1 //===- InstCombineShifts.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitShl, visitLShr, and visitAShr functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/Analysis/InstructionSimplify.h" 15 #include "llvm/IR/IntrinsicInst.h" 16 #include "llvm/IR/PatternMatch.h" 17 #include "llvm/Transforms/InstCombine/InstCombiner.h" 18 using namespace llvm; 19 using namespace PatternMatch; 20 21 #define DEBUG_TYPE "instcombine" 22 23 bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1, 24 Value *ShAmt1) { 25 // We have two shift amounts from two different shifts. The types of those 26 // shift amounts may not match. If that's the case let's bailout now.. 27 if (ShAmt0->getType() != ShAmt1->getType()) 28 return false; 29 30 // As input, we have the following pattern: 31 // Sh0 (Sh1 X, Q), K 32 // We want to rewrite that as: 33 // Sh x, (Q+K) iff (Q+K) u< bitwidth(x) 34 // While we know that originally (Q+K) would not overflow 35 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 36 // shift amounts. so it may now overflow in smaller bitwidth. 37 // To ensure that does not happen, we need to ensure that the total maximal 38 // shift amount is still representable in that smaller bit width. 39 unsigned MaximalPossibleTotalShiftAmount = 40 (Sh0->getType()->getScalarSizeInBits() - 1) + 41 (Sh1->getType()->getScalarSizeInBits() - 1); 42 APInt MaximalRepresentableShiftAmount = 43 APInt::getAllOnes(ShAmt0->getType()->getScalarSizeInBits()); 44 return MaximalRepresentableShiftAmount.uge(MaximalPossibleTotalShiftAmount); 45 } 46 47 // Given pattern: 48 // (x shiftopcode Q) shiftopcode K 49 // we should rewrite it as 50 // x shiftopcode (Q+K) iff (Q+K) u< bitwidth(x) and 51 // 52 // This is valid for any shift, but they must be identical, and we must be 53 // careful in case we have (zext(Q)+zext(K)) and look past extensions, 54 // (Q+K) must not overflow or else (Q+K) u< bitwidth(x) is bogus. 55 // 56 // AnalyzeForSignBitExtraction indicates that we will only analyze whether this 57 // pattern has any 2 right-shifts that sum to 1 less than original bit width. 58 Value *InstCombinerImpl::reassociateShiftAmtsOfTwoSameDirectionShifts( 59 BinaryOperator *Sh0, const SimplifyQuery &SQ, 60 bool AnalyzeForSignBitExtraction) { 61 // Look for a shift of some instruction, ignore zext of shift amount if any. 62 Instruction *Sh0Op0; 63 Value *ShAmt0; 64 if (!match(Sh0, 65 m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0))))) 66 return nullptr; 67 68 // If there is a truncation between the two shifts, we must make note of it 69 // and look through it. The truncation imposes additional constraints on the 70 // transform. 71 Instruction *Sh1; 72 Value *Trunc = nullptr; 73 match(Sh0Op0, 74 m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)), 75 m_Instruction(Sh1))); 76 77 // Inner shift: (x shiftopcode ShAmt1) 78 // Like with other shift, ignore zext of shift amount if any. 79 Value *X, *ShAmt1; 80 if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1))))) 81 return nullptr; 82 83 // Verify that it would be safe to try to add those two shift amounts. 84 if (!canTryToConstantAddTwoShiftAmounts(Sh0, ShAmt0, Sh1, ShAmt1)) 85 return nullptr; 86 87 // We are only looking for signbit extraction if we have two right shifts. 88 bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) && 89 match(Sh1, m_Shr(m_Value(), m_Value())); 90 // ... and if it's not two right-shifts, we know the answer already. 91 if (AnalyzeForSignBitExtraction && !HadTwoRightShifts) 92 return nullptr; 93 94 // The shift opcodes must be identical, unless we are just checking whether 95 // this pattern can be interpreted as a sign-bit-extraction. 96 Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode(); 97 bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode(); 98 if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction) 99 return nullptr; 100 101 // If we saw truncation, we'll need to produce extra instruction, 102 // and for that one of the operands of the shift must be one-use, 103 // unless of course we don't actually plan to produce any instructions here. 104 if (Trunc && !AnalyzeForSignBitExtraction && 105 !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 106 return nullptr; 107 108 // Can we fold (ShAmt0+ShAmt1) ? 109 auto *NewShAmt = dyn_cast_or_null<Constant>( 110 simplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false, 111 SQ.getWithInstruction(Sh0))); 112 if (!NewShAmt) 113 return nullptr; // Did not simplify. 114 unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits(); 115 unsigned XBitWidth = X->getType()->getScalarSizeInBits(); 116 // Is the new shift amount smaller than the bit width of inner/new shift? 117 if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 118 APInt(NewShAmtBitWidth, XBitWidth)))) 119 return nullptr; // FIXME: could perform constant-folding. 120 121 // If there was a truncation, and we have a right-shift, we can only fold if 122 // we are left with the original sign bit. Likewise, if we were just checking 123 // that this is a sighbit extraction, this is the place to check it. 124 // FIXME: zero shift amount is also legal here, but we can't *easily* check 125 // more than one predicate so it's not really worth it. 126 if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) { 127 // If it's not a sign bit extraction, then we're done. 128 if (!match(NewShAmt, 129 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 130 APInt(NewShAmtBitWidth, XBitWidth - 1)))) 131 return nullptr; 132 // If it is, and that was the question, return the base value. 133 if (AnalyzeForSignBitExtraction) 134 return X; 135 } 136 137 assert(IdenticalShOpcodes && "Should not get here with different shifts."); 138 139 if (NewShAmt->getType() != X->getType()) { 140 NewShAmt = ConstantFoldCastOperand(Instruction::ZExt, NewShAmt, 141 X->getType(), SQ.DL); 142 if (!NewShAmt) 143 return nullptr; 144 } 145 146 // All good, we can do this fold. 147 BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt); 148 149 // The flags can only be propagated if there wasn't a trunc. 150 if (!Trunc) { 151 // If the pattern did not involve trunc, and both of the original shifts 152 // had the same flag set, preserve the flag. 153 if (ShiftOpcode == Instruction::BinaryOps::Shl) { 154 NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() && 155 Sh1->hasNoUnsignedWrap()); 156 NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() && 157 Sh1->hasNoSignedWrap()); 158 } else { 159 NewShift->setIsExact(Sh0->isExact() && Sh1->isExact()); 160 } 161 } 162 163 Instruction *Ret = NewShift; 164 if (Trunc) { 165 Builder.Insert(NewShift); 166 Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType()); 167 } 168 169 return Ret; 170 } 171 172 // If we have some pattern that leaves only some low bits set, and then performs 173 // left-shift of those bits, if none of the bits that are left after the final 174 // shift are modified by the mask, we can omit the mask. 175 // 176 // There are many variants to this pattern: 177 // a) (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt 178 // b) (x & (~(-1 << MaskShAmt))) << ShiftShAmt 179 // c) (x & (-1 l>> MaskShAmt)) << ShiftShAmt 180 // d) (x & ((-1 << MaskShAmt) l>> MaskShAmt)) << ShiftShAmt 181 // e) ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt 182 // f) ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt 183 // All these patterns can be simplified to just: 184 // x << ShiftShAmt 185 // iff: 186 // a,b) (MaskShAmt+ShiftShAmt) u>= bitwidth(x) 187 // c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt) 188 static Instruction * 189 dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift, 190 const SimplifyQuery &Q, 191 InstCombiner::BuilderTy &Builder) { 192 assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl && 193 "The input must be 'shl'!"); 194 195 Value *Masked, *ShiftShAmt; 196 match(OuterShift, 197 m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt)))); 198 199 // *If* there is a truncation between an outer shift and a possibly-mask, 200 // then said truncation *must* be one-use, else we can't perform the fold. 201 Value *Trunc; 202 if (match(Masked, m_CombineAnd(m_Trunc(m_Value(Masked)), m_Value(Trunc))) && 203 !Trunc->hasOneUse()) 204 return nullptr; 205 206 Type *NarrowestTy = OuterShift->getType(); 207 Type *WidestTy = Masked->getType(); 208 bool HadTrunc = WidestTy != NarrowestTy; 209 210 // The mask must be computed in a type twice as wide to ensure 211 // that no bits are lost if the sum-of-shifts is wider than the base type. 212 Type *ExtendedTy = WidestTy->getExtendedType(); 213 214 Value *MaskShAmt; 215 216 // ((1 << MaskShAmt) - 1) 217 auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes()); 218 // (~(-1 << maskNbits)) 219 auto MaskB = m_Not(m_Shl(m_AllOnes(), m_Value(MaskShAmt))); 220 // (-1 l>> MaskShAmt) 221 auto MaskC = m_LShr(m_AllOnes(), m_Value(MaskShAmt)); 222 // ((-1 << MaskShAmt) l>> MaskShAmt) 223 auto MaskD = 224 m_LShr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt)); 225 226 Value *X; 227 Constant *NewMask; 228 229 if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) { 230 // Peek through an optional zext of the shift amount. 