1 //===- InstCombineShifts.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitShl, visitLShr, and visitAShr functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/Analysis/ConstantFolding.h" 15 #include "llvm/Analysis/InstructionSimplify.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/PatternMatch.h" 18 using namespace llvm; 19 using namespace PatternMatch; 20 21 #define DEBUG_TYPE "instcombine" 22 23 // Given pattern: 24 // (x shiftopcode Q) shiftopcode K 25 // we should rewrite it as 26 // x shiftopcode (Q+K) iff (Q+K) u< bitwidth(x) 27 // This is valid for any shift, but they must be identical. 28 // 29 // AnalyzeForSignBitExtraction indicates that we will only analyze whether this 30 // pattern has any 2 right-shifts that sum to 1 less than original bit width. 31 Value *InstCombiner::reassociateShiftAmtsOfTwoSameDirectionShifts( 32 BinaryOperator *Sh0, const SimplifyQuery &SQ, 33 bool AnalyzeForSignBitExtraction) { 34 // Look for a shift of some instruction, ignore zext of shift amount if any. 35 Instruction *Sh0Op0; 36 Value *ShAmt0; 37 if (!match(Sh0, 38 m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0))))) 39 return nullptr; 40 41 // If there is a truncation between the two shifts, we must make note of it 42 // and look through it. The truncation imposes additional constraints on the 43 // transform. 44 Instruction *Sh1; 45 Value *Trunc = nullptr; 46 match(Sh0Op0, 47 m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)), 48 m_Instruction(Sh1))); 49 50 // Inner shift: (x shiftopcode ShAmt1) 51 // Like with other shift, ignore zext of shift amount if any. 52 Value *X, *ShAmt1; 53 if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1))))) 54 return nullptr; 55 56 // We have two shift amounts from two different shifts. The types of those 57 // shift amounts may not match. If that's the case let's bailout now.. 58 if (ShAmt0->getType() != ShAmt1->getType()) 59 return nullptr; 60 61 // We are only looking for signbit extraction if we have two right shifts. 62 bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) && 63 match(Sh1, m_Shr(m_Value(), m_Value())); 64 // ... and if it's not two right-shifts, we know the answer already. 65 if (AnalyzeForSignBitExtraction && !HadTwoRightShifts) 66 return nullptr; 67 68 // The shift opcodes must be identical, unless we are just checking whether 69 // this pattern can be interpreted as a sign-bit-extraction. 70 Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode(); 71 bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode(); 72 if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction) 73 return nullptr; 74 75 // If we saw truncation, we'll need to produce extra instruction, 76 // and for that one of the operands of the shift must be one-use, 77 // unless of course we don't actually plan to produce any instructions here. 78 if (Trunc && !AnalyzeForSignBitExtraction && 79 !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 80 return nullptr; 81 82 // Can we fold (ShAmt0+ShAmt1) ? 83 auto *NewShAmt = dyn_cast_or_null<Constant>( 84 SimplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false, 85 SQ.getWithInstruction(Sh0))); 86 if (!NewShAmt) 87 return nullptr; // Did not simplify. 88 unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits(); 89 unsigned XBitWidth = X->getType()->getScalarSizeInBits(); 90 // Is the new shift amount smaller than the bit width of inner/new shift? 91 if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 92 APInt(NewShAmtBitWidth, XBitWidth)))) 93 return nullptr; // FIXME: could perform constant-folding. 94 95 // If there was a truncation, and we have a right-shift, we can only fold if 96 // we are left with the original sign bit. Likewise, if we were just checking 97 // that this is a sighbit extraction, this is the place to check it. 98 // FIXME: zero shift amount is also legal here, but we can't *easily* check 99 // more than one predicate so it's not really worth it. 100 if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) { 101 // If it's not a sign bit extraction, then we're done. 102 if (!match(NewShAmt, 103 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 104 APInt(NewShAmtBitWidth, XBitWidth - 1)))) 105 return nullptr; 106 // If it is, and that was the question, return the base value. 107 if (AnalyzeForSignBitExtraction) 108 return X; 109 } 110 111 assert(IdenticalShOpcodes && "Should not get here with different shifts."); 112 113 // All good, we can do this fold. 114 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType()); 115 116 BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt); 117 118 // The flags can only be propagated if there wasn't a trunc. 119 if (!Trunc) { 120 // If the pattern did not involve trunc, and both of the original shifts 121 // had the same flag set, preserve the flag. 122 if (ShiftOpcode == Instruction::BinaryOps::Shl) { 123 NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() && 124 Sh1->hasNoUnsignedWrap()); 125 NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() && 126 Sh1->hasNoSignedWrap()); 127 } else { 128 NewShift->setIsExact(Sh0->isExact() && Sh1->isExact()); 129 } 130 } 131 132 Instruction *Ret = NewShift; 133 if (Trunc) { 134 Builder.Insert(NewShift); 135 Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType()); 136 } 137 138 return Ret; 139 } 140 141 // Try to replace `undef` constants in C with Replacement. 142 static Constant *replaceUndefsWith(Constant *C, Constant *Replacement) { 143 if (C && match(C, m_Undef())) 144 return Replacement; 145 146 if (auto *CV = dyn_cast<ConstantVector>(C)) { 147 llvm::SmallVector<Constant *, 32> NewOps(CV->getNumOperands()); 148 for (unsigned i = 0, NumElts = NewOps.size(); i != NumElts; ++i) { 149 Constant *EltC = CV->getOperand(i); 150 NewOps[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC; 151 } 152 return ConstantVector::get(NewOps); 153 } 154 155 // Don't know how to deal with this constant. 