xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp (revision 77013d11e6483b970af25e13c9b892075742f7e5)
1 //===- InstCombineShifts.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitShl, visitLShr, and visitAShr functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/ConstantFolding.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/PatternMatch.h"
18 #include "llvm/Transforms/InstCombine/InstCombiner.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21 
22 #define DEBUG_TYPE "instcombine"
23 
24 bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1,
25                                         Value *ShAmt1) {
26   // We have two shift amounts from two different shifts. The types of those
27   // shift amounts may not match. If that's the case let's bailout now..
28   if (ShAmt0->getType() != ShAmt1->getType())
29     return false;
30 
31   // As input, we have the following pattern:
32   //   Sh0 (Sh1 X, Q), K
33   // We want to rewrite that as:
34   //   Sh x, (Q+K)  iff (Q+K) u< bitwidth(x)
35   // While we know that originally (Q+K) would not overflow
36   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
37   // shift amounts. so it may now overflow in smaller bitwidth.
38   // To ensure that does not happen, we need to ensure that the total maximal
39   // shift amount is still representable in that smaller bit width.
40   unsigned MaximalPossibleTotalShiftAmount =
41       (Sh0->getType()->getScalarSizeInBits() - 1) +
42       (Sh1->getType()->getScalarSizeInBits() - 1);
43   APInt MaximalRepresentableShiftAmount =
44       APInt::getAllOnesValue(ShAmt0->getType()->getScalarSizeInBits());
45   return MaximalRepresentableShiftAmount.uge(MaximalPossibleTotalShiftAmount);
46 }
47 
48 // Given pattern:
49 //   (x shiftopcode Q) shiftopcode K
50 // we should rewrite it as
51 //   x shiftopcode (Q+K)  iff (Q+K) u< bitwidth(x) and
52 //
53 // This is valid for any shift, but they must be identical, and we must be
54 // careful in case we have (zext(Q)+zext(K)) and look past extensions,
55 // (Q+K) must not overflow or else (Q+K) u< bitwidth(x) is bogus.
56 //
57 // AnalyzeForSignBitExtraction indicates that we will only analyze whether this
58 // pattern has any 2 right-shifts that sum to 1 less than original bit width.
59 Value *InstCombinerImpl::reassociateShiftAmtsOfTwoSameDirectionShifts(
60     BinaryOperator *Sh0, const SimplifyQuery &SQ,
61     bool AnalyzeForSignBitExtraction) {
62   // Look for a shift of some instruction, ignore zext of shift amount if any.
63   Instruction *Sh0Op0;
64   Value *ShAmt0;
65   if (!match(Sh0,
66              m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0)))))
67     return nullptr;
68 
69   // If there is a truncation between the two shifts, we must make note of it
70   // and look through it. The truncation imposes additional constraints on the
71   // transform.
72   Instruction *Sh1;
73   Value *Trunc = nullptr;
74   match(Sh0Op0,
75         m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)),
76                     m_Instruction(Sh1)));
77 
78   // Inner shift: (x shiftopcode ShAmt1)
79   // Like with other shift, ignore zext of shift amount if any.
80   Value *X, *ShAmt1;
81   if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1)))))
82     return nullptr;
83 
84   // Verify that it would be safe to try to add those two shift amounts.
85   if (!canTryToConstantAddTwoShiftAmounts(Sh0, ShAmt0, Sh1, ShAmt1))
86     return nullptr;
87 
88   // We are only looking for signbit extraction if we have two right shifts.
89   bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) &&
90                            match(Sh1, m_Shr(m_Value(), m_Value()));
91   // ... and if it's not two right-shifts, we know the answer already.
92   if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
93     return nullptr;
94 
95   // The shift opcodes must be identical, unless we are just checking whether
96   // this pattern can be interpreted as a sign-bit-extraction.
97   Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode();
98   bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode();
99   if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
100     return nullptr;
101 
102   // If we saw truncation, we'll need to produce extra instruction,
103   // and for that one of the operands of the shift must be one-use,
104   // unless of course we don't actually plan to produce any instructions here.
105   if (Trunc && !AnalyzeForSignBitExtraction &&
106       !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
107     return nullptr;
108 
109   // Can we fold (ShAmt0+ShAmt1) ?
110   auto *NewShAmt = dyn_cast_or_null<Constant>(
111       SimplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false,
112                       SQ.getWithInstruction(Sh0)));
113   if (!NewShAmt)
114     return nullptr; // Did not simplify.
115   unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
116   unsigned XBitWidth = X->getType()->getScalarSizeInBits();
117   // Is the new shift amount smaller than the bit width of inner/new shift?
118   if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
119                                           APInt(NewShAmtBitWidth, XBitWidth))))
120     return nullptr; // FIXME: could perform constant-folding.
121 
122   // If there was a truncation, and we have a right-shift, we can only fold if
123   // we are left with the original sign bit. Likewise, if we were just checking
124   // that this is a sighbit extraction, this is the place to check it.
125   // FIXME: zero shift amount is also legal here, but we can't *easily* check
126   // more than one predicate so it's not really worth it.
127   if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
128     // If it's not a sign bit extraction, then we're done.
129     if (!match(NewShAmt,
130                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
131                                   APInt(NewShAmtBitWidth, XBitWidth - 1))))
132       return nullptr;
133     // If it is, and that was the question, return the base value.
134     if (AnalyzeForSignBitExtraction)
135       return X;
136   }
137 
138   assert(IdenticalShOpcodes && "Should not get here with different shifts.");
139 
140   // All good, we can do this fold.
141   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType());
142 
143   BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt);
144 
145   // The flags can only be propagated if there wasn't a trunc.
146   if (!Trunc) {
147     // If the pattern did not involve trunc, and both of the original shifts
148     // had the same flag set, preserve the flag.