231 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt))); 232 233 // Verify that it would be safe to try to add those two shift amounts. 234 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked, 235 MaskShAmt)) 236 return nullptr; 237 238 // Can we simplify (MaskShAmt+ShiftShAmt) ? 239 auto *SumOfShAmts = dyn_cast_or_null<Constant>(simplifyAddInst( 240 MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q)); 241 if (!SumOfShAmts) 242 return nullptr; // Did not simplify. 243 // In this pattern SumOfShAmts correlates with the number of low bits 244 // that shall remain in the root value (OuterShift). 245 246 // An extend of an undef value becomes zero because the high bits are never 247 // completely unknown. Replace the `undef` shift amounts with final 248 // shift bitwidth to ensure that the value remains undef when creating the 249 // subsequent shift op. 250 SumOfShAmts = Constant::replaceUndefsWith( 251 SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(), 252 ExtendedTy->getScalarSizeInBits())); 253 auto *ExtendedSumOfShAmts = ConstantFoldCastOperand( 254 Instruction::ZExt, SumOfShAmts, ExtendedTy, Q.DL); 255 if (!ExtendedSumOfShAmts) 256 return nullptr; 257 258 // And compute the mask as usual: ~(-1 << (SumOfShAmts)) 259 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy); 260 Constant *ExtendedInvertedMask = ConstantFoldBinaryOpOperands( 261 Instruction::Shl, ExtendedAllOnes, ExtendedSumOfShAmts, Q.DL); 262 if (!ExtendedInvertedMask) 263 return nullptr; 264 265 NewMask = ConstantExpr::getNot(ExtendedInvertedMask); 266 } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) || 267 match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)), 268 m_Deferred(MaskShAmt)))) { 269 // Peek through an optional zext of the shift amount. 270 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt))); 271 272 // Verify that it would be safe to try to add those two shift amounts. 273 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked, 274 MaskShAmt)) 275 return nullptr; 276 277 // Can we simplify (ShiftShAmt-MaskShAmt) ? 278 auto *ShAmtsDiff = dyn_cast_or_null<Constant>(simplifySubInst( 279 ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q)); 280 if (!ShAmtsDiff) 281 return nullptr; // Did not simplify. 282 // In this pattern ShAmtsDiff correlates with the number of high bits that 283 // shall be unset in the root value (OuterShift). 284 285 // An extend of an undef value becomes zero because the high bits are never 286 // completely unknown. Replace the `undef` shift amounts with negated 287 // bitwidth of innermost shift to ensure that the value remains undef when 288 // creating the subsequent shift op. 289 unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits(); 290 ShAmtsDiff = Constant::replaceUndefsWith( 291 ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(), 292 -WidestTyBitWidth)); 293 auto *ExtendedNumHighBitsToClear = ConstantFoldCastOperand( 294 Instruction::ZExt, 295 ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(), 296 WidestTyBitWidth, 297 /*isSigned=*/false), 298 ShAmtsDiff), 299 ExtendedTy, Q.DL); 300 if (!ExtendedNumHighBitsToClear) 301 return nullptr; 302 303 // And compute the mask as usual: (-1 l>> (NumHighBitsToClear)) 304 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy); 305 NewMask = ConstantFoldBinaryOpOperands(Instruction::LShr, ExtendedAllOnes, 306 ExtendedNumHighBitsToClear, Q.DL); 307 if (!NewMask) 308 return nullptr; 309 } else 310 return nullptr; // Don't know anything about this pattern. 311 312 NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy); 313 314 // Does this mask has any unset bits? If not then we can just not apply it. 315 bool NeedMask = !match(NewMask, m_AllOnes()); 316 317 // If we need to apply a mask, there are several more restrictions we have. 318 if (NeedMask) { 319 // The old masking instruction must go away. 320 if (!Masked->hasOneUse()) 321 return nullptr; 322 // The original "masking" instruction must not have been`ashr`. 323 if (match(Masked, m_AShr(m_Value(), m_Value()))) 324 return nullptr; 325 } 326 327 // If we need to apply truncation, let's do it first, since we can. 328 // We have already ensured that the old truncation will go away. 329 if (HadTrunc) 330 X = Builder.CreateTrunc(X, NarrowestTy); 331 332 // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits. 333 // We didn't change the Type of this outermost shift, so we can just do it. 334 auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X, 335 OuterShift->getOperand(1)); 336 if (!NeedMask) 337 return NewShift; 338 339 Builder.Insert(NewShift); 340 return BinaryOperator::Create(Instruction::And, NewShift, NewMask); 341 } 342 343 /// If we have a shift-by-constant of a bin op (bitwise logic op or add/sub w/ 344 /// shl) that itself has a shift-by-constant operand with identical opcode, we 345 /// may be able to convert that into 2 independent shifts followed by the logic 346 /// op. This eliminates a use of an intermediate value (reduces dependency 347 /// chain). 348 static Instruction *foldShiftOfShiftedBinOp(BinaryOperator &I, 349 InstCombiner::BuilderTy &Builder) { 350 assert(I.isShift() && "Expected a shift as input"); 351 auto *BinInst = dyn_cast<BinaryOperator>(I.getOperand(0)); 352 if (!BinInst || 353 (!BinInst->isBitwiseLogicOp() && 354 BinInst->getOpcode() != Instruction::Add && 355 BinInst->getOpcode() != Instruction::Sub) || 356 !BinInst->hasOneUse()) 357 return nullptr; 358 359 Constant *C0, *C1; 360 if (!match(I.getOperand(1), m_Constant(C1))) 361 return nullptr; 362 363 Instruction::BinaryOps ShiftOpcode = I.getOpcode(); 364 // Transform for add/sub only works with shl. 365 if ((BinInst->getOpcode() == Instruction::Add || 366 BinInst->getOpcode() == Instruction::Sub) && 367 ShiftOpcode != Instruction::Shl) 368 return nullptr; 369 370 Type *Ty = I.getType(); 371 372 // Find a matching shift by constant. The fold is not valid if the sum 373 // of the shift values equals or exceeds bitwidth. 374 Value *X, *Y; 375 auto matchFirstShift = [&](Value *V, Value *W) { 376 unsigned Size = Ty->getScalarSizeInBits(); 377 APInt Threshold(Size, Size); 378 return match(V, m_BinOp(ShiftOpcode, m_Value(X), m_Constant(C0))) && 379 (V->hasOneUse() || match(W, m_ImmConstant())) && 380 match(ConstantExpr::getAdd(C0, C1), 381 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold)); 382 }; 383 384 // Logic ops and Add are commutative, so check each operand for a match. Sub 385 // is not so we cannot reoder if we match operand(1) and need to keep the 386 // operands in their original positions. 387 bool FirstShiftIsOp1 = false; 388 if (matchFirstShift(BinInst->getOperand(0), BinInst->getOperand(1))) 389 Y = BinInst->getOperand(1); 390 else if (matchFirstShift(BinInst->getOperand(1), BinInst->getOperand(0))) { 391 Y = BinInst->getOperand(0); 392 FirstShiftIsOp1 = BinInst->getOpcode() == Instruction::Sub; 393 } else 394 return nullptr; 395 396 // shift (binop (shift X, C0), Y), C1 -> binop (shift X, C0+C1), (shift Y, C1) 397 Constant *ShiftSumC = ConstantExpr::getAdd(C0, C1); 398 Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC); 399 Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, C1); 400 Value *Op1 = FirstShiftIsOp1 ? NewShift2 : NewShift1; 401 Value *Op2 = FirstShiftIsOp1 ? NewShift1 : NewShift2; 402 return BinaryOperator::Create(BinInst->getOpcode(), Op1, Op2); 403 } 404 405 Instruction *InstCombinerImpl::commonShiftTransforms(BinaryOperator &I) { 406 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 407 return Phi; 408 409 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 410 assert(Op0->getType() == Op1->getType()); 411 Type *Ty = I.getType(); 412 413 // If the shift amount is a one-use `sext`, we can demote it to `zext`. 414 Value *Y; 415 if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) { 416 Value *NewExt = Builder.CreateZExt(Y, Ty, Op1->getName()); 417 return BinaryOperator::Create(I.getOpcode(), Op0, NewExt); 418 } 419 420 // See if we can fold away this shift. 421 if (SimplifyDemandedInstructionBits(I)) 422 return &I; 423 424 // Try to fold constant and into select arguments. 