156 return C; 157 } 158 159 // If we have some pattern that leaves only some low bits set, and then performs 160 // left-shift of those bits, if none of the bits that are left after the final 161 // shift are modified by the mask, we can omit the mask. 162 // 163 // There are many variants to this pattern: 164 // a) (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt 165 // b) (x & (~(-1 << MaskShAmt))) << ShiftShAmt 166 // c) (x & (-1 >> MaskShAmt)) << ShiftShAmt 167 // d) (x & ((-1 << MaskShAmt) >> MaskShAmt)) << ShiftShAmt 168 // e) ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt 169 // f) ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt 170 // All these patterns can be simplified to just: 171 // x << ShiftShAmt 172 // iff: 173 // a,b) (MaskShAmt+ShiftShAmt) u>= bitwidth(x) 174 // c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt) 175 static Instruction * 176 dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift, 177 const SimplifyQuery &Q, 178 InstCombiner::BuilderTy &Builder) { 179 assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl && 180 "The input must be 'shl'!"); 181 182 Value *Masked, *ShiftShAmt; 183 match(OuterShift, m_Shift(m_Value(Masked), m_Value(ShiftShAmt))); 184 185 Type *NarrowestTy = OuterShift->getType(); 186 Type *WidestTy = Masked->getType(); 187 // The mask must be computed in a type twice as wide to ensure 188 // that no bits are lost if the sum-of-shifts is wider than the base type. 189 Type *ExtendedTy = WidestTy->getExtendedType(); 190 191 Value *MaskShAmt; 192 193 // ((1 << MaskShAmt) - 1) 194 auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes()); 195 // (~(-1 << maskNbits)) 196 auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes()); 197 // (-1 >> MaskShAmt) 198 auto MaskC = m_Shr(m_AllOnes(), m_Value(MaskShAmt)); 199 // ((-1 << MaskShAmt) >> MaskShAmt) 200 auto MaskD = 201 m_Shr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt)); 202 203 Value *X; 204 Constant *NewMask; 205 206 if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) { 207 // Can we simplify (MaskShAmt+ShiftShAmt) ? 208 auto *SumOfShAmts = dyn_cast_or_null<Constant>(SimplifyAddInst( 209 MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q)); 210 if (!SumOfShAmts) 211 return nullptr; // Did not simplify. 212 // In this pattern SumOfShAmts correlates with the number of low bits 213 // that shall remain in the root value (OuterShift). 214 215 // An extend of an undef value becomes zero because the high bits are never 216 // completely unknown. Replace the the `undef` shift amounts with final 217 // shift bitwidth to ensure that the value remains undef when creating the 218 // subsequent shift op. 219 SumOfShAmts = replaceUndefsWith( 220 SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(), 221 ExtendedTy->getScalarSizeInBits())); 222 auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy); 223 // And compute the mask as usual: ~(-1 << (SumOfShAmts)) 224 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy); 225 auto *ExtendedInvertedMask = 226 ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts); 227 NewMask = ConstantExpr::getNot(ExtendedInvertedMask); 228 } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) || 229 match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)), 230 m_Deferred(MaskShAmt)))) { 231 // Can we simplify (ShiftShAmt-MaskShAmt) ? 232 auto *ShAmtsDiff = dyn_cast_or_null<Constant>(SimplifySubInst( 233 ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q)); 234 if (!ShAmtsDiff) 235 return nullptr; // Did not simplify. 236 // In this pattern ShAmtsDiff correlates with the number of high bits that 237 // shall be unset in the root value (OuterShift). 238 239 // An extend of an undef value becomes zero because the high bits are never 240 // completely unknown. Replace the the `undef` shift amounts with negated 241 // bitwidth of innermost shift to ensure that the value remains undef when 242 // creating the subsequent shift op. 243 unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits(); 244 ShAmtsDiff = replaceUndefsWith( 245 ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(), 246 -WidestTyBitWidth)); 247 auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt( 248 ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(), 249 WidestTyBitWidth, 250 /*isSigned=*/false), 251 ShAmtsDiff), 252 ExtendedTy); 253 // And compute the mask as usual: (-1 l>> (NumHighBitsToClear)) 254 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy); 255 NewMask = 256 ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear); 257 } else 258 return nullptr; // Don't know anything about this pattern. 259 260 NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy); 261 262 // Does this mask has any unset bits? If not then we can just not apply it. 263 bool NeedMask = !match(NewMask, m_AllOnes()); 264 265 // If we need to apply a mask, there are several more restrictions we have. 266 if (NeedMask) { 267 // The old masking instruction must go away. 268 if (!Masked->hasOneUse()) 269 return nullptr; 270 // The original "masking" instruction must not have been`ashr`. 271 if (match(Masked, m_AShr(m_Value(), m_Value()))) 272 return nullptr; 273 } 274 275 // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits. 276 auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X, 277 OuterShift->getOperand(1)); 278 279 if (!NeedMask) 280 return NewShift; 281 282 Builder.Insert(NewShift); 283 return BinaryOperator::Create(Instruction::And, NewShift, NewMask); 284 } 285 286 Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) { 287 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 288 assert(Op0->getType() == Op1->getType()); 289 290 // If the shift amount is a one-use `sext`, we can demote it to `zext`. 291 Value *Y; 292 if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) { 293 Value *NewExt = Builder.CreateZExt(Y, I.getType(), Op1->getName()); 294 return BinaryOperator::Create(I.getOpcode(), Op0, NewExt); 295 } 296 297 // See if we can fold away this shift. 298 if (SimplifyDemandedInstructionBits(I)) 299 return &I; 300 301 // Try to fold constant and into select arguments. 