Value(Trunc))) && 198 !Trunc->hasOneUse()) 199 return nullptr; 200 201 Type *NarrowestTy = OuterShift->getType(); 202 Type *WidestTy = Masked->getType(); 203 bool HadTrunc = WidestTy != NarrowestTy; 204 205 // The mask must be computed in a type twice as wide to ensure 206 // that no bits are lost if the sum-of-shifts is wider than the base type. 207 Type *ExtendedTy = WidestTy->getExtendedType(); 208 209 Value *MaskShAmt; 210 211 // ((1 << MaskShAmt) - 1) 212 auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes()); 213 // (~(-1 << maskNbits)) 214 auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes()); 215 // (-1 l>> MaskShAmt) 216 auto MaskC = m_LShr(m_AllOnes(), m_Value(MaskShAmt)); 217 // ((-1 << MaskShAmt) l>> MaskShAmt) 218 auto MaskD = 219 m_LShr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt)); 220 221 Value *X; 222 Constant *NewMask; 223 224 if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) { 225 // Peek through an optional zext of the shift amount. 226 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt))); 227 228 // Verify that it would be safe to try to add those two shift amounts. 229 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked, 230 MaskShAmt)) 231 return nullptr; 232 233 // Can we simplify (MaskShAmt+ShiftShAmt) ? 234 auto *SumOfShAmts = dyn_cast_or_null<Constant>(simplifyAddInst( 235 MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q)); 236 if (!SumOfShAmts) 237 return nullptr; // Did not simplify. 238 // In this pattern SumOfShAmts correlates with the number of low bits 239 // that shall remain in the root value (OuterShift). 240 241 // An extend of an undef value becomes zero because the high bits are never 242 // completely unknown. Replace the `undef` shift amounts with final 243 // shift bitwidth to ensure that the value remains undef when creating the 244 // subsequent shift op. 245 SumOfShAmts = Constant::replaceUndefsWith( 246 SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(), 247 ExtendedTy->getScalarSizeInBits())); 248 auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy); 249 // And compute the mask as usual: ~(-1 << (SumOfShAmts)) 250 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy); 251 auto *ExtendedInvertedMask = 252 ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts); 253 NewMask = ConstantExpr::getNot(ExtendedInvertedMask); 254 } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) || 255 match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)), 256 m_Deferred(MaskShAmt)))) { 257 // Peek through an optional zext of the shift amount. 258 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt))); 259 260 // Verify that it would be safe to try to add those two shift amounts. 261 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked, 262 MaskShAmt)) 263 return nullptr; 264 265 // Can we simplify (ShiftShAmt-MaskShAmt) ? 266 auto *ShAmtsDiff = dyn_cast_or_null<Constant>(simplifySubInst( 267 ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q)); 268 if (!ShAmtsDiff) 269 return nullptr; // Did not simplify. 270 // In this pattern ShAmtsDiff correlates with the number of high bits that 271 // shall be unset in the root value (OuterShift). 272 273 // An extend of an undef value becomes zero because the high bits are never 274 // completely unknown. Replace the `undef` shift amounts with negated 275 // bitwidth of innermost shift to ensure that the value remains undef when 276 // creating the subsequent shift op. 277 unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits(); 278 ShAmtsDiff = Constant::replaceUndefsWith( 279 ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(), 280 -WidestTyBitWidth)); 281 auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt( 282 ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(), 283 WidestTyBitWidth, 284 /*isSigned=*/false), 285 ShAmtsDiff), 286 ExtendedTy); 287 // And compute the mask as usual: (-1 l>> (NumHighBitsToClear)) 288 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy); 289 NewMask = 290 ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear); 291 } else 292 return nullptr; // Don't know anything about this pattern. 293 294 NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy); 295 296 // Does this mask has any unset bits? If not then we can just not apply it. 297 bool NeedMask = !match(NewMask, m_AllOnes()); 298 299 // If we need to apply a mask, there are several more restrictions we have. 300 if (NeedMask) { 301 // The old masking instruction must go away. 302 if (!Masked->hasOneUse()) 303 return nullptr; 304 // The original "masking" instruction must not have been`ashr`. 305 if (match(Masked, m_AShr(m_Value(), m_Value()))) 306 return nullptr; 307 } 308 309 // If we need to apply truncation, let's do it first, since we can. 310 // We have already ensured that the old truncation will go away. 311 if (HadTrunc) 312 X = Builder.CreateTrunc(X, NarrowestTy); 313 314 // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits. 315 // We didn't change the Type of this outermost shift, so we can just do it. 316 auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X, 317 OuterShift->getOperand(1)); 318 if (!NeedMask) 319 return NewShift; 320 321 Builder.Insert(NewShift); 322 return BinaryOperator::Create(Instruction::And, NewShift, NewMask); 323 } 324 325 /// If we have a shift-by-constant of a bin op (bitwise logic op or add/sub w/ 326 /// shl) that itself has a shift-by-constant operand with identical opcode, we 327 /// may be able to convert that into 2 independent shifts followed by the logic 328 /// op. This eliminates a use of an intermediate value (reduces dependency 329 /// chain). 330 static Instruction *foldShiftOfShiftedBinOp(BinaryOperator &I, 331 InstCombiner::BuilderTy &Builder) { 332 assert(I.isShift() && "Expected a shift as input"); 333 auto *BinInst = dyn_cast<BinaryOperator>(I.getOperand(0)); 334 if (!BinInst || 335 (!BinInst->isBitwiseLogicOp() && 336 BinInst->getOpcode() != Instruction::Add && 337 BinInst->getOpcode() != Instruction::Sub) || 338 !BinInst->hasOneUse()) 339 return nullptr; 340 341 Constant *C0, *C1; 342 if (!match(I.getOperand(1), m_Constant(C1))) 343 return nullptr; 344 345 Instruction::BinaryOps ShiftOpcode = I.getOpcode(); 346 // Transform for add/sub only works with shl. 347 if ((BinInst->getOpcode() == Instruction::Add || 348 BinInst->getOpcode() == Instruction::Sub) && 349 ShiftOpcode != Instruction::Shl) 350 return nullptr; 351 352 Type *Ty = I.getType(); 353 354 // Find a matching one-use shift by constant. The fold is not valid if the sum 355 // of the shift values equals or exceeds bitwidth. 356 // TODO: Remove the one-use check if the other logic operand (Y) is constant. 357 Value *X, *Y; 358 auto matchFirstShift = [&](Value *V) { 359 APInt Threshold(Ty->getScalarSizeInBits(), Ty->getScalarSizeInBits()); 360 return match(V, 361 m_OneUse(m_BinOp(ShiftOpcode, m_Value(X), m_Constant(C0)))) && 362 match(ConstantExpr::getAdd(C0, C1), 363 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold)); 364 }; 365 366 // Logic ops and Add are commutative, so check each operand for a match. Sub 367 // is not so we cannot reoder if we match operand(1) and need to keep the 368 // operands in their original positions. 