425 if (isa<Constant>(Op0)) 426 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 427 if (Instruction *R = FoldOpIntoSelect(I, SI)) 428 return R; 429 430 if (Constant *CUI = dyn_cast<Constant>(Op1)) 431 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I)) 432 return Res; 433 434 if (auto *NewShift = cast_or_null<Instruction>( 435 reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ))) 436 return NewShift; 437 438 // Pre-shift a constant shifted by a variable amount with constant offset: 439 // C shift (A add nuw C1) --> (C shift C1) shift A 440 Value *A; 441 Constant *C, *C1; 442 if (match(Op0, m_Constant(C)) && 443 match(Op1, m_NUWAddLike(m_Value(A), m_Constant(C1)))) { 444 Value *NewC = Builder.CreateBinOp(I.getOpcode(), C, C1); 445 BinaryOperator *NewShiftOp = BinaryOperator::Create(I.getOpcode(), NewC, A); 446 if (I.getOpcode() == Instruction::Shl) { 447 NewShiftOp->setHasNoSignedWrap(I.hasNoSignedWrap()); 448 NewShiftOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 449 } else { 450 NewShiftOp->setIsExact(I.isExact()); 451 } 452 return NewShiftOp; 453 } 454 455 unsigned BitWidth = Ty->getScalarSizeInBits(); 456 457 const APInt *AC, *AddC; 458 // Try to pre-shift a constant shifted by a variable amount added with a 459 // negative number: 460 // C << (X - AddC) --> (C >> AddC) << X 461 // and 462 // C >> (X - AddC) --> (C << AddC) >> X 463 if (match(Op0, m_APInt(AC)) && match(Op1, m_Add(m_Value(A), m_APInt(AddC))) && 464 AddC->isNegative() && (-*AddC).ult(BitWidth)) { 465 assert(!AC->isZero() && "Expected simplify of shifted zero"); 466 unsigned PosOffset = (-*AddC).getZExtValue(); 467 468 auto isSuitableForPreShift = [PosOffset, &I, AC]() { 469 switch (I.getOpcode()) { 470 default: 471 return false; 472 case Instruction::Shl: 473 return (I.hasNoSignedWrap() || I.hasNoUnsignedWrap()) && 474 AC->eq(AC->lshr(PosOffset).shl(PosOffset)); 475 case Instruction::LShr: 476 return I.isExact() && AC->eq(AC->shl(PosOffset).lshr(PosOffset)); 477 case Instruction::AShr: 478 return I.isExact() && AC->eq(AC->shl(PosOffset).ashr(PosOffset)); 479 } 480 }; 481 if (isSuitableForPreShift()) { 482 Constant *NewC = ConstantInt::get(Ty, I.getOpcode() == Instruction::Shl 483 ? AC->lshr(PosOffset) 484 : AC->shl(PosOffset)); 485 BinaryOperator *NewShiftOp = 486 BinaryOperator::Create(I.getOpcode(), NewC, A); 487 if (I.getOpcode() == Instruction::Shl) { 488 NewShiftOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 489 } else { 490 NewShiftOp->setIsExact(); 491 } 492 return NewShiftOp; 493 } 494 } 495 496 // X shift (A srem C) -> X shift (A and (C - 1)) iff C is a power of 2. 497 // Because shifts by negative values (which could occur if A were negative) 498 // are undefined. 499 if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Constant(C))) && 500 match(C, m_Power2())) { 501 // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't 502 // demand the sign bit (and many others) here?? 503 Constant *Mask = ConstantExpr::getSub(C, ConstantInt::get(Ty, 1)); 504 Value *Rem = Builder.CreateAnd(A, Mask, Op1->getName()); 505 return replaceOperand(I, 1, Rem); 506 } 507 508 if (Instruction *Logic = foldShiftOfShiftedBinOp(I, Builder)) 509 return Logic; 510 511 if (match(Op1, m_Or(m_Value(), m_SpecificInt(BitWidth - 1)))) 512 return replaceOperand(I, 1, ConstantInt::get(Ty, BitWidth - 1)); 513 514 return nullptr; 515 } 516 517 /// Return true if we can simplify two logical (either left or right) shifts 518 /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2. 519 static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl, 520 Instruction *InnerShift, 521 InstCombinerImpl &IC, Instruction *CxtI) { 522 assert(InnerShift->isLogicalShift() && "Unexpected instruction type"); 523 524 // We need constant scalar or constant splat shifts. 525 const APInt *InnerShiftConst; 526 if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst))) 527 return false; 528 529 // Two logical shifts in the same direction: 530 // shl (shl X, C1), C2 --> shl X, C1 + C2 531 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2 532 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl; 533 if (IsInnerShl == IsOuterShl) 534 return true; 535 536 // Equal shift amounts in opposite directions become bitwise 'and': 537 // lshr (shl X, C), C --> and X, C' 538 // shl (lshr X, C), C --> and X, C' 539 if (*InnerShiftConst == OuterShAmt) 540 return true; 541 542 // If the 2nd shift is bigger than the 1st, we can fold: 543 // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3 544 // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3 545 // but it isn't profitable unless we know the and'd out bits are already zero. 546 // Also, check that the inner shift is valid (less than the type width) or 547 // we'll crash trying to produce the bit mask for the 'and'. 548 unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits(); 549 if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) { 550 unsigned InnerShAmt = InnerShiftConst->getZExtValue(); 551 unsigned MaskShift = 552 IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt; 553 APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift; 554 if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI)) 555 return true; 556 } 557 558 return false; 559 } 560 561 /// See if we can compute the specified value, but shifted logically to the left 562 /// or right by some number of bits. This should return true if the expression 563 /// can be computed for the same cost as the current expression tree. This is 564 /// used to eliminate extraneous shifting from things like: 565 /// %C = shl i128 %A, 64 566 /// %D = shl i128 %B, 96 567 /// %E = or i128 %C, %D 568 /// %F = lshr i128 %E, 64 569 /// where the client will ask if E can be computed shifted right by 64-bits. If 570 /// this succeeds, getShiftedValue() will be called to produce the value. 571 static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift, 572 InstCombinerImpl &IC, Instruction *CxtI) { 573 // We can always evaluate immediate constants. 574 if (match(V, m_ImmConstant())) 575 return true; 576 577 Instruction *I = dyn_cast<Instruction>(V); 578 if (!I) return false; 579 580 // We can't mutate something that has multiple uses: doing so would 581 // require duplicating the instruction in general, which isn't profitable. 582 if (!I->hasOneUse()) return false; 583 584 switch (I->getOpcode()) { 585 default: return false; 586 case Instruction::And: 587 case Instruction::Or: 588 case Instruction::Xor: 589 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. 590 return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) && 591 canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I); 592 593 case Instruction::Shl: 594 case Instruction::LShr: 595 return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI); 596 597 case Instruction::Select: { 598 SelectInst *SI = cast<SelectInst>(I); 599 Value *TrueVal = SI->getTrueValue(); 600 Value *FalseVal = SI->getFalseValue(); 601 return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) && 602 canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI); 603 } 604 case Instruction::PHI: { 605 // We can change a phi if we can change all operands. Note that we never 606 // get into trouble with cyclic PHIs here because we only consider 607 // instructions with a single use. 608 PHINode *PN = cast<PHINode>(I); 609 for (Value *IncValue : PN->incoming_values()) 610 if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN)) 611 return false; 612 return true; 613 } 614 case Instruction::Mul: { 615 const APInt *MulConst; 616 // We can fold (shr (mul X, -(1 << C)), C) -> (and (neg X), C`) 617 return !IsLeftShift && match(I->getOperand(1), m_APInt(MulConst)) && 618 MulConst->isNegatedPowerOf2() && MulConst->countr_zero() == NumBits; 619 } 620 } 621 } 622 623 /// Fold OuterShift (InnerShift X, C1), C2. 624 /// See canEvaluateShiftedShift() for the constraints on these instructions. 625 static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt, 626 bool IsOuterShl, 627 InstCombiner::BuilderTy &Builder) { 628 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl; 629 Type *ShType = InnerShift->getType(); 630 unsigned TypeWidth = ShType->getScalarSizeInBits(); 631 632 // We only accept shifts-by-a-constant in canEvaluateShifted(). 633 const APInt *C1; 634 match(InnerShift->getOperand(1), m_APInt(C1)); 635 unsigned InnerShAmt = C1->getZExtValue(); 636 637 // Change the shift amount and clear the appropriate IR flags. 638 auto NewInnerShift = [&](unsigned ShAmt) { 639 InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt)); 640 if (IsInnerShl) { 641 InnerShift->setHasNoUnsignedWrap(false); 642 InnerShift->setHasNoSignedWrap(false); 643 } else { 644 InnerShift->setIsExact(false); 645 } 646 return InnerShift; 647 }; 648 649 // Two logical shifts in the same direction: 650 // shl (shl X, C1), C2 --> shl X, C1 + C2 651 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2 652 if (IsInnerShl == IsOuterShl) { 653 // If this is an oversized composite shift, then unsigned shifts get 0. 