xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp (revision 9dba64be9536c28e4800e06512b7f29b43ade345)
1 //===- InstCombineShifts.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitShl, visitLShr, and visitAShr functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/ConstantFolding.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/PatternMatch.h"
18 using namespace llvm;
19 using namespace PatternMatch;
20 
21 #define DEBUG_TYPE "instcombine"
22 
23 // Given pattern:
24 //   (x shiftopcode Q) shiftopcode K
25 // we should rewrite it as
26 //   x shiftopcode (Q+K)  iff (Q+K) u< bitwidth(x)
27 // This is valid for any shift, but they must be identical.
28 //
29 // AnalyzeForSignBitExtraction indicates that we will only analyze whether this
30 // pattern has any 2 right-shifts that sum to 1 less than original bit width.
31 Value *InstCombiner::reassociateShiftAmtsOfTwoSameDirectionShifts(
32     BinaryOperator *Sh0, const SimplifyQuery &SQ,
33     bool AnalyzeForSignBitExtraction) {
34   // Look for a shift of some instruction, ignore zext of shift amount if any.
35   Instruction *Sh0Op0;
36   Value *ShAmt0;
37   if (!match(Sh0,
38              m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0)))))
39     return nullptr;
40 
41   // If there is a truncation between the two shifts, we must make note of it
42   // and look through it. The truncation imposes additional constraints on the
43   // transform.
44   Instruction *Sh1;
45   Value *Trunc = nullptr;
46   match(Sh0Op0,
47         m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)),
48                     m_Instruction(Sh1)));
49 
50   // Inner shift: (x shiftopcode ShAmt1)
51   // Like with other shift, ignore zext of shift amount if any.
52   Value *X, *ShAmt1;
53   if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1)))))
54     return nullptr;
55 
56   // We have two shift amounts from two different shifts. The types of those
57   // shift amounts may not match. If that's the case let's bailout now..
58   if (ShAmt0->getType() != ShAmt1->getType())
59     return nullptr;
60 
61   // We are only looking for signbit extraction if we have two right shifts.
62   bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) &&
63                            match(Sh1, m_Shr(m_Value(), m_Value()));
64   // ... and if it's not two right-shifts, we know the answer already.
65   if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
66     return nullptr;
67 
68   // The shift opcodes must be identical, unless we are just checking whether
69   // this pattern can be interpreted as a sign-bit-extraction.
70   Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode();
71   bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode();
72   if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
73     return nullptr;
74 
75   // If we saw truncation, we'll need to produce extra instruction,
76   // and for that one of the operands of the shift must be one-use,
77   // unless of course we don't actually plan to produce any instructions here.
78   if (Trunc && !AnalyzeForSignBitExtraction &&
79       !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
80     return nullptr;
81 
82   // Can we fold (ShAmt0+ShAmt1) ?
83   auto *NewShAmt = dyn_cast_or_null<Constant>(
84       SimplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false,
85                       SQ.getWithInstruction(Sh0)));
86   if (!NewShAmt)
87     return nullptr; // Did not simplify.
88   unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
89   unsigned XBitWidth = X->getType()->getScalarSizeInBits();
90   // Is the new shift amount smaller than the bit width of inner/new shift?
91   if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
92                                           APInt(NewShAmtBitWidth, XBitWidth))))
93     return nullptr; // FIXME: could perform constant-folding.
94 
95   // If there was a truncation, and we have a right-shift, we can only fold if
96   // we are left with the original sign bit. Likewise, if we were just checking
97   // that this is a sighbit extraction, this is the place to check it.
98   // FIXME: zero shift amount is also legal here, but we can't *easily* check
99   // more than one predicate so it's not really worth it.
100   if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
101     // If it's not a sign bit extraction, then we're done.
102     if (!match(NewShAmt,
103                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
104                                   APInt(NewShAmtBitWidth, XBitWidth - 1))))
105       return nullptr;
106     // If it is, and that was the question, return the base value.
107     if (AnalyzeForSignBitExtraction)
108       return X;
109   }
110 
111   assert(IdenticalShOpcodes && "Should not get here with different shifts.");
112 
113   // All good, we can do this fold.
114   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType());
115 
116   BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt);
117 
118   // The flags can only be propagated if there wasn't a trunc.
119   if (!Trunc) {
120     // If the pattern did not involve trunc, and both of the original shifts
121     // had the same flag set, preserve the flag.
122     if (ShiftOpcode == Instruction::BinaryOps::Shl) {
123       NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() &&
124                                      Sh1->hasNoUnsignedWrap());
125       NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() &&
126                                    Sh1->hasNoSignedWrap());
127     } else {
128       NewShift->setIsExact(Sh0->isExact() && Sh1->isExact());
129     }
130   }
131 
132   Instruction *Ret = NewShift;
133   if (Trunc) {
134     Builder.Insert(NewShift);
135     Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType());
136   }
137 
138   return Ret;
139 }
140 
141 // Try to replace `undef` constants in C with Replacement.
142 static Constant *replaceUndefsWith(Constant *C, Constant *Replacement) {
143   if (C && match(C, m_Undef()))
144     return Replacement;
145 
146   if (auto *CV = dyn_cast<ConstantVector>(C)) {
147     llvm::SmallVector<Constant *, 32> NewOps(CV->getNumOperands());
148     for (unsigned i = 0, NumElts = NewOps.size(); i != NumElts; ++i) {
149       Constant *EltC = CV->getOperand(i);
150       NewOps[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC;
151     }
152     return ConstantVector::get(NewOps);
153   }
154 
155   // Don't know how to deal with this constant.