369 bool FirstShiftIsOp1 = false; 370 if (matchFirstShift(BinInst->getOperand(0))) 371 Y = BinInst->getOperand(1); 372 else if (matchFirstShift(BinInst->getOperand(1))) { 373 Y = BinInst->getOperand(0); 374 FirstShiftIsOp1 = BinInst->getOpcode() == Instruction::Sub; 375 } else 376 return nullptr; 377 378 // shift (binop (shift X, C0), Y), C1 -> binop (shift X, C0+C1), (shift Y, C1) 379 Constant *ShiftSumC = ConstantExpr::getAdd(C0, C1); 380 Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC); 381 Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, C1); 382 Value *Op1 = FirstShiftIsOp1 ? NewShift2 : NewShift1; 383 Value *Op2 = FirstShiftIsOp1 ? NewShift1 : NewShift2; 384 return BinaryOperator::Create(BinInst->getOpcode(), Op1, Op2); 385 } 386 387 Instruction *InstCombinerImpl::commonShiftTransforms(BinaryOperator &I) { 388 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 389 return Phi; 390 391 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 392 assert(Op0->getType() == Op1->getType()); 393 Type *Ty = I.getType(); 394 395 // If the shift amount is a one-use `sext`, we can demote it to `zext`. 396 Value *Y; 397 if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) { 398 Value *NewExt = Builder.CreateZExt(Y, Ty, Op1->getName()); 399 return BinaryOperator::Create(I.getOpcode(), Op0, NewExt); 400 } 401 402 // See if we can fold away this shift. 403 if (SimplifyDemandedInstructionBits(I)) 404 return &I; 405 406 // Try to fold constant and into select arguments. 407 if (isa<Constant>(Op0)) 408 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 409 if (Instruction *R = FoldOpIntoSelect(I, SI)) 410 return R; 411 412 if (Constant *CUI = dyn_cast<Constant>(Op1)) 413 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I)) 414 return Res; 415 416 if (auto *NewShift = cast_or_null<Instruction>( 417 reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ))) 418 return NewShift; 419 420 // Pre-shift a constant shifted by a variable amount with constant offset: 421 // C shift (A add nuw C1) --> (C shift C1) shift A 422 Value *A; 423 Constant *C, *C1; 424 if (match(Op0, m_Constant(C)) && 425 match(Op1, m_NUWAdd(m_Value(A), m_Constant(C1)))) { 426 Value *NewC = Builder.CreateBinOp(I.getOpcode(), C, C1); 427 return BinaryOperator::Create(I.getOpcode(), NewC, A); 428 } 429 430 unsigned BitWidth = Ty->getScalarSizeInBits(); 431 432 const APInt *AC, *AddC; 433 // Try to pre-shift a constant shifted by a variable amount added with a 434 // negative number: 435 // C << (X - AddC) --> (C >> AddC) << X 436 // and 437 // C >> (X - AddC) --> (C << AddC) >> X 438 if (match(Op0, m_APInt(AC)) && match(Op1, m_Add(m_Value(A), m_APInt(AddC))) && 439 AddC->isNegative() && (-*AddC).ult(BitWidth)) { 440 assert(!AC->isZero() && "Expected simplify of shifted zero"); 441 unsigned PosOffset = (-*AddC).getZExtValue(); 442 443 auto isSuitableForPreShift = [PosOffset, &I, AC]() { 444 switch (I.getOpcode()) { 445 default: 446 return false; 447 case Instruction::Shl: 448 return (I.hasNoSignedWrap() || I.hasNoUnsignedWrap()) && 449 AC->eq(AC->lshr(PosOffset).shl(PosOffset)); 450 case Instruction::LShr: 451 return I.isExact() && AC->eq(AC->shl(PosOffset).lshr(PosOffset)); 452 case Instruction::AShr: 453 return I.isExact() && AC->eq(AC->shl(PosOffset).ashr(PosOffset)); 454 } 455 }; 456 if (isSuitableForPreShift()) { 457 Constant *NewC = ConstantInt::get(Ty, I.getOpcode() == Instruction::Shl 458 ? AC->lshr(PosOffset) 459 : AC->shl(PosOffset)); 460 BinaryOperator *NewShiftOp = 461 BinaryOperator::Create(I.getOpcode(), NewC, A); 462 if (I.getOpcode() == Instruction::Shl) { 463 NewShiftOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 464 } else { 465 NewShiftOp->setIsExact(); 466 } 467 return NewShiftOp; 468 } 469 } 470 471 // X shift (A srem C) -> X shift (A and (C - 1)) iff C is a power of 2. 472 // Because shifts by negative values (which could occur if A were negative) 473 // are undefined. 474 if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Constant(C))) && 475 match(C, m_Power2())) { 476 // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't 477 // demand the sign bit (and many others) here?? 478 Constant *Mask = ConstantExpr::getSub(C, ConstantInt::get(Ty, 1)); 479 Value *Rem = Builder.CreateAnd(A, Mask, Op1->getName()); 480 return replaceOperand(I, 1, Rem); 481 } 482 483 if (Instruction *Logic = foldShiftOfShiftedBinOp(I, Builder)) 484 return Logic; 485 486 if (match(Op1, m_Or(m_Value(), m_SpecificInt(BitWidth - 1)))) 487 return replaceOperand(I, 1, ConstantInt::get(Ty, BitWidth - 1)); 488 489 return nullptr; 490 } 491 492 /// Return true if we can simplify two logical (either left or right) shifts 493 /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2. 494 static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl, 495 Instruction *InnerShift, 496 InstCombinerImpl &IC, Instruction *CxtI) { 497 assert(InnerShift->isLogicalShift() && "Unexpected instruction type"); 498 499 // We need constant scalar or constant splat shifts. 500 const APInt *InnerShiftConst; 501 if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst))) 502 return false; 503 504 // Two logical shifts in the same direction: 505 // shl (shl X, C1), C2 --> shl X, C1 + C2 506 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2 507 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl; 508 if (IsInnerShl == IsOuterShl) 509 return true; 510 511 // Equal shift amounts in opposite directions become bitwise 'and': 512 // lshr (shl X, C), C --> and X, C' 513 // shl (lshr X, C), C --> and X, C' 514 if (*InnerShiftConst == OuterShAmt) 515 return true; 516 517 // If the 2nd shift is bigger than the 1st, we can fold: 518 // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3 519 // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3 520 // but it isn't profitable unless we know the and'd out bits are already zero. 521 // Also, check that the inner shift is valid (less than the type width) or 522 // we'll crash trying to produce the bit mask for the 'and'. 523 unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits(); 524 if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) { 525 unsigned InnerShAmt = InnerShiftConst->getZExtValue(); 526 unsigned MaskShift = 527 IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt; 528 APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift; 529 if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI)) 530 return true; 531 } 532 533 return false; 534 } 535 536 /// See if we can compute the specified value, but shifted logically to the left 537 /// or right by some number of bits. This should return true if the expression 538 /// can be computed for the same cost as the current expression tree. This is 539 /// used to eliminate extraneous shifting from things like: 540 /// %C = shl i128 %A, 64 541 /// %D = shl i128 %B, 96 542 /// %E = or i128 %C, %D 543 /// %F = lshr i128 %E, 64 544 /// where the client will ask if E can be computed shifted right by 64-bits. If 545 /// this succeeds, getShiftedValue() will be called to produce the value. 