1 //===- InstCombineShifts.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitShl, visitLShr, and visitAShr functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/Analysis/ConstantFolding.h" 15 #include "llvm/Analysis/InstructionSimplify.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/PatternMatch.h" 18 #include "llvm/Transforms/InstCombine/InstCombiner.h" 19 using namespace llvm; 20 using namespace PatternMatch; 21 22 #define DEBUG_TYPE "instcombine" 23 24 bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1, 25 Value *ShAmt1) { 26 // We have two shift amounts from two different shifts. The types of those 27 // shift amounts may not match. If that's the case let's bailout now.. 28 if (ShAmt0->getType() != ShAmt1->getType()) 29 return false; 30 31 // As input, we have the following pattern: 32 // Sh0 (Sh1 X, Q), K 33 // We want to rewrite that as: 34 // Sh x, (Q+K) iff (Q+K) u< bitwidth(x) 35 // While we know that originally (Q+K) would not overflow 36 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 37 // shift amounts. so it may now overflow in smaller bitwidth. 38 // To ensure that does not happen, we need to ensure that the total maximal 39 // shift amount is still representable in that smaller bit width. 40 unsigned MaximalPossibleTotalShiftAmount = 41 (Sh0->getType()->getScalarSizeInBits() - 1) + 42 (Sh1->getType()->getScalarSizeInBits() - 1); 43 APInt MaximalRepresentableShiftAmount = 44 APInt::getAllOnes(ShAmt0->getType()->getScalarSizeInBits()); 45 return MaximalRepresentableShiftAmount.uge(MaximalPossibleTotalShiftAmount); 46 } 47 48 // Given pattern: 49 // (x shiftopcode Q) shiftopcode K 50 // we should rewrite it as 51 // x shiftopcode (Q+K) iff (Q+K) u< bitwidth(x) and 52 // 53 // This is valid for any shift, but they must be identical, and we must be 54 // careful in case we have (zext(Q)+zext(K)) and look past extensions, 55 // (Q+K) must not overflow or else (Q+K) u< bitwidth(x) is bogus. 56 // 57 // AnalyzeForSignBitExtraction indicates that we will only analyze whether this 58 // pattern has any 2 right-shifts that sum to 1 less than original bit width. 59 Value *InstCombinerImpl::reassociateShiftAmtsOfTwoSameDirectionShifts( 60 BinaryOperator *Sh0, const SimplifyQuery &SQ, 61 bool AnalyzeForSignBitExtraction) { 62 // Look for a shift of some instruction, ignore zext of shift amount if any. 63 Instruction *Sh0Op0; 64 Value *ShAmt0; 65 if (!match(Sh0, 66 m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0))))) 67 return nullptr; 68 69 // If there is a truncation between the two shifts, we must make note of it 70 // and look through it. The truncation imposes additional constraints on the 71 // transform. 72 Instruction *Sh1; 73 Value *Trunc = nullptr; 74 match(Sh0Op0, 75 m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)), 76 m_Instruction(Sh1))); 77 78 // Inner shift: (x shiftopcode ShAmt1) 79 // Like with other shift, ignore zext of shift amount if any. 80 Value *X, *ShAmt1; 81 if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1))))) 82 return nullptr; 83 84 // Verify that it would be safe to try to add those two shift amounts. 85 if (!canTryToConstantAddTwoShiftAmounts(Sh0, ShAmt0, Sh1, ShAmt1)) 86 return nullptr; 87 88 // We are only looking for signbit extraction if we have two right shifts. 89 bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) && 90 match(Sh1, m_Shr(m_Value(), m_Value())); 91 // ... and if it's not two right-shifts, we know the answer already. 92 if (AnalyzeForSignBitExtraction && !HadTwoRightShifts) 93 return nullptr; 94 95 // The shift opcodes must be identical, unless we are just checking whether 96 // this pattern can be interpreted as a sign-bit-extraction. 97 Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode(); 98 bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode(); 99 if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction) 100 return nullptr; 101 102 // If we saw truncation, we'll need to produce extra instruction, 103 // and for that one of the operands of the shift must be one-use, 104 // unless of course we don't actually plan to produce any instructions here. 105 if (Trunc && !AnalyzeForSignBitExtraction && 106 !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 107 return nullptr; 108 109 // Can we fold (ShAmt0+ShAmt1) ? 110 auto *NewShAmt = dyn_cast_or_null<Constant>( 111 SimplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false, 112 SQ.getWithInstruction(Sh0))); 113 if (!NewShAmt) 114 return nullptr; // Did not simplify. 115 unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits(); 116 unsigned XBitWidth = X->getType()->getScalarSizeInBits(); 117 // Is the new shift amount smaller than the bit width of inner/new shift? 118 if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 119 APInt(NewShAmtBitWidth, XBitWidth)))) 120 return nullptr; // FIXME: could perform constant-folding. 121 122 // If there was a truncation, and we have a right-shift, we can only fold if 123 // we are left with the original sign bit. Likewise, if we were just checking 124 // that this is a sighbit extraction, this is the place to check it. 125 // FIXME: zero shift amount is also legal here, but we can't *easily* check 126 // more than one predicate so it's not really worth it. 127 if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) { 128 // If it's not a sign bit extraction, then we're done. 129 if (!match(NewShAmt, 130 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 131 APInt(NewShAmtBitWidth, XBitWidth - 1)))) 132 return nullptr; 133 // If it is, and that was the question, return the base value. 134 if (AnalyzeForSignBitExtraction) 135 return X; 136 } 137 138 assert(IdenticalShOpcodes && "Should not get here with different shifts."); 139 140 // All good, we can do this fold. 141 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType()); 142 143 BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt); 144 145 // The flags can only be propagated if there wasn't a trunc. 