156   return C;
157 }
158 
159 // If we have some pattern that leaves only some low bits set, and then performs
160 // left-shift of those bits, if none of the bits that are left after the final
161 // shift are modified by the mask, we can omit the mask.
162 //
163 // There are many variants to this pattern:
164 //   a)  (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt
165 //   b)  (x & (~(-1 << MaskShAmt))) << ShiftShAmt
166 //   c)  (x & (-1 >> MaskShAmt)) << ShiftShAmt
167 //   d)  (x & ((-1 << MaskShAmt) >> MaskShAmt)) << ShiftShAmt
168 //   e)  ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt
169 //   f)  ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt
170 // All these patterns can be simplified to just:
171 //   x << ShiftShAmt
172 // iff:
173 //   a,b)     (MaskShAmt+ShiftShAmt) u>= bitwidth(x)
174 //   c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt)
175 static Instruction *
176 dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift,
177                                      const SimplifyQuery &Q,
178                                      InstCombiner::BuilderTy &Builder) {
179   assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl &&
180          "The input must be 'shl'!");
181 
182   Value *Masked, *ShiftShAmt;
183   match(OuterShift, m_Shift(m_Value(Masked), m_Value(ShiftShAmt)));
184 
185   Type *NarrowestTy = OuterShift->getType();
186   Type *WidestTy = Masked->getType();
187   // The mask must be computed in a type twice as wide to ensure
188   // that no bits are lost if the sum-of-shifts is wider than the base type.
189   Type *ExtendedTy = WidestTy->getExtendedType();
190 
191   Value *MaskShAmt;
192 
193   // ((1 << MaskShAmt) - 1)
194   auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes());
195   // (~(-1 << maskNbits))
196   auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes());
197   // (-1 >> MaskShAmt)
198   auto MaskC = m_Shr(m_AllOnes(), m_Value(MaskShAmt));
199   // ((-1 << MaskShAmt) >> MaskShAmt)
200   auto MaskD =
201       m_Shr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt));
202 
203   Value *X;
204   Constant *NewMask;
205 
206   if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) {
207     // Can we simplify (MaskShAmt+ShiftShAmt) ?
208     auto *SumOfShAmts = dyn_cast_or_null<Constant>(SimplifyAddInst(
209         MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
210     if (!SumOfShAmts)
211       return nullptr; // Did not simplify.
212     // In this pattern SumOfShAmts correlates with the number of low bits
213     // that shall remain in the root value (OuterShift).
214 
215     // An extend of an undef value becomes zero because the high bits are never
216     // completely unknown. Replace the the `undef` shift amounts with final
217     // shift bitwidth to ensure that the value remains undef when creating the
218     // subsequent shift op.
219     SumOfShAmts = replaceUndefsWith(
220         SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(),
221                                       ExtendedTy->getScalarSizeInBits()));
222     auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy);
223     // And compute the mask as usual: ~(-1 << (SumOfShAmts))
224     auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
225     auto *ExtendedInvertedMask =
226         ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts);
227     NewMask = ConstantExpr::getNot(ExtendedInvertedMask);
228   } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) ||
229              match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)),
230                                  m_Deferred(MaskShAmt)))) {
231     // Can we simplify (ShiftShAmt-MaskShAmt) ?
232     auto *ShAmtsDiff = dyn_cast_or_null<Constant>(SimplifySubInst(
233         ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
234     if (!ShAmtsDiff)
235       return nullptr; // Did not simplify.
236     // In this pattern ShAmtsDiff correlates with the number of high bits that
237     // shall be unset in the root value (OuterShift).
238 
239     // An extend of an undef value becomes zero because the high bits are never
240     // completely unknown. Replace the the `undef` shift amounts with negated
241     // bitwidth of innermost shift to ensure that the value remains undef when
242     // creating the subsequent shift op.
243     unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits();
244     ShAmtsDiff = replaceUndefsWith(
245         ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(),
246                                      -WidestTyBitWidth));
247     auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt(
248         ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(),
249                                               WidestTyBitWidth,
250                                               /*isSigned=*/false),
251                              ShAmtsDiff),
252         ExtendedTy);
253     // And compute the mask as usual: (-1 l>> (NumHighBitsToClear))
254     auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
255     NewMask =
256         ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear);
257   } else
258     return nullptr; // Don't know anything about this pattern.
259 
260   NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy);
261 
262   // Does this mask has any unset bits? If not then we can just not apply it.
263   bool NeedMask = !match(NewMask, m_AllOnes());
264 
265   // If we need to apply a mask, there are several more restrictions we have.
266   if (NeedMask) {
267     // The old masking instruction must go away.
268     if (!Masked->hasOneUse())
269       return nullptr;
270     // The original "masking" instruction must not have been`ashr`.
271     if (match(Masked, m_AShr(m_Value(), m_Value())))
272       return nullptr;
273   }
274 
275   // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits.
276   auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X,
277                                           OuterShift->getOperand(1));
278 
279   if (!NeedMask)
280     return NewShift;
281 
282   Builder.Insert(NewShift);
283   return BinaryOperator::Create(Instruction::And, NewShift, NewMask);
284 }
285 
286 Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
287   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
288   assert(Op0->getType() == Op1->getType());
289 
290   // If the shift amount is a one-use `sext`, we can demote it to `zext`.
291   Value *Y;
292   if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) {
293     Value *NewExt = Builder.CreateZExt(Y, I.getType(), Op1->getName());
294     return BinaryOperator::Create(I.getOpcode(), Op0, NewExt);
295   }
296 
297   // See if we can fold away this shift.