149     if (ShiftOpcode == Instruction::BinaryOps::Shl) {
150       NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() &&
151                                      Sh1->hasNoUnsignedWrap());
152       NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() &&
153                                    Sh1->hasNoSignedWrap());
154     } else {
155       NewShift->setIsExact(Sh0->isExact() && Sh1->isExact());
156     }
157   }
158 
159   Instruction *Ret = NewShift;
160   if (Trunc) {
161     Builder.Insert(NewShift);
162     Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType());
163   }
164 
165   return Ret;
166 }
167 
168 // If we have some pattern that leaves only some low bits set, and then performs
169 // left-shift of those bits, if none of the bits that are left after the final
170 // shift are modified by the mask, we can omit the mask.
171 //
172 // There are many variants to this pattern:
173 //   a)  (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt
174 //   b)  (x & (~(-1 << MaskShAmt))) << ShiftShAmt
175 //   c)  (x & (-1 >> MaskShAmt)) << ShiftShAmt
176 //   d)  (x & ((-1 << MaskShAmt) >> MaskShAmt)) << ShiftShAmt
177 //   e)  ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt
178 //   f)  ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt
179 // All these patterns can be simplified to just:
180 //   x << ShiftShAmt
181 // iff:
182 //   a,b)     (MaskShAmt+ShiftShAmt) u>= bitwidth(x)
183 //   c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt)
184 static Instruction *
185 dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift,
186                                      const SimplifyQuery &Q,
187                                      InstCombiner::BuilderTy &Builder) {
188   assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl &&
189          "The input must be 'shl'!");
190 
191   Value *Masked, *ShiftShAmt;
192   match(OuterShift,
193         m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt))));
194 
195   // *If* there is a truncation between an outer shift and a possibly-mask,
196   // then said truncation *must* be one-use, else we can't perform the fold.
197   Value *Trunc;
198   if (match(Masked, m_CombineAnd(m_Trunc(m_Value(Masked)), m_Value(Trunc))) &&
199       !Trunc->hasOneUse())
200     return nullptr;
201 
202   Type *NarrowestTy = OuterShift->getType();
203   Type *WidestTy = Masked->getType();
204   bool HadTrunc = WidestTy != NarrowestTy;
205 
206   // The mask must be computed in a type twice as wide to ensure
207   // that no bits are lost if the sum-of-shifts is wider than the base type.
208   Type *ExtendedTy = WidestTy->getExtendedType();
209 
210   Value *MaskShAmt;
211 
212   // ((1 << MaskShAmt) - 1)
213   auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes());
214   // (~(-1 << maskNbits))
215   auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes());
216   // (-1 >> MaskShAmt)
217   auto MaskC = m_Shr(m_AllOnes(), m_Value(MaskShAmt));
218   // ((-1 << MaskShAmt) >> MaskShAmt)
219   auto MaskD =
220       m_Shr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt));
221 
222   Value *X;
223   Constant *NewMask;
224 
225   if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) {
226     // Peek through an optional zext of the shift amount.
227     match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
228 
229     // Verify that it would be safe to try to add those two shift amounts.
230     if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
231                                             MaskShAmt))
232       return nullptr;
233 
234     // Can we simplify (MaskShAmt+ShiftShAmt) ?
235     auto *SumOfShAmts = dyn_cast_or_null<Constant>(SimplifyAddInst(
236         MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
237     if (!SumOfShAmts)
238       return nullptr; // Did not simplify.
239     // In this pattern SumOfShAmts correlates with the number of low bits
240     // that shall remain in the root value (OuterShift).
241 
242     // An extend of an undef value becomes zero because the high bits are never
243     // completely unknown. Replace the the `undef` shift amounts with final
244     // shift bitwidth to ensure that the value remains undef when creating the
245     // subsequent shift op.
246     SumOfShAmts = Constant::replaceUndefsWith(
247         SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(),
248                                       ExtendedTy->getScalarSizeInBits()));
249     auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy);
250     // And compute the mask as usual: ~(-1 << (SumOfShAmts))
251     auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
252     auto *ExtendedInvertedMask =
253         ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts);
254     NewMask = ConstantExpr::getNot(ExtendedInvertedMask);
255   } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) ||
256              match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)),
257                                  m_Deferred(MaskShAmt)))) {
258     // Peek through an optional zext of the shift amount.
259     match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
260 
261     // Verify that it would be safe to try to add those two shift amounts.
262     if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
263                                             MaskShAmt))
264       return nullptr;
265 
266     // Can we simplify (ShiftShAmt-MaskShAmt) ?
267     auto *ShAmtsDiff = dyn_cast_or_null<Constant>(SimplifySubInst(
268         ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
269     if (!ShAmtsDiff)
270       return nullptr; // Did not simplify.
271     // In this pattern ShAmtsDiff correlates with the number of high bits that
272     // shall be unset in the root value (OuterShift).
273 
274     // An extend of an undef value becomes zero because the high bits are never
275     // completely unknown. Replace the the `undef` shift amounts with negated
276     // bitwidth of innermost shift to ensure that the value remains undef when
277     // creating the subsequent shift op.
278     unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits();
279     ShAmtsDiff = Constant::replaceUndefsWith(
280         ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(),
281                                      -WidestTyBitWidth));
282     auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt(
283         ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(),
284                                               WidestTyBitWidth,
285                                               /*isSigned=*/false),
286                              ShAmtsDiff),
287         ExtendedTy);
288     // And compute the mask as usual: (-1 l>> (NumHighBitsToClear))
289     auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
290     NewMask =
291         ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear);
292   } else
293     return nullptr; // Don't know anything about this pattern.
294 
295   NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy);
296 
297   // Does this mask has any unset bits? If not then we can just not apply it.