146 if (!Trunc) { 147 // If the pattern did not involve trunc, and both of the original shifts 148 // had the same flag set, preserve the flag. 149 if (ShiftOpcode == Instruction::BinaryOps::Shl) { 150 NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() && 151 Sh1->hasNoUnsignedWrap()); 152 NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() && 153 Sh1->hasNoSignedWrap()); 154 } else { 155 NewShift->setIsExact(Sh0->isExact() && Sh1->isExact()); 156 } 157 } 158 159 Instruction *Ret = NewShift; 160 if (Trunc) { 161 Builder.Insert(NewShift); 162 Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType()); 163 } 164 165 return Ret; 166 } 167 168 // If we have some pattern that leaves only some low bits set, and then performs 169 // left-shift of those bits, if none of the bits that are left after the final 170 // shift are modified by the mask, we can omit the mask. 171 // 172 // There are many variants to this pattern: 173 // a) (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt 174 // b) (x & (~(-1 << MaskShAmt))) << ShiftShAmt 175 // c) (x & (-1 l>> MaskShAmt)) << ShiftShAmt 176 // d) (x & ((-1 << MaskShAmt) l>> MaskShAmt)) << ShiftShAmt 177 // e) ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt 178 // f) ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt 179 // All these patterns can be simplified to just: 180 // x << ShiftShAmt 181 // iff: 182 // a,b) (MaskShAmt+ShiftShAmt) u>= bitwidth(x) 183 // c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt) 184 static Instruction * 185 dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift, 186 const SimplifyQuery &Q, 187 InstCombiner::BuilderTy &Builder) { 188 assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl && 189 "The input must be 'shl'!"); 190 191 Value *Masked, *ShiftShAmt; 192 match(OuterShift, 193 m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt)))); 194 195 // *If* there is a truncation between an outer shift and a possibly-mask, 196 // then said truncation *must* be one-use, else we can't perform the fold. 197 Value *Trunc; 198 if (match(Masked, m_CombineAnd(m_Trunc(m_Value(Masked)), m_Value(Trunc))) && 199 !Trunc->hasOneUse()) 200 return nullptr; 201 202 Type *NarrowestTy = OuterShift->getType(); 203 Type *WidestTy = Masked->getType(); 204 bool HadTrunc = WidestTy != NarrowestTy; 205 206 // The mask must be computed in a type twice as wide to ensure 207 // that no bits are lost if the sum-of-shifts is wider than the base type. 208 Type *ExtendedTy = WidestTy->getExtendedType(); 209 210 Value *MaskShAmt; 211 212 // ((1 << MaskShAmt) - 1) 213 auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes()); 214 // (~(-1 << maskNbits)) 215 auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes()); 216 // (-1 l>> MaskShAmt) 217 auto MaskC = m_LShr(m_AllOnes(), m_Value(MaskShAmt)); 218 // ((-1 << MaskShAmt) l>> MaskShAmt) 219 auto MaskD = 220 m_LShr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt)); 221 222 Value *X; 223 Constant *NewMask; 224 225 if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) { 226 // Peek through an optional zext of the shift amount. 227 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt))); 228 229 // Verify that it would be safe to try to add those two shift amounts. 230 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked, 231 MaskShAmt)) 232 return nullptr; 233 234 // Can we simplify (MaskShAmt+ShiftShAmt) ? 235 auto *SumOfShAmts = dyn_cast_or_null<Constant>(SimplifyAddInst( 236 MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q)); 237 if (!SumOfShAmts) 238 return nullptr; // Did not simplify. 239 // In this pattern SumOfShAmts correlates with the number of low bits 240 // that shall remain in the root value (OuterShift). 241 242 // An extend of an undef value becomes zero because the high bits are never 243 // completely unknown. Replace the `undef` shift amounts with final 244 // shift bitwidth to ensure that the value remains undef when creating the 245 // subsequent shift op. 246 SumOfShAmts = Constant::replaceUndefsWith( 247 SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(), 248 ExtendedTy->getScalarSizeInBits())); 249 auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy); 250 // And compute the mask as usual: ~(-1 << (SumOfShAmts)) 251 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy); 252 auto *ExtendedInvertedMask = 253 ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts); 254 NewMask = ConstantExpr::getNot(ExtendedInvertedMask); 255 } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) || 256 match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)), 257 m_Deferred(MaskShAmt)))) { 258 // Peek through an optional zext of the shift amount. 259 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt))); 260 261 // Verify that it would be safe to try to add those two shift amounts. 262 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked, 263 MaskShAmt)) 264 return nullptr; 265 266 // Can we simplify (ShiftShAmt-MaskShAmt) ? 267 auto *ShAmtsDiff = dyn_cast_or_null<Constant>(SimplifySubInst( 268 ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q)); 269 if (!ShAmtsDiff) 270 return nullptr; // Did not simplify. 271 // In this pattern ShAmtsDiff correlates with the number of high bits that 272 // shall be unset in the root value (OuterShift). 273 274 // An extend of an undef value becomes zero because the high bits are never 275 // completely unknown. Replace the `undef` shift amounts with negated 276 // bitwidth of innermost shift to ensure that the value remains undef when 277 // creating the subsequent shift op. 278 unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits(); 279 ShAmtsDiff = Constant::replaceUndefsWith( 280 ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(), 281 -WidestTyBitWidth)); 282 auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt( 283 ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(), 284 WidestTyBitWidth, 285 /*isSigned=*/false), 286 ShAmtsDiff), 287 ExtendedTy); 288 // And compute the mask as usual: (-1 l>> (NumHighBitsToClear)) 289 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy); 290 NewMask = 291 ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear); 292 } else 293 return nullptr; // Don't know anything about this pattern. 294 295 NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy); 296 297 // Does this mask has any unset bits? If not then we can just not apply it. 298 bool NeedMask = !match(NewMask, m_AllOnes()); 299 300 // If we need to apply a mask, there are several more restrictions we have. 301 if (NeedMask) { 302 // The old masking instruction must go away. 303 if (!Masked->hasOneUse()) 304 return nullptr; 305 // The original "masking" instruction must not have been`ashr`. 306 if (match(Masked, m_AShr(m_Value(), m_Value()))) 307 return nullptr; 308 } 309 310 // If we need to apply truncation, let's do it first, since we can. 311 // We have already ensured that the old truncation will go away. 312 if (HadTrunc) 313 X = Builder.CreateTrunc(X, NarrowestTy); 314 315 // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits. 316 // We didn't change the Type of this outermost shift, so we can just do it. 317 auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X, 318 OuterShift->getOperand(1)); 319 if (!NeedMask) 320 return NewShift; 321 322 Builder.Insert(NewShift); 323 return BinaryOperator::Create(Instruction::And, NewShift, NewMask); 324 } 325 326 /// If we have a shift-by-constant of a bitwise logic op that itself has a 327 /// shift-by-constant operand with identical opcode, we may be able to convert 328 /// that into 2 independent shifts followed by the logic op. This eliminates a 329 /// a use of an intermediate value (reduces dependency chain). 