298   if (SimplifyDemandedInstructionBits(I))
299     return &I;
300 
301   // Try to fold constant and into select arguments.
302   if (isa<Constant>(Op0))
303     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
304       if (Instruction *R = FoldOpIntoSelect(I, SI))
305         return R;
306 
307   if (Constant *CUI = dyn_cast<Constant>(Op1))
308     if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
309       return Res;
310 
311   if (auto *NewShift = cast_or_null<Instruction>(
312           reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ)))
313     return NewShift;
314 
315   // (C1 shift (A add C2)) -> (C1 shift C2) shift A)
316   // iff A and C2 are both positive.
317   Value *A;
318   Constant *C;
319   if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C))))
320     if (isKnownNonNegative(A, DL, 0, &AC, &I, &DT) &&
321         isKnownNonNegative(C, DL, 0, &AC, &I, &DT))
322       return BinaryOperator::Create(
323           I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), Op0, C), A);
324 
325   // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
326   // Because shifts by negative values (which could occur if A were negative)
327   // are undefined.
328   const APInt *B;
329   if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
330     // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
331     // demand the sign bit (and many others) here??
332     Value *Rem = Builder.CreateAnd(A, ConstantInt::get(I.getType(), *B - 1),
333                                    Op1->getName());
334     I.setOperand(1, Rem);
335     return &I;
336   }
337 
338   return nullptr;
339 }
340 
341 /// Return true if we can simplify two logical (either left or right) shifts
342 /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
343 static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
344                                     Instruction *InnerShift, InstCombiner &IC,
345                                     Instruction *CxtI) {
346   assert(InnerShift->isLogicalShift() && "Unexpected instruction type");
347 
348   // We need constant scalar or constant splat shifts.
349   const APInt *InnerShiftConst;
350   if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
351     return false;
352 
353   // Two logical shifts in the same direction:
354   // shl (shl X, C1), C2 -->  shl X, C1 + C2
355   // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
356   bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
357   if (IsInnerShl == IsOuterShl)
358     return true;
359 
360   // Equal shift amounts in opposite directions become bitwise 'and':
361   // lshr (shl X, C), C --> and X, C'
362   // shl (lshr X, C), C --> and X, C'
363   if (*InnerShiftConst == OuterShAmt)
364     return true;
365 
366   // If the 2nd shift is bigger than the 1st, we can fold:
367   // lshr (shl X, C1), C2 -->  and (shl X, C1 - C2), C3
368   // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
369   // but it isn't profitable unless we know the and'd out bits are already zero.
370   // Also, check that the inner shift is valid (less than the type width) or
371   // we'll crash trying to produce the bit mask for the 'and'.
372   unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
373   if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) {
374     unsigned InnerShAmt = InnerShiftConst->getZExtValue();
375     unsigned MaskShift =
376         IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
377     APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
378     if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
379       return true;
380   }
381 
382   return false;
383 }
384 
385 /// See if we can compute the specified value, but shifted logically to the left
386 /// or right by some number of bits. This should return true if the expression
387 /// can be computed for the same cost as the current expression tree. This is
388 /// used to eliminate extraneous shifting from things like:
389 ///      %C = shl i128 %A, 64
390 ///      %D = shl i128 %B, 96
391 ///      %E = or i128 %C, %D
392 ///      %F = lshr i128 %E, 64
393 /// where the client will ask if E can be computed shifted right by 64-bits. If
394 /// this succeeds, getShiftedValue() will be called to produce the value.
395 static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
396                                InstCombiner &IC, Instruction *CxtI) {
397   // We can always evaluate constants shifted.
398   if (isa<Constant>(V))
399     return true;
400 
401   Instruction *I = dyn_cast<Instruction>(V);
402   if (!I) return false;
403 
404   // If this is the opposite shift, we can directly reuse the input of the shift
405   // if the needed bits are already zero in the input.  This allows us to reuse
406   // the value which means that we don't care if the shift has multiple uses.
407   //  TODO:  Handle opposite shift by exact value.
408   ConstantInt *CI = nullptr;
409   if ((IsLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
410       (!IsLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
411     if (CI->getValue() == NumBits) {
412       // TODO: Check that the input bits are already zero with MaskedValueIsZero
413 #if 0
414       // If this is a truncate of a logical shr, we can truncate it to a smaller
415       // lshr iff we know that the bits we would otherwise be shifting in are
416       // already zeros.
417       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
418       uint32_t BitWidth = Ty->getScalarSizeInBits();
419       if (MaskedValueIsZero(I->getOperand(0),
420             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
421           CI->getLimitedValue(BitWidth) < BitWidth) {
422         return CanEvaluateTruncated(I->getOperand(0), Ty);
423       }
424 #endif
425 
426     }
427   }
428 
429   // We can't mutate something that has multiple uses: doing so would
430   // require duplicating the instruction in general, which isn't profitable.
431   if (!I->hasOneUse()) return false;
432 
433   switch (I->getOpcode()) {
434   default: return false;
435   case Instruction::And:
436   case Instruction::Or:
437   case Instruction::Xor:
438     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
439     return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
440            canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);
441 
442   case Instruction::Shl:
443   case Instruction::LShr:
444     return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);
445 
446   case Instruction::Select: {
447     SelectInst *SI = cast<SelectInst>(I);
448     Value *TrueVal = SI->getTrueValue();
449     Value *FalseVal = SI->getFalseValue();
450     return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
451            canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
452   }
453   case Instruction::PHI: {
454     // We can change a phi if we can change all operands.  Note that we never
455     // get into trouble with cyclic PHIs here because we only consider
456     // instructions with a single use.