302 if (isa<Constant>(Op0)) 303 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 304 if (Instruction *R = FoldOpIntoSelect(I, SI)) 305 return R; 306 307 if (Constant *CUI = dyn_cast<Constant>(Op1)) 308 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I)) 309 return Res; 310 311 if (auto *NewShift = cast_or_null<Instruction>( 312 reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ))) 313 return NewShift; 314 315 // (C1 shift (A add C2)) -> (C1 shift C2) shift A) 316 // iff A and C2 are both positive. 317 Value *A; 318 Constant *C; 319 if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C)))) 320 if (isKnownNonNegative(A, DL, 0, &AC, &I, &DT) && 321 isKnownNonNegative(C, DL, 0, &AC, &I, &DT)) 322 return BinaryOperator::Create( 323 I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), Op0, C), A); 324 325 // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2. 326 // Because shifts by negative values (which could occur if A were negative) 327 // are undefined. 328 const APInt *B; 329 if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) { 330 // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't 331 // demand the sign bit (and many others) here?? 332 Value *Rem = Builder.CreateAnd(A, ConstantInt::get(I.getType(), *B - 1), 333 Op1->getName()); 334 I.setOperand(1, Rem); 335 return &I; 336 } 337 338 return nullptr; 339 } 340 341 /// Return true if we can simplify two logical (either left or right) shifts 342 /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2. 343 static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl, 344 Instruction *InnerShift, InstCombiner &IC, 345 Instruction *CxtI) { 346 assert(InnerShift->isLogicalShift() && "Unexpected instruction type"); 347 348 // We need constant scalar or constant splat shifts. 349 const APInt *InnerShiftConst; 350 if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst))) 351 return false; 352 353 // Two logical shifts in the same direction: 354 // shl (shl X, C1), C2 --> shl X, C1 + C2 355 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2 356 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl; 357 if (IsInnerShl == IsOuterShl) 358 return true; 359 360 // Equal shift amounts in opposite directions become bitwise 'and': 361 // lshr (shl X, C), C --> and X, C' 362 // shl (lshr X, C), C --> and X, C' 363 if (*InnerShiftConst == OuterShAmt) 364 return true; 365 366 // If the 2nd shift is bigger than the 1st, we can fold: 367 // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3 368 // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3 369 // but it isn't profitable unless we know the and'd out bits are already zero. 370 // Also, check that the inner shift is valid (less than the type width) or 371 // we'll crash trying to produce the bit mask for the 'and'. 372 unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits(); 373 if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) { 374 unsigned InnerShAmt = InnerShiftConst->getZExtValue(); 375 unsigned MaskShift = 376 IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt; 377 APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift; 378 if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI)) 379 return true; 380 } 381 382 return false; 383 } 384 385 /// See if we can compute the specified value, but shifted logically to the left 386 /// or right by some number of bits. This should return true if the expression 387 /// can be computed for the same cost as the current expression tree. This is 388 /// used to eliminate extraneous shifting from things like: 389 /// %C = shl i128 %A, 64 390 /// %D = shl i128 %B, 96 391 /// %E = or i128 %C, %D 392 /// %F = lshr i128 %E, 64 393 /// where the client will ask if E can be computed shifted right by 64-bits. If 394 /// this succeeds, getShiftedValue() will be called to produce the value. 395 static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift, 396 InstCombiner &IC, Instruction *CxtI) { 397 // We can always evaluate constants shifted. 398 if (isa<Constant>(V)) 399 return true; 400 401 Instruction *I = dyn_cast<Instruction>(V); 402 if (!I) return false; 403 404 // If this is the opposite shift, we can directly reuse the input of the shift 405 // if the needed bits are already zero in the input. This allows us to reuse 406 // the value which means that we don't care if the shift has multiple uses. 407 // TODO: Handle opposite shift by exact value. 408 ConstantInt *CI = nullptr; 409 if ((IsLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) || 410 (!IsLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) { 411 if (CI->getValue() == NumBits) { 412 // TODO: Check that the input bits are already zero with MaskedValueIsZero 413 #if 0 414 // If this is a truncate of a logical shr, we can truncate it to a smaller 415 // lshr iff we know that the bits we would otherwise be shifting in are 416 // already zeros. 417 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 418 uint32_t BitWidth = Ty->getScalarSizeInBits(); 419 if (MaskedValueIsZero(I->getOperand(0), 420 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) && 421 CI->getLimitedValue(BitWidth) < BitWidth) { 422 return CanEvaluateTruncated(I->getOperand(0), Ty); 423 } 424 #endif 425 426 } 427 } 428 429 // We can't mutate something that has multiple uses: doing so would 430 // require duplicating the instruction in general, which isn't profitable. 431 if (!I->hasOneUse()) return false; 432 433 switch (I->getOpcode()) { 434 default: return false; 435 case Instruction::And: 436 case Instruction::Or: 437 case Instruction::Xor: 438 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. 