330 static Instruction *foldShiftOfShiftedLogic(BinaryOperator &I, 331 InstCombiner::BuilderTy &Builder) { 332 assert(I.isShift() && "Expected a shift as input"); 333 auto *LogicInst = dyn_cast<BinaryOperator>(I.getOperand(0)); 334 if (!LogicInst || !LogicInst->isBitwiseLogicOp() || !LogicInst->hasOneUse()) 335 return nullptr; 336 337 Constant *C0, *C1; 338 if (!match(I.getOperand(1), m_Constant(C1))) 339 return nullptr; 340 341 Instruction::BinaryOps ShiftOpcode = I.getOpcode(); 342 Type *Ty = I.getType(); 343 344 // Find a matching one-use shift by constant. The fold is not valid if the sum 345 // of the shift values equals or exceeds bitwidth. 346 // TODO: Remove the one-use check if the other logic operand (Y) is constant. 347 Value *X, *Y; 348 auto matchFirstShift = [&](Value *V) { 349 APInt Threshold(Ty->getScalarSizeInBits(), Ty->getScalarSizeInBits()); 350 return match(V, m_BinOp(ShiftOpcode, m_Value(), m_Value())) && 351 match(V, m_OneUse(m_Shift(m_Value(X), m_Constant(C0)))) && 352 match(ConstantExpr::getAdd(C0, C1), 353 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold)); 354 }; 355 356 // Logic ops are commutative, so check each operand for a match. 357 if (matchFirstShift(LogicInst->getOperand(0))) 358 Y = LogicInst->getOperand(1); 359 else if (matchFirstShift(LogicInst->getOperand(1))) 360 Y = LogicInst->getOperand(0); 361 else 362 return nullptr; 363 364 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1) 365 Constant *ShiftSumC = ConstantExpr::getAdd(C0, C1); 366 Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC); 367 Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, I.getOperand(1)); 368 return BinaryOperator::Create(LogicInst->getOpcode(), NewShift1, NewShift2); 369 } 370 371 Instruction *InstCombinerImpl::commonShiftTransforms(BinaryOperator &I) { 372 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 373 return Phi; 374 375 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 376 assert(Op0->getType() == Op1->getType()); 377 378 // If the shift amount is a one-use `sext`, we can demote it to `zext`. 379 Value *Y; 380 if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) { 381 Value *NewExt = Builder.CreateZExt(Y, I.getType(), Op1->getName()); 382 return BinaryOperator::Create(I.getOpcode(), Op0, NewExt); 383 } 384 385 // See if we can fold away this shift. 386 if (SimplifyDemandedInstructionBits(I)) 387 return &I; 388 389 // Try to fold constant and into select arguments. 390 if (isa<Constant>(Op0)) 391 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 392 if (Instruction *R = FoldOpIntoSelect(I, SI)) 393 return R; 394 395 if (Constant *CUI = dyn_cast<Constant>(Op1)) 396 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I)) 397 return Res; 398 399 if (auto *NewShift = cast_or_null<Instruction>( 400 reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ))) 401 return NewShift; 402 403 // (C1 shift (A add C2)) -> (C1 shift C2) shift A) 404 // iff A and C2 are both positive. 405 Value *A; 406 Constant *C; 407 if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C)))) 408 if (isKnownNonNegative(A, DL, 0, &AC, &I, &DT) && 409 isKnownNonNegative(C, DL, 0, &AC, &I, &DT)) 410 return BinaryOperator::Create( 411 I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), Op0, C), A); 412 413 // X shift (A srem C) -> X shift (A and (C - 1)) iff C is a power of 2. 414 // Because shifts by negative values (which could occur if A were negative) 415 // are undefined. 416 if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Constant(C))) && 417 match(C, m_Power2())) { 418 // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't 419 // demand the sign bit (and many others) here?? 420 Constant *Mask = ConstantExpr::getSub(C, ConstantInt::get(I.getType(), 1)); 421 Value *Rem = Builder.CreateAnd(A, Mask, Op1->getName()); 422 return replaceOperand(I, 1, Rem); 423 } 424 425 if (Instruction *Logic = foldShiftOfShiftedLogic(I, Builder)) 426 return Logic; 427 428 return nullptr; 429 } 430 431 /// Return true if we can simplify two logical (either left or right) shifts 432 /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2. 433 static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl, 434 Instruction *InnerShift, 435 InstCombinerImpl &IC, Instruction *CxtI) { 436 assert(InnerShift->isLogicalShift() && "Unexpected instruction type"); 437 438 // We need constant scalar or constant splat shifts. 439 const APInt *InnerShiftConst; 440 if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst))) 441 return false; 442 443 // Two logical shifts in the same direction: 444 // shl (shl X, C1), C2 --> shl X, C1 + C2 445 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2 446 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl; 447 if (IsInnerShl == IsOuterShl) 448 return true; 449 450 // Equal shift amounts in opposite directions become bitwise 'and': 451 // lshr (shl X, C), C --> and X, C' 452 // shl (lshr X, C), C --> and X, C' 453 if (*InnerShiftConst == OuterShAmt) 454 return true; 455 456 // If the 2nd shift is bigger than the 1st, we can fold: 457 // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3 458 // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3 459 // but it isn't profitable unless we know the and'd out bits are already zero. 460 // Also, check that the inner shift is valid (less than the type width) or 461 // we'll crash trying to produce the bit mask for the 'and'. 462 unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits(); 463 if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) { 464 unsigned InnerShAmt = InnerShiftConst->getZExtValue(); 465 unsigned MaskShift = 466 IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt; 467 APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift; 468 if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI)) 469 return true; 470 } 471 472 return false; 473 } 474 475 /// See if we can compute the specified value, but shifted logically to the left 476 /// or right by some number of bits. This should return true if the expression 477 /// can be computed for the same cost as the current expression tree. This is 478 /// used to eliminate extraneous shifting from things like: 479 /// %C = shl i128 %A, 64 480 /// %D = shl i128 %B, 96 481 /// %E = or i128 %C, %D 482 /// %F = lshr i128 %E, 64 483 /// where the client will ask if E can be computed shifted right by 64-bits. If 484 /// this succeeds, getShiftedValue() will be called to produce the value. 485 static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift, 486 InstCombinerImpl &IC, Instruction *CxtI) { 487 // We can always evaluate constants shifted. 488 if (isa<Constant>(V)) 489 return true; 490 491 Instruction *I = dyn_cast<Instruction>(V); 492 if (!I) return false; 493 494 // We can't mutate something that has multiple uses: doing so would 495 // require duplicating the instruction in general, which isn't profitable. 