457     PHINode *PN = cast<PHINode>(I);
458     for (Value *IncValue : PN->incoming_values())
459       if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
460         return false;
461     return true;
462   }
463   }
464 }
465 
466 /// Fold OuterShift (InnerShift X, C1), C2.
467 /// See canEvaluateShiftedShift() for the constraints on these instructions.
468 static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
469                                bool IsOuterShl,
470                                InstCombiner::BuilderTy &Builder) {
471   bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
472   Type *ShType = InnerShift->getType();
473   unsigned TypeWidth = ShType->getScalarSizeInBits();
474 
475   // We only accept shifts-by-a-constant in canEvaluateShifted().
476   const APInt *C1;
477   match(InnerShift->getOperand(1), m_APInt(C1));
478   unsigned InnerShAmt = C1->getZExtValue();
479 
480   // Change the shift amount and clear the appropriate IR flags.
481   auto NewInnerShift = [&](unsigned ShAmt) {
482     InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
483     if (IsInnerShl) {
484       InnerShift->setHasNoUnsignedWrap(false);
485       InnerShift->setHasNoSignedWrap(false);
486     } else {
487       InnerShift->setIsExact(false);
488     }
489     return InnerShift;
490   };
491 
492   // Two logical shifts in the same direction:
493   // shl (shl X, C1), C2 -->  shl X, C1 + C2
494   // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
495   if (IsInnerShl == IsOuterShl) {
496     // If this is an oversized composite shift, then unsigned shifts get 0.
497     if (InnerShAmt + OuterShAmt >= TypeWidth)
498       return Constant::getNullValue(ShType);
499 
500     return NewInnerShift(InnerShAmt + OuterShAmt);
501   }
502 
503   // Equal shift amounts in opposite directions become bitwise 'and':
504   // lshr (shl X, C), C --> and X, C'
505   // shl (lshr X, C), C --> and X, C'
506   if (InnerShAmt == OuterShAmt) {
507     APInt Mask = IsInnerShl
508                      ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
509                      : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
510     Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
511                                    ConstantInt::get(ShType, Mask));
512     if (auto *AndI = dyn_cast<Instruction>(And)) {
513       AndI->moveBefore(InnerShift);
514       AndI->takeName(InnerShift);
515     }
516     return And;
517   }
518 
519   assert(InnerShAmt > OuterShAmt &&
520          "Unexpected opposite direction logical shift pair");
521 
522   // In general, we would need an 'and' for this transform, but
523   // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
524   // lshr (shl X, C1), C2 -->  shl X, C1 - C2
525   // shl (lshr X, C1), C2 --> lshr X, C1 - C2
526   return NewInnerShift(InnerShAmt - OuterShAmt);
527 }
528 
529 /// When canEvaluateShifted() returns true for an expression, this function
530 /// inserts the new computation that produces the shifted value.
531 static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
532                               InstCombiner &IC, const DataLayout &DL) {
533   // We can always evaluate constants shifted.
534   if (Constant *C = dyn_cast<Constant>(V)) {
535     if (isLeftShift)
536       V = IC.Builder.CreateShl(C, NumBits);
537     else
538       V = IC.Builder.CreateLShr(C, NumBits);
539     // If we got a constantexpr back, try to simplify it with TD info.
540     if (auto *C = dyn_cast<Constant>(V))
541       if (auto *FoldedC =
542               ConstantFoldConstant(C, DL, &IC.getTargetLibraryInfo()))
543         V = FoldedC;
544     return V;
545   }
546 
547   Instruction *I = cast<Instruction>(V);
548   IC.Worklist.Add(I);
549 
550   switch (I->getOpcode()) {
551   default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
552   case Instruction::And:
553   case Instruction::Or:
554   case Instruction::Xor:
555     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
556     I->setOperand(
557         0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
558     I->setOperand(
559         1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
560     return I;
561 
562   case Instruction::Shl:
563   case Instruction::LShr:
564     return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
565                             IC.Builder);
566 
567   case Instruction::Select:
568     I->setOperand(
569         1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
570     I->setOperand(
571         2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
572     return I;
573   case Instruction::PHI: {
574     // We can change a phi if we can change all operands.  Note that we never
575     // get into trouble with cyclic PHIs here because we only consider
576     // instructions with a single use.
577     PHINode *PN = cast<PHINode>(I);
578     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
579       PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits,
580                                               isLeftShift, IC, DL));
581     return PN;
582   }
583   }
584 }
585 
586 // If this is a bitwise operator or add with a constant RHS we might be able
587 // to pull it through a shift.
588 static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift,
589                                          BinaryOperator *BO) {
590   switch (BO->getOpcode()) {
591   default:
592     return false; // Do not perform transform!
593   case Instruction::Add:
594     return Shift.getOpcode() == Instruction::Shl;
595   case Instruction::Or:
596   case Instruction::Xor:
597   case Instruction::And:
598     return true;
599   }
600 }
601 
602 Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1,
603                                                BinaryOperator &I) {
604   bool isLeftShift = I.getOpcode() == Instruction::Shl;
605 
606   const APInt *Op1C;
607   if (!match(Op1, m_APInt(Op1C)))
608     return nullptr;
609 
610   // See if we can propagate this shift into the input, this covers the trivial
611   // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
612   if (I.getOpcode() != Instruction::AShr &&
613       canEvaluateShifted(Op0, Op1C->getZExtValue(), isLeftShift, *this, &I)) {
614     LLVM_DEBUG(
615         dbgs() << "ICE: GetShiftedValue propagating shift through expression"
616                   " to eliminate shift:\n  IN: "
617                << *Op0 << "\n  SH: " << I << "\n");
618 
619     return replaceInstUsesWith(
620         I, getShiftedValue(Op0, Op1C->getZExtValue(), isLeftShift, *this, DL));
621   }
622 
623   // See if we can simplify any instructions used by the instruction whose sole
624   // purpose is to compute bits we don't care about.