654 if (InnerShAmt + OuterShAmt >= TypeWidth) 655 return Constant::getNullValue(ShType); 656 657 return NewInnerShift(InnerShAmt + OuterShAmt); 658 } 659 660 // Equal shift amounts in opposite directions become bitwise 'and': 661 // lshr (shl X, C), C --> and X, C' 662 // shl (lshr X, C), C --> and X, C' 663 if (InnerShAmt == OuterShAmt) { 664 APInt Mask = IsInnerShl 665 ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt) 666 : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt); 667 Value *And = Builder.CreateAnd(InnerShift->getOperand(0), 668 ConstantInt::get(ShType, Mask)); 669 if (auto *AndI = dyn_cast<Instruction>(And)) { 670 AndI->moveBefore(InnerShift); 671 AndI->takeName(InnerShift); 672 } 673 return And; 674 } 675 676 assert(InnerShAmt > OuterShAmt && 677 "Unexpected opposite direction logical shift pair"); 678 679 // In general, we would need an 'and' for this transform, but 680 // canEvaluateShiftedShift() guarantees that the masked-off bits are not used. 681 // lshr (shl X, C1), C2 --> shl X, C1 - C2 682 // shl (lshr X, C1), C2 --> lshr X, C1 - C2 683 return NewInnerShift(InnerShAmt - OuterShAmt); 684 } 685 686 /// When canEvaluateShifted() returns true for an expression, this function 687 /// inserts the new computation that produces the shifted value. 688 static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift, 689 InstCombinerImpl &IC, const DataLayout &DL) { 690 // We can always evaluate constants shifted. 691 if (Constant *C = dyn_cast<Constant>(V)) { 692 if (isLeftShift) 693 return IC.Builder.CreateShl(C, NumBits); 694 else 695 return IC.Builder.CreateLShr(C, NumBits); 696 } 697 698 Instruction *I = cast<Instruction>(V); 699 IC.addToWorklist(I); 700 701 switch (I->getOpcode()) { 702 default: llvm_unreachable("Inconsistency with CanEvaluateShifted"); 703 case Instruction::And: 704 case Instruction::Or: 705 case Instruction::Xor: 706 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. 707 I->setOperand( 708 0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL)); 709 I->setOperand( 710 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL)); 711 return I; 712 713 case Instruction::Shl: 714 case Instruction::LShr: 715 return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift, 716 IC.Builder); 717 718 case Instruction::Select: 719 I->setOperand( 720 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL)); 721 I->setOperand( 722 2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL)); 723 return I; 724 case Instruction::PHI: { 725 // We can change a phi if we can change all operands. Note that we never 726 // get into trouble with cyclic PHIs here because we only consider 727 // instructions with a single use. 728 PHINode *PN = cast<PHINode>(I); 729 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 730 PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits, 731 isLeftShift, IC, DL)); 732 return PN; 733 } 734 case Instruction::Mul: { 735 assert(!isLeftShift && "Unexpected shift direction!"); 736 auto *Neg = BinaryOperator::CreateNeg(I->getOperand(0)); 737 IC.InsertNewInstWith(Neg, I->getIterator()); 738 unsigned TypeWidth = I->getType()->getScalarSizeInBits(); 739 APInt Mask = APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits); 740 auto *And = BinaryOperator::CreateAnd(Neg, 741 ConstantInt::get(I->getType(), Mask)); 742 And->takeName(I); 743 return IC.InsertNewInstWith(And, I->getIterator()); 744 } 745 } 746 } 747 748 // If this is a bitwise operator or add with a constant RHS we might be able 749 // to pull it through a shift. 750 static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift, 751 BinaryOperator *BO) { 752 switch (BO->getOpcode()) { 753 default: 754 return false; // Do not perform transform! 755 case Instruction::Add: 756 return Shift.getOpcode() == Instruction::Shl; 757 case Instruction::Or: 758 case Instruction::And: 759 return true; 760 case Instruction::Xor: 761 // Do not change a 'not' of logical shift because that would create a normal 762 // 'xor'. The 'not' is likely better for analysis, SCEV, and codegen. 763 return !(Shift.isLogicalShift() && match(BO, m_Not(m_Value()))); 764 } 765 } 766 767 Instruction *InstCombinerImpl::FoldShiftByConstant(Value *Op0, Constant *C1, 768 BinaryOperator &I) { 769 // (C2 << X) << C1 --> (C2 << C1) << X 770 // (C2 >> X) >> C1 --> (C2 >> C1) >> X 771 Constant *C2; 772 Value *X; 773 bool IsLeftShift = I.getOpcode() == Instruction::Shl; 774 if (match(Op0, m_BinOp(I.getOpcode(), m_ImmConstant(C2), m_Value(X)))) { 775 Instruction *R = BinaryOperator::Create( 776 I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), C2, C1), X); 777 BinaryOperator *BO0 = cast<BinaryOperator>(Op0); 778 if (IsLeftShift) { 779 R->setHasNoUnsignedWrap(I.hasNoUnsignedWrap() && 780 BO0->hasNoUnsignedWrap()); 781 R->setHasNoSignedWrap(I.hasNoSignedWrap() && BO0->hasNoSignedWrap()); 782 } else 783 R->setIsExact(I.isExact() && BO0->isExact()); 784 return R; 785 } 786 787 Type *Ty = I.getType(); 788 unsigned TypeBits = Ty->getScalarSizeInBits(); 789 790 // (X / +DivC) >> (Width - 1) --> ext (X <= -DivC) 791 // (X / -DivC) >> (Width - 1) --> ext (X >= +DivC) 792 const APInt *DivC; 793 if (!IsLeftShift && match(C1, m_SpecificIntAllowPoison(TypeBits - 1)) && 794 match(Op0, m_SDiv(m_Value(X), m_APInt(DivC))) && !DivC->isZero() && 795 !DivC->isMinSignedValue()) { 796 Constant *NegDivC = ConstantInt::get(Ty, -(*DivC)); 797 ICmpInst::Predicate Pred = 798 DivC->isNegative() ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_SLE; 799 Value *Cmp = Builder.CreateICmp(Pred, X, NegDivC); 800 auto ExtOpcode = (I.getOpcode() == Instruction::AShr) ? Instruction::SExt 801 : Instruction::ZExt; 802 return CastInst::Create(ExtOpcode, Cmp, Ty); 803 } 804 805 const APInt *Op1C; 806 if (!match(C1, m_APInt(Op1C))) 807 return nullptr; 808 809 assert(!Op1C->uge(TypeBits) && 810 "Shift over the type width should have been removed already"); 811 812 // See if we can propagate this shift into the input, this covers the trivial 813 // cast of lshr(shl(x,c1),c2) as well as other more complex cases. 814 if (I.getOpcode() != Instruction::AShr && 815 canEvaluateShifted(Op0, Op1C->getZExtValue(), IsLeftShift, *this, &I)) { 816 LLVM_DEBUG( 817 dbgs() << "ICE: GetShiftedValue propagating shift through expression" 818 " to eliminate shift:\n IN: " 819 << *Op0 << "\n SH: " << I << "\n"); 820 821 return replaceInstUsesWith( 822 I, getShiftedValue(Op0, Op1C->getZExtValue(), IsLeftShift, *this, DL)); 823 } 824 825 if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I)) 826 return FoldedShift; 827 828 if (!Op0->hasOneUse()) 829 return nullptr; 830 831 if (auto *Op0BO = dyn_cast<BinaryOperator>(Op0)) { 832 // If the operand is a bitwise operator with a constant RHS, and the 833 // shift is the only use, we can pull it out of the shift. 834 const APInt *Op0C; 835 if (match(Op0BO->getOperand(1), m_APInt(Op0C))) { 836 if (canShiftBinOpWithConstantRHS(I, Op0BO)) { 837 Value *NewRHS = 838 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(1), C1); 839 840 Value *NewShift = 841 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), C1); 842 NewShift->takeName(Op0BO); 843 844 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, NewRHS); 845 } 846 } 847 } 848 849 // If we have a select that conditionally executes some binary operator, 850 // see if we can pull it the select and operator through the shift. 851 // 852 // For example, turning: 853 // shl (select C, (add X, C1), X), C2 854 // Into: 855 // Y = shl X, C2 856 // select C, (add Y, C1 << C2), Y 857 Value *Cond; 858 BinaryOperator *TBO; 859 Value *FalseVal; 860 if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)), 861 m_Value(FalseVal)))) { 862 const APInt *C; 863 if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal && 864 match(TBO->getOperand(1), m_APInt(C)) && 865 canShiftBinOpWithConstantRHS(I, TBO)) { 866 Value *NewRHS = 867 Builder.CreateBinOp(I.getOpcode(), TBO->getOperand(1), C1); 868 869 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), FalseVal, C1); 870 Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift, NewRHS); 871 return SelectInst::Create(Cond, NewOp, NewShift); 872 } 873 } 874 875 BinaryOperator *FBO; 876 Value *TrueVal; 877 if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal), 878 m_OneUse(m_BinOp(FBO))))) { 879 const APInt *C; 880 if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal && 881 match(FBO->getOperand(1), m_APInt(C)) && 882 canShiftBinOpWithConstantRHS(I, FBO)) { 883 Value *NewRHS = 884 Builder.CreateBinOp(I.getOpcode(), FBO->getOperand(1), C1); 885 886 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), TrueVal, C1); 887 Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift, NewRHS); 888 return SelectInst::Create(Cond, NewShift, NewOp); 889 } 890 } 891 892 return nullptr; 893 } 894 895 // Tries to perform 896 // (lshr (add (zext X), (zext Y)), K) 897 // -> (icmp ult (add X, Y), X) 898 // where 899 // - The add's operands are zexts from a K-bits integer to a bigger type. 900 // - The add is only used by the shr, or by iK (or narrower) truncates. 