439 return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) && 440 canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I); 441 442 case Instruction::Shl: 443 case Instruction::LShr: 444 return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI); 445 446 case Instruction::Select: { 447 SelectInst *SI = cast<SelectInst>(I); 448 Value *TrueVal = SI->getTrueValue(); 449 Value *FalseVal = SI->getFalseValue(); 450 return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) && 451 canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI); 452 } 453 case Instruction::PHI: { 454 // We can change a phi if we can change all operands. Note that we never 455 // get into trouble with cyclic PHIs here because we only consider 456 // instructions with a single use. 457 PHINode *PN = cast<PHINode>(I); 458 for (Value *IncValue : PN->incoming_values()) 459 if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN)) 460 return false; 461 return true; 462 } 463 } 464 } 465 466 /// Fold OuterShift (InnerShift X, C1), C2. 467 /// See canEvaluateShiftedShift() for the constraints on these instructions. 468 static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt, 469 bool IsOuterShl, 470 InstCombiner::BuilderTy &Builder) { 471 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl; 472 Type *ShType = InnerShift->getType(); 473 unsigned TypeWidth = ShType->getScalarSizeInBits(); 474 475 // We only accept shifts-by-a-constant in canEvaluateShifted(). 476 const APInt *C1; 477 match(InnerShift->getOperand(1), m_APInt(C1)); 478 unsigned InnerShAmt = C1->getZExtValue(); 479 480 // Change the shift amount and clear the appropriate IR flags. 481 auto NewInnerShift = [&](unsigned ShAmt) { 482 InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt)); 483 if (IsInnerShl) { 484 InnerShift->setHasNoUnsignedWrap(false); 485 InnerShift->setHasNoSignedWrap(false); 486 } else { 487 InnerShift->setIsExact(false); 488 } 489 return InnerShift; 490 }; 491 492 // Two logical shifts in the same direction: 493 // shl (shl X, C1), C2 --> shl X, C1 + C2 494 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2 495 if (IsInnerShl == IsOuterShl) { 496 // If this is an oversized composite shift, then unsigned shifts get 0. 497 if (InnerShAmt + OuterShAmt >= TypeWidth) 498 return Constant::getNullValue(ShType); 499 500 return NewInnerShift(InnerShAmt + OuterShAmt); 501 } 502 503 // Equal shift amounts in opposite directions become bitwise 'and': 504 // lshr (shl X, C), C --> and X, C' 505 // shl (lshr X, C), C --> and X, C' 506 if (InnerShAmt == OuterShAmt) { 507 APInt Mask = IsInnerShl 508 ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt) 509 : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt); 510 Value *And = Builder.CreateAnd(InnerShift->getOperand(0), 511 ConstantInt::get(ShType, Mask)); 512 if (auto *AndI = dyn_cast<Instruction>(And)) { 513 AndI->moveBefore(InnerShift); 514 AndI->takeName(InnerShift); 515 } 516 return And; 517 } 518 519 assert(InnerShAmt > OuterShAmt && 520 "Unexpected opposite direction logical shift pair"); 521 522 // In general, we would need an 'and' for this transform, but 523 // canEvaluateShiftedShift() guarantees that the masked-off bits are not used. 524 // lshr (shl X, C1), C2 --> shl X, C1 - C2 525 // shl (lshr X, C1), C2 --> lshr X, C1 - C2 526 return NewInnerShift(InnerShAmt - OuterShAmt); 527 } 528 529 /// When canEvaluateShifted() returns true for an expression, this function 530 /// inserts the new computation that produces the shifted value. 531 static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift, 532 InstCombiner &IC, const DataLayout &DL) { 533 // We can always evaluate constants shifted. 534 if (Constant *C = dyn_cast<Constant>(V)) { 535 if (isLeftShift) 536 V = IC.Builder.CreateShl(C, NumBits); 537 else 538 V = IC.Builder.CreateLShr(C, NumBits); 539 // If we got a constantexpr back, try to simplify it with TD info. 540 if (auto *C = dyn_cast<Constant>(V)) 541 if (auto *FoldedC = 542 ConstantFoldConstant(C, DL, &IC.getTargetLibraryInfo())) 543 V = FoldedC; 544 return V; 545 } 546 547 Instruction *I = cast<Instruction>(V); 548 IC.Worklist.Add(I); 549 550 switch (I->getOpcode()) { 551 default: llvm_unreachable("Inconsistency with CanEvaluateShifted"); 552 case Instruction::And: 553 case Instruction::Or: 554 case Instruction::Xor: 555 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. 556 I->setOperand( 557 0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL)); 558 I->setOperand( 559 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL)); 560 return I; 561 562 case Instruction::Shl: 563 case Instruction::LShr: 564 return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift, 565 IC.Builder); 566 567 case Instruction::Select: 568 I->setOperand( 569 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL)); 570 I->setOperand( 571 2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL)); 572 return I; 573 case Instruction::PHI: { 574 // We can change a phi if we can change all operands. Note that we never 575 // get into trouble with cyclic PHIs here because we only consider 576 // instructions with a single use. 577 PHINode *PN = cast<PHINode>(I); 578 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 579 PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits, 580 isLeftShift, IC, DL)); 581 return PN; 582 } 583 } 584 } 585 586 // If this is a bitwise operator or add with a constant RHS we might be able 587 // to pull it through a shift. 588 static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift, 589 BinaryOperator *BO) { 590 switch (BO->getOpcode()) { 591 default: 592 return false; // Do not perform transform! 593 case Instruction::Add: 594 return Shift.getOpcode() == Instruction::Shl; 595 case Instruction::Or: 596 case Instruction::Xor: 597 case Instruction::And: 598 return true; 599 } 600 } 601 602 Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1, 603 BinaryOperator &I) { 604 bool isLeftShift = I.getOpcode() == Instruction::Shl; 605 606 const APInt *Op1C; 607 if (!match(Op1, m_APInt(Op1C))) 608 return nullptr; 609 610 // See if we can propagate this shift into the input, this covers the trivial 611 // cast of lshr(shl(x,c1),c2) as well as other more complex cases. 