546 static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift, 547 InstCombinerImpl &IC, Instruction *CxtI) { 548 // We can always evaluate constants shifted. 549 if (isa<Constant>(V)) 550 return true; 551 552 Instruction *I = dyn_cast<Instruction>(V); 553 if (!I) return false; 554 555 // We can't mutate something that has multiple uses: doing so would 556 // require duplicating the instruction in general, which isn't profitable. 557 if (!I->hasOneUse()) return false; 558 559 switch (I->getOpcode()) { 560 default: return false; 561 case Instruction::And: 562 case Instruction::Or: 563 case Instruction::Xor: 564 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. 565 return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) && 566 canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I); 567 568 case Instruction::Shl: 569 case Instruction::LShr: 570 return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI); 571 572 case Instruction::Select: { 573 SelectInst *SI = cast<SelectInst>(I); 574 Value *TrueVal = SI->getTrueValue(); 575 Value *FalseVal = SI->getFalseValue(); 576 return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) && 577 canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI); 578 } 579 case Instruction::PHI: { 580 // We can change a phi if we can change all operands. Note that we never 581 // get into trouble with cyclic PHIs here because we only consider 582 // instructions with a single use. 583 PHINode *PN = cast<PHINode>(I); 584 for (Value *IncValue : PN->incoming_values()) 585 if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN)) 586 return false; 587 return true; 588 } 589 case Instruction::Mul: { 590 const APInt *MulConst; 591 // We can fold (shr (mul X, -(1 << C)), C) -> (and (neg X), C`) 592 return !IsLeftShift && match(I->getOperand(1), m_APInt(MulConst)) && 593 MulConst->isNegatedPowerOf2() && MulConst->countr_zero() == NumBits; 594 } 595 } 596 } 597 598 /// Fold OuterShift (InnerShift X, C1), C2. 599 /// See canEvaluateShiftedShift() for the constraints on these instructions. 600 static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt, 601 bool IsOuterShl, 602 InstCombiner::BuilderTy &Builder) { 603 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl; 604 Type *ShType = InnerShift->getType(); 605 unsigned TypeWidth = ShType->getScalarSizeInBits(); 606 607 // We only accept shifts-by-a-constant in canEvaluateShifted(). 608 const APInt *C1; 609 match(InnerShift->getOperand(1), m_APInt(C1)); 610 unsigned InnerShAmt = C1->getZExtValue(); 611 612 // Change the shift amount and clear the appropriate IR flags. 613 auto NewInnerShift = [&](unsigned ShAmt) { 614 InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt)); 615 if (IsInnerShl) { 616 InnerShift->setHasNoUnsignedWrap(false); 617 InnerShift->setHasNoSignedWrap(false); 618 } else { 619 InnerShift->setIsExact(false); 620 } 621 return InnerShift; 622 }; 623 624 // Two logical shifts in the same direction: 625 // shl (shl X, C1), C2 --> shl X, C1 + C2 626 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2 627 if (IsInnerShl == IsOuterShl) { 628 // If this is an oversized composite shift, then unsigned shifts get 0. 629 if (InnerShAmt + OuterShAmt >= TypeWidth) 630 return Constant::getNullValue(ShType); 631 632 return NewInnerShift(InnerShAmt + OuterShAmt); 633 } 634 635 // Equal shift amounts in opposite directions become bitwise 'and': 636 // lshr (shl X, C), C --> and X, C' 637 // shl (lshr X, C), C --> and X, C' 638 if (InnerShAmt == OuterShAmt) { 639 APInt Mask = IsInnerShl 640 ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt) 641 : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt); 642 Value *And = Builder.CreateAnd(InnerShift->getOperand(0), 643 ConstantInt::get(ShType, Mask)); 644 if (auto *AndI = dyn_cast<Instruction>(And)) { 645 AndI->moveBefore(InnerShift); 646 AndI->takeName(InnerShift); 647 } 648 return And; 649 } 650 651 assert(InnerShAmt > OuterShAmt && 652 "Unexpected opposite direction logical shift pair"); 653 654 // In general, we would need an 'and' for this transform, but 655 // canEvaluateShiftedShift() guarantees that the masked-off bits are not used. 656 // lshr (shl X, C1), C2 --> shl X, C1 - C2 657 // shl (lshr X, C1), C2 --> lshr X, C1 - C2 658 return NewInnerShift(InnerShAmt - OuterShAmt); 659 } 660 661 /// When canEvaluateShifted() returns true for an expression, this function 662 /// inserts the new computation that produces the shifted value. 663 static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift, 664 InstCombinerImpl &IC, const DataLayout &DL) { 665 // We can always evaluate constants shifted. 666 if (Constant *C = dyn_cast<Constant>(V)) { 667 if (isLeftShift) 668 return IC.Builder.CreateShl(C, NumBits); 669 else 670 return IC.Builder.CreateLShr(C, NumBits); 671 } 672 673 Instruction *I = cast<Instruction>(V); 674 IC.addToWorklist(I); 675 676 switch (I->getOpcode()) { 677 default: llvm_unreachable("Inconsistency with CanEvaluateShifted"); 678 case Instruction::And: 679 case Instruction::Or: 680 case Instruction::Xor: 681 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. 682 I->setOperand( 683 0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL)); 684 I->setOperand( 685 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL)); 686 return I; 687 688 case Instruction::Shl: 689 case Instruction::LShr: 690 return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift, 691 IC.Builder); 692 693 case Instruction::Select: 694 I->setOperand( 695 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL)); 696 I->setOperand( 697 2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL)); 698 return I; 699 case Instruction::PHI: { 700 // We can change a phi if we can change all operands. Note that we never 701 // get into trouble with cyclic PHIs here because we only consider 702 // instructions with a single use. 703 PHINode *PN = cast<PHINode>(I); 704 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 705 PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits, 706 isLeftShift, IC, DL)); 707 return PN; 708 } 709 case Instruction::Mul: { 710 assert(!isLeftShift && "Unexpected shift direction!"); 711 auto *Neg = BinaryOperator::CreateNeg(I->getOperand(0)); 712 IC.InsertNewInstWith(Neg, *I); 713 unsigned TypeWidth = I->getType()->getScalarSizeInBits(); 714 APInt Mask = APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits); 715 auto *And = BinaryOperator::CreateAnd(Neg, 716 ConstantInt::get(I->getType(), Mask)); 717 And->takeName(I); 718 return IC.InsertNewInstWith(And, *I); 719 } 720 } 721 } 722 723 // If this is a bitwise operator or add with a constant RHS we might be able 724 // to pull it through a shift. 