625   unsigned TypeBits = Op0->getType()->getScalarSizeInBits();
626 
627   assert(!Op1C->uge(TypeBits) &&
628          "Shift over the type width should have been removed already");
629 
630   if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I))
631     return FoldedShift;
632 
633   // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
634   if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
635     Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
636     // If 'shift2' is an ashr, we would have to get the sign bit into a funny
637     // place.  Don't try to do this transformation in this case.  Also, we
638     // require that the input operand is a shift-by-constant so that we have
639     // confidence that the shifts will get folded together.  We could do this
640     // xform in more cases, but it is unlikely to be profitable.
641     if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
642         isa<ConstantInt>(TrOp->getOperand(1))) {
643       // Okay, we'll do this xform.  Make the shift of shift.
644       Constant *ShAmt =
645           ConstantExpr::getZExt(cast<Constant>(Op1), TrOp->getType());
646       // (shift2 (shift1 & 0x00FF), c2)
647       Value *NSh = Builder.CreateBinOp(I.getOpcode(), TrOp, ShAmt, I.getName());
648 
649       // For logical shifts, the truncation has the effect of making the high
650       // part of the register be zeros.  Emulate this by inserting an AND to
651       // clear the top bits as needed.  This 'and' will usually be zapped by
652       // other xforms later if dead.
653       unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
654       unsigned DstSize = TI->getType()->getScalarSizeInBits();
655       APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
656 
657       // The mask we constructed says what the trunc would do if occurring
658       // between the shifts.  We want to know the effect *after* the second
659       // shift.  We know that it is a logical shift by a constant, so adjust the
660       // mask as appropriate.
661       if (I.getOpcode() == Instruction::Shl)
662         MaskV <<= Op1C->getZExtValue();
663       else {
664         assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
665         MaskV.lshrInPlace(Op1C->getZExtValue());
666       }
667 
668       // shift1 & 0x00FF
669       Value *And = Builder.CreateAnd(NSh,
670                                      ConstantInt::get(I.getContext(), MaskV),
671                                      TI->getName());
672 
673       // Return the value truncated to the interesting size.
674       return new TruncInst(And, I.getType());
675     }
676   }
677 
678   if (Op0->hasOneUse()) {
679     if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
680       // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
681       Value *V1, *V2;
682       ConstantInt *CC;
683       switch (Op0BO->getOpcode()) {
684       default: break;
685       case Instruction::Add:
686       case Instruction::And:
687       case Instruction::Or:
688       case Instruction::Xor: {
689         // These operators commute.
690         // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
691         if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
692             match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
693                   m_Specific(Op1)))) {
694           Value *YS =         // (Y << C)
695             Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
696           // (X + (Y << C))
697           Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), YS, V1,
698                                          Op0BO->getOperand(1)->getName());
699           unsigned Op1Val = Op1C->getLimitedValue(TypeBits);
700 
701           APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
702           Constant *Mask = ConstantInt::get(I.getContext(), Bits);
703           if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
704             Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
705           return BinaryOperator::CreateAnd(X, Mask);
706         }
707 
708         // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
709         Value *Op0BOOp1 = Op0BO->getOperand(1);
710         if (isLeftShift && Op0BOOp1->hasOneUse() &&
711             match(Op0BOOp1,
712                   m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
713                         m_ConstantInt(CC)))) {
714           Value *YS =   // (Y << C)
715             Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
716           // X & (CC << C)
717           Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
718                                         V1->getName()+".mask");
719           return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
720         }
721         LLVM_FALLTHROUGH;
722       }
723 
724       case Instruction::Sub: {
725         // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
726         if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
727             match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
728                   m_Specific(Op1)))) {
729           Value *YS =  // (Y << C)
730             Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
731           // (X + (Y << C))
732           Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), V1, YS,
733                                          Op0BO->getOperand(0)->getName());
734           unsigned Op1Val = Op1C->getLimitedValue(TypeBits);
735 
736           APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
737           Constant *Mask = ConstantInt::get(I.getContext(), Bits);
738           if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
739             Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
740           return BinaryOperator::CreateAnd(X, Mask);
741         }
742 
743         // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
744         if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
745             match(Op0BO->getOperand(0),
746                   m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))),
747                         m_ConstantInt(CC))) && V2 == Op1) {
748           Value *YS = // (Y << C)
749             Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
750           // X & (CC << C)
751           Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
752                                         V1->getName()+".mask");
753 
754           return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
755         }
756 
757         break;
758       }
759       }
760 
761 
762       // If the operand is a bitwise operator with a constant RHS, and the
763       // shift is the only use, we can pull it out of the shift.
764       const APInt *Op0C;
765       if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
766         if (canShiftBinOpWithConstantRHS(I, Op0BO)) {
767           Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
768                                      cast<Constant>(Op0BO->getOperand(1)), Op1);
769 
770           Value *NewShift =
771             Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
772           NewShift->takeName(Op0BO);
773 
774           return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
775                                         NewRHS);
776         }
777       }
778 
779       // If the operand is a subtract with a constant LHS, and the shift
780       // is the only use, we can pull it out of the shift.