496 if (!I->hasOneUse()) return false; 497 498 switch (I->getOpcode()) { 499 default: return false; 500 case Instruction::And: 501 case Instruction::Or: 502 case Instruction::Xor: 503 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. 504 return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) && 505 canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I); 506 507 case Instruction::Shl: 508 case Instruction::LShr: 509 return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI); 510 511 case Instruction::Select: { 512 SelectInst *SI = cast<SelectInst>(I); 513 Value *TrueVal = SI->getTrueValue(); 514 Value *FalseVal = SI->getFalseValue(); 515 return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) && 516 canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI); 517 } 518 case Instruction::PHI: { 519 // We can change a phi if we can change all operands. Note that we never 520 // get into trouble with cyclic PHIs here because we only consider 521 // instructions with a single use. 522 PHINode *PN = cast<PHINode>(I); 523 for (Value *IncValue : PN->incoming_values()) 524 if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN)) 525 return false; 526 return true; 527 } 528 } 529 } 530 531 /// Fold OuterShift (InnerShift X, C1), C2. 532 /// See canEvaluateShiftedShift() for the constraints on these instructions. 533 static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt, 534 bool IsOuterShl, 535 InstCombiner::BuilderTy &Builder) { 536 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl; 537 Type *ShType = InnerShift->getType(); 538 unsigned TypeWidth = ShType->getScalarSizeInBits(); 539 540 // We only accept shifts-by-a-constant in canEvaluateShifted(). 541 const APInt *C1; 542 match(InnerShift->getOperand(1), m_APInt(C1)); 543 unsigned InnerShAmt = C1->getZExtValue(); 544 545 // Change the shift amount and clear the appropriate IR flags. 546 auto NewInnerShift = [&](unsigned ShAmt) { 547 InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt)); 548 if (IsInnerShl) { 549 InnerShift->setHasNoUnsignedWrap(false); 550 InnerShift->setHasNoSignedWrap(false); 551 } else { 552 InnerShift->setIsExact(false); 553 } 554 return InnerShift; 555 }; 556 557 // Two logical shifts in the same direction: 558 // shl (shl X, C1), C2 --> shl X, C1 + C2 559 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2 560 if (IsInnerShl == IsOuterShl) { 561 // If this is an oversized composite shift, then unsigned shifts get 0. 562 if (InnerShAmt + OuterShAmt >= TypeWidth) 563 return Constant::getNullValue(ShType); 564 565 return NewInnerShift(InnerShAmt + OuterShAmt); 566 } 567 568 // Equal shift amounts in opposite directions become bitwise 'and': 569 // lshr (shl X, C), C --> and X, C' 570 // shl (lshr X, C), C --> and X, C' 571 if (InnerShAmt == OuterShAmt) { 572 APInt Mask = IsInnerShl 573 ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt) 574 : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt); 575 Value *And = Builder.CreateAnd(InnerShift->getOperand(0), 576 ConstantInt::get(ShType, Mask)); 577 if (auto *AndI = dyn_cast<Instruction>(And)) { 578 AndI->moveBefore(InnerShift); 579 AndI->takeName(InnerShift); 580 } 581 return And; 582 } 583 584 assert(InnerShAmt > OuterShAmt && 585 "Unexpected opposite direction logical shift pair"); 586 587 // In general, we would need an 'and' for this transform, but 588 // canEvaluateShiftedShift() guarantees that the masked-off bits are not used. 589 // lshr (shl X, C1), C2 --> shl X, C1 - C2 590 // shl (lshr X, C1), C2 --> lshr X, C1 - C2 591 return NewInnerShift(InnerShAmt - OuterShAmt); 592 } 593 594 /// When canEvaluateShifted() returns true for an expression, this function 595 /// inserts the new computation that produces the shifted value. 596 static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift, 597 InstCombinerImpl &IC, const DataLayout &DL) { 598 // We can always evaluate constants shifted. 599 if (Constant *C = dyn_cast<Constant>(V)) { 600 if (isLeftShift) 601 return IC.Builder.CreateShl(C, NumBits); 602 else 603 return IC.Builder.CreateLShr(C, NumBits); 604 } 605 606 Instruction *I = cast<Instruction>(V); 607 IC.addToWorklist(I); 608 609 switch (I->getOpcode()) { 610 default: llvm_unreachable("Inconsistency with CanEvaluateShifted"); 611 case Instruction::And: 612 case Instruction::Or: 613 case Instruction::Xor: 614 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. 615 I->setOperand( 616 0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL)); 617 I->setOperand( 618 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL)); 619 return I; 620 621 case Instruction::Shl: 622 case Instruction::LShr: 623 return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift, 624 IC.Builder); 625 626 case Instruction::Select: 627 I->setOperand( 628 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL)); 629 I->setOperand( 630 2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL)); 631 return I; 632 case Instruction::PHI: { 633 // We can change a phi if we can change all operands. Note that we never 634 // get into trouble with cyclic PHIs here because we only consider 635 // instructions with a single use. 636 PHINode *PN = cast<PHINode>(I); 637 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 638 PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits, 639 isLeftShift, IC, DL)); 640 return PN; 641 } 642 } 643 } 644 645 // If this is a bitwise operator or add with a constant RHS we might be able 646 // to pull it through a shift. 647 static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift, 648 BinaryOperator *BO) { 649 switch (BO->getOpcode()) { 650 default: 651 return false; // Do not perform transform! 652 case Instruction::Add: 653 return Shift.getOpcode() == Instruction::Shl; 654 case Instruction::Or: 655 case Instruction::And: 656 return true; 657 case Instruction::Xor: 658 // Do not change a 'not' of logical shift because that would create a normal 659 // 'xor'. The 'not' is likely better for analysis, SCEV, and codegen. 660 return !(Shift.isLogicalShift() && match(BO, m_Not(m_Value()))); 661 } 662 } 663 664 Instruction *InstCombinerImpl::FoldShiftByConstant(Value *Op0, Constant *Op1, 665 BinaryOperator &I) { 666 const APInt *Op1C; 667 if (!match(Op1, m_APInt(Op1C))) 668 return nullptr; 669 670 // See if we can propagate this shift into the input, this covers the trivial 671 // cast of lshr(shl(x,c1),c2) as well as other more complex cases. 672 bool IsLeftShift = I.getOpcode() == Instruction::Shl; 673 if (I.getOpcode() != Instruction::AShr && 674 canEvaluateShifted(Op0, Op1C->getZExtValue(), IsLeftShift, *this, &I)) { 675 LLVM_DEBUG( 676 dbgs() << "ICE: GetShiftedValue propagating shift through expression" 677 " to eliminate shift:\n IN: " 678 << *Op0 << "\n SH: " << I << "\n"); 679 680 return replaceInstUsesWith( 681 I, getShiftedValue(Op0, Op1C->getZExtValue(), IsLeftShift, *this, DL)); 682 } 683 684 // See if we can simplify any instructions used by the instruction whose sole 685 // purpose is to compute bits we don't care about. 