901 // - The lshr type has more than 2 bits (other types are boolean math). 902 // - K > 1 903 // note that 904 // - The resulting add cannot have nuw/nsw, else on overflow we get a 905 // poison value and the transform isn't legal anymore. 906 Instruction *InstCombinerImpl::foldLShrOverflowBit(BinaryOperator &I) { 907 assert(I.getOpcode() == Instruction::LShr); 908 909 Value *Add = I.getOperand(0); 910 Value *ShiftAmt = I.getOperand(1); 911 Type *Ty = I.getType(); 912 913 if (Ty->getScalarSizeInBits() < 3) 914 return nullptr; 915 916 const APInt *ShAmtAPInt = nullptr; 917 Value *X = nullptr, *Y = nullptr; 918 if (!match(ShiftAmt, m_APInt(ShAmtAPInt)) || 919 !match(Add, 920 m_Add(m_OneUse(m_ZExt(m_Value(X))), m_OneUse(m_ZExt(m_Value(Y)))))) 921 return nullptr; 922 923 const unsigned ShAmt = ShAmtAPInt->getZExtValue(); 924 if (ShAmt == 1) 925 return nullptr; 926 927 // X/Y are zexts from `ShAmt`-sized ints. 928 if (X->getType()->getScalarSizeInBits() != ShAmt || 929 Y->getType()->getScalarSizeInBits() != ShAmt) 930 return nullptr; 931 932 // Make sure that `Add` is only used by `I` and `ShAmt`-truncates. 933 if (!Add->hasOneUse()) { 934 for (User *U : Add->users()) { 935 if (U == &I) 936 continue; 937 938 TruncInst *Trunc = dyn_cast<TruncInst>(U); 939 if (!Trunc || Trunc->getType()->getScalarSizeInBits() > ShAmt) 940 return nullptr; 941 } 942 } 943 944 // Insert at Add so that the newly created `NarrowAdd` will dominate it's 945 // users (i.e. `Add`'s users). 946 Instruction *AddInst = cast<Instruction>(Add); 947 Builder.SetInsertPoint(AddInst); 948 949 Value *NarrowAdd = Builder.CreateAdd(X, Y, "add.narrowed"); 950 Value *Overflow = 951 Builder.CreateICmpULT(NarrowAdd, X, "add.narrowed.overflow"); 952 953 // Replace the uses of the original add with a zext of the 954 // NarrowAdd's result. Note that all users at this stage are known to 955 // be ShAmt-sized truncs, or the lshr itself. 956 if (!Add->hasOneUse()) { 957 replaceInstUsesWith(*AddInst, Builder.CreateZExt(NarrowAdd, Ty)); 958 eraseInstFromFunction(*AddInst); 959 } 960 961 // Replace the LShr with a zext of the overflow check. 962 return new ZExtInst(Overflow, Ty); 963 } 964 965 // Try to set nuw/nsw flags on shl or exact flag on lshr/ashr using knownbits. 966 static bool setShiftFlags(BinaryOperator &I, const SimplifyQuery &Q) { 967 assert(I.isShift() && "Expected a shift as input"); 968 // We already have all the flags. 969 if (I.getOpcode() == Instruction::Shl) { 970 if (I.hasNoUnsignedWrap() && I.hasNoSignedWrap()) 971 return false; 972 } else { 973 if (I.isExact()) 974 return false; 975 976 // shr (shl X, Y), Y 977 if (match(I.getOperand(0), m_Shl(m_Value(), m_Specific(I.getOperand(1))))) { 978 I.setIsExact(); 979 return true; 980 } 981 } 982 983 // Compute what we know about shift count. 984 KnownBits KnownCnt = computeKnownBits(I.getOperand(1), /* Depth */ 0, Q); 985 unsigned BitWidth = KnownCnt.getBitWidth(); 986 // Since shift produces a poison value if RHS is equal to or larger than the 987 // bit width, we can safely assume that RHS is less than the bit width. 988 uint64_t MaxCnt = KnownCnt.getMaxValue().getLimitedValue(BitWidth - 1); 989 990 KnownBits KnownAmt = computeKnownBits(I.getOperand(0), /* Depth */ 0, Q); 991 bool Changed = false; 992 993 if (I.getOpcode() == Instruction::Shl) { 994 // If we have as many leading zeros than maximum shift cnt we have nuw. 995 if (!I.hasNoUnsignedWrap() && MaxCnt <= KnownAmt.countMinLeadingZeros()) { 996 I.setHasNoUnsignedWrap(); 997 Changed = true; 998 } 999 // If we have more sign bits than maximum shift cnt we have nsw. 1000 if (!I.hasNoSignedWrap()) { 1001 if (MaxCnt < KnownAmt.countMinSignBits() || 1002 MaxCnt < ComputeNumSignBits(I.getOperand(0), Q.DL, /*Depth*/ 0, Q.AC, 1003 Q.CxtI, Q.DT)) { 1004 I.setHasNoSignedWrap(); 1005 Changed = true; 1006 } 1007 } 1008 return Changed; 1009 } 1010 1011 // If we have at least as many trailing zeros as maximum count then we have 1012 // exact. 1013 Changed = MaxCnt <= KnownAmt.countMinTrailingZeros(); 1014 I.setIsExact(Changed); 1015 1016 return Changed; 1017 } 1018 1019 Instruction *InstCombinerImpl::visitShl(BinaryOperator &I) { 1020 const SimplifyQuery Q = SQ.getWithInstruction(&I); 1021 1022 if (Value *V = simplifyShlInst(I.getOperand(0), I.getOperand(1), 1023 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q)) 1024 return replaceInstUsesWith(I, V); 1025 1026 if (Instruction *X = foldVectorBinop(I)) 1027 return X; 1028 1029 if (Instruction *V = commonShiftTransforms(I)) 1030 return V; 1031 1032 if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder)) 1033 return V; 1034 1035 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1036 Type *Ty = I.getType(); 1037 unsigned BitWidth = Ty->getScalarSizeInBits(); 1038 1039 const APInt *C; 1040 if (match(Op1, m_APInt(C))) { 1041 unsigned ShAmtC = C->getZExtValue(); 1042 1043 // shl (zext X), C --> zext (shl X, C) 1044 // This is only valid if X would have zeros shifted out. 1045 Value *X; 1046 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) { 1047 unsigned SrcWidth = X->getType()->getScalarSizeInBits(); 1048 if (ShAmtC < SrcWidth && 1049 MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmtC), 0, &I)) 1050 return new ZExtInst(Builder.CreateShl(X, ShAmtC), Ty); 1051 } 1052 1053 // (X >> C) << C --> X & (-1 << C) 1054 if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) { 1055 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 1056 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask)); 1057 } 1058 1059 const APInt *C1; 1060 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(C1)))) && 1061 C1->ult(BitWidth)) { 1062 unsigned ShrAmt = C1->getZExtValue(); 1063 if (ShrAmt < ShAmtC) { 1064 // If C1 < C: (X >>?,exact C1) << C --> X << (C - C1) 1065 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt); 1066 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); 1067 NewShl->setHasNoUnsignedWrap( 1068 I.hasNoUnsignedWrap() || 1069 (ShrAmt && 1070 cast<Instruction>(Op0)->getOpcode() == Instruction::LShr && 1071 I.hasNoSignedWrap())); 1072 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap()); 1073 return NewShl; 1074 } 1075 if (ShrAmt > ShAmtC) { 1076 // If C1 > C: (X >>?exact C1) << C --> X >>?exact (C1 - C) 1077 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC); 1078 auto *NewShr = BinaryOperator::Create( 1079 cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff); 1080 NewShr->setIsExact(true); 1081 return NewShr; 1082 } 1083 } 1084 1085 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_APInt(C1)))) && 1086 C1->ult(BitWidth)) { 1087 unsigned ShrAmt = C1->getZExtValue(); 1088 if (ShrAmt < ShAmtC) { 1089 // If C1 < C: (X >>? C1) << C --> (X << (C - C1)) & (-1 << C) 1090 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt); 1091 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); 1092 NewShl->setHasNoUnsignedWrap( 1093 I.hasNoUnsignedWrap() || 1094 (ShrAmt && 1095 cast<Instruction>(Op0)->getOpcode() == Instruction::LShr && 1096 I.hasNoSignedWrap())); 1097 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap()); 1098 Builder.Insert(NewShl); 1099 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 1100 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask)); 1101 } 1102 if (ShrAmt > ShAmtC) { 1103 // If C1 > C: (X >>? C1) << C --> (X >>? (C1 - C)) & (-1 << C) 1104 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC); 1105 auto *OldShr = cast<BinaryOperator>(Op0); 1106 auto *NewShr = 1107 BinaryOperator::Create(OldShr->getOpcode(), X, ShiftDiff); 1108 NewShr->setIsExact(OldShr->isExact()); 1109 Builder.Insert(NewShr); 1110 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 1111 return BinaryOperator::CreateAnd(NewShr, ConstantInt::get(Ty, Mask)); 1112 } 1113 } 1114 1115 // Similar to above, but look through an intermediate trunc instruction. 1116 BinaryOperator *Shr; 1117 if (match(Op0, m_OneUse(m_Trunc(m_OneUse(m_BinOp(Shr))))) && 1118 match(Shr, m_Shr(m_Value(X), m_APInt(C1)))) { 1119 // The larger shift direction survives through the transform. 1120 unsigned ShrAmtC = C1->getZExtValue(); 1121 unsigned ShDiff = ShrAmtC > ShAmtC ? ShrAmtC - ShAmtC : ShAmtC - ShrAmtC; 1122 Constant *ShiftDiffC = ConstantInt::get(X->getType(), ShDiff); 1123 auto ShiftOpc = ShrAmtC > ShAmtC ? Shr->getOpcode() : Instruction::Shl; 1124 1125 // If C1 > C: 1126 // (trunc (X >> C1)) << C --> (trunc (X >> (C1 - C))) && (-1 << C) 1127 // If C > C1: 1128 // (trunc (X >> C1)) << C --> (trunc (X << (C - C1))) && (-1 << C) 1129 Value *NewShift = Builder.CreateBinOp(ShiftOpc, X, ShiftDiffC, "sh.diff"); 1130 Value *Trunc = Builder.CreateTrunc(NewShift, Ty, "tr.sh.diff"); 1131 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 1132 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, Mask)); 1133 } 1134 1135 // If we have an opposite shift by the same amount, we may be able to 1136 // reorder binops and shifts to eliminate math/logic. 