781       // This folds (shl (sub C1, X), C2) -> (sub (C1 << C2), (shl X, C2))
782       if (isLeftShift && Op0BO->getOpcode() == Instruction::Sub &&
783           match(Op0BO->getOperand(0), m_APInt(Op0C))) {
784         Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
785                                    cast<Constant>(Op0BO->getOperand(0)), Op1);
786 
787         Value *NewShift = Builder.CreateShl(Op0BO->getOperand(1), Op1);
788         NewShift->takeName(Op0BO);
789 
790         return BinaryOperator::CreateSub(NewRHS, NewShift);
791       }
792     }
793 
794     // If we have a select that conditionally executes some binary operator,
795     // see if we can pull it the select and operator through the shift.
796     //
797     // For example, turning:
798     //   shl (select C, (add X, C1), X), C2
799     // Into:
800     //   Y = shl X, C2
801     //   select C, (add Y, C1 << C2), Y
802     Value *Cond;
803     BinaryOperator *TBO;
804     Value *FalseVal;
805     if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)),
806                             m_Value(FalseVal)))) {
807       const APInt *C;
808       if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal &&
809           match(TBO->getOperand(1), m_APInt(C)) &&
810           canShiftBinOpWithConstantRHS(I, TBO)) {
811         Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
812                                        cast<Constant>(TBO->getOperand(1)), Op1);
813 
814         Value *NewShift =
815           Builder.CreateBinOp(I.getOpcode(), FalseVal, Op1);
816         Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift,
817                                            NewRHS);
818         return SelectInst::Create(Cond, NewOp, NewShift);
819       }
820     }
821 
822     BinaryOperator *FBO;
823     Value *TrueVal;
824     if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal),
825                             m_OneUse(m_BinOp(FBO))))) {
826       const APInt *C;
827       if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal &&
828           match(FBO->getOperand(1), m_APInt(C)) &&
829           canShiftBinOpWithConstantRHS(I, FBO)) {
830         Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
831                                        cast<Constant>(FBO->getOperand(1)), Op1);
832 
833         Value *NewShift =
834           Builder.CreateBinOp(I.getOpcode(), TrueVal, Op1);
835         Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift,
836                                            NewRHS);
837         return SelectInst::Create(Cond, NewShift, NewOp);
838       }
839     }
840   }
841 
842   return nullptr;
843 }
844 
845 Instruction *InstCombiner::visitShl(BinaryOperator &I) {
846   const SimplifyQuery Q = SQ.getWithInstruction(&I);
847 
848   if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
849                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q))
850     return replaceInstUsesWith(I, V);
851 
852   if (Instruction *X = foldVectorBinop(I))
853     return X;
854 
855   if (Instruction *V = commonShiftTransforms(I))
856     return V;
857 
858   if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder))
859     return V;
860 
861   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
862   Type *Ty = I.getType();
863   unsigned BitWidth = Ty->getScalarSizeInBits();
864 
865   const APInt *ShAmtAPInt;
866   if (match(Op1, m_APInt(ShAmtAPInt))) {
867     unsigned ShAmt = ShAmtAPInt->getZExtValue();
868 
869     // shl (zext X), ShAmt --> zext (shl X, ShAmt)
870     // This is only valid if X would have zeros shifted out.
871     Value *X;
872     if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
873       unsigned SrcWidth = X->getType()->getScalarSizeInBits();
874       if (ShAmt < SrcWidth &&
875           MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmt), 0, &I))
876         return new ZExtInst(Builder.CreateShl(X, ShAmt), Ty);
877     }
878 
879     // (X >> C) << C --> X & (-1 << C)
880     if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
881       APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt));
882       return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
883     }
884 
885     // FIXME: we do not yet transform non-exact shr's. The backend (DAGCombine)
886     // needs a few fixes for the rotate pattern recognition first.
887     const APInt *ShOp1;
888     if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(ShOp1))))) {
889       unsigned ShrAmt = ShOp1->getZExtValue();
890       if (ShrAmt < ShAmt) {
891         // If C1 < C2: (X >>?,exact C1) << C2 --> X << (C2 - C1)
892         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShrAmt);
893         auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
894         NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
895         NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
896         return NewShl;
897       }
898       if (ShrAmt > ShAmt) {
899         // If C1 > C2: (X >>?exact C1) << C2 --> X >>?exact (C1 - C2)
900         Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmt);
901         auto *NewShr = BinaryOperator::Create(
902             cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
903         NewShr->setIsExact(true);
904         return NewShr;
905       }
906     }
907 
908     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1)))) {
909       unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
910       // Oversized shifts are simplified to zero in InstSimplify.
911       if (AmtSum < BitWidth)
912         // (X << C1) << C2 --> X << (C1 + C2)
913         return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum));
914     }
915 
916     // If the shifted-out value is known-zero, then this is a NUW shift.
917     if (!I.hasNoUnsignedWrap() &&
918         MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmt), 0, &I)) {
919       I.setHasNoUnsignedWrap();
920       return &I;
921     }
922 
923     // If the shifted-out value is all signbits, then this is a NSW shift.
924     if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmt) {
925       I.setHasNoSignedWrap();
926       return &I;
927     }
928   }
929 
930   // Transform  (x >> y) << y  to  x & (-1 << y)
931   // Valid for any type of right-shift.