686 Type *Ty = I.getType(); 687 unsigned TypeBits = Ty->getScalarSizeInBits(); 688 assert(!Op1C->uge(TypeBits) && 689 "Shift over the type width should have been removed already"); 690 (void)TypeBits; 691 692 if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I)) 693 return FoldedShift; 694 695 if (!Op0->hasOneUse()) 696 return nullptr; 697 698 if (auto *Op0BO = dyn_cast<BinaryOperator>(Op0)) { 699 // If the operand is a bitwise operator with a constant RHS, and the 700 // shift is the only use, we can pull it out of the shift. 701 const APInt *Op0C; 702 if (match(Op0BO->getOperand(1), m_APInt(Op0C))) { 703 if (canShiftBinOpWithConstantRHS(I, Op0BO)) { 704 Constant *NewRHS = ConstantExpr::get( 705 I.getOpcode(), cast<Constant>(Op0BO->getOperand(1)), Op1); 706 707 Value *NewShift = 708 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1); 709 NewShift->takeName(Op0BO); 710 711 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, NewRHS); 712 } 713 } 714 } 715 716 // If we have a select that conditionally executes some binary operator, 717 // see if we can pull it the select and operator through the shift. 718 // 719 // For example, turning: 720 // shl (select C, (add X, C1), X), C2 721 // Into: 722 // Y = shl X, C2 723 // select C, (add Y, C1 << C2), Y 724 Value *Cond; 725 BinaryOperator *TBO; 726 Value *FalseVal; 727 if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)), 728 m_Value(FalseVal)))) { 729 const APInt *C; 730 if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal && 731 match(TBO->getOperand(1), m_APInt(C)) && 732 canShiftBinOpWithConstantRHS(I, TBO)) { 733 Constant *NewRHS = ConstantExpr::get( 734 I.getOpcode(), cast<Constant>(TBO->getOperand(1)), Op1); 735 736 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), FalseVal, Op1); 737 Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift, NewRHS); 738 return SelectInst::Create(Cond, NewOp, NewShift); 739 } 740 } 741 742 BinaryOperator *FBO; 743 Value *TrueVal; 744 if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal), 745 m_OneUse(m_BinOp(FBO))))) { 746 const APInt *C; 747 if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal && 748 match(FBO->getOperand(1), m_APInt(C)) && 749 canShiftBinOpWithConstantRHS(I, FBO)) { 750 Constant *NewRHS = ConstantExpr::get( 751 I.getOpcode(), cast<Constant>(FBO->getOperand(1)), Op1); 752 753 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), TrueVal, Op1); 754 Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift, NewRHS); 755 return SelectInst::Create(Cond, NewShift, NewOp); 756 } 757 } 758 759 return nullptr; 760 } 761 762 Instruction *InstCombinerImpl::visitShl(BinaryOperator &I) { 763 const SimplifyQuery Q = SQ.getWithInstruction(&I); 764 765 if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1), 766 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q)) 767 return replaceInstUsesWith(I, V); 768 769 if (Instruction *X = foldVectorBinop(I)) 770 return X; 771 772 if (Instruction *V = commonShiftTransforms(I)) 773 return V; 774 775 if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder)) 776 return V; 777 778 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 779 Type *Ty = I.getType(); 780 unsigned BitWidth = Ty->getScalarSizeInBits(); 781 782 const APInt *C; 783 if (match(Op1, m_APInt(C))) { 784 unsigned ShAmtC = C->getZExtValue(); 785 786 // shl (zext X), C --> zext (shl X, C) 787 // This is only valid if X would have zeros shifted out. 788 Value *X; 789 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) { 790 unsigned SrcWidth = X->getType()->getScalarSizeInBits(); 791 if (ShAmtC < SrcWidth && 792 MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmtC), 0, &I)) 793 return new ZExtInst(Builder.CreateShl(X, ShAmtC), Ty); 794 } 795 796 // (X >> C) << C --> X & (-1 << C) 797 if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) { 798 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 799 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask)); 800 } 801 802 const APInt *C1; 803 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(C1)))) && 804 C1->ult(BitWidth)) { 805 unsigned ShrAmt = C1->getZExtValue(); 806 if (ShrAmt < ShAmtC) { 807 // If C1 < C: (X >>?,exact C1) << C --> X << (C - C1) 808 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt); 809 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); 810 NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 811 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap()); 812 return NewShl; 813 } 814 if (ShrAmt > ShAmtC) { 815 // If C1 > C: (X >>?exact C1) << C --> X >>?exact (C1 - C) 816 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC); 817 auto *NewShr = BinaryOperator::Create( 818 cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff); 819 NewShr->setIsExact(true); 820 return NewShr; 821 } 822 } 823 824 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_APInt(C1)))) && 825 C1->ult(BitWidth)) { 826 unsigned ShrAmt = C1->getZExtValue(); 827 if (ShrAmt < ShAmtC) { 828 // If C1 < C: (X >>? C1) << C --> (X << (C - C1)) & (-1 << C) 829 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt); 830 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); 831 NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 832 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap()); 833 Builder.Insert(NewShl); 834 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 835 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask)); 836 } 837 if (ShrAmt > ShAmtC) { 838 // If C1 > C: (X >>? C1) << C --> (X >>? (C1 - C)) & (-1 << C) 839 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC); 840 auto *OldShr = cast<BinaryOperator>(Op0); 841 auto *NewShr = 842 BinaryOperator::Create(OldShr->getOpcode(), X, ShiftDiff); 843 NewShr->setIsExact(OldShr->isExact()); 844 Builder.Insert(NewShr); 845 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 846 return BinaryOperator::CreateAnd(NewShr, ConstantInt::get(Ty, Mask)); 847 } 848 } 849 850 // Similar to above, but look through an intermediate trunc instruction. 851 BinaryOperator *Shr; 852 if (match(Op0, m_OneUse(m_Trunc(m_OneUse(m_BinOp(Shr))))) && 853 match(Shr, m_Shr(m_Value(X), m_APInt(C1)))) { 854 // The larger shift direction survives through the transform. 