298   bool NeedMask = !match(NewMask, m_AllOnes());
299 
300   // If we need to apply a mask, there are several more restrictions we have.
301   if (NeedMask) {
302     // The old masking instruction must go away.
303     if (!Masked->hasOneUse())
304       return nullptr;
305     // The original "masking" instruction must not have been`ashr`.
306     if (match(Masked, m_AShr(m_Value(), m_Value())))
307       return nullptr;
308   }
309 
310   // If we need to apply truncation, let's do it first, since we can.
311   // We have already ensured that the old truncation will go away.
312   if (HadTrunc)
313     X = Builder.CreateTrunc(X, NarrowestTy);
314 
315   // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits.
316   // We didn't change the Type of this outermost shift, so we can just do it.
317   auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X,
318                                           OuterShift->getOperand(1));
319   if (!NeedMask)
320     return NewShift;
321 
322   Builder.Insert(NewShift);
323   return BinaryOperator::Create(Instruction::And, NewShift, NewMask);
324 }
325 
326 /// If we have a shift-by-constant of a bitwise logic op that itself has a
327 /// shift-by-constant operand with identical opcode, we may be able to convert
328 /// that into 2 independent shifts followed by the logic op. This eliminates a
329 /// a use of an intermediate value (reduces dependency chain).
330 static Instruction *foldShiftOfShiftedLogic(BinaryOperator &I,
331                                             InstCombiner::BuilderTy &Builder) {
332   assert(I.isShift() && "Expected a shift as input");
333   auto *LogicInst = dyn_cast<BinaryOperator>(I.getOperand(0));
334   if (!LogicInst || !LogicInst->isBitwiseLogicOp() || !LogicInst->hasOneUse())
335     return nullptr;
336 
337   Constant *C0, *C1;
338   if (!match(I.getOperand(1), m_Constant(C1)))
339     return nullptr;
340 
341   Instruction::BinaryOps ShiftOpcode = I.getOpcode();
342   Type *Ty = I.getType();
343 
344   // Find a matching one-use shift by constant. The fold is not valid if the sum
345   // of the shift values equals or exceeds bitwidth.
346   // TODO: Remove the one-use check if the other logic operand (Y) is constant.
347   Value *X, *Y;
348   auto matchFirstShift = [&](Value *V) {
349     BinaryOperator *BO;
350     APInt Threshold(Ty->getScalarSizeInBits(), Ty->getScalarSizeInBits());
351     return match(V, m_BinOp(BO)) && BO->getOpcode() == ShiftOpcode &&
352            match(V, m_OneUse(m_Shift(m_Value(X), m_Constant(C0)))) &&
353            match(ConstantExpr::getAdd(C0, C1),
354                  m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
355   };
356 
357   // Logic ops are commutative, so check each operand for a match.
358   if (matchFirstShift(LogicInst->getOperand(0)))
359     Y = LogicInst->getOperand(1);
360   else if (matchFirstShift(LogicInst->getOperand(1)))
361     Y = LogicInst->getOperand(0);
362   else
363     return nullptr;
364 
365   // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
366   Constant *ShiftSumC = ConstantExpr::getAdd(C0, C1);
367   Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC);
368   Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, I.getOperand(1));
369   return BinaryOperator::Create(LogicInst->getOpcode(), NewShift1, NewShift2);
370 }
371 
372 Instruction *InstCombinerImpl::commonShiftTransforms(BinaryOperator &I) {
373   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
374   assert(Op0->getType() == Op1->getType());
375 
376   // If the shift amount is a one-use `sext`, we can demote it to `zext`.
377   Value *Y;
378   if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) {
379     Value *NewExt = Builder.CreateZExt(Y, I.getType(), Op1->getName());
380     return BinaryOperator::Create(I.getOpcode(), Op0, NewExt);
381   }
382 
383   // See if we can fold away this shift.
384   if (SimplifyDemandedInstructionBits(I))
385     return &I;
386 
387   // Try to fold constant and into select arguments.
388   if (isa<Constant>(Op0))
389     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
390       if (Instruction *R = FoldOpIntoSelect(I, SI))
391         return R;
392 
393   if (Constant *CUI = dyn_cast<Constant>(Op1))
394     if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
395       return Res;
396 
397   if (auto *NewShift = cast_or_null<Instruction>(
398           reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ)))
399     return NewShift;
400 
401   // (C1 shift (A add C2)) -> (C1 shift C2) shift A)
402   // iff A and C2 are both positive.
403   Value *A;
404   Constant *C;
405   if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C))))
406     if (isKnownNonNegative(A, DL, 0, &AC, &I, &DT) &&
407         isKnownNonNegative(C, DL, 0, &AC, &I, &DT))
408       return BinaryOperator::Create(
409           I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), Op0, C), A);
410 
411   // X shift (A srem C) -> X shift (A and (C - 1)) iff C is a power of 2.
412   // Because shifts by negative values (which could occur if A were negative)
413   // are undefined.
414   if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Constant(C))) &&
415       match(C, m_Power2())) {
416     // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
417     // demand the sign bit (and many others) here??
418     Constant *Mask = ConstantExpr::getSub(C, ConstantInt::get(I.getType(), 1));
419     Value *Rem = Builder.CreateAnd(A, Mask, Op1->getName());
420     return replaceOperand(I, 1, Rem);
421   }
422 
423   if (Instruction *Logic = foldShiftOfShiftedLogic(I, Builder))
424     return Logic;
425 
426   return nullptr;
427 }
428 
429 /// Return true if we can simplify two logical (either left or right) shifts
430 /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
431 static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
432                                     Instruction *InnerShift,
433                                     InstCombinerImpl &IC, Instruction *CxtI) {
434   assert(InnerShift->isLogicalShift() && "Unexpected instruction type");
435 
436   // We need constant scalar or constant splat shifts.