932   Value *X;
933   if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
934     Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
935     Value *Mask = Builder.CreateShl(AllOnes, Op1);
936     return BinaryOperator::CreateAnd(Mask, X);
937   }
938 
939   Constant *C1;
940   if (match(Op1, m_Constant(C1))) {
941     Constant *C2;
942     Value *X;
943     // (C2 << X) << C1 --> (C2 << C1) << X
944     if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X)))))
945       return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X);
946 
947     // (X * C2) << C1 --> X * (C2 << C1)
948     if (match(Op0, m_Mul(m_Value(X), m_Constant(C2))))
949       return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1));
950 
951     // shl (zext i1 X), C1 --> select (X, 1 << C1, 0)
952     if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
953       auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1);
954       return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
955     }
956   }
957 
958   // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1
959   if (match(Op0, m_One()) &&
960       match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X))))
961     return BinaryOperator::CreateLShr(
962         ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X);
963 
964   return nullptr;
965 }
966 
967 Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
968   if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
969                                   SQ.getWithInstruction(&I)))
970     return replaceInstUsesWith(I, V);
971 
972   if (Instruction *X = foldVectorBinop(I))
973     return X;
974 
975   if (Instruction *R = commonShiftTransforms(I))
976     return R;
977 
978   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
979   Type *Ty = I.getType();
980   const APInt *ShAmtAPInt;
981   if (match(Op1, m_APInt(ShAmtAPInt))) {
982     unsigned ShAmt = ShAmtAPInt->getZExtValue();
983     unsigned BitWidth = Ty->getScalarSizeInBits();
984     auto *II = dyn_cast<IntrinsicInst>(Op0);
985     if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt &&
986         (II->getIntrinsicID() == Intrinsic::ctlz ||
987          II->getIntrinsicID() == Intrinsic::cttz ||
988          II->getIntrinsicID() == Intrinsic::ctpop)) {
989       // ctlz.i32(x)>>5  --> zext(x == 0)
990       // cttz.i32(x)>>5  --> zext(x == 0)
991       // ctpop.i32(x)>>5 --> zext(x == -1)
992       bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
993       Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
994       Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
995       return new ZExtInst(Cmp, Ty);
996     }
997 
998     Value *X;
999     const APInt *ShOp1;
1000     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1))) && ShOp1->ult(BitWidth)) {
1001       if (ShOp1->ult(ShAmt)) {
1002         unsigned ShlAmt = ShOp1->getZExtValue();
1003         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
1004         if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1005           // (X <<nuw C1) >>u C2 --> X >>u (C2 - C1)
1006           auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
1007           NewLShr->setIsExact(I.isExact());
1008           return NewLShr;
1009         }
1010         // (X << C1) >>u C2  --> (X >>u (C2 - C1)) & (-1 >> C2)
1011         Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
1012         APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
1013         return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
1014       }
1015       if (ShOp1->ugt(ShAmt)) {
1016         unsigned ShlAmt = ShOp1->getZExtValue();
1017         Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
1018         if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1019           // (X <<nuw C1) >>u C2 --> X <<nuw (C1 - C2)
1020           auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
1021           NewShl->setHasNoUnsignedWrap(true);
1022           return NewShl;
1023         }
1024         // (X << C1) >>u C2  --> X << (C1 - C2) & (-1 >> C2)
1025         Value *NewShl = Builder.CreateShl(X, ShiftDiff);
1026         APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
1027         return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
1028       }
1029       assert(*ShOp1 == ShAmt);
1030       // (X << C) >>u C --> X & (-1 >>u C)
1031       APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
1032       return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
1033     }
1034 
1035     if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
1036         (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
1037       assert(ShAmt < X->getType()->getScalarSizeInBits() &&
1038              "Big shift not simplified to zero?");
1039       // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
1040       Value *NewLShr = Builder.CreateLShr(X, ShAmt);
1041       return new ZExtInst(NewLShr, Ty);
1042     }
1043 
1044     if (match(Op0, m_SExt(m_Value(X))) &&
1045         (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
1046       // Are we moving the sign bit to the low bit and widening with high zeros?
1047       unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
1048       if (ShAmt == BitWidth - 1) {
1049         // lshr (sext i1 X to iN), N-1 --> zext X to iN
1050         if (SrcTyBitWidth == 1)
1051           return new ZExtInst(X, Ty);
1052 
1053         // lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
1054         if (Op0->hasOneUse()) {
1055           Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
1056           return new ZExtInst(NewLShr, Ty);
1057         }
1058       }
1059 
1060       // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
1061       if (ShAmt == BitWidth - SrcTyBitWidth && Op0->hasOneUse()) {
1062         // The new shift amount can't be more than the narrow source type.
1063         unsigned NewShAmt = std::min(ShAmt, SrcTyBitWidth - 1);
1064         Value *AShr = Builder.CreateAShr(X, NewShAmt);
1065         return new ZExtInst(AShr, Ty);
1066       }
1067     }
1068 
1069     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShOp1)))) {
1070       unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
1071       // Oversized shifts are simplified to zero in InstSimplify.
1072       if (AmtSum < BitWidth)
1073         // (X >>u C1) >>u C2 --> X >>u (C1 + C2)
1074         return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
1075     }
1076 
1077     // If the shifted-out value is known-zero, then this is an exact shift.