855 unsigned ShrAmtC = C1->getZExtValue(); 856 unsigned ShDiff = ShrAmtC > ShAmtC ? ShrAmtC - ShAmtC : ShAmtC - ShrAmtC; 857 Constant *ShiftDiffC = ConstantInt::get(X->getType(), ShDiff); 858 auto ShiftOpc = ShrAmtC > ShAmtC ? Shr->getOpcode() : Instruction::Shl; 859 860 // If C1 > C: 861 // (trunc (X >> C1)) << C --> (trunc (X >> (C1 - C))) && (-1 << C) 862 // If C > C1: 863 // (trunc (X >> C1)) << C --> (trunc (X << (C - C1))) && (-1 << C) 864 Value *NewShift = Builder.CreateBinOp(ShiftOpc, X, ShiftDiffC, "sh.diff"); 865 Value *Trunc = Builder.CreateTrunc(NewShift, Ty, "tr.sh.diff"); 866 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 867 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, Mask)); 868 } 869 870 if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) { 871 unsigned AmtSum = ShAmtC + C1->getZExtValue(); 872 // Oversized shifts are simplified to zero in InstSimplify. 873 if (AmtSum < BitWidth) 874 // (X << C1) << C2 --> X << (C1 + C2) 875 return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum)); 876 } 877 878 // If we have an opposite shift by the same amount, we may be able to 879 // reorder binops and shifts to eliminate math/logic. 880 auto isSuitableBinOpcode = [](Instruction::BinaryOps BinOpcode) { 881 switch (BinOpcode) { 882 default: 883 return false; 884 case Instruction::Add: 885 case Instruction::And: 886 case Instruction::Or: 887 case Instruction::Xor: 888 case Instruction::Sub: 889 // NOTE: Sub is not commutable and the tranforms below may not be valid 890 // when the shift-right is operand 1 (RHS) of the sub. 891 return true; 892 } 893 }; 894 BinaryOperator *Op0BO; 895 if (match(Op0, m_OneUse(m_BinOp(Op0BO))) && 896 isSuitableBinOpcode(Op0BO->getOpcode())) { 897 // Commute so shift-right is on LHS of the binop. 898 // (Y bop (X >> C)) << C -> ((X >> C) bop Y) << C 899 // (Y bop ((X >> C) & CC)) << C -> (((X >> C) & CC) bop Y) << C 900 Value *Shr = Op0BO->getOperand(0); 901 Value *Y = Op0BO->getOperand(1); 902 Value *X; 903 const APInt *CC; 904 if (Op0BO->isCommutative() && Y->hasOneUse() && 905 (match(Y, m_Shr(m_Value(), m_Specific(Op1))) || 906 match(Y, m_And(m_OneUse(m_Shr(m_Value(), m_Specific(Op1))), 907 m_APInt(CC))))) 908 std::swap(Shr, Y); 909 910 // ((X >> C) bop Y) << C -> (X bop (Y << C)) & (~0 << C) 911 if (match(Shr, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) { 912 // Y << C 913 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName()); 914 // (X bop (Y << C)) 915 Value *B = 916 Builder.CreateBinOp(Op0BO->getOpcode(), X, YS, Shr->getName()); 917 unsigned Op1Val = C->getLimitedValue(BitWidth); 918 APInt Bits = APInt::getHighBitsSet(BitWidth, BitWidth - Op1Val); 919 Constant *Mask = ConstantInt::get(Ty, Bits); 920 return BinaryOperator::CreateAnd(B, Mask); 921 } 922 923 // (((X >> C) & CC) bop Y) << C -> (X & (CC << C)) bop (Y << C) 924 if (match(Shr, 925 m_OneUse(m_And(m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))), 926 m_APInt(CC))))) { 927 // Y << C 928 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName()); 929 // X & (CC << C) 930 Value *M = Builder.CreateAnd(X, ConstantInt::get(Ty, CC->shl(*C)), 931 X->getName() + ".mask"); 932 return BinaryOperator::Create(Op0BO->getOpcode(), M, YS); 933 } 934 } 935 936 // (C1 - X) << C --> (C1 << C) - (X << C) 937 if (match(Op0, m_OneUse(m_Sub(m_APInt(C1), m_Value(X))))) { 938 Constant *NewLHS = ConstantInt::get(Ty, C1->shl(*C)); 939 Value *NewShift = Builder.CreateShl(X, Op1); 940 return BinaryOperator::CreateSub(NewLHS, NewShift); 941 } 942 943 // If the shifted-out value is known-zero, then this is a NUW shift. 944 if (!I.hasNoUnsignedWrap() && 945 MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmtC), 0, 946 &I)) { 947 I.setHasNoUnsignedWrap(); 948 return &I; 949 } 950 951 // If the shifted-out value is all signbits, then this is a NSW shift. 952 if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmtC) { 953 I.setHasNoSignedWrap(); 954 return &I; 955 } 956 } 957 958 // Transform (x >> y) << y to x & (-1 << y) 959 // Valid for any type of right-shift. 960 Value *X; 961 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) { 962 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); 963 Value *Mask = Builder.CreateShl(AllOnes, Op1); 964 return BinaryOperator::CreateAnd(Mask, X); 965 } 966 967 Constant *C1; 968 if (match(Op1, m_Constant(C1))) { 969 Constant *C2; 970 Value *X; 971 // (C2 << X) << C1 --> (C2 << C1) << X 972 if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X))))) 973 return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X); 974 975 // (X * C2) << C1 --> X * (C2 << C1) 976 if (match(Op0, m_Mul(m_Value(X), m_Constant(C2)))) 977 return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1)); 978 979 // shl (zext i1 X), C1 --> select (X, 1 << C1, 0) 980 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 981 auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1); 982 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty)); 983 } 984 } 985 986 // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1 987 if (match(Op0, m_One()) && 988 match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X)))) 989 return BinaryOperator::CreateLShr( 990 ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X); 991 992 return nullptr; 993 } 994 995 Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) { 996 if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), 997 SQ.getWithInstruction(&I))) 998 return replaceInstUsesWith(I, V); 999 1000 if (Instruction *X = foldVectorBinop(I)) 1001 return X; 1002 1003 if (Instruction *R = commonShiftTransforms(I)) 1004 return R; 1005 1006 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1007 Type *Ty = I.getType(); 1008 const APInt *C; 1009 if (match(Op1, m_APInt(C))) { 1010 unsigned ShAmtC = C->getZExtValue(); 1011 unsigned BitWidth = Ty->getScalarSizeInBits(); 1012 auto *II = dyn_cast<IntrinsicInst>(Op0); 1013 if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmtC && 1014 (II->getIntrinsicID() == Intrinsic::ctlz || 1015 II->getIntrinsicID() == Intrinsic::cttz || 1016 II->getIntrinsicID() == Intrinsic::ctpop)) { 1017 // ctlz.i32(x)>>5 --> zext(x == 0) 1018 // cttz.i32(x)>>5 --> zext(x == 0) 1019 // ctpop.i32(x)>>5 --> zext(x == -1) 1020 bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop; 1021 Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0); 1022 Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS); 1023 return new ZExtInst(Cmp, Ty); 1024 } 1025 1026 Value *X; 1027 const APInt *C1; 1028 if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) { 1029 if (C1->ult(ShAmtC)) { 1030 unsigned ShlAmtC = C1->getZExtValue(); 1031 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShlAmtC); 1032 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) { 1033 // (X <<nuw C1) >>u C --> X >>u (C - C1) 1034 auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff); 1035 NewLShr->setIsExact(I.isExact()); 1036 return NewLShr; 1037 } 1038 if (Op0->hasOneUse()) { 1039 // (X << C1) >>u C --> (X >>u (C - C1)) & (-1 >> C) 1040 Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact()); 1041 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1042 