612 if (I.getOpcode() != Instruction::AShr && 613 canEvaluateShifted(Op0, Op1C->getZExtValue(), isLeftShift, *this, &I)) { 614 LLVM_DEBUG( 615 dbgs() << "ICE: GetShiftedValue propagating shift through expression" 616 " to eliminate shift:\n IN: " 617 << *Op0 << "\n SH: " << I << "\n"); 618 619 return replaceInstUsesWith( 620 I, getShiftedValue(Op0, Op1C->getZExtValue(), isLeftShift, *this, DL)); 621 } 622 623 // See if we can simplify any instructions used by the instruction whose sole 624 // purpose is to compute bits we don't care about. 625 unsigned TypeBits = Op0->getType()->getScalarSizeInBits(); 626 627 assert(!Op1C->uge(TypeBits) && 628 "Shift over the type width should have been removed already"); 629 630 if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I)) 631 return FoldedShift; 632 633 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2)) 634 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) { 635 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0)); 636 // If 'shift2' is an ashr, we would have to get the sign bit into a funny 637 // place. Don't try to do this transformation in this case. Also, we 638 // require that the input operand is a shift-by-constant so that we have 639 // confidence that the shifts will get folded together. We could do this 640 // xform in more cases, but it is unlikely to be profitable. 641 if (TrOp && I.isLogicalShift() && TrOp->isShift() && 642 isa<ConstantInt>(TrOp->getOperand(1))) { 643 // Okay, we'll do this xform. Make the shift of shift. 644 Constant *ShAmt = 645 ConstantExpr::getZExt(cast<Constant>(Op1), TrOp->getType()); 646 // (shift2 (shift1 & 0x00FF), c2) 647 Value *NSh = Builder.CreateBinOp(I.getOpcode(), TrOp, ShAmt, I.getName()); 648 649 // For logical shifts, the truncation has the effect of making the high 650 // part of the register be zeros. Emulate this by inserting an AND to 651 // clear the top bits as needed. This 'and' will usually be zapped by 652 // other xforms later if dead. 653 unsigned SrcSize = TrOp->getType()->getScalarSizeInBits(); 654 unsigned DstSize = TI->getType()->getScalarSizeInBits(); 655 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize)); 656 657 // The mask we constructed says what the trunc would do if occurring 658 // between the shifts. We want to know the effect *after* the second 659 // shift. We know that it is a logical shift by a constant, so adjust the 660 // mask as appropriate. 661 if (I.getOpcode() == Instruction::Shl) 662 MaskV <<= Op1C->getZExtValue(); 663 else { 664 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift"); 665 MaskV.lshrInPlace(Op1C->getZExtValue()); 666 } 667 668 // shift1 & 0x00FF 669 Value *And = Builder.CreateAnd(NSh, 670 ConstantInt::get(I.getContext(), MaskV), 671 TI->getName()); 672 673 // Return the value truncated to the interesting size. 674 return new TruncInst(And, I.getType()); 675 } 676 } 677 678 if (Op0->hasOneUse()) { 679 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) { 680 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) 681 Value *V1, *V2; 682 ConstantInt *CC; 683 switch (Op0BO->getOpcode()) { 684 default: break; 685 case Instruction::Add: 686 case Instruction::And: 687 case Instruction::Or: 688 case Instruction::Xor: { 689 // These operators commute. 690 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C) 691 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() && 692 match(Op0BO->getOperand(1), m_Shr(m_Value(V1), 693 m_Specific(Op1)))) { 694 Value *YS = // (Y << C) 695 Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName()); 696 // (X + (Y << C)) 697 Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), YS, V1, 698 Op0BO->getOperand(1)->getName()); 699 unsigned Op1Val = Op1C->getLimitedValue(TypeBits); 700 701 APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val); 702 Constant *Mask = ConstantInt::get(I.getContext(), Bits); 703 if (VectorType *VT = dyn_cast<VectorType>(X->getType())) 704 Mask = ConstantVector::getSplat(VT->getNumElements(), Mask); 705 return BinaryOperator::CreateAnd(X, Mask); 706 } 707 708 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C)) 709 Value *Op0BOOp1 = Op0BO->getOperand(1); 710 if (isLeftShift && Op0BOOp1->hasOneUse() && 711 match(Op0BOOp1, 712 m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))), 713 m_ConstantInt(CC)))) { 714 Value *YS = // (Y << C) 715 Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName()); 716 // X & (CC << C) 717 Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1), 718 V1->getName()+".mask"); 719 return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM); 720 } 721 LLVM_FALLTHROUGH; 722 } 723 724 case Instruction::Sub: { 725 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) 726 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && 727 match(Op0BO->getOperand(0), m_Shr(m_Value(V1), 728 m_Specific(Op1)))) { 729 Value *YS = // (Y << C) 730 Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName()); 731 // (X + (Y << C)) 732 Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), V1, YS, 733 Op0BO->getOperand(0)->getName()); 734 unsigned Op1Val = Op1C->getLimitedValue(TypeBits); 735 736 APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val); 737 Constant *Mask = ConstantInt::get(I.getContext(), Bits); 738 if (VectorType *VT = dyn_cast<VectorType>(X->getType())) 739 Mask = ConstantVector::getSplat(VT->getNumElements(), Mask); 740 return BinaryOperator::CreateAnd(X, Mask); 741 } 742 743 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C) 744 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && 745 match(Op0BO->getOperand(0), 746 m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))), 747 m_ConstantInt(CC))) && V2 == Op1) { 748 Value *YS = // (Y << C) 749 Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName()); 750 // X & (CC << C) 751 Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1), 752 V1->getName()+".mask"); 753 754 return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS); 755 } 756 757 break; 758 } 759 } 760 761 762 // If the operand is a bitwise operator with a constant RHS, and the 763 // shift is the only use, we can pull it out of the shift. 