725 static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift, 726 BinaryOperator *BO) { 727 switch (BO->getOpcode()) { 728 default: 729 return false; // Do not perform transform! 730 case Instruction::Add: 731 return Shift.getOpcode() == Instruction::Shl; 732 case Instruction::Or: 733 case Instruction::And: 734 return true; 735 case Instruction::Xor: 736 // Do not change a 'not' of logical shift because that would create a normal 737 // 'xor'. The 'not' is likely better for analysis, SCEV, and codegen. 738 return !(Shift.isLogicalShift() && match(BO, m_Not(m_Value()))); 739 } 740 } 741 742 Instruction *InstCombinerImpl::FoldShiftByConstant(Value *Op0, Constant *C1, 743 BinaryOperator &I) { 744 // (C2 << X) << C1 --> (C2 << C1) << X 745 // (C2 >> X) >> C1 --> (C2 >> C1) >> X 746 Constant *C2; 747 Value *X; 748 if (match(Op0, m_BinOp(I.getOpcode(), m_Constant(C2), m_Value(X)))) 749 return BinaryOperator::Create( 750 I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), C2, C1), X); 751 752 bool IsLeftShift = I.getOpcode() == Instruction::Shl; 753 Type *Ty = I.getType(); 754 unsigned TypeBits = Ty->getScalarSizeInBits(); 755 756 // (X / +DivC) >> (Width - 1) --> ext (X <= -DivC) 757 // (X / -DivC) >> (Width - 1) --> ext (X >= +DivC) 758 const APInt *DivC; 759 if (!IsLeftShift && match(C1, m_SpecificIntAllowUndef(TypeBits - 1)) && 760 match(Op0, m_SDiv(m_Value(X), m_APInt(DivC))) && !DivC->isZero() && 761 !DivC->isMinSignedValue()) { 762 Constant *NegDivC = ConstantInt::get(Ty, -(*DivC)); 763 ICmpInst::Predicate Pred = 764 DivC->isNegative() ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_SLE; 765 Value *Cmp = Builder.CreateICmp(Pred, X, NegDivC); 766 auto ExtOpcode = (I.getOpcode() == Instruction::AShr) ? Instruction::SExt 767 : Instruction::ZExt; 768 return CastInst::Create(ExtOpcode, Cmp, Ty); 769 } 770 771 const APInt *Op1C; 772 if (!match(C1, m_APInt(Op1C))) 773 return nullptr; 774 775 assert(!Op1C->uge(TypeBits) && 776 "Shift over the type width should have been removed already"); 777 778 // See if we can propagate this shift into the input, this covers the trivial 779 // cast of lshr(shl(x,c1),c2) as well as other more complex cases. 780 if (I.getOpcode() != Instruction::AShr && 781 canEvaluateShifted(Op0, Op1C->getZExtValue(), IsLeftShift, *this, &I)) { 782 LLVM_DEBUG( 783 dbgs() << "ICE: GetShiftedValue propagating shift through expression" 784 " to eliminate shift:\n IN: " 785 << *Op0 << "\n SH: " << I << "\n"); 786 787 return replaceInstUsesWith( 788 I, getShiftedValue(Op0, Op1C->getZExtValue(), IsLeftShift, *this, DL)); 789 } 790 791 if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I)) 792 return FoldedShift; 793 794 if (!Op0->hasOneUse()) 795 return nullptr; 796 797 if (auto *Op0BO = dyn_cast<BinaryOperator>(Op0)) { 798 // If the operand is a bitwise operator with a constant RHS, and the 799 // shift is the only use, we can pull it out of the shift. 800 const APInt *Op0C; 801 if (match(Op0BO->getOperand(1), m_APInt(Op0C))) { 802 if (canShiftBinOpWithConstantRHS(I, Op0BO)) { 803 Value *NewRHS = 804 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(1), C1); 805 806 Value *NewShift = 807 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), C1); 808 NewShift->takeName(Op0BO); 809 810 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, NewRHS); 811 } 812 } 813 } 814 815 // If we have a select that conditionally executes some binary operator, 816 // see if we can pull it the select and operator through the shift. 817 // 818 // For example, turning: 819 // shl (select C, (add X, C1), X), C2 820 // Into: 821 // Y = shl X, C2 822 // select C, (add Y, C1 << C2), Y 823 Value *Cond; 824 BinaryOperator *TBO; 825 Value *FalseVal; 826 if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)), 827 m_Value(FalseVal)))) { 828 const APInt *C; 829 if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal && 830 match(TBO->getOperand(1), m_APInt(C)) && 831 canShiftBinOpWithConstantRHS(I, TBO)) { 832 Value *NewRHS = 833 Builder.CreateBinOp(I.getOpcode(), TBO->getOperand(1), C1); 834 835 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), FalseVal, C1); 836 Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift, NewRHS); 837 return SelectInst::Create(Cond, NewOp, NewShift); 838 } 839 } 840 841 BinaryOperator *FBO; 842 Value *TrueVal; 843 if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal), 844 m_OneUse(m_BinOp(FBO))))) { 845 const APInt *C; 846 if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal && 847 match(FBO->getOperand(1), m_APInt(C)) && 848 canShiftBinOpWithConstantRHS(I, FBO)) { 849 Value *NewRHS = 850 Builder.CreateBinOp(I.getOpcode(), FBO->getOperand(1), C1); 851 852 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), TrueVal, C1); 853 Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift, NewRHS); 854 return SelectInst::Create(Cond, NewShift, NewOp); 855 } 856 } 857 858 return nullptr; 859 } 860 861 // Tries to perform 862 // (lshr (add (zext X), (zext Y)), K) 863 // -> (icmp ult (add X, Y), X) 864 // where 865 // - The add's operands are zexts from a K-bits integer to a bigger type. 866 // - The add is only used by the shr, or by iK (or narrower) truncates. 867 // - The lshr type has more than 2 bits (other types are boolean math). 868 // - K > 1 869 // note that 870 // - The resulting add cannot have nuw/nsw, else on overflow we get a 871 // poison value and the transform isn't legal anymore. 872 Instruction *InstCombinerImpl::foldLShrOverflowBit(BinaryOperator &I) { 873 assert(I.getOpcode() == Instruction::LShr); 874 875 Value *Add = I.getOperand(0); 876 Value *ShiftAmt = I.getOperand(1); 877 Type *Ty = I.getType(); 878 879 if (Ty->getScalarSizeInBits() < 3) 880 return nullptr; 881 882 const APInt *ShAmtAPInt = nullptr; 883 Value *X = nullptr, *Y = nullptr; 884 if (!match(ShiftAmt, m_APInt(ShAmtAPInt)) || 885 !match(Add, 886 m_Add(m_OneUse(m_ZExt(m_Value(X))), m_OneUse(m_ZExt(m_Value(Y)))))) 887 return nullptr; 888 889 const unsigned ShAmt = ShAmtAPInt->getZExtValue(); 890 if (ShAmt == 1) 891 return nullptr; 892 893 // X/Y are zexts from `ShAmt`-sized ints. 894 if (X->getType()->getScalarSizeInBits() != ShAmt || 895 Y->getType()->getScalarSizeInBits() != ShAmt) 896 return nullptr; 897 898 // Make sure that `Add` is only used by `I` and `ShAmt`-truncates. 899 if (!Add->hasOneUse()) { 900 for (User *U : Add->users()) { 901 if (U == &I) 902 continue; 903 904 TruncInst *Trunc = dyn_cast<TruncInst>(U); 905 if (!Trunc || Trunc->getType()->getScalarSizeInBits() > ShAmt) 906 return nullptr; 907 } 908 } 909 910 // Insert at Add so that the newly created `NarrowAdd` will dominate it's 911 // users (i.e. `Add`'s users). 912 Instruction *AddInst = cast<Instruction>(Add); 913 Builder.SetInsertPoint(AddInst); 914 915 Value *NarrowAdd = Builder.CreateAdd(X, Y, "add.narrowed"); 916 Value *Overflow = 917 Builder.CreateICmpULT(NarrowAdd, X, "add.narrowed.overflow"); 918 919 // Replace the uses of the original add with a zext of the 920 // NarrowAdd's result. Note that all users at this stage are known to 921 // be ShAmt-sized truncs, or the lshr itself. 