1137 auto isSuitableBinOpcode = [](Instruction::BinaryOps BinOpcode) { 1138 switch (BinOpcode) { 1139 default: 1140 return false; 1141 case Instruction::Add: 1142 case Instruction::And: 1143 case Instruction::Or: 1144 case Instruction::Xor: 1145 case Instruction::Sub: 1146 // NOTE: Sub is not commutable and the tranforms below may not be valid 1147 // when the shift-right is operand 1 (RHS) of the sub. 1148 return true; 1149 } 1150 }; 1151 BinaryOperator *Op0BO; 1152 if (match(Op0, m_OneUse(m_BinOp(Op0BO))) && 1153 isSuitableBinOpcode(Op0BO->getOpcode())) { 1154 // Commute so shift-right is on LHS of the binop. 1155 // (Y bop (X >> C)) << C -> ((X >> C) bop Y) << C 1156 // (Y bop ((X >> C) & CC)) << C -> (((X >> C) & CC) bop Y) << C 1157 Value *Shr = Op0BO->getOperand(0); 1158 Value *Y = Op0BO->getOperand(1); 1159 Value *X; 1160 const APInt *CC; 1161 if (Op0BO->isCommutative() && Y->hasOneUse() && 1162 (match(Y, m_Shr(m_Value(), m_Specific(Op1))) || 1163 match(Y, m_And(m_OneUse(m_Shr(m_Value(), m_Specific(Op1))), 1164 m_APInt(CC))))) 1165 std::swap(Shr, Y); 1166 1167 // ((X >> C) bop Y) << C -> (X bop (Y << C)) & (~0 << C) 1168 if (match(Shr, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) { 1169 // Y << C 1170 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName()); 1171 // (X bop (Y << C)) 1172 Value *B = 1173 Builder.CreateBinOp(Op0BO->getOpcode(), X, YS, Shr->getName()); 1174 unsigned Op1Val = C->getLimitedValue(BitWidth); 1175 APInt Bits = APInt::getHighBitsSet(BitWidth, BitWidth - Op1Val); 1176 Constant *Mask = ConstantInt::get(Ty, Bits); 1177 return BinaryOperator::CreateAnd(B, Mask); 1178 } 1179 1180 // (((X >> C) & CC) bop Y) << C -> (X & (CC << C)) bop (Y << C) 1181 if (match(Shr, 1182 m_OneUse(m_And(m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))), 1183 m_APInt(CC))))) { 1184 // Y << C 1185 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName()); 1186 // X & (CC << C) 1187 Value *M = Builder.CreateAnd(X, ConstantInt::get(Ty, CC->shl(*C)), 1188 X->getName() + ".mask"); 1189 auto *NewOp = BinaryOperator::Create(Op0BO->getOpcode(), M, YS); 1190 if (auto *Disjoint = dyn_cast<PossiblyDisjointInst>(Op0BO); 1191 Disjoint && Disjoint->isDisjoint()) 1192 cast<PossiblyDisjointInst>(NewOp)->setIsDisjoint(true); 1193 return NewOp; 1194 } 1195 } 1196 1197 // (C1 - X) << C --> (C1 << C) - (X << C) 1198 if (match(Op0, m_OneUse(m_Sub(m_APInt(C1), m_Value(X))))) { 1199 Constant *NewLHS = ConstantInt::get(Ty, C1->shl(*C)); 1200 Value *NewShift = Builder.CreateShl(X, Op1); 1201 return BinaryOperator::CreateSub(NewLHS, NewShift); 1202 } 1203 } 1204 1205 if (setShiftFlags(I, Q)) 1206 return &I; 1207 1208 // Transform (x >> y) << y to x & (-1 << y) 1209 // Valid for any type of right-shift. 1210 Value *X; 1211 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) { 1212 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); 1213 Value *Mask = Builder.CreateShl(AllOnes, Op1); 1214 return BinaryOperator::CreateAnd(Mask, X); 1215 } 1216 1217 // Transform (-1 >> y) << y to -1 << y 1218 if (match(Op0, m_LShr(m_AllOnes(), m_Specific(Op1)))) { 1219 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); 1220 return BinaryOperator::CreateShl(AllOnes, Op1); 1221 } 1222 1223 Constant *C1; 1224 if (match(Op1, m_ImmConstant(C1))) { 1225 Constant *C2; 1226 Value *X; 1227 // (X * C2) << C1 --> X * (C2 << C1) 1228 if (match(Op0, m_Mul(m_Value(X), m_ImmConstant(C2)))) 1229 return BinaryOperator::CreateMul(X, Builder.CreateShl(C2, C1)); 1230 1231 // shl (zext i1 X), C1 --> select (X, 1 << C1, 0) 1232 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 1233 auto *NewC = Builder.CreateShl(ConstantInt::get(Ty, 1), C1); 1234 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty)); 1235 } 1236 } 1237 1238 if (match(Op0, m_One())) { 1239 // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1 1240 if (match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X)))) 1241 return BinaryOperator::CreateLShr( 1242 ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X); 1243 1244 // Canonicalize "extract lowest set bit" using cttz to and-with-negate: 1245 // 1 << (cttz X) --> -X & X 1246 if (match(Op1, 1247 m_OneUse(m_Intrinsic<Intrinsic::cttz>(m_Value(X), m_Value())))) { 1248 Value *NegX = Builder.CreateNeg(X, "neg"); 1249 return BinaryOperator::CreateAnd(NegX, X); 1250 } 1251 } 1252 1253 return nullptr; 1254 } 1255 1256 Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) { 1257 if (Value *V = simplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), 1258 SQ.getWithInstruction(&I))) 1259 return replaceInstUsesWith(I, V); 1260 1261 if (Instruction *X = foldVectorBinop(I)) 1262 return X; 1263 1264 if (Instruction *R = commonShiftTransforms(I)) 1265 return R; 1266 1267 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1268 Type *Ty = I.getType(); 1269 Value *X; 1270 const APInt *C; 1271 unsigned BitWidth = Ty->getScalarSizeInBits(); 1272 1273 // (iN (~X) u>> (N - 1)) --> zext (X > -1) 1274 if (match(Op0, m_OneUse(m_Not(m_Value(X)))) && 1275 match(Op1, m_SpecificIntAllowPoison(BitWidth - 1))) 1276 return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty); 1277 1278 // ((X << nuw Z) sub nuw Y) >>u exact Z --> X sub nuw (Y >>u exact Z) 1279 Value *Y; 1280 if (I.isExact() && 1281 match(Op0, m_OneUse(m_NUWSub(m_NUWShl(m_Value(X), m_Specific(Op1)), 1282 m_Value(Y))))) { 1283 Value *NewLshr = Builder.CreateLShr(Y, Op1, "", /*isExact=*/true); 1284 auto *NewSub = BinaryOperator::CreateNUWSub(X, NewLshr); 1285 NewSub->setHasNoSignedWrap( 1286 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap()); 1287 return NewSub; 1288 } 1289 1290 // Fold (X + Y) / 2 --> (X & Y) iff (X u<= 1) && (Y u<= 1) 1291 if (match(Op0, m_Add(m_Value(X), m_Value(Y))) && match(Op1, m_One()) && 1292 computeKnownBits(X, /*Depth=*/0, &I).countMaxActiveBits() <= 1 && 1293 computeKnownBits(Y, /*Depth=*/0, &I).countMaxActiveBits() <= 1) 1294 return BinaryOperator::CreateAnd(X, Y); 1295 1296 // (sub nuw X, (Y << nuw Z)) >>u exact Z --> (X >>u exact Z) sub nuw Y 1297 if (I.isExact() && 1298 match(Op0, m_OneUse(m_NUWSub(m_Value(X), 1299 m_NUWShl(m_Value(Y), m_Specific(Op1)))))) { 1300 Value *NewLshr = Builder.CreateLShr(X, Op1, "", /*isExact=*/true); 1301 auto *NewSub = BinaryOperator::CreateNUWSub(NewLshr, Y); 1302 NewSub->setHasNoSignedWrap( 1303 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap()); 1304 return NewSub; 1305 } 1306 1307 auto isSuitableBinOpcode = [](Instruction::BinaryOps BinOpcode) { 1308 switch (BinOpcode) { 1309 default: 1310 return false; 1311 case Instruction::Add: 1312 case Instruction::And: 1313 case Instruction::Or: 1314 case Instruction::Xor: 1315 // Sub is handled separately. 1316 return true; 1317 } 1318 }; 1319 1320 // If both the binop and the shift are nuw, then: 1321 // ((X << nuw Z) binop nuw Y) >>u Z --> X binop nuw (Y >>u Z) 1322 if (match(Op0, m_OneUse(m_c_BinOp(m_NUWShl(m_Value(X), m_Specific(Op1)), 1323 m_Value(Y))))) { 1324 BinaryOperator *Op0OB = cast<BinaryOperator>(Op0); 1325 if (isSuitableBinOpcode(Op0OB->getOpcode())) { 1326 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op0); 1327 !OBO || OBO->hasNoUnsignedWrap()) { 1328 Value *NewLshr = Builder.CreateLShr( 1329 Y, Op1, "", I.isExact() && Op0OB->getOpcode() != Instruction::And); 1330 auto *NewBinOp = BinaryOperator::Create(Op0OB->getOpcode(), NewLshr, X); 1331 if (OBO) { 1332 NewBinOp->setHasNoUnsignedWrap(true); 1333 NewBinOp->setHasNoSignedWrap(OBO->hasNoSignedWrap()); 1334 } else if (auto *Disjoint = dyn_cast<PossiblyDisjointInst>(Op0)) { 1335 cast<PossiblyDisjointInst>(NewBinOp)->setIsDisjoint( 1336 Disjoint->isDisjoint()); 1337 } 1338 return NewBinOp; 1339 } 1340 } 1341 } 1342 1343 if (match(Op1, m_APInt(C))) { 1344 unsigned ShAmtC = C->getZExtValue(); 1345 auto *II = dyn_cast<IntrinsicInst>(Op0); 1346 if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmtC && 1347 (II->getIntrinsicID() == Intrinsic::ctlz || 1348 II->getIntrinsicID() == Intrinsic::cttz || 1349 II->getIntrinsicID() == Intrinsic::ctpop)) { 1350 // ctlz.i32(x)>>5 --> zext(x == 0) 1351 // cttz.i32(x)>>5 --> zext(x == 0) 1352 // ctpop.i32(x)>>5 --> zext(x == -1) 1353 bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop; 1354 Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0); 1355 Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS); 1356 return new ZExtInst(Cmp, Ty); 1357 } 1358 1359 const APInt *C1; 1360 if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) { 