764 const APInt *Op0C; 765 if (match(Op0BO->getOperand(1), m_APInt(Op0C))) { 766 if (canShiftBinOpWithConstantRHS(I, Op0BO)) { 767 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), 768 cast<Constant>(Op0BO->getOperand(1)), Op1); 769 770 Value *NewShift = 771 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1); 772 NewShift->takeName(Op0BO); 773 774 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, 775 NewRHS); 776 } 777 } 778 779 // If the operand is a subtract with a constant LHS, and the shift 780 // is the only use, we can pull it out of the shift. 781 // This folds (shl (sub C1, X), C2) -> (sub (C1 << C2), (shl X, C2)) 782 if (isLeftShift && Op0BO->getOpcode() == Instruction::Sub && 783 match(Op0BO->getOperand(0), m_APInt(Op0C))) { 784 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), 785 cast<Constant>(Op0BO->getOperand(0)), Op1); 786 787 Value *NewShift = Builder.CreateShl(Op0BO->getOperand(1), Op1); 788 NewShift->takeName(Op0BO); 789 790 return BinaryOperator::CreateSub(NewRHS, NewShift); 791 } 792 } 793 794 // If we have a select that conditionally executes some binary operator, 795 // see if we can pull it the select and operator through the shift. 796 // 797 // For example, turning: 798 // shl (select C, (add X, C1), X), C2 799 // Into: 800 // Y = shl X, C2 801 // select C, (add Y, C1 << C2), Y 802 Value *Cond; 803 BinaryOperator *TBO; 804 Value *FalseVal; 805 if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)), 806 m_Value(FalseVal)))) { 807 const APInt *C; 808 if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal && 809 match(TBO->getOperand(1), m_APInt(C)) && 810 canShiftBinOpWithConstantRHS(I, TBO)) { 811 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), 812 cast<Constant>(TBO->getOperand(1)), Op1); 813 814 Value *NewShift = 815 Builder.CreateBinOp(I.getOpcode(), FalseVal, Op1); 816 Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift, 817 NewRHS); 818 return SelectInst::Create(Cond, NewOp, NewShift); 819 } 820 } 821 822 BinaryOperator *FBO; 823 Value *TrueVal; 824 if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal), 825 m_OneUse(m_BinOp(FBO))))) { 826 const APInt *C; 827 if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal && 828 match(FBO->getOperand(1), m_APInt(C)) && 829 canShiftBinOpWithConstantRHS(I, FBO)) { 830 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), 831 cast<Constant>(FBO->getOperand(1)), Op1); 832 833 Value *NewShift = 834 Builder.CreateBinOp(I.getOpcode(), TrueVal, Op1); 835 Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift, 836 NewRHS); 837 return SelectInst::Create(Cond, NewShift, NewOp); 838 } 839 } 840 } 841 842 return nullptr; 843 } 844 845 Instruction *InstCombiner::visitShl(BinaryOperator &I) { 846 const SimplifyQuery Q = SQ.getWithInstruction(&I); 847 848 if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1), 849 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q)) 850 return replaceInstUsesWith(I, V); 851 852 if (Instruction *X = foldVectorBinop(I)) 853 return X; 854 855 if (Instruction *V = commonShiftTransforms(I)) 856 return V; 857 858 if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder)) 859 return V; 860 861 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 862 Type *Ty = I.getType(); 863 unsigned BitWidth = Ty->getScalarSizeInBits(); 864 865 const APInt *ShAmtAPInt; 866 if (match(Op1, m_APInt(ShAmtAPInt))) { 867 unsigned ShAmt = ShAmtAPInt->getZExtValue(); 868 869 // shl (zext X), ShAmt --> zext (shl X, ShAmt) 870 // This is only valid if X would have zeros shifted out. 871 Value *X; 872 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) { 873 unsigned SrcWidth = X->getType()->getScalarSizeInBits(); 874 if (ShAmt < SrcWidth && 875 MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmt), 0, &I)) 876 return new ZExtInst(Builder.CreateShl(X, ShAmt), Ty); 877 } 878 879 // (X >> C) << C --> X & (-1 << C) 880 if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) { 881 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt)); 882 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask)); 883 } 884 885 // FIXME: we do not yet transform non-exact shr's. The backend (DAGCombine) 886 // needs a few fixes for the rotate pattern recognition first. 887 const APInt *ShOp1; 888 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(ShOp1))))) { 889 unsigned ShrAmt = ShOp1->getZExtValue(); 890 if (ShrAmt < ShAmt) { 891 // If C1 < C2: (X >>?,exact C1) << C2 --> X << (C2 - C1) 892 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShrAmt); 893 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); 894 NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 895 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap()); 896 return NewShl; 897 } 898 if (ShrAmt > ShAmt) { 899 // If C1 > C2: (X >>?exact C1) << C2 --> X >>?exact (C1 - C2) 900 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmt); 901 auto *NewShr = BinaryOperator::Create( 902 cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff); 903 NewShr->setIsExact(true); 904 return NewShr; 905 } 906 } 907 908 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1)))) { 909 unsigned AmtSum = ShAmt + ShOp1->getZExtValue(); 910 // Oversized shifts are simplified to zero in InstSimplify. 911 if (AmtSum < BitWidth) 912 // (X << C1) << C2 --> X << (C1 + C2) 913 return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum)); 914 } 915 916 // If the shifted-out value is known-zero, then this is a NUW shift. 917 if (!I.hasNoUnsignedWrap() && 918 MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmt), 0, &I)) { 919 I.setHasNoUnsignedWrap(); 920 return &I; 921 } 922 923 // If the shifted-out value is all signbits, then this is a NSW shift. 924 if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmt) { 925 I.setHasNoSignedWrap(); 926 return &I; 927 } 928 } 929 930 // Transform (x >> y) << y to x & (-1 << y) 931 // Valid for any type of right-shift. 