922 if (!Add->hasOneUse()) { 923 replaceInstUsesWith(*AddInst, Builder.CreateZExt(NarrowAdd, Ty)); 924 eraseInstFromFunction(*AddInst); 925 } 926 927 // Replace the LShr with a zext of the overflow check. 928 return new ZExtInst(Overflow, Ty); 929 } 930 931 Instruction *InstCombinerImpl::visitShl(BinaryOperator &I) { 932 const SimplifyQuery Q = SQ.getWithInstruction(&I); 933 934 if (Value *V = simplifyShlInst(I.getOperand(0), I.getOperand(1), 935 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q)) 936 return replaceInstUsesWith(I, V); 937 938 if (Instruction *X = foldVectorBinop(I)) 939 return X; 940 941 if (Instruction *V = commonShiftTransforms(I)) 942 return V; 943 944 if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder)) 945 return V; 946 947 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 948 Type *Ty = I.getType(); 949 unsigned BitWidth = Ty->getScalarSizeInBits(); 950 951 const APInt *C; 952 if (match(Op1, m_APInt(C))) { 953 unsigned ShAmtC = C->getZExtValue(); 954 955 // shl (zext X), C --> zext (shl X, C) 956 // This is only valid if X would have zeros shifted out. 957 Value *X; 958 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) { 959 unsigned SrcWidth = X->getType()->getScalarSizeInBits(); 960 if (ShAmtC < SrcWidth && 961 MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmtC), 0, &I)) 962 return new ZExtInst(Builder.CreateShl(X, ShAmtC), Ty); 963 } 964 965 // (X >> C) << C --> X & (-1 << C) 966 if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) { 967 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 968 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask)); 969 } 970 971 const APInt *C1; 972 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(C1)))) && 973 C1->ult(BitWidth)) { 974 unsigned ShrAmt = C1->getZExtValue(); 975 if (ShrAmt < ShAmtC) { 976 // If C1 < C: (X >>?,exact C1) << C --> X << (C - C1) 977 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt); 978 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); 979 NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 980 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap()); 981 return NewShl; 982 } 983 if (ShrAmt > ShAmtC) { 984 // If C1 > C: (X >>?exact C1) << C --> X >>?exact (C1 - C) 985 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC); 986 auto *NewShr = BinaryOperator::Create( 987 cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff); 988 NewShr->setIsExact(true); 989 return NewShr; 990 } 991 } 992 993 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_APInt(C1)))) && 994 C1->ult(BitWidth)) { 995 unsigned ShrAmt = C1->getZExtValue(); 996 if (ShrAmt < ShAmtC) { 997 // If C1 < C: (X >>? C1) << C --> (X << (C - C1)) & (-1 << C) 998 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt); 999 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); 1000 NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1001 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap()); 1002 Builder.Insert(NewShl); 1003 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 1004 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask)); 1005 } 1006 if (ShrAmt > ShAmtC) { 1007 // If C1 > C: (X >>? C1) << C --> (X >>? (C1 - C)) & (-1 << C) 1008 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC); 1009 auto *OldShr = cast<BinaryOperator>(Op0); 1010 auto *NewShr = 1011 BinaryOperator::Create(OldShr->getOpcode(), X, ShiftDiff); 1012 NewShr->setIsExact(OldShr->isExact()); 1013 Builder.Insert(NewShr); 1014 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 1015 return BinaryOperator::CreateAnd(NewShr, ConstantInt::get(Ty, Mask)); 1016 } 1017 } 1018 1019 // Similar to above, but look through an intermediate trunc instruction. 1020 BinaryOperator *Shr; 1021 if (match(Op0, m_OneUse(m_Trunc(m_OneUse(m_BinOp(Shr))))) && 1022 match(Shr, m_Shr(m_Value(X), m_APInt(C1)))) { 1023 // The larger shift direction survives through the transform. 1024 unsigned ShrAmtC = C1->getZExtValue(); 1025 unsigned ShDiff = ShrAmtC > ShAmtC ? ShrAmtC - ShAmtC : ShAmtC - ShrAmtC; 1026 Constant *ShiftDiffC = ConstantInt::get(X->getType(), ShDiff); 1027 auto ShiftOpc = ShrAmtC > ShAmtC ? Shr->getOpcode() : Instruction::Shl; 1028 1029 // If C1 > C: 1030 // (trunc (X >> C1)) << C --> (trunc (X >> (C1 - C))) && (-1 << C) 1031 // If C > C1: 1032 // (trunc (X >> C1)) << C --> (trunc (X << (C - C1))) && (-1 << C) 1033 Value *NewShift = Builder.CreateBinOp(ShiftOpc, X, ShiftDiffC, "sh.diff"); 1034 Value *Trunc = Builder.CreateTrunc(NewShift, Ty, "tr.sh.diff"); 1035 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 1036 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, Mask)); 1037 } 1038 1039 if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) { 1040 unsigned AmtSum = ShAmtC + C1->getZExtValue(); 1041 // Oversized shifts are simplified to zero in InstSimplify. 1042 if (AmtSum < BitWidth) 1043 // (X << C1) << C2 --> X << (C1 + C2) 1044 return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum)); 1045 } 1046 1047 // If we have an opposite shift by the same amount, we may be able to 1048 // reorder binops and shifts to eliminate math/logic. 1049 auto isSuitableBinOpcode = [](Instruction::BinaryOps BinOpcode) { 1050 switch (BinOpcode) { 1051 default: 1052 return false; 1053 case Instruction::Add: 1054 case Instruction::And: 1055 case Instruction::Or: 1056 case Instruction::Xor: 1057 case Instruction::Sub: 1058 // NOTE: Sub is not commutable and the tranforms below may not be valid 1059 // when the shift-right is operand 1 (RHS) of the sub. 1060 return true; 1061 } 1062 }; 1063 BinaryOperator *Op0BO; 1064 if (match(Op0, m_OneUse(m_BinOp(Op0BO))) && 1065 isSuitableBinOpcode(Op0BO->getOpcode())) { 1066 // Commute so shift-right is on LHS of the binop. 1067 // (Y bop (X >> C)) << C -> ((X >> C) bop Y) << C 1068 // (Y bop ((X >> C) & CC)) << C -> (((X >> C) & CC) bop Y) << C 1069 Value *Shr = Op0BO->getOperand(0); 1070 Value *Y = Op0BO->getOperand(1); 1071 Value *X; 1072 const APInt *CC; 1073 if (Op0BO->isCommutative() && Y->hasOneUse() && 1074 (match(Y, m_Shr(m_Value(), m_Specific(Op1))) || 1075 match(Y, m_And(m_OneUse(m_Shr(m_Value(), m_Specific(Op1))), 1076 m_APInt(CC))))) 1077 std::swap(Shr, Y); 1078 1079 // ((X >> C) bop Y) << C -> (X bop (Y << C)) & (~0 << C) 1080 if (match(Shr, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) { 1081 // Y << C 1082 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName()); 1083 // (X bop (Y << C)) 1084 Value *B = 1085 Builder.CreateBinOp(Op0BO->getOpcode(), X, YS, Shr->getName()); 1086 unsigned Op1Val = C->getLimitedValue(BitWidth); 1087 APInt Bits = APInt::getHighBitsSet(BitWidth, BitWidth - Op1Val); 1088 Constant *Mask = ConstantInt::get(Ty, Bits); 1089 return BinaryOperator::CreateAnd(B, Mask); 1090 } 1091 1092 // (((X >> C) & CC) bop Y) << C -> (X & (CC << C)) bop (Y << C) 1093 if (match(Shr, 1094 m_OneUse(m_And(m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))), 1095 m_APInt(CC))))) { 1096 // Y << C 1097 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName()); 1098 // X & (CC << C) 1099 Value *M = Builder.CreateAnd(X, ConstantInt::get(Ty, CC->shl(*C)), 1100 X->getName() + ".mask"); 1101 return BinaryOperator::Create(Op0BO->getOpcode(), M, YS); 1102 } 1103 } 1104 1105 // (C1 - X) << C --> (C1 << C) - (X << C) 1106 if (match(Op0, m_OneUse(m_Sub(m_APInt(C1), m_Value(X))))) { 1107 Constant *NewLHS = ConstantInt::get(Ty, C1->shl(*C)); 1108 Value *NewShift = Builder.CreateShl(X, Op1); 1109 return BinaryOperator::CreateSub(NewLHS, NewShift); 1110 } 1111 1112 // If the shifted-out value is known-zero, then this is a NUW shift. 1113 if (!I.hasNoUnsignedWrap() && 1114 MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmtC), 0, 1115 &I)) { 1116 I.setHasNoUnsignedWrap(); 1117 return &I; 1118 } 1119 1120 // If the shifted-out value is all signbits, then this is a NSW shift. 1121 if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmtC) { 1122 I.setHasNoSignedWrap(); 1123 return &I; 1124 } 1125 } 1126 1127 // Transform (x >> y) << y to x & (-1 << y) 1128 // Valid for any type of right-shift. 1129 Value *X; 1130 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) { 1131 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); 1132 Value *Mask = Builder.CreateShl(AllOnes, Op1); 1133 return BinaryOperator::CreateAnd(Mask, X); 1134 } 1135 1136 Constant *C1; 1137 if (match(Op1, m_Constant(C1))) { 1138 Constant *C2; 1139 Value *X; 1140 // (X * C2) << C1 --> X * (C2 << C1) 1141 if (match(Op0, m_Mul(m_Value(X), m_Constant(C2)))) 1142 return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1)); 1143 1144 // shl (zext i1 X), C1 --> select (X, 1 << C1, 0) 1145 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 1146 auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1); 1147 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty)); 1148 } 1149 } 1150 1151 if (match(Op0, m_One())) { 1152 // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1 1153 if (match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X)))) 1154 return BinaryOperator::CreateLShr( 1155 ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X); 1156 1157 // Canonicalize "extract lowest set bit" using cttz to and-with-negate: 1158 // 1 << (cttz X) --> -X & X 1159 if (match(Op1, 1160 m_OneUse(m_Intrinsic<Intrinsic::cttz>(m_Value(X), m_Value())))) { 1161 Value *NegX = Builder.CreateNeg(X, "neg"); 1162 return BinaryOperator::CreateAnd(NegX, X); 1163 } 1164 1165 // The only way to shift out the 1 is with an over-shift, so that would 1166 // be poison with or without "nuw". Undef is excluded because (undef << X) 1167 // is not undef (it is zero). 1168 Constant *ConstantOne = cast<Constant>(Op0); 1169 if (!I.hasNoUnsignedWrap() && !ConstantOne->containsUndefElement()) { 1170 I.setHasNoUnsignedWrap(); 1171 return &I; 1172 } 1173 } 1174 1175 return nullptr; 1176 } 1177 1178 Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) { 1179 if (Value *V = simplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), 1180 SQ.getWithInstruction(&I))) 1181 return replaceInstUsesWith(I, V); 1182 1183 if (Instruction *X = foldVectorBinop(I)) 1184 return X; 1185 1186 if (Instruction *R = commonShiftTransforms(I)) 1187 return R; 1188 1189 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1190 Type *Ty = I.getType(); 1191 Value *X; 1192 const APInt *C; 1193 unsigned BitWidth = Ty->getScalarSizeInBits(); 1194 1195 // (iN (~X) u>> (N - 1)) --> zext (X > -1) 1196 if (match(Op0, m_OneUse(m_Not(m_Value(X)))) && 1197 match(Op1, m_SpecificIntAllowUndef(BitWidth - 1))) 1198 return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty); 1199 1200 if (match(Op1, m_APInt(C))) { 1201 unsigned ShAmtC = C->getZExtValue(); 1202 auto *II = dyn_cast<IntrinsicInst>(Op0); 1203 if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmtC && 1204 (II->getIntrinsicID() == Intrinsic::ctlz || 1205 II->getIntrinsicID() == Intrinsic::cttz || 1206 II->getIntrinsicID() == Intrinsic::ctpop)) { 1207 // ctlz.i32(x)>>5 --> zext(x == 0) 1208 // cttz.i32(x)>>5 --> zext(x == 0) 1209 // ctpop.i32(x)>>5 --> zext(x == -1) 1210 bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop; 1211 Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0); 1212 Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS); 1213 return new ZExtInst(Cmp, Ty); 1214 } 1215 1216 Value *X; 1217 const APInt *C1; 1218 if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) { 1219 if (C1->ult(ShAmtC)) { 1220 unsigned ShlAmtC = C1->getZExtValue(); 1221 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShlAmtC); 1222 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) { 1223 // (X <<nuw C1) >>u C --> X >>u (C - C1) 1224 auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff); 1225 NewLShr->setIsExact(I.isExact()); 1226 return NewLShr; 1227 } 1228 if (Op0->hasOneUse()) { 1229 // (X << C1) >>u C --> (X >>u (C - C1)) & (-1 >> C) 1230 Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact()); 1231 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1232 return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask)); 1233 } 1234 } else if (C1->ugt(ShAmtC)) { 1235 unsigned ShlAmtC = C1->getZExtValue(); 1236 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmtC - ShAmtC); 1237 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) { 1238 // (X <<nuw C1) >>u C --> X <<nuw (C1 - C) 1239 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); 1240 NewShl->setHasNoUnsignedWrap(true); 1241 return NewShl; 1242 } 1243 if (Op0->hasOneUse()) { 1244 // (X << C1) >>u C --> X << (C1 - C) & (-1 >> C) 1245 Value *NewShl = Builder.CreateShl(X, ShiftDiff); 1246 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1247 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask)); 1248 } 1249 } else { 1250 assert(*C1 == ShAmtC); 1251 // (X << C) >>u C --> X & (-1 >>u C) 1252 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1253 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask)); 1254 } 1255 } 1256 1257 // ((X << C) + Y) >>u C --> (X + (Y >>u C)) & (-1 >>u C) 1258 // TODO: Consolidate with the more general transform that starts from shl 1259 // (the shifts are in the opposite order). 1260 Value *Y; 1261 if (match(Op0, 1262 m_OneUse(m_c_Add(m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))), 1263 m_Value(Y))))) { 1264 Value *NewLshr = Builder.CreateLShr(Y, Op1); 1265 Value *NewAdd = Builder.CreateAdd(NewLshr, X); 1266 unsigned Op1Val = C->getLimitedValue(BitWidth); 1267 APInt Bits = APInt::getLowBitsSet(BitWidth, BitWidth - Op1Val); 1268 Constant *Mask = ConstantInt::get(Ty, Bits); 1269 return BinaryOperator::CreateAnd(NewAdd, Mask); 1270 } 1271 1272 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && 1273 (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) { 1274 assert(ShAmtC < X->getType()->getScalarSizeInBits() && 1275 "Big shift not simplified to zero?"); 1276 // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN 1277 Value *NewLShr = Builder.CreateLShr(X, ShAmtC); 1278 return new ZExtInst(NewLShr, Ty); 1279 } 1280 1281 if (match(Op0, m_SExt(m_Value(X)))) { 1282 unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits(); 1283 // lshr (sext i1 X to iN), C --> select (X, -1 >> C, 0) 1284 if (SrcTyBitWidth == 1) { 1285 auto *NewC = ConstantInt::get( 1286 Ty, APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1287 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty)); 1288 } 1289 1290 if ((!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType())) && 1291 Op0->hasOneUse()) { 1292 // Are we moving the sign bit to the low bit and widening with high 1293 // zeros? lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN 1294 if (ShAmtC == BitWidth - 1) { 1295 Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1); 1296 return new ZExtInst(NewLShr, Ty); 1297 } 1298 1299 // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN 1300 if (ShAmtC == BitWidth - SrcTyBitWidth) { 1301 // The new shift amount can't be more than the narrow source type. 1302 unsigned NewShAmt = std::min(ShAmtC, SrcTyBitWidth - 1); 1303 Value *AShr = Builder.CreateAShr(X, NewShAmt); 1304 return new ZExtInst(AShr, Ty); 1305 } 1306 } 1307 } 1308 1309 if (ShAmtC == BitWidth - 1) { 1310 // lshr i32 or(X,-X), 31 --> zext (X != 0) 1311 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X))))) 1312 return new ZExtInst(Builder.CreateIsNotNull(X), Ty); 1313 1314 // lshr i32 (X -nsw Y), 31 --> zext (X < Y) 1315 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y))))) 1316 return new ZExtInst(Builder.CreateICmpSLT(X, Y), Ty); 1317 1318 // Check if a number is negative and odd: 1319 // lshr i32 (srem X, 2), 31 --> and (X >> 31), X 1320 if (match(Op0, m_OneUse(m_SRem(m_Value(X), m_SpecificInt(2))))) { 1321 Value *Signbit = Builder.CreateLShr(X, ShAmtC); 1322 return BinaryOperator::CreateAnd(Signbit, X); 1323 } 1324 } 1325 1326 // (X >>u C1) >>u C --> X >>u (C1 + C) 1327 if (match(Op0, m_LShr(m_Value(X), m_APInt(C1)))) { 1328 // Oversized shifts are simplified to zero in InstSimplify. 1329 unsigned AmtSum = ShAmtC + C1->getZExtValue(); 1330 if (AmtSum < BitWidth) 1331 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum)); 1332 } 1333 1334 Instruction *TruncSrc; 1335 if (match(Op0, m_OneUse(m_Trunc(m_Instruction(TruncSrc)))) && 1336 match(TruncSrc, m_LShr(m_Value(X), m_APInt(C1)))) { 1337 unsigned SrcWidth = X->getType()->getScalarSizeInBits(); 1338 unsigned AmtSum = ShAmtC + C1->getZExtValue(); 1339 1340 // If the combined shift fits in the source width: 1341 // (trunc (X >>u C1)) >>u C --> and (trunc (X >>u (C1 + C)), MaskC 1342 // 1343 // If the first shift covers the number of bits truncated, then the 1344 // mask instruction is eliminated (and so the use check is relaxed). 1345 if (AmtSum < SrcWidth && 1346 (TruncSrc->hasOneUse() || C1->uge(SrcWidth - BitWidth))) { 1347 Value *SumShift = Builder.CreateLShr(X, AmtSum, "sum.shift"); 1348 Value *Trunc = Builder.CreateTrunc(SumShift, Ty, I.getName()); 1349 1350 // If the first shift does not cover the number of bits truncated, then 1351 // we require a mask to get rid of high bits in the result. 1352 APInt MaskC = APInt::getAllOnes(BitWidth).lshr(ShAmtC); 1353 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, MaskC)); 1354 } 1355 } 1356 1357 const APInt *MulC; 1358 if (match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC)))) { 1359 // Look for a "splat" mul pattern - it replicates bits across each half of 1360 // a value, so a right shift is just a mask of the low bits: 1361 // lshr i[2N] (mul nuw X, (2^N)+1), N --> and iN X, (2^N)-1 1362 // TODO: Generalize to allow more than just half-width shifts? 1363 if (BitWidth > 2 && ShAmtC * 2 == BitWidth && (*MulC - 1).isPowerOf2() && 1364 MulC->logBase2() == ShAmtC) 1365 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *MulC - 2)); 1366 1367 // The one-use check is not strictly necessary, but codegen may not be 1368 // able to invert the transform and perf may suffer with an extra mul 1369 // instruction. 1370 if (Op0->hasOneUse()) { 1371 APInt NewMulC = MulC->lshr(ShAmtC); 1372 // if c is divisible by (1 << ShAmtC): 1373 // lshr (mul nuw x, MulC), ShAmtC -> mul nuw x, (MulC >> ShAmtC) 1374 if (MulC->eq(NewMulC.shl(ShAmtC))) { 1375 auto *NewMul = 1376 BinaryOperator::CreateNUWMul(X, ConstantInt::get(Ty, NewMulC)); 1377 BinaryOperator *OrigMul = cast<BinaryOperator>(Op0); 1378 NewMul->setHasNoSignedWrap(OrigMul->hasNoSignedWrap()); 1379 return NewMul; 1380 } 1381 } 1382 } 1383 1384 // Try to narrow bswap. 1385 // In the case where the shift amount equals the bitwidth difference, the 1386 // shift is eliminated. 1387 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::bswap>( 1388 m_OneUse(m_ZExt(m_Value(X))))))) { 1389 unsigned SrcWidth = X->getType()->getScalarSizeInBits(); 1390 unsigned WidthDiff = BitWidth - SrcWidth; 1391 if (SrcWidth % 16 == 0) { 1392 Value *NarrowSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X); 1393 if (ShAmtC >= WidthDiff) { 1394 // (bswap (zext X)) >> C --> zext (bswap X >> C') 1395 Value *NewShift = Builder.CreateLShr(NarrowSwap, ShAmtC - WidthDiff); 1396 return new ZExtInst(NewShift, Ty); 1397 } else { 1398 // (bswap (zext X)) >> C --> (zext (bswap X)) << C' 1399 Value *NewZExt = Builder.CreateZExt(NarrowSwap, Ty); 1400 Constant *ShiftDiff = ConstantInt::get(Ty, WidthDiff - ShAmtC); 1401 return BinaryOperator::CreateShl(NewZExt, ShiftDiff); 1402 } 1403 } 1404 } 1405 1406 // Reduce add-carry of bools to logic: 1407 // ((zext BoolX) + (zext BoolY)) >> 1 --> zext (BoolX && BoolY) 1408 Value *BoolX, *BoolY; 1409 if (ShAmtC == 1 && match(Op0, m_Add(m_Value(X), m_Value(Y))) && 1410 match(X, m_ZExt(m_Value(BoolX))) && match(Y, m_ZExt(m_Value(BoolY))) && 1411 BoolX->getType()->isIntOrIntVectorTy(1) && 1412 BoolY->getType()->isIntOrIntVectorTy(1) && 1413 (X->hasOneUse() || Y->hasOneUse() || Op0->hasOneUse())) { 1414 Value *And = Builder.CreateAnd(BoolX, BoolY); 1415 return new ZExtInst(And, Ty); 1416 } 1417 1418 // If the shifted-out value is known-zero, then this is an exact shift. 1419 if (!I.isExact() && 1420 MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmtC), 0, &I)) { 1421 I.setIsExact(); 1422 return &I; 1423 } 1424 } 1425 1426 // Transform (x << y) >> y to x & (-1 >> y) 1427 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) { 1428 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); 1429 Value *Mask = Builder.CreateLShr(AllOnes, Op1); 1430 return BinaryOperator::CreateAnd(Mask, X); 1431 } 1432 1433 if (Instruction *Overflow = foldLShrOverflowBit(I)) 1434 return Overflow; 1435 1436 return nullptr; 1437 } 1438 1439 Instruction * 1440 InstCombinerImpl::foldVariableSignZeroExtensionOfVariableHighBitExtract( 1441 BinaryOperator &OldAShr) { 1442 assert(OldAShr.getOpcode() == Instruction::AShr && 1443 "Must be called with arithmetic right-shift instruction only."); 1444 1445 // Check that constant C is a splat of the element-wise bitwidth of V. 1446 auto BitWidthSplat = [](Constant *C, Value *V) { 1447 return match( 1448 C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1449 APInt(C->getType()->getScalarSizeInBits(), 1450 V->getType()->getScalarSizeInBits()))); 1451 }; 1452 1453 // It should look like variable-length sign-extension on the outside: 1454 // (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits) 1455 Value *NBits; 1456 Instruction *MaybeTrunc; 1457 Constant *C1, *C2; 1458 if (!match(&OldAShr, 1459 m_AShr(m_Shl(m_Instruction(MaybeTrunc), 1460 m_ZExtOrSelf(m_Sub(m_Constant(C1), 1461 m_ZExtOrSelf(m_Value(NBits))))), 1462 m_ZExtOrSelf(m_Sub(m_Constant(C2), 1463 m_ZExtOrSelf(m_Deferred(NBits)))))) || 1464 !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr)) 1465 return nullptr; 1466 1467 // There may or may not be a truncation after outer two shifts. 1468 Instruction *HighBitExtract; 1469 match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract))); 1470 bool HadTrunc = MaybeTrunc != HighBitExtract; 1471 1472 // And finally, the innermost part of the pattern must be a right-shift. 1473 Value *X, *NumLowBitsToSkip; 1474 if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip)))) 1475 return nullptr; 1476 1477 // Said right-shift must extract high NBits bits - C0 must be it's bitwidth. 1478 Constant *C0; 1479 if (!match(NumLowBitsToSkip, 1480 m_ZExtOrSelf( 1481 m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) || 1482 !BitWidthSplat(C0, HighBitExtract)) 1483 return nullptr; 1484 1485 // Since the NBits is identical for all shifts, if the outermost and 1486 // innermost shifts are identical, then outermost shifts are redundant. 1487 // If we had truncation, do keep it though. 1488 if (HighBitExtract->getOpcode() == OldAShr.getOpcode()) 1489 return replaceInstUsesWith(OldAShr, MaybeTrunc); 1490 1491 // Else, if there was a truncation, then we need to ensure that one 1492 // instruction will go away. 1493 if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 1494 return nullptr; 1495 1496 // Finally, bypass two innermost shifts, and perform the outermost shift on 1497 // the operands of the innermost shift. 1498 Instruction *NewAShr = 1499 BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip); 1500 NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness. 1501 if (!HadTrunc) 1502 return NewAShr; 1503 1504 Builder.Insert(NewAShr); 1505 return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType()); 1506 } 1507 1508 Instruction *InstCombinerImpl::visitAShr(BinaryOperator &I) { 1509 if (Value *V = simplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), 1510 SQ.getWithInstruction(&I))) 1511 return replaceInstUsesWith(I, V); 1512 1513 if (Instruction *X = foldVectorBinop(I)) 1514 return X; 1515 1516 if (Instruction *R = commonShiftTransforms(I)) 1517 return R; 1518 1519 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1520 Type *Ty = I.getType(); 1521 unsigned BitWidth = Ty->getScalarSizeInBits(); 1522 const APInt *ShAmtAPInt; 1523 if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) { 1524 unsigned ShAmt = ShAmtAPInt->getZExtValue(); 1525 1526 // If the shift amount equals the difference in width of the destination 1527 // and source scalar types: 1528 // ashr (shl (zext X), C), C --> sext X 1529 Value *X; 1530 if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) && 1531 ShAmt == BitWidth - X->getType()->getScalarSizeInBits()) 1532 return new SExtInst(X, Ty); 1533 1534 // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However, 1535 // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits. 1536 const APInt *ShOp1; 1537 if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) && 1538 ShOp1->ult(BitWidth)) { 1539 unsigned ShlAmt = ShOp1->getZExtValue(); 1540 if (ShlAmt < ShAmt) { 1541 // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1) 1542 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt); 1543 auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff); 1544 NewAShr->setIsExact(I.isExact()); 1545 return NewAShr; 1546 } 1547 if (ShlAmt > ShAmt) { 1548 // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2) 1549 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt); 1550 auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff); 1551 NewShl->setHasNoSignedWrap(true); 1552 return NewShl; 1553 } 1554 } 1555 1556 if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) && 1557 ShOp1->ult(BitWidth)) { 1558 unsigned AmtSum = ShAmt + ShOp1->getZExtValue(); 1559 // Oversized arithmetic shifts replicate the sign bit. 1560 AmtSum = std::min(AmtSum, BitWidth - 1); 1561 // (X >>s C1) >>s C2 --> X >>s (C1 + C2) 1562 return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum)); 1563 } 1564 1565 if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) && 1566 (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) { 1567 // ashr (sext X), C --> sext (ashr X, C') 1568 Type *SrcTy = X->getType(); 1569 ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1); 1570 Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt)); 1571 return new SExtInst(NewSh, Ty); 1572 } 1573 1574 if (ShAmt == BitWidth - 1) { 1575 // ashr i32 or(X,-X), 31 --> sext (X != 0) 1576 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X))))) 1577 return new SExtInst(Builder.CreateIsNotNull(X), Ty); 1578 1579 // ashr i32 (X -nsw Y), 31 --> sext (X < Y) 1580 Value *Y; 1581 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y))))) 1582 return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty); 1583 } 1584 1585 // If the shifted-out value is known-zero, then this is an exact shift. 1586 if (!I.isExact() && 1587 MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) { 1588 I.setIsExact(); 1589 return &I; 1590 } 1591 } 1592 1593 // Prefer `-(x & 1)` over `(x << (bitwidth(x)-1)) a>> (bitwidth(x)-1)` 1594 // as the pattern to splat the lowest bit. 1595 // FIXME: iff X is already masked, we don't need the one-use check. 1596 Value *X; 1597 if (match(Op1, m_SpecificIntAllowUndef(BitWidth - 1)) && 1598 match(Op0, m_OneUse(m_Shl(m_Value(X), 1599 m_SpecificIntAllowUndef(BitWidth - 1))))) { 1600 Constant *Mask = ConstantInt::get(Ty, 1); 1601 // Retain the knowledge about the ignored lanes. 1602 Mask = Constant::mergeUndefsWith( 1603 Constant::mergeUndefsWith(Mask, cast<Constant>(Op1)), 1604 cast<Constant>(cast<Instruction>(Op0)->getOperand(1))); 1605 X = Builder.CreateAnd(X, Mask); 1606 return BinaryOperator::CreateNeg(X); 1607 } 1608 1609 if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I)) 1610 return R; 1611 1612 // See if we can turn a signed shr into an unsigned shr. 1613 if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I)) { 1614 Instruction *Lshr = BinaryOperator::CreateLShr(Op0, Op1); 1615 Lshr->setIsExact(I.isExact()); 1616 return Lshr; 1617 } 1618 1619 // ashr (xor %x, -1), %y --> xor (ashr %x, %y), -1 1620 if (match(Op0, m_OneUse(m_Not(m_Value(X))))) { 1621 // Note that we must drop 'exact'-ness of the shift! 1622 // Note that we can't keep undef's in -1 vector constant! 1623 auto *NewAShr = Builder.CreateAShr(X, Op1, Op0->getName() + ".not"); 1624 return BinaryOperator::CreateNot(NewAShr); 1625 } 1626 1627 return nullptr; 1628 } 1629