1361 if (C1->ult(ShAmtC)) { 1362 unsigned ShlAmtC = C1->getZExtValue(); 1363 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShlAmtC); 1364 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) { 1365 // (X <<nuw C1) >>u C --> X >>u (C - C1) 1366 auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff); 1367 NewLShr->setIsExact(I.isExact()); 1368 return NewLShr; 1369 } 1370 if (Op0->hasOneUse()) { 1371 // (X << C1) >>u C --> (X >>u (C - C1)) & (-1 >> C) 1372 Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact()); 1373 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1374 return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask)); 1375 } 1376 } else if (C1->ugt(ShAmtC)) { 1377 unsigned ShlAmtC = C1->getZExtValue(); 1378 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmtC - ShAmtC); 1379 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) { 1380 // (X <<nuw C1) >>u C --> X <<nuw/nsw (C1 - C) 1381 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); 1382 NewShl->setHasNoUnsignedWrap(true); 1383 NewShl->setHasNoSignedWrap(ShAmtC > 0); 1384 return NewShl; 1385 } 1386 if (Op0->hasOneUse()) { 1387 // (X << C1) >>u C --> X << (C1 - C) & (-1 >> C) 1388 Value *NewShl = Builder.CreateShl(X, ShiftDiff); 1389 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1390 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask)); 1391 } 1392 } else { 1393 assert(*C1 == ShAmtC); 1394 // (X << C) >>u C --> X & (-1 >>u C) 1395 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1396 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask)); 1397 } 1398 } 1399 1400 // ((X << C) + Y) >>u C --> (X + (Y >>u C)) & (-1 >>u C) 1401 // TODO: Consolidate with the more general transform that starts from shl 1402 // (the shifts are in the opposite order). 1403 if (match(Op0, 1404 m_OneUse(m_c_Add(m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))), 1405 m_Value(Y))))) { 1406 Value *NewLshr = Builder.CreateLShr(Y, Op1); 1407 Value *NewAdd = Builder.CreateAdd(NewLshr, X); 1408 unsigned Op1Val = C->getLimitedValue(BitWidth); 1409 APInt Bits = APInt::getLowBitsSet(BitWidth, BitWidth - Op1Val); 1410 Constant *Mask = ConstantInt::get(Ty, Bits); 1411 return BinaryOperator::CreateAnd(NewAdd, Mask); 1412 } 1413 1414 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && 1415 (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) { 1416 assert(ShAmtC < X->getType()->getScalarSizeInBits() && 1417 "Big shift not simplified to zero?"); 1418 // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN 1419 Value *NewLShr = Builder.CreateLShr(X, ShAmtC); 1420 return new ZExtInst(NewLShr, Ty); 1421 } 1422 1423 if (match(Op0, m_SExt(m_Value(X)))) { 1424 unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits(); 1425 // lshr (sext i1 X to iN), C --> select (X, -1 >> C, 0) 1426 if (SrcTyBitWidth == 1) { 1427 auto *NewC = ConstantInt::get( 1428 Ty, APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1429 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty)); 1430 } 1431 1432 if ((!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType())) && 1433 Op0->hasOneUse()) { 1434 // Are we moving the sign bit to the low bit and widening with high 1435 // zeros? lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN 1436 if (ShAmtC == BitWidth - 1) { 1437 Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1); 1438 return new ZExtInst(NewLShr, Ty); 1439 } 1440 1441 // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN 1442 if (ShAmtC == BitWidth - SrcTyBitWidth) { 1443 // The new shift amount can't be more than the narrow source type. 1444 unsigned NewShAmt = std::min(ShAmtC, SrcTyBitWidth - 1); 1445 Value *AShr = Builder.CreateAShr(X, NewShAmt); 1446 return new ZExtInst(AShr, Ty); 1447 } 1448 } 1449 } 1450 1451 if (ShAmtC == BitWidth - 1) { 1452 // lshr i32 or(X,-X), 31 --> zext (X != 0) 1453 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X))))) 1454 return new ZExtInst(Builder.CreateIsNotNull(X), Ty); 1455 1456 // lshr i32 (X -nsw Y), 31 --> zext (X < Y) 1457 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y))))) 1458 return new ZExtInst(Builder.CreateICmpSLT(X, Y), Ty); 1459 1460 // Check if a number is negative and odd: 1461 // lshr i32 (srem X, 2), 31 --> and (X >> 31), X 1462 if (match(Op0, m_OneUse(m_SRem(m_Value(X), m_SpecificInt(2))))) { 1463 Value *Signbit = Builder.CreateLShr(X, ShAmtC); 1464 return BinaryOperator::CreateAnd(Signbit, X); 1465 } 1466 } 1467 1468 Instruction *TruncSrc; 1469 if (match(Op0, m_OneUse(m_Trunc(m_Instruction(TruncSrc)))) && 1470 match(TruncSrc, m_LShr(m_Value(X), m_APInt(C1)))) { 1471 unsigned SrcWidth = X->getType()->getScalarSizeInBits(); 1472 unsigned AmtSum = ShAmtC + C1->getZExtValue(); 1473 1474 // If the combined shift fits in the source width: 1475 // (trunc (X >>u C1)) >>u C --> and (trunc (X >>u (C1 + C)), MaskC 1476 // 1477 // If the first shift covers the number of bits truncated, then the 1478 // mask instruction is eliminated (and so the use check is relaxed). 1479 if (AmtSum < SrcWidth && 1480 (TruncSrc->hasOneUse() || C1->uge(SrcWidth - BitWidth))) { 1481 Value *SumShift = Builder.CreateLShr(X, AmtSum, "sum.shift"); 1482 Value *Trunc = Builder.CreateTrunc(SumShift, Ty, I.getName()); 1483 1484 // If the first shift does not cover the number of bits truncated, then 1485 // we require a mask to get rid of high bits in the result. 1486 APInt MaskC = APInt::getAllOnes(BitWidth).lshr(ShAmtC); 1487 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, MaskC)); 1488 } 1489 } 1490 1491 const APInt *MulC; 1492 if (match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC)))) { 1493 if (BitWidth > 2 && (*MulC - 1).isPowerOf2() && 1494 MulC->logBase2() == ShAmtC) { 1495 // Look for a "splat" mul pattern - it replicates bits across each half 1496 // of a value, so a right shift simplifies back to just X: 1497 // lshr i[2N] (mul nuw X, (2^N)+1), N --> X 1498 if (ShAmtC * 2 == BitWidth) 1499 return replaceInstUsesWith(I, X); 1500 1501 // lshr (mul nuw (X, 2^N + 1)), N -> add nuw (X, lshr(X, N)) 1502 if (Op0->hasOneUse()) { 1503 auto *NewAdd = BinaryOperator::CreateNUWAdd( 1504 X, Builder.CreateLShr(X, ConstantInt::get(Ty, ShAmtC), "", 1505 I.isExact())); 1506 NewAdd->setHasNoSignedWrap( 1507 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap()); 1508 return NewAdd; 1509 } 1510 } 1511 1512 // The one-use check is not strictly necessary, but codegen may not be 1513 // able to invert the transform and perf may suffer with an extra mul 1514 // instruction. 1515 if (Op0->hasOneUse()) { 1516 APInt NewMulC = MulC->lshr(ShAmtC); 1517 // if c is divisible by (1 << ShAmtC): 1518 // lshr (mul nuw x, MulC), ShAmtC -> mul nuw nsw x, (MulC >> ShAmtC) 1519 if (MulC->eq(NewMulC.shl(ShAmtC))) { 1520 auto *NewMul = 1521 BinaryOperator::CreateNUWMul(X, ConstantInt::get(Ty, NewMulC)); 1522 assert(ShAmtC != 0 && 1523 "lshr X, 0 should be handled by simplifyLShrInst."); 1524 NewMul->setHasNoSignedWrap(true); 1525 return NewMul; 1526 } 1527 } 1528 } 1529 1530 // lshr (mul nsw (X, 2^N + 1)), N -> add nsw (X, lshr(X, N)) 1531 if (match(Op0, m_OneUse(m_NSWMul(m_Value(X), m_APInt(MulC))))) { 1532 if (BitWidth > 2 && (*MulC - 1).isPowerOf2() && 1533 MulC->logBase2() == ShAmtC) { 1534 return BinaryOperator::CreateNSWAdd( 1535 X, Builder.CreateLShr(X, ConstantInt::get(Ty, ShAmtC), "", 1536 I.isExact())); 1537 } 1538 } 1539 1540 // Try to narrow bswap. 1541 // In the case where the shift amount equals the bitwidth difference, the 1542 // shift is eliminated. 