932 Value *X; 933 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) { 934 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); 935 Value *Mask = Builder.CreateShl(AllOnes, Op1); 936 return BinaryOperator::CreateAnd(Mask, X); 937 } 938 939 Constant *C1; 940 if (match(Op1, m_Constant(C1))) { 941 Constant *C2; 942 Value *X; 943 // (C2 << X) << C1 --> (C2 << C1) << X 944 if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X))))) 945 return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X); 946 947 // (X * C2) << C1 --> X * (C2 << C1) 948 if (match(Op0, m_Mul(m_Value(X), m_Constant(C2)))) 949 return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1)); 950 951 // shl (zext i1 X), C1 --> select (X, 1 << C1, 0) 952 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 953 auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1); 954 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty)); 955 } 956 } 957 958 // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1 959 if (match(Op0, m_One()) && 960 match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X)))) 961 return BinaryOperator::CreateLShr( 962 ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X); 963 964 return nullptr; 965 } 966 967 Instruction *InstCombiner::visitLShr(BinaryOperator &I) { 968 if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), 969 SQ.getWithInstruction(&I))) 970 return replaceInstUsesWith(I, V); 971 972 if (Instruction *X = foldVectorBinop(I)) 973 return X; 974 975 if (Instruction *R = commonShiftTransforms(I)) 976 return R; 977 978 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 979 Type *Ty = I.getType(); 980 const APInt *ShAmtAPInt; 981 if (match(Op1, m_APInt(ShAmtAPInt))) { 982 unsigned ShAmt = ShAmtAPInt->getZExtValue(); 983 unsigned BitWidth = Ty->getScalarSizeInBits(); 984 auto *II = dyn_cast<IntrinsicInst>(Op0); 985 if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt && 986 (II->getIntrinsicID() == Intrinsic::ctlz || 987 II->getIntrinsicID() == Intrinsic::cttz || 988 II->getIntrinsicID() == Intrinsic::ctpop)) { 989 // ctlz.i32(x)>>5 --> zext(x == 0) 990 // cttz.i32(x)>>5 --> zext(x == 0) 991 // ctpop.i32(x)>>5 --> zext(x == -1) 992 bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop; 993 Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0); 994 Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS); 995 return new ZExtInst(Cmp, Ty); 996 } 997 998 Value *X; 999 const APInt *ShOp1; 1000 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1))) && ShOp1->ult(BitWidth)) { 1001 if (ShOp1->ult(ShAmt)) { 1002 unsigned ShlAmt = ShOp1->getZExtValue(); 1003 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt); 1004 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) { 1005 // (X <<nuw C1) >>u C2 --> X >>u (C2 - C1) 1006 auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff); 1007 NewLShr->setIsExact(I.isExact()); 1008 return NewLShr; 1009 } 1010 // (X << C1) >>u C2 --> (X >>u (C2 - C1)) & (-1 >> C2) 1011 Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact()); 1012 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt)); 1013 return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask)); 1014 } 1015 if (ShOp1->ugt(ShAmt)) { 1016 unsigned ShlAmt = ShOp1->getZExtValue(); 1017 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt); 1018 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) { 1019 // (X <<nuw C1) >>u C2 --> X <<nuw (C1 - C2) 1020 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); 1021 NewShl->setHasNoUnsignedWrap(true); 1022 return NewShl; 1023 } 1024 // (X << C1) >>u C2 --> X << (C1 - C2) & (-1 >> C2) 1025 Value *NewShl = Builder.CreateShl(X, ShiftDiff); 1026 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt)); 1027 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask)); 1028 } 1029 assert(*ShOp1 == ShAmt); 1030 // (X << C) >>u C --> X & (-1 >>u C) 1031 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt)); 1032 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask)); 1033 } 1034 1035 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && 1036 (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) { 1037 assert(ShAmt < X->getType()->getScalarSizeInBits() && 1038 "Big shift not simplified to zero?"); 1039 // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN 1040 Value *NewLShr = Builder.CreateLShr(X, ShAmt); 1041 return new ZExtInst(NewLShr, Ty); 1042 } 1043 1044 if (match(Op0, m_SExt(m_Value(X))) && 1045 (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) { 1046 // Are we moving the sign bit to the low bit and widening with high zeros? 1047 unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits(); 1048 if (ShAmt == BitWidth - 1) { 1049 // lshr (sext i1 X to iN), N-1 --> zext X to iN 1050 if (SrcTyBitWidth == 1) 1051 return new ZExtInst(X, Ty); 1052 1053 // lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN 1054 if (Op0->hasOneUse()) { 1055 Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1); 1056 return new ZExtInst(NewLShr, Ty); 1057 } 1058 } 1059 1060 // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN 1061 if (ShAmt == BitWidth - SrcTyBitWidth && Op0->hasOneUse()) { 1062 // The new shift amount can't be more than the narrow source type. 1063 unsigned NewShAmt = std::min(ShAmt, SrcTyBitWidth - 1); 1064 Value *AShr = Builder.CreateAShr(X, NewShAmt); 1065 return new ZExtInst(AShr, Ty); 1066 } 1067 } 1068 1069 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShOp1)))) { 1070 unsigned AmtSum = ShAmt + ShOp1->getZExtValue(); 1071 // Oversized shifts are simplified to zero in InstSimplify. 1072 if (AmtSum < BitWidth) 1073 // (X >>u C1) >>u C2 --> X >>u (C1 + C2) 1074 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum)); 1075 } 1076 1077 // If the shifted-out value is known-zero, then this is an exact shift. 