return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask)); 1043 } 1044 } else if (C1->ugt(ShAmtC)) { 1045 unsigned ShlAmtC = C1->getZExtValue(); 1046 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmtC - ShAmtC); 1047 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) { 1048 // (X <<nuw C1) >>u C --> X <<nuw (C1 - C) 1049 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); 1050 NewShl->setHasNoUnsignedWrap(true); 1051 return NewShl; 1052 } 1053 if (Op0->hasOneUse()) { 1054 // (X << C1) >>u C --> X << (C1 - C) & (-1 >> C) 1055 Value *NewShl = Builder.CreateShl(X, ShiftDiff); 1056 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1057 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask)); 1058 } 1059 } else { 1060 assert(*C1 == ShAmtC); 1061 // (X << C) >>u C --> X & (-1 >>u C) 1062 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1063 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask)); 1064 } 1065 } 1066 1067 // ((X << C) + Y) >>u C --> (X + (Y >>u C)) & (-1 >>u C) 1068 // TODO: Consolidate with the more general transform that starts from shl 1069 // (the shifts are in the opposite order). 1070 Value *Y; 1071 if (match(Op0, 1072 m_OneUse(m_c_Add(m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))), 1073 m_Value(Y))))) { 1074 Value *NewLshr = Builder.CreateLShr(Y, Op1); 1075 Value *NewAdd = Builder.CreateAdd(NewLshr, X); 1076 unsigned Op1Val = C->getLimitedValue(BitWidth); 1077 APInt Bits = APInt::getLowBitsSet(BitWidth, BitWidth - Op1Val); 1078 Constant *Mask = ConstantInt::get(Ty, Bits); 1079 return BinaryOperator::CreateAnd(NewAdd, Mask); 1080 } 1081 1082 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && 1083 (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) { 1084 assert(ShAmtC < X->getType()->getScalarSizeInBits() && 1085 "Big shift not simplified to zero?"); 1086 // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN 1087 Value *NewLShr = Builder.CreateLShr(X, ShAmtC); 1088 return new ZExtInst(NewLShr, Ty); 1089 } 1090 1091 if (match(Op0, m_SExt(m_Value(X)))) { 1092 unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits(); 1093 // lshr (sext i1 X to iN), C --> select (X, -1 >> C, 0) 1094 if (SrcTyBitWidth == 1) { 1095 auto *NewC = ConstantInt::get( 1096 Ty, APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1097 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty)); 1098 } 1099 1100 if ((!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType())) && 1101 Op0->hasOneUse()) { 1102 // Are we moving the sign bit to the low bit and widening with high 1103 // zeros? lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN 1104 if (ShAmtC == BitWidth - 1) { 1105 Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1); 1106 return new ZExtInst(NewLShr, Ty); 1107 } 1108 1109 // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN 1110 if (ShAmtC == BitWidth - SrcTyBitWidth) { 1111 // The new shift amount can't be more than the narrow source type. 1112 unsigned NewShAmt = std::min(ShAmtC, SrcTyBitWidth - 1); 1113 Value *AShr = Builder.CreateAShr(X, NewShAmt); 1114 return new ZExtInst(AShr, Ty); 1115 } 1116 } 1117 } 1118 1119 if (ShAmtC == BitWidth - 1) { 1120 // lshr i32 or(X,-X), 31 --> zext (X != 0) 1121 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X))))) 1122 return new ZExtInst(Builder.CreateIsNotNull(X), Ty); 1123 1124 // lshr i32 (X -nsw Y), 31 --> zext (X < Y) 1125 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y))))) 1126 return new ZExtInst(Builder.CreateICmpSLT(X, Y), Ty); 1127 1128 // Check if a number is negative and odd: 1129 // lshr i32 (srem X, 2), 31 --> and (X >> 31), X 1130 if (match(Op0, m_OneUse(m_SRem(m_Value(X), m_SpecificInt(2))))) { 1131 Value *Signbit = Builder.CreateLShr(X, ShAmtC); 1132 return BinaryOperator::CreateAnd(Signbit, X); 1133 } 1134 } 1135 1136 // (X >>u C1) >>u C --> X >>u (C1 + C) 1137 if (match(Op0, m_LShr(m_Value(X), m_APInt(C1)))) { 1138 // Oversized shifts are simplified to zero in InstSimplify. 1139 unsigned AmtSum = ShAmtC + C1->getZExtValue(); 1140 if (AmtSum < BitWidth) 1141 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum)); 1142 } 1143 1144 Instruction *TruncSrc; 1145 if (match(Op0, m_OneUse(m_Trunc(m_Instruction(TruncSrc)))) && 1146 match(TruncSrc, m_LShr(m_Value(X), m_APInt(C1)))) { 1147 unsigned SrcWidth = X->getType()->getScalarSizeInBits(); 1148 unsigned AmtSum = ShAmtC + C1->getZExtValue(); 1149 1150 // If the combined shift fits in the source width: 1151 // (trunc (X >>u C1)) >>u C --> and (trunc (X >>u (C1 + C)), MaskC 1152 // 1153 // If the first shift covers the number of bits truncated, then the 1154 // mask instruction is eliminated (and so the use check is relaxed). 1155 if (AmtSum < SrcWidth && 1156 (TruncSrc->hasOneUse() || C1->uge(SrcWidth - BitWidth))) { 1157 Value *SumShift = Builder.CreateLShr(X, AmtSum, "sum.shift"); 1158 Value *Trunc = Builder.CreateTrunc(SumShift, Ty, I.getName()); 1159 1160 // If the first shift does not cover the number of bits truncated, then 1161 // we require a mask to get rid of high bits in the result. 1162 APInt MaskC = APInt::getAllOnes(BitWidth).lshr(ShAmtC); 1163 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, MaskC)); 1164 } 1165 } 1166 1167 // Look for a "splat" mul pattern - it replicates bits across each half of 1168 // a value, so a right shift is just a mask of the low bits: 1169 // lshr i32 (mul nuw X, Pow2+1), 16 --> and X, Pow2-1 1170 // TODO: Generalize to allow more than just half-width shifts? 1171 const APInt *MulC; 1172 if (match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC))) && 1173 ShAmtC * 2 == BitWidth && (*MulC - 1).isPowerOf2() && 1174 MulC->logBase2() == ShAmtC) 1175 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *MulC - 2)); 1176 1177 // If the shifted-out value is known-zero, then this is an exact shift. 1178 if (!I.isExact() && 1179 MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmtC), 0, &I)) { 1180 I.setIsExact(); 1181 return &I; 1182 } 1183 } 1184 1185 // Transform (x << y) >> y to x & (-1 >> y) 1186 Value *X; 1187 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) { 1188 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); 1189 Value *Mask = Builder.CreateLShr(AllOnes, Op1); 1190 return BinaryOperator::CreateAnd(Mask, X); 1191 } 1192 1193 return nullptr; 1194 } 1195 1196 Instruction * 1197 InstCombinerImpl::foldVariableSignZeroExtensionOfVariableHighBitExtract( 1198 BinaryOperator &OldAShr) { 1199 assert(OldAShr.getOpcode() == Instruction::AShr && 1200 "Must be called with arithmetic right-shift instruction only."); 1201 1202 // Check that constant C is a splat of the element-wise bitwidth of V. 1203 auto BitWidthSplat = [](Constant *C, Value *V) { 1204 return match( 1205 C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1206 APInt(C->getType()->getScalarSizeInBits(), 1207 V->getType()->getScalarSizeInBits()))); 1208 }; 1209 1210 // It should look like variable-length sign-extension on the outside: 1211 // (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits) 1212 Value *NBits; 1213 Instruction *MaybeTrunc; 1214 Constant *C1, *C2; 1215 if (!match(&OldAShr, 1216 m_AShr(m_Shl(m_Instruction(MaybeTrunc), 1217 m_ZExtOrSelf(m_Sub(m_Constant(C1), 1218 m_ZExtOrSelf(m_Value(NBits))))), 1219 m_ZExtOrSelf(m_Sub(m_Constant(C2), 1220 m_ZExtOrSelf(m_Deferred(NBits)))))) || 1221 !