1078     if (!I.isExact() &&
1079         MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
1080       I.setIsExact();
1081       return &I;
1082     }
1083   }
1084 
1085   // Transform  (x << y) >> y  to  x & (-1 >> y)
1086   Value *X;
1087   if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) {
1088     Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1089     Value *Mask = Builder.CreateLShr(AllOnes, Op1);
1090     return BinaryOperator::CreateAnd(Mask, X);
1091   }
1092 
1093   return nullptr;
1094 }
1095 
1096 Instruction *
1097 InstCombiner::foldVariableSignZeroExtensionOfVariableHighBitExtract(
1098     BinaryOperator &OldAShr) {
1099   assert(OldAShr.getOpcode() == Instruction::AShr &&
1100          "Must be called with arithmetic right-shift instruction only.");
1101 
1102   // Check that constant C is a splat of the element-wise bitwidth of V.
1103   auto BitWidthSplat = [](Constant *C, Value *V) {
1104     return match(
1105         C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1106                               APInt(C->getType()->getScalarSizeInBits(),
1107                                     V->getType()->getScalarSizeInBits())));
1108   };
1109 
1110   // It should look like variable-length sign-extension on the outside:
1111   //   (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits)
1112   Value *NBits;
1113   Instruction *MaybeTrunc;
1114   Constant *C1, *C2;
1115   if (!match(&OldAShr,
1116              m_AShr(m_Shl(m_Instruction(MaybeTrunc),
1117                           m_ZExtOrSelf(m_Sub(m_Constant(C1),
1118                                              m_ZExtOrSelf(m_Value(NBits))))),
1119                     m_ZExtOrSelf(m_Sub(m_Constant(C2),
1120                                        m_ZExtOrSelf(m_Deferred(NBits)))))) ||
1121       !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
1122     return nullptr;
1123 
1124   // There may or may not be a truncation after outer two shifts.
1125   Instruction *HighBitExtract;
1126   match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract)));
1127   bool HadTrunc = MaybeTrunc != HighBitExtract;
1128 
1129   // And finally, the innermost part of the pattern must be a right-shift.
1130   Value *X, *NumLowBitsToSkip;
1131   if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip))))
1132     return nullptr;
1133 
1134   // Said right-shift must extract high NBits bits - C0 must be it's bitwidth.
1135   Constant *C0;
1136   if (!match(NumLowBitsToSkip,
1137              m_ZExtOrSelf(
1138                  m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) ||
1139       !BitWidthSplat(C0, HighBitExtract))
1140     return nullptr;
1141 
1142   // Since the NBits is identical for all shifts, if the outermost and
1143   // innermost shifts are identical, then outermost shifts are redundant.
1144   // If we had truncation, do keep it though.
1145   if (HighBitExtract->getOpcode() == OldAShr.getOpcode())
1146     return replaceInstUsesWith(OldAShr, MaybeTrunc);
1147 
1148   // Else, if there was a truncation, then we need to ensure that one
1149   // instruction will go away.
1150   if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1151     return nullptr;
1152 
1153   // Finally, bypass two innermost shifts, and perform the outermost shift on
1154   // the operands of the innermost shift.
1155   Instruction *NewAShr =
1156       BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip);
1157   NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness.
1158   if (!HadTrunc)
1159     return NewAShr;
1160 
1161   Builder.Insert(NewAShr);
1162   return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType());
1163 }
1164 
1165 Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
1166   if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1167                                   SQ.getWithInstruction(&I)))
1168     return replaceInstUsesWith(I, V);
1169 
1170   if (Instruction *X = foldVectorBinop(I))
1171     return X;
1172 
1173   if (Instruction *R = commonShiftTransforms(I))
1174     return R;
1175 
1176   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1177   Type *Ty = I.getType();
1178   unsigned BitWidth = Ty->getScalarSizeInBits();
1179   const APInt *ShAmtAPInt;
1180   if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) {
1181     unsigned ShAmt = ShAmtAPInt->getZExtValue();
1182 
1183     // If the shift amount equals the difference in width of the destination
1184     // and source scalar types:
1185     // ashr (shl (zext X), C), C --> sext X
1186     Value *X;
1187     if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
1188         ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
1189       return new SExtInst(X, Ty);
1190 
1191     // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
1192     // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
1193     const APInt *ShOp1;
1194     if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) &&
1195         ShOp1->ult(BitWidth)) {
1196       unsigned ShlAmt = ShOp1->getZExtValue();
1197       if (ShlAmt < ShAmt) {
1198         // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
1199         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
1200         auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
1201         NewAShr->setIsExact(I.isExact());
1202         return NewAShr;
1203       }
1204       if (ShlAmt > ShAmt) {
1205         // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
1206         Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
1207         auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
1208         NewShl->setHasNoSignedWrap(true);
1209         return NewShl;
1210       }
1211     }
1212 
1213     if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) &&
1214         ShOp1->ult(BitWidth)) {
1215       unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
1216       // Oversized arithmetic shifts replicate the sign bit.
1217       AmtSum = std::min(AmtSum, BitWidth - 1);
1218       // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
1219       return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
1220     }
1221 
1222     if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
1223         (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
1224       // ashr (sext X), C --> sext (ashr X, C')
1225       Type *SrcTy = X->getType();
1226       ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
1227       Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
1228       return new SExtInst(NewSh, Ty);
1229     }
1230 
1231     // If the shifted-out value is known-zero, then this is an exact shift.
1232     if (!I.isExact() &&
1233         MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
1234       I.setIsExact();
1235       return &I;
1236     }
1237   }
1238 
1239   if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I))
1240     return R;
1241 
1242   // See if we can turn a signed shr into an unsigned shr.
1243   if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I))
1244     return BinaryOperator::CreateLShr(Op0, Op1);
1245 
1246   return nullptr;
1247 }
1248