437   const APInt *InnerShiftConst;
438   if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
439     return false;
440 
441   // Two logical shifts in the same direction:
442   // shl (shl X, C1), C2 -->  shl X, C1 + C2
443   // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
444   bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
445   if (IsInnerShl == IsOuterShl)
446     return true;
447 
448   // Equal shift amounts in opposite directions become bitwise 'and':
449   // lshr (shl X, C), C --> and X, C'
450   // shl (lshr X, C), C --> and X, C'
451   if (*InnerShiftConst == OuterShAmt)
452     return true;
453 
454   // If the 2nd shift is bigger than the 1st, we can fold:
455   // lshr (shl X, C1), C2 -->  and (shl X, C1 - C2), C3
456   // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
457   // but it isn't profitable unless we know the and'd out bits are already zero.
458   // Also, check that the inner shift is valid (less than the type width) or
459   // we'll crash trying to produce the bit mask for the 'and'.
460   unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
461   if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) {
462     unsigned InnerShAmt = InnerShiftConst->getZExtValue();
463     unsigned MaskShift =
464         IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
465     APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
466     if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
467       return true;
468   }
469 
470   return false;
471 }
472 
473 /// See if we can compute the specified value, but shifted logically to the left
474 /// or right by some number of bits. This should return true if the expression
475 /// can be computed for the same cost as the current expression tree. This is
476 /// used to eliminate extraneous shifting from things like:
477 ///      %C = shl i128 %A, 64
478 ///      %D = shl i128 %B, 96
479 ///      %E = or i128 %C, %D
480 ///      %F = lshr i128 %E, 64
481 /// where the client will ask if E can be computed shifted right by 64-bits. If
482 /// this succeeds, getShiftedValue() will be called to produce the value.
483 static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
484                                InstCombinerImpl &IC, Instruction *CxtI) {
485   // We can always evaluate constants shifted.
486   if (isa<Constant>(V))
487     return true;
488 
489   Instruction *I = dyn_cast<Instruction>(V);
490   if (!I) return false;
491 
492   // We can't mutate something that has multiple uses: doing so would
493   // require duplicating the instruction in general, which isn't profitable.
494   if (!I->hasOneUse()) return false;
495 
496   switch (I->getOpcode()) {
497   default: return false;
498   case Instruction::And:
499   case Instruction::Or:
500   case Instruction::Xor:
501     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
502     return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
503            canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);
504 
505   case Instruction::Shl:
506   case Instruction::LShr:
507     return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);
508 
509   case Instruction::Select: {
510     SelectInst *SI = cast<SelectInst>(I);
511     Value *TrueVal = SI->getTrueValue();
512     Value *FalseVal = SI->getFalseValue();
513     return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
514            canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
515   }
516   case Instruction::PHI: {
517     // We can change a phi if we can change all operands.  Note that we never
518     // get into trouble with cyclic PHIs here because we only consider
519     // instructions with a single use.
520     PHINode *PN = cast<PHINode>(I);
521     for (Value *IncValue : PN->incoming_values())
522       if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
523         return false;
524     return true;
525   }
526   }
527 }
528 
529 /// Fold OuterShift (InnerShift X, C1), C2.
530 /// See canEvaluateShiftedShift() for the constraints on these instructions.
531 static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
532                                bool IsOuterShl,
533                                InstCombiner::BuilderTy &Builder) {
534   bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
535   Type *ShType = InnerShift->getType();
536   unsigned TypeWidth = ShType->getScalarSizeInBits();
537 
538   // We only accept shifts-by-a-constant in canEvaluateShifted().
539   const APInt *C1;
540   match(InnerShift->getOperand(1), m_APInt(C1));
541   unsigned InnerShAmt = C1->getZExtValue();
542 
543   // Change the shift amount and clear the appropriate IR flags.
544   auto NewInnerShift = [&](unsigned ShAmt) {
545     InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
546     if (IsInnerShl) {
547       InnerShift->setHasNoUnsignedWrap(false);
548       InnerShift->setHasNoSignedWrap(false);
549     } else {
550       InnerShift->setIsExact(false);
551     }
552     return InnerShift;
553   };
554 
555   // Two logical shifts in the same direction:
556   // shl (shl X, C1), C2 -->  shl X, C1 + C2
557   // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
558   if (IsInnerShl == IsOuterShl) {
559     // If this is an oversized composite shift, then unsigned shifts get 0.
560     if (InnerShAmt + OuterShAmt >= TypeWidth)
561       return Constant::getNullValue(ShType);
562 
563     return NewInnerShift(InnerShAmt + OuterShAmt);
564   }
565 
566   // Equal shift amounts in opposite directions become bitwise 'and':
567   // lshr (shl X, C), C --> and X, C'
568   // shl (lshr X, C), C --> and X, C'
569   if (InnerShAmt == OuterShAmt) {
570     APInt Mask = IsInnerShl
571                      ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
572                      : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
573     Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
574                                    ConstantInt::get(ShType, Mask));
575     if (auto *AndI = dyn_cast<Instruction>(And)) {
576       AndI->moveBefore(InnerShift);
577       AndI->takeName(InnerShift);
578     }
579     return And;
580   }
581 
582   assert(InnerShAmt > OuterShAmt &&
583          "Unexpected opposite direction logical shift pair");
584 
585   // In general, we would need an 'and' for this transform, but
586   // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
587   // lshr (shl X, C1), C2 -->  shl X, C1 - C2
588   // shl (lshr X, C1), C2 --> lshr X, C1 - C2
589   return NewInnerShift(InnerShAmt - OuterShAmt);
590 }
591 
592 /// When canEvaluateShifted() returns true for an expression, this function
593 /// inserts the new computation that produces the shifted value.