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr)) 1222 return nullptr; 1223 1224 // There may or may not be a truncation after outer two shifts. 1225 Instruction *HighBitExtract; 1226 match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract))); 1227 bool HadTrunc = MaybeTrunc != HighBitExtract; 1228 1229 // And finally, the innermost part of the pattern must be a right-shift. 1230 Value *X, *NumLowBitsToSkip; 1231 if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip)))) 1232 return nullptr; 1233 1234 // Said right-shift must extract high NBits bits - C0 must be it's bitwidth. 1235 Constant *C0; 1236 if (!match(NumLowBitsToSkip, 1237 m_ZExtOrSelf( 1238 m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) || 1239 !BitWidthSplat(C0, HighBitExtract)) 1240 return nullptr; 1241 1242 // Since the NBits is identical for all shifts, if the outermost and 1243 // innermost shifts are identical, then outermost shifts are redundant. 1244 // If we had truncation, do keep it though. 1245 if (HighBitExtract->getOpcode() == OldAShr.getOpcode()) 1246 return replaceInstUsesWith(OldAShr, MaybeTrunc); 1247 1248 // Else, if there was a truncation, then we need to ensure that one 1249 // instruction will go away. 1250 if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 1251 return nullptr; 1252 1253 // Finally, bypass two innermost shifts, and perform the outermost shift on 1254 // the operands of the innermost shift. 1255 Instruction *NewAShr = 1256 BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip); 1257 NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness. 1258 if (!HadTrunc) 1259 return NewAShr; 1260 1261 Builder.Insert(NewAShr); 1262 return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType()); 1263 } 1264 1265 Instruction *InstCombinerImpl::visitAShr(BinaryOperator &I) { 1266 if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), 1267 SQ.getWithInstruction(&I))) 1268 return replaceInstUsesWith(I, V); 1269 1270 if (Instruction *X = foldVectorBinop(I)) 1271 return X; 1272 1273 if (Instruction *R = commonShiftTransforms(I)) 1274 return R; 1275 1276 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1277 Type *Ty = I.getType(); 1278 unsigned BitWidth = Ty->getScalarSizeInBits(); 1279 const APInt *ShAmtAPInt; 1280 if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) { 1281 unsigned ShAmt = ShAmtAPInt->getZExtValue(); 1282 1283 // If the shift amount equals the difference in width of the destination 1284 // and source scalar types: 1285 // ashr (shl (zext X), C), C --> sext X 1286 Value *X; 1287 if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) && 1288 ShAmt == BitWidth - X->getType()->getScalarSizeInBits()) 1289 return new SExtInst(X, Ty); 1290 1291 // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However, 1292 // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits. 1293 const APInt *ShOp1; 1294 if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) && 1295 ShOp1->ult(BitWidth)) { 1296 unsigned ShlAmt = ShOp1->getZExtValue(); 1297 if (ShlAmt < ShAmt) { 1298 // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1) 1299 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt); 1300 auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff); 1301 NewAShr->setIsExact(I.isExact()); 1302 return NewAShr; 1303 } 1304 if (ShlAmt > ShAmt) { 1305 // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2) 1306 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt); 1307 auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff); 1308 NewShl->setHasNoSignedWrap(true); 1309 return NewShl; 1310 } 1311 } 1312 1313 if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) && 1314 ShOp1->ult(BitWidth)) { 1315 unsigned AmtSum = ShAmt + ShOp1->getZExtValue(); 1316 // Oversized arithmetic shifts replicate the sign bit. 1317 AmtSum = std::min(AmtSum, BitWidth - 1); 1318 // (X >>s C1) >>s C2 --> X >>s (C1 + C2) 1319 return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum)); 1320 } 1321 1322 if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) && 1323 (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) { 1324 // ashr (sext X), C --> sext (ashr X, C') 1325 Type *SrcTy = X->getType(); 1326 ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1); 1327 Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt)); 1328 return new SExtInst(NewSh, Ty); 1329 } 1330 1331 if (ShAmt == BitWidth - 1) { 1332 // ashr i32 or(X,-X), 31 --> sext (X != 0) 1333 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X))))) 1334 return new SExtInst(Builder.CreateIsNotNull(X), Ty); 1335 1336 // ashr i32 (X -nsw Y), 31 --> sext (X < Y) 1337 Value *Y; 1338 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y))))) 1339 return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty); 1340 } 1341 1342 // If the shifted-out value is known-zero, then this is an exact shift. 1343 if (!I.isExact() && 1344 MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) { 1345 I.setIsExact(); 1346 return &I; 1347 } 1348 } 1349 1350 // Prefer `-(x & 1)` over `(x << (bitwidth(x)-1)) a>> (bitwidth(x)-1)` 1351 // as the pattern to splat the lowest bit. 1352 // FIXME: iff X is already masked, we don't need the one-use check. 1353 Value *X; 1354 if (match(Op1, m_SpecificIntAllowUndef(BitWidth - 1)) && 1355 match(Op0, m_OneUse(m_Shl(m_Value(X), 1356 m_SpecificIntAllowUndef(BitWidth - 1))))) { 1357 Constant *Mask = ConstantInt::get(Ty, 1); 1358 // Retain the knowledge about the ignored lanes. 1359 Mask = Constant::mergeUndefsWith( 1360 Constant::mergeUndefsWith(Mask, cast<Constant>(Op1)), 1361 cast<Constant>(cast<Instruction>(Op0)->getOperand(1))); 1362 X = Builder.CreateAnd(X, Mask); 1363 return BinaryOperator::CreateNeg(X); 1364 } 1365 1366 if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I)) 1367 return R; 1368 1369 // See if we can turn a signed shr into an unsigned shr. 1370 if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I)) 1371 return BinaryOperator::CreateLShr(Op0, Op1); 1372 1373 // ashr (xor %x, -1), %y --> xor (ashr %x, %y), -1 1374 if (match(Op0, m_OneUse(m_Not(m_Value(X))))) { 1375 // Note that we must drop 'exact'-ness of the shift! 1376 // Note that we can't keep undef's in -1 vector constant! 1377 auto *NewAShr = Builder.CreateAShr(X, Op1, Op0->getName() + ".not"); 1378 return BinaryOperator::CreateNot(NewAShr); 1379 } 1380 1381 return nullptr; 1382 } 1383