1078 if (!I.isExact() && 1079 MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) { 1080 I.setIsExact(); 1081 return &I; 1082 } 1083 } 1084 1085 // Transform (x << y) >> y to x & (-1 >> y) 1086 Value *X; 1087 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) { 1088 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); 1089 Value *Mask = Builder.CreateLShr(AllOnes, Op1); 1090 return BinaryOperator::CreateAnd(Mask, X); 1091 } 1092 1093 return nullptr; 1094 } 1095 1096 Instruction * 1097 InstCombiner::foldVariableSignZeroExtensionOfVariableHighBitExtract( 1098 BinaryOperator &OldAShr) { 1099 assert(OldAShr.getOpcode() == Instruction::AShr && 1100 "Must be called with arithmetic right-shift instruction only."); 1101 1102 // Check that constant C is a splat of the element-wise bitwidth of V. 1103 auto BitWidthSplat = [](Constant *C, Value *V) { 1104 return match( 1105 C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1106 APInt(C->getType()->getScalarSizeInBits(), 1107 V->getType()->getScalarSizeInBits()))); 1108 }; 1109 1110 // It should look like variable-length sign-extension on the outside: 1111 // (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits) 1112 Value *NBits; 1113 Instruction *MaybeTrunc; 1114 Constant *C1, *C2; 1115 if (!match(&OldAShr, 1116 m_AShr(m_Shl(m_Instruction(MaybeTrunc), 1117 m_ZExtOrSelf(m_Sub(m_Constant(C1), 1118 m_ZExtOrSelf(m_Value(NBits))))), 1119 m_ZExtOrSelf(m_Sub(m_Constant(C2), 1120 m_ZExtOrSelf(m_Deferred(NBits)))))) || 1121 !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr)) 1122 return nullptr; 1123 1124 // There may or may not be a truncation after outer two shifts. 1125 Instruction *HighBitExtract; 1126 match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract))); 1127 bool HadTrunc = MaybeTrunc != HighBitExtract; 1128 1129 // And finally, the innermost part of the pattern must be a right-shift. 1130 Value *X, *NumLowBitsToSkip; 1131 if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip)))) 1132 return nullptr; 1133 1134 // Said right-shift must extract high NBits bits - C0 must be it's bitwidth. 1135 Constant *C0; 1136 if (!match(NumLowBitsToSkip, 1137 m_ZExtOrSelf( 1138 m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) || 1139 !BitWidthSplat(C0, HighBitExtract)) 1140 return nullptr; 1141 1142 // Since the NBits is identical for all shifts, if the outermost and 1143 // innermost shifts are identical, then outermost shifts are redundant. 1144 // If we had truncation, do keep it though. 1145 if (HighBitExtract->getOpcode() == OldAShr.getOpcode()) 1146 return replaceInstUsesWith(OldAShr, MaybeTrunc); 1147 1148 // Else, if there was a truncation, then we need to ensure that one 1149 // instruction will go away. 1150 if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 1151 return nullptr; 1152 1153 // Finally, bypass two innermost shifts, and perform the outermost shift on 1154 // the operands of the innermost shift. 1155 Instruction *NewAShr = 1156 BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip); 1157 NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness. 1158 if (!HadTrunc) 1159 return NewAShr; 1160 1161 Builder.Insert(NewAShr); 1162 return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType()); 1163 } 1164 1165 Instruction *InstCombiner::visitAShr(BinaryOperator &I) { 1166 if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), 1167 SQ.getWithInstruction(&I))) 1168 return replaceInstUsesWith(I, V); 1169 1170 if (Instruction *X = foldVectorBinop(I)) 1171 return X; 1172 1173 if (Instruction *R = commonShiftTransforms(I)) 1174 return R; 1175 1176 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1177 Type *Ty = I.getType(); 1178 unsigned BitWidth = Ty->getScalarSizeInBits(); 1179 const APInt *ShAmtAPInt; 1180 if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) { 1181 unsigned ShAmt = ShAmtAPInt->getZExtValue(); 1182 1183 // If the shift amount equals the difference in width of the destination 1184 // and source scalar types: 1185 // ashr (shl (zext X), C), C --> sext X 1186 Value *X; 1187 if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) && 1188 ShAmt == BitWidth - X->getType()->getScalarSizeInBits()) 1189 return new SExtInst(X, Ty); 1190 1191 // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However, 1192 // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits. 1193 const APInt *ShOp1; 1194 if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) && 1195 ShOp1->ult(BitWidth)) { 1196 unsigned ShlAmt = ShOp1->getZExtValue(); 1197 if (ShlAmt < ShAmt) { 1198 // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1) 1199 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt); 1200 auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff); 1201 NewAShr->setIsExact(I.isExact()); 1202 return NewAShr; 1203 } 1204 if (ShlAmt > ShAmt) { 1205 // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2) 1206 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt); 1207 auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff); 1208 NewShl->setHasNoSignedWrap(true); 1209 return NewShl; 1210 } 1211 } 1212 1213 if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) && 1214 ShOp1->ult(BitWidth)) { 1215 unsigned AmtSum = ShAmt + ShOp1->getZExtValue(); 1216 // Oversized arithmetic shifts replicate the sign bit. 1217 AmtSum = std::min(AmtSum, BitWidth - 1); 1218 // (X >>s C1) >>s C2 --> X >>s (C1 + C2) 1219 return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum)); 1220 } 1221 1222 if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) && 1223 (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) { 1224 // ashr (sext X), C --> sext (ashr X, C') 1225 Type *SrcTy = X->getType(); 1226 ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1); 1227 Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt)); 1228 return new SExtInst(NewSh, Ty); 1229 } 1230 1231 // If the shifted-out value is known-zero, then this is an exact shift. 1232 if (!I.isExact() && 1233 MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) { 1234 I.setIsExact(); 1235 return &I; 1236 } 1237 } 1238 1239 if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I)) 1240 return R; 1241 1242 // See if we can turn a signed shr into an unsigned shr. 1243 if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I)) 1244 return BinaryOperator::CreateLShr(Op0, Op1); 1245 1246 return nullptr; 1247 } 1248