594 static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
595                               InstCombinerImpl &IC, const DataLayout &DL) {
596   // We can always evaluate constants shifted.
597   if (Constant *C = dyn_cast<Constant>(V)) {
598     if (isLeftShift)
599       return IC.Builder.CreateShl(C, NumBits);
600     else
601       return IC.Builder.CreateLShr(C, NumBits);
602   }
603 
604   Instruction *I = cast<Instruction>(V);
605   IC.addToWorklist(I);
606 
607   switch (I->getOpcode()) {
608   default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
609   case Instruction::And:
610   case Instruction::Or:
611   case Instruction::Xor:
612     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
613     I->setOperand(
614         0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
615     I->setOperand(
616         1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
617     return I;
618 
619   case Instruction::Shl:
620   case Instruction::LShr:
621     return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
622                             IC.Builder);
623 
624   case Instruction::Select:
625     I->setOperand(
626         1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
627     I->setOperand(
628         2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
629     return I;
630   case Instruction::PHI: {
631     // We can change a phi if we can change all operands.  Note that we never
632     // get into trouble with cyclic PHIs here because we only consider
633     // instructions with a single use.
634     PHINode *PN = cast<PHINode>(I);
635     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
636       PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits,
637                                               isLeftShift, IC, DL));
638     return PN;
639   }
640   }
641 }
642 
643 // If this is a bitwise operator or add with a constant RHS we might be able
644 // to pull it through a shift.
645 static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift,
646                                          BinaryOperator *BO) {
647   switch (BO->getOpcode()) {
648   default:
649     return false; // Do not perform transform!
650   case Instruction::Add:
651     return Shift.getOpcode() == Instruction::Shl;
652   case Instruction::Or:
653   case Instruction::And:
654     return true;
655   case Instruction::Xor:
656     // Do not change a 'not' of logical shift because that would create a normal
657     // 'xor'. The 'not' is likely better for analysis, SCEV, and codegen.
658     return !(Shift.isLogicalShift() && match(BO, m_Not(m_Value())));
659   }
660 }
661 
662 Instruction *InstCombinerImpl::FoldShiftByConstant(Value *Op0, Constant *Op1,
663                                                    BinaryOperator &I) {
664   bool isLeftShift = I.getOpcode() == Instruction::Shl;
665 
666   const APInt *Op1C;
667   if (!match(Op1, m_APInt(Op1C)))
668     return nullptr;
669 
670   // See if we can propagate this shift into the input, this covers the trivial
671   // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
672   if (I.getOpcode() != Instruction::AShr &&
673       canEvaluateShifted(Op0, Op1C->getZExtValue(), isLeftShift, *this, &I)) {
674     LLVM_DEBUG(
675         dbgs() << "ICE: GetShiftedValue propagating shift through expression"
676                   " to eliminate shift:\n  IN: "
677                << *Op0 << "\n  SH: " << I << "\n");
678 
679     return replaceInstUsesWith(
680         I, getShiftedValue(Op0, Op1C->getZExtValue(), isLeftShift, *this, DL));
681   }
682 
683   // See if we can simplify any instructions used by the instruction whose sole
684   // purpose is to compute bits we don't care about.
685   Type *Ty = I.getType();
686   unsigned TypeBits = Ty->getScalarSizeInBits();
687   assert(!Op1C->uge(TypeBits) &&
688          "Shift over the type width should have been removed already");
689 
690   if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I))
691     return FoldedShift;
692 
693   // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
694   if (auto *TI = dyn_cast<TruncInst>(Op0)) {
695     // If 'shift2' is an ashr, we would have to get the sign bit into a funny
696     // place.  Don't try to do this transformation in this case.  Also, we
697     // require that the input operand is a shift-by-constant so that we have
698     // confidence that the shifts will get folded together.  We could do this
699     // xform in more cases, but it is unlikely to be profitable.
700     const APInt *TrShiftAmt;
701     if (I.isLogicalShift() &&
702         match(TI->getOperand(0), m_Shift(m_Value(), m_APInt(TrShiftAmt)))) {
703       auto *TrOp = cast<Instruction>(TI->getOperand(0));
704       Type *SrcTy = TrOp->getType();
705 
706       // Okay, we'll do this xform.  Make the shift of shift.
707       Constant *ShAmt = ConstantExpr::getZExt(Op1, SrcTy);
708       // (shift2 (shift1 & 0x00FF), c2)
709       Value *NSh = Builder.CreateBinOp(I.getOpcode(), TrOp, ShAmt, I.getName());
710 
711       // For logical shifts, the truncation has the effect of making the high
712       // part of the register be zeros.  Emulate this by inserting an AND to
713       // clear the top bits as needed.  This 'and' will usually be zapped by
714       // other xforms later if dead.
715       unsigned SrcSize = SrcTy->getScalarSizeInBits();
716       Constant *MaskV =
717           ConstantInt::get(SrcTy, APInt::getLowBitsSet(SrcSize, TypeBits));
718 
719       // The mask we constructed says what the trunc would do if occurring
720       // between the shifts.  We want to know the effect *after* the second
721       // shift.  We know that it is a logical shift by a constant, so adjust the
722       // mask as appropriate.
723       MaskV = ConstantExpr::get(I.getOpcode(), MaskV, ShAmt);
724       // shift1 & 0x00FF
725       Value *And = Builder.CreateAnd(NSh, MaskV, TI->getName());
726       // Return the value truncated to the interesting size.
727       return new TruncInst(And, Ty);
728     }
729   }
730 
731   if (Op0->hasOneUse()) {
732     if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
733       // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
734       Value *V1;
735       const APInt *CC;
736       switch (Op0BO->getOpcode()) {
737       default: break;
738       case Instruction::Add:
739       case Instruction::And:
740       case Instruction::Or:
741       case Instruction::Xor: {
742         // These operators commute.