1543 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::bswap>( 1544 m_OneUse(m_ZExt(m_Value(X))))))) { 1545 unsigned SrcWidth = X->getType()->getScalarSizeInBits(); 1546 unsigned WidthDiff = BitWidth - SrcWidth; 1547 if (SrcWidth % 16 == 0) { 1548 Value *NarrowSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X); 1549 if (ShAmtC >= WidthDiff) { 1550 // (bswap (zext X)) >> C --> zext (bswap X >> C') 1551 Value *NewShift = Builder.CreateLShr(NarrowSwap, ShAmtC - WidthDiff); 1552 return new ZExtInst(NewShift, Ty); 1553 } else { 1554 // (bswap (zext X)) >> C --> (zext (bswap X)) << C' 1555 Value *NewZExt = Builder.CreateZExt(NarrowSwap, Ty); 1556 Constant *ShiftDiff = ConstantInt::get(Ty, WidthDiff - ShAmtC); 1557 return BinaryOperator::CreateShl(NewZExt, ShiftDiff); 1558 } 1559 } 1560 } 1561 1562 // Reduce add-carry of bools to logic: 1563 // ((zext BoolX) + (zext BoolY)) >> 1 --> zext (BoolX && BoolY) 1564 Value *BoolX, *BoolY; 1565 if (ShAmtC == 1 && match(Op0, m_Add(m_Value(X), m_Value(Y))) && 1566 match(X, m_ZExt(m_Value(BoolX))) && match(Y, m_ZExt(m_Value(BoolY))) && 1567 BoolX->getType()->isIntOrIntVectorTy(1) && 1568 BoolY->getType()->isIntOrIntVectorTy(1) && 1569 (X->hasOneUse() || Y->hasOneUse() || Op0->hasOneUse())) { 1570 Value *And = Builder.CreateAnd(BoolX, BoolY); 1571 return new ZExtInst(And, Ty); 1572 } 1573 } 1574 1575 const SimplifyQuery Q = SQ.getWithInstruction(&I); 1576 if (setShiftFlags(I, Q)) 1577 return &I; 1578 1579 // Transform (x << y) >> y to x & (-1 >> y) 1580 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) { 1581 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); 1582 Value *Mask = Builder.CreateLShr(AllOnes, Op1); 1583 return BinaryOperator::CreateAnd(Mask, X); 1584 } 1585 1586 // Transform (-1 << y) >> y to -1 >> y 1587 if (match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1)))) { 1588 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); 1589 return BinaryOperator::CreateLShr(AllOnes, Op1); 1590 } 1591 1592 if (Instruction *Overflow = foldLShrOverflowBit(I)) 1593 return Overflow; 1594 1595 return nullptr; 1596 } 1597 1598 Instruction * 1599 InstCombinerImpl::foldVariableSignZeroExtensionOfVariableHighBitExtract( 1600 BinaryOperator &OldAShr) { 1601 assert(OldAShr.getOpcode() == Instruction::AShr && 1602 "Must be called with arithmetic right-shift instruction only."); 1603 1604 // Check that constant C is a splat of the element-wise bitwidth of V. 1605 auto BitWidthSplat = [](Constant *C, Value *V) { 1606 return match( 1607 C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1608 APInt(C->getType()->getScalarSizeInBits(), 1609 V->getType()->getScalarSizeInBits()))); 1610 }; 1611 1612 // It should look like variable-length sign-extension on the outside: 1613 // (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits) 1614 Value *NBits; 1615 Instruction *MaybeTrunc; 1616 Constant *C1, *C2; 1617 if (!match(&OldAShr, 1618 m_AShr(m_Shl(m_Instruction(MaybeTrunc), 1619 m_ZExtOrSelf(m_Sub(m_Constant(C1), 1620 m_ZExtOrSelf(m_Value(NBits))))), 1621 m_ZExtOrSelf(m_Sub(m_Constant(C2), 1622 m_ZExtOrSelf(m_Deferred(NBits)))))) || 1623 !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr)) 1624 return nullptr; 1625 1626 // There may or may not be a truncation after outer two shifts. 1627 Instruction *HighBitExtract; 1628 match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract))); 1629 bool HadTrunc = MaybeTrunc != HighBitExtract; 1630 1631 // And finally, the innermost part of the pattern must be a right-shift. 1632 Value *X, *NumLowBitsToSkip; 1633 if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip)))) 1634 return nullptr; 1635 1636 // Said right-shift must extract high NBits bits - C0 must be it's bitwidth. 1637 Constant *C0; 1638 if (!match(NumLowBitsToSkip, 1639 m_ZExtOrSelf( 1640 m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) || 1641 !BitWidthSplat(C0, HighBitExtract)) 1642 return nullptr; 1643 1644 // Since the NBits is identical for all shifts, if the outermost and 1645 // innermost shifts are identical, then outermost shifts are redundant. 1646 // If we had truncation, do keep it though. 1647 if (HighBitExtract->getOpcode() == OldAShr.getOpcode()) 1648 return replaceInstUsesWith(OldAShr, MaybeTrunc); 1649 1650 // Else, if there was a truncation, then we need to ensure that one 1651 // instruction will go away. 1652 if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 1653 return nullptr; 1654 1655 // Finally, bypass two innermost shifts, and perform the outermost shift on 1656 // the operands of the innermost shift. 1657 Instruction *NewAShr = 1658 BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip); 1659 NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness. 1660 if (!HadTrunc) 1661 return NewAShr; 1662 1663 Builder.Insert(NewAShr); 1664 return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType()); 1665 } 1666 1667 Instruction *InstCombinerImpl::visitAShr(BinaryOperator &I) { 1668 if (Value *V = simplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), 1669 SQ.getWithInstruction(&I))) 1670 return replaceInstUsesWith(I, V); 1671 1672 if (Instruction *X = foldVectorBinop(I)) 1673 return X; 1674 1675 if (Instruction *R = commonShiftTransforms(I)) 1676 return R; 1677 1678 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1679 Type *Ty = I.getType(); 1680 unsigned BitWidth = Ty->getScalarSizeInBits(); 1681 const APInt *ShAmtAPInt; 1682 if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) { 1683 unsigned ShAmt = ShAmtAPInt->getZExtValue(); 1684 1685 // If the shift amount equals the difference in width of the destination 1686 // and source scalar types: 1687 // ashr (shl (zext X), C), C --> sext X 1688 Value *X; 1689 if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) && 1690 ShAmt == BitWidth - X->getType()->getScalarSizeInBits()) 1691 return new SExtInst(X, Ty); 1692 1693 // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However, 1694 // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits. 1695 const APInt *ShOp1; 1696 if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) && 1697 ShOp1->ult(BitWidth)) { 1698 unsigned ShlAmt = ShOp1->getZExtValue(); 1699 if (ShlAmt < ShAmt) { 1700 // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1) 1701 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt); 1702 auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff); 1703 NewAShr->setIsExact(I.isExact()); 1704 return NewAShr; 1705 } 1706 if (ShlAmt > ShAmt) { 1707 // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2) 1708 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt); 1709 auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff); 1710 NewShl->setHasNoSignedWrap(true); 1711 return NewShl; 1712 } 1713 } 1714 1715 if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) && 1716 ShOp1->ult(BitWidth)) { 1717 unsigned AmtSum = ShAmt + ShOp1->getZExtValue(); 1718 // Oversized arithmetic shifts replicate the sign bit. 1719 AmtSum = std::min(AmtSum, BitWidth - 1); 1720 // (X >>s C1) >>s C2 --> X >>s (C1 + C2) 1721 return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum)); 1722 } 1723 1724 if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) && 1725 (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) { 1726 // ashr (sext X), C --> sext (ashr X, C') 1727 Type *SrcTy = X->getType(); 1728 ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1); 1729 Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt)); 1730 return new SExtInst(NewSh, Ty); 1731 } 1732 1733 if (ShAmt == BitWidth - 1) { 1734 // ashr i32 or(X,-X), 31 --> sext (X != 0) 1735 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X))))) 1736 return new SExtInst(Builder.CreateIsNotNull(X), Ty); 1737 1738 // ashr i32 (X -nsw Y), 31 --> sext (X < Y) 1739 Value *Y; 1740 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y))))) 1741 return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty); 1742 } 1743 1744 const APInt *MulC; 1745 if (match(Op0, m_OneUse(m_NSWMul(m_Value(X), m_APInt(MulC)))) && 1746 (BitWidth > 2 && (*MulC - 1).isPowerOf2() && 1747 MulC->logBase2() == ShAmt && 1748 (ShAmt < BitWidth - 1))) /* Minus 1 for the sign bit */ { 1749 1750 // ashr (mul nsw (X, 2^N + 1)), N -> add nsw (X, ashr(X, N)) 1751 auto *NewAdd = BinaryOperator::CreateNSWAdd( 1752 X, 1753 Builder.CreateAShr(X, ConstantInt::get(Ty, ShAmt), "", I.isExact())); 1754 NewAdd->setHasNoUnsignedWrap( 1755 cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap()); 1756 return NewAdd; 1757 } 1758 } 1759 1760 const SimplifyQuery Q = SQ.getWithInstruction(&I); 1761 if (setShiftFlags(I, Q)) 1762 return &I; 1763 1764 // Prefer `-(x & 1)` over `(x << (bitwidth(x)-1)) a>> (bitwidth(x)-1)` 1765 // as the pattern to splat the lowest bit. 1766 // FIXME: iff X is already masked, we don't need the one-use check. 1767 Value *X; 1768 if (match(Op1, m_SpecificIntAllowPoison(BitWidth - 1)) && 1769 match(Op0, m_OneUse(m_Shl(m_Value(X), 1770 m_SpecificIntAllowPoison(BitWidth - 1))))) { 1771 Constant *Mask = ConstantInt::get(Ty, 1); 1772 // Retain the knowledge about the ignored lanes. 1773 Mask = Constant::mergeUndefsWith( 1774 Constant::mergeUndefsWith(Mask, cast<Constant>(Op1)), 1775 cast<Constant>(cast<Instruction>(Op0)->getOperand(1))); 1776 X = Builder.CreateAnd(X, Mask); 1777 return BinaryOperator::CreateNeg(X); 1778 } 1779 1780 if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I)) 1781 return R; 1782 1783 // See if we can turn a signed shr into an unsigned shr. 1784 if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I)) { 1785 Instruction *Lshr = BinaryOperator::CreateLShr(Op0, Op1); 1786 Lshr->setIsExact(I.isExact()); 1787 return Lshr; 1788 } 1789 1790 // ashr (xor %x, -1), %y --> xor (ashr %x, %y), -1 1791 if (match(Op0, m_OneUse(m_Not(m_Value(X))))) { 1792 // Note that we must drop 'exact'-ness of the shift! 1793 // Note that we can't keep undef's in -1 vector constant! 1794 auto *NewAShr = Builder.CreateAShr(X, Op1, Op0->getName() + ".not"); 1795 return BinaryOperator::CreateNot(NewAShr); 1796 } 1797 1798 return nullptr; 1799 } 1800