743         // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
744         if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
745             match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
746                   m_Specific(Op1)))) {
747           Value *YS =         // (Y << C)
748             Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
749           // (X + (Y << C))
750           Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), YS, V1,
751                                          Op0BO->getOperand(1)->getName());
752           unsigned Op1Val = Op1C->getLimitedValue(TypeBits);
753           APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
754           Constant *Mask = ConstantInt::get(Ty, Bits);
755           return BinaryOperator::CreateAnd(X, Mask);
756         }
757 
758         // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
759         Value *Op0BOOp1 = Op0BO->getOperand(1);
760         if (isLeftShift && Op0BOOp1->hasOneUse() &&
761             match(Op0BOOp1, m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
762                                   m_APInt(CC)))) {
763           Value *YS = // (Y << C)
764               Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
765           // X & (CC << C)
766           Value *XM = Builder.CreateAnd(
767               V1, ConstantExpr::getShl(ConstantInt::get(Ty, *CC), Op1),
768               V1->getName() + ".mask");
769           return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
770         }
771         LLVM_FALLTHROUGH;
772       }
773 
774       case Instruction::Sub: {
775         // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
776         if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
777             match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
778                   m_Specific(Op1)))) {
779           Value *YS =  // (Y << C)
780             Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
781           // (X + (Y << C))
782           Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), V1, YS,
783                                          Op0BO->getOperand(0)->getName());
784           unsigned Op1Val = Op1C->getLimitedValue(TypeBits);
785           APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
786           Constant *Mask = ConstantInt::get(Ty, Bits);
787           return BinaryOperator::CreateAnd(X, Mask);
788         }
789 
790         // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
791         if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
792             match(Op0BO->getOperand(0),
793                   m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
794                         m_APInt(CC)))) {
795           Value *YS = // (Y << C)
796               Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
797           // X & (CC << C)
798           Value *XM = Builder.CreateAnd(
799               V1, ConstantExpr::getShl(ConstantInt::get(Ty, *CC), Op1),
800               V1->getName() + ".mask");
801           return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
802         }
803 
804         break;
805       }
806       }
807 
808       // If the operand is a bitwise operator with a constant RHS, and the
809       // shift is the only use, we can pull it out of the shift.
810       const APInt *Op0C;
811       if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
812         if (canShiftBinOpWithConstantRHS(I, Op0BO)) {
813           Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
814                                      cast<Constant>(Op0BO->getOperand(1)), Op1);
815 
816           Value *NewShift =
817             Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
818           NewShift->takeName(Op0BO);
819 
820           return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
821                                         NewRHS);
822         }
823       }
824 
825       // If the operand is a subtract with a constant LHS, and the shift
826       // is the only use, we can pull it out of the shift.
827       // This folds (shl (sub C1, X), C2) -> (sub (C1 << C2), (shl X, C2))
828       if (isLeftShift && Op0BO->getOpcode() == Instruction::Sub &&
829           match(Op0BO->getOperand(0), m_APInt(Op0C))) {
830         Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
831                                    cast<Constant>(Op0BO->getOperand(0)), Op1);
832 
833         Value *NewShift = Builder.CreateShl(Op0BO->getOperand(1), Op1);
834         NewShift->takeName(Op0BO);
835 
836         return BinaryOperator::CreateSub(NewRHS, NewShift);
837       }
838     }
839 
840     // If we have a select that conditionally executes some binary operator,
841     // see if we can pull it the select and operator through the shift.
842     //
843     // For example, turning:
844     //   shl (select C, (add X, C1), X), C2
845     // Into:
846     //   Y = shl X, C2
847     //   select C, (add Y, C1 << C2), Y
848     Value *Cond;
849     BinaryOperator *TBO;
850     Value *FalseVal;
851     if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)),
852                             m_Value(FalseVal)))) {
853       const APInt *C;
854       if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal &&
855           match(TBO->getOperand(1), m_APInt(C)) &&
856           canShiftBinOpWithConstantRHS(I, TBO)) {
857         Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
858                                        cast<Constant>(TBO->getOperand(1)), Op1);
859 
860         Value *NewShift =
861           Builder.CreateBinOp(I.getOpcode(), FalseVal, Op1);
862         Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift,
863                                            NewRHS);
864         return SelectInst::Create(Cond, NewOp, NewShift);
865       }
866     }
867 
868     BinaryOperator *FBO;
869     Value *TrueVal;
870     if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal),
871                             m_OneUse(m_BinOp(FBO))))) {
872       const APInt *C;
873       if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal &&
874           match(FBO->getOperand(1), m_APInt(C)) &&
875           canShiftBinOpWithConstantRHS(I, FBO)) {
876         Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
877                                        cast<Constant>(FBO->getOperand(1)), Op1);
878 
879         Value *NewShift =
880           Builder.CreateBinOp(I.getOpcode(), TrueVal, Op1);
881         Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift,
882                                            NewRHS);
883         return SelectInst::Create(Cond, NewShift, NewOp);
884       }
885     }
886   }
887 
888   return nullptr;
889 }
890 
891 Instruction *InstCombinerImpl::visitShl(BinaryOperator &I) {
892   const SimplifyQuery Q = SQ.getWithInstruction(&I);
893 
894   if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
895                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q))
896     return replaceInstUsesWith(I, V);
897 
898   if (Instruction *X = foldVectorBinop(I))
899     return X;
900 
901   if (Instruction *V = commonShiftTransforms(I))
902     return V;
903 
904   if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder))
905     return V;
906 
907   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
908   Type *Ty = I.getType();
909   unsigned BitWidth = Ty->getScalarSizeInBits();
910 
911   const APInt *ShAmtAPInt;
912   if (match(Op1, m_APInt(ShAmtAPInt))) {
913     unsigned ShAmt = ShAmtAPInt->getZExtValue();
914 
915     // shl (zext X), ShAmt --> zext (shl X, ShAmt)
916     // This is only valid if X would have zeros shifted out.
917     Value *X;
918     if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
919       unsigned SrcWidth = X->getType()->getScalarSizeInBits();
920       if (ShAmt < SrcWidth &&
921           MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmt), 0, &I))
922         return new ZExtInst(Builder.CreateShl(X, ShAmt), Ty);
923     }
924 
925     // (X >> C) << C --> X & (-1 << C)
926     if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
927       APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt));
928       return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
929     }
930 
931     const APInt *ShOp1;
932     if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(ShOp1)))) &&
933         ShOp1->ult(BitWidth)) {
934       unsigned ShrAmt = ShOp1->getZExtValue();
935       if (ShrAmt < ShAmt) {
936         // If C1 < C2: (X >>?,exact C1) << C2 --> X << (C2 - C1)
937         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShrAmt);
938         auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
939         NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
940         NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
941         return NewShl;
942       }
943       if (ShrAmt > ShAmt) {
944         // If C1 > C2: (X >>?exact C1) << C2 --> X >>?exact (C1 - C2)
945         Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmt);
946         auto *NewShr = BinaryOperator::Create(
947             cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
948         NewShr->setIsExact(true);
949         return NewShr;
950       }
951     }
952 
953     if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_APInt(ShOp1)))) &&
954         ShOp1->ult(BitWidth)) {
955       unsigned ShrAmt = ShOp1->getZExtValue();
956       if (ShrAmt < ShAmt) {
957         // If C1 < C2: (X >>? C1) << C2 --> X << (C2 - C1) & (-1 << C2)
958         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShrAmt);
959         auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
960         NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
961         NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
962         Builder.Insert(NewShl);
963         APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt));
964         return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
965       }
966       if (ShrAmt > ShAmt) {
967         // If C1 > C2: (X >>? C1) << C2 --> X >>? (C1 - C2) & (-1 << C2)
968         Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmt);
969         auto *OldShr = cast<BinaryOperator>(Op0);
970         auto *NewShr =
971             BinaryOperator::Create(OldShr->getOpcode(), X, ShiftDiff);
972         NewShr->setIsExact(OldShr->isExact());
973         Builder.Insert(NewShr);
974         APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt));
975         return BinaryOperator::CreateAnd(NewShr, ConstantInt::get(Ty, Mask));
976       }
977     }
978 
979     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1))) && ShOp1->ult(BitWidth)) {
980       unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
981       // Oversized shifts are simplified to zero in InstSimplify.
982       if (AmtSum < BitWidth)
983         // (X << C1) << C2 --> X << (C1 + C2)
984         return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum));
985     }
986 
987     // If the shifted-out value is known-zero, then this is a NUW shift.
988     if (!I.hasNoUnsignedWrap() &&
989         MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmt), 0, &I)) {
990       I.setHasNoUnsignedWrap();
991       return &I;
992     }
993 
994     // If the shifted-out value is all signbits, then this is a NSW shift.
995     if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmt) {
996       I.setHasNoSignedWrap();
997       return &I;
998     }
999   }
1000 
1001   // Transform  (x >> y) << y  to  x & (-1 << y)
1002   // Valid for any type of right-shift.
1003   Value *X;
1004   if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
1005     Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1006     Value *Mask = Builder.CreateShl(AllOnes, Op1);
1007     return BinaryOperator::CreateAnd(Mask, X);
1008   }
1009 
1010   Constant *C1;
1011   if (match(Op1, m_Constant(C1))) {
1012     Constant *C2;
1013     Value *X;
1014     // (C2 << X) << C1 --> (C2 << C1) << X
1015     if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X)))))
1016       return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X);
1017 
1018     // (X * C2) << C1 --> X * (C2 << C1)
1019     if (match(Op0, m_Mul(m_Value(X), m_Constant(C2))))
1020       return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1));
1021 
1022     // shl (zext i1 X), C1 --> select (X, 1 << C1, 0)
1023     if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1024       auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1);
1025       return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
1026     }
1027   }
1028 
1029   // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1
1030   if (match(Op0, m_One()) &&
1031       match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X))))
1032     return BinaryOperator::CreateLShr(
1033         ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X);
1034 
1035   return nullptr;
1036 }
1037 
1038 Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) {
1039   if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1040                                   SQ.getWithInstruction(&I)))
1041     return replaceInstUsesWith(I, V);
1042 
1043   if (Instruction *X = foldVectorBinop(I))
1044     return X;
1045 
1046   if (Instruction *R = commonShiftTransforms(I))
1047     return R;
1048 
1049   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1050   Type *Ty = I.getType();
1051   const APInt *ShAmtAPInt;
1052   if (match(Op1, m_APInt(ShAmtAPInt))) {
1053     unsigned ShAmt = ShAmtAPInt->getZExtValue();
1054     unsigned BitWidth = Ty->getScalarSizeInBits();
1055     auto *II = dyn_cast<IntrinsicInst>(Op0);
1056     if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt &&
1057         (II->getIntrinsicID() == Intrinsic::ctlz ||
1058          II->getIntrinsicID() == Intrinsic::cttz ||
1059          II->getIntrinsicID() == Intrinsic::ctpop)) {
1060       // ctlz.i32(x)>>5  --> zext(x == 0)
1061       // cttz.i32(x)>>5  --> zext(x == 0)
1062       // ctpop.i32(x)>>5 --> zext(x == -1)
1063       bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
1064       Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
1065       Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
1066       return new ZExtInst(Cmp, Ty);
1067     }
1068 
1069     Value *X;
1070     const APInt *ShOp1;
1071     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1))) && ShOp1->ult(BitWidth)) {
1072       if (ShOp1->ult(ShAmt)) {
1073         unsigned ShlAmt = ShOp1->getZExtValue();
1074         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
1075         if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1076           // (X <<nuw C1) >>u C2 --> X >>u (C2 - C1)
1077           auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
1078           NewLShr->setIsExact(I.isExact());
1079           return NewLShr;
1080         }
1081         // (X << C1) >>u C2  --> (X >>u (C2 - C1)) & (-1 >> C2)
1082         Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
1083         APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
1084         return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
1085       }
1086       if (ShOp1->ugt(ShAmt)) {
1087         unsigned ShlAmt = ShOp1->getZExtValue();
1088         Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
1089         if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1090           // (X <<nuw C1) >>u C2 --> X <<nuw (C1 - C2)
1091           auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
1092           NewShl->setHasNoUnsignedWrap(true);
1093           return NewShl;
1094         }
1095         // (X << C1) >>u C2  --> X << (C1 - C2) & (-1 >> C2)
1096         Value *NewShl = Builder.CreateShl(X, ShiftDiff);
1097         APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
1098         return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
1099       }
1100       assert(*ShOp1 == ShAmt);
1101       // (X << C) >>u C --> X & (-1 >>u C)
1102       APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
1103       return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
1104     }
1105 
1106     if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
1107         (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
1108       assert(ShAmt < X->getType()->getScalarSizeInBits() &&
1109              "Big shift not simplified to zero?");
1110       // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
1111       Value *NewLShr = Builder.CreateLShr(X, ShAmt);
1112       return new ZExtInst(NewLShr, Ty);
1113     }
1114 
1115     if (match(Op0, m_SExt(m_Value(X))) &&
1116         (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
1117       // Are we moving the sign bit to the low bit and widening with high zeros?
1118       unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
1119       if (ShAmt == BitWidth - 1) {
1120         // lshr (sext i1 X to iN), N-1 --> zext X to iN
1121         if (SrcTyBitWidth == 1)
1122           return new ZExtInst(X, Ty);
1123 
1124         // lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
1125         if (Op0->hasOneUse()) {
1126           Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
1127           return new ZExtInst(NewLShr, Ty);
1128         }
1129       }
1130 
1131       // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
1132       if (ShAmt == BitWidth - SrcTyBitWidth && Op0->hasOneUse()) {
1133         // The new shift amount can't be more than the narrow source type.
1134         unsigned NewShAmt = std::min(ShAmt, SrcTyBitWidth - 1);
1135         Value *AShr = Builder.CreateAShr(X, NewShAmt);
1136         return new ZExtInst(AShr, Ty);
1137       }
1138     }
1139 
1140     // lshr i32 (X -nsw Y), 31 --> zext (X < Y)
1141     Value *Y;
1142     if (ShAmt == BitWidth - 1 &&
1143         match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
1144       return new ZExtInst(Builder.CreateICmpSLT(X, Y), Ty);
1145 
1146     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShOp1)))) {
1147       unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
1148       // Oversized shifts are simplified to zero in InstSimplify.
1149       if (AmtSum < BitWidth)
1150         // (X >>u C1) >>u C2 --> X >>u (C1 + C2)
1151         return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
1152     }
1153 
1154     // If the shifted-out value is known-zero, then this is an exact shift.
1155     if (!I.isExact() &&
1156         MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
1157       I.setIsExact();
1158       return &I;
1159     }
1160   }
1161 
1162   // Transform  (x << y) >> y  to  x & (-1 >> y)
1163   Value *X;
1164   if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) {
1165     Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1166     Value *Mask = Builder.CreateLShr(AllOnes, Op1);
1167     return BinaryOperator::CreateAnd(Mask, X);
1168   }
1169 
1170   return nullptr;
1171 }
1172 
1173 Instruction *
1174 InstCombinerImpl::foldVariableSignZeroExtensionOfVariableHighBitExtract(
1175     BinaryOperator &OldAShr) {
1176   assert(OldAShr.getOpcode() == Instruction::AShr &&
1177          "Must be called with arithmetic right-shift instruction only.");
1178 
1179   // Check that constant C is a splat of the element-wise bitwidth of V.
1180   auto BitWidthSplat = [](Constant *C, Value *V) {
1181     return match(
1182         C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1183                               APInt(C->getType()->getScalarSizeInBits(),
1184                                     V->getType()->getScalarSizeInBits())));
1185   };
1186 
1187   // It should look like variable-length sign-extension on the outside:
1188   //   (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits)
1189   Value *NBits;
1190   Instruction *MaybeTrunc;
1191   Constant *C1, *C2;
1192   if (!match(&OldAShr,
1193              m_AShr(m_Shl(m_Instruction(MaybeTrunc),
1194                           m_ZExtOrSelf(m_Sub(m_Constant(C1),
1195                                              m_ZExtOrSelf(m_Value(NBits))))),
1196                     m_ZExtOrSelf(m_Sub(m_Constant(C2),
1197                                        m_ZExtOrSelf(m_Deferred(NBits)))))) ||
1198       !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
1199     return nullptr;
1200 
1201   // There may or may not be a truncation after outer two shifts.
1202   Instruction *HighBitExtract;
1203   match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract)));
1204   bool HadTrunc = MaybeTrunc != HighBitExtract;
1205 
1206   // And finally, the innermost part of the pattern must be a right-shift.
1207   Value *X, *NumLowBitsToSkip;
1208   if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip))))
1209     return nullptr;
1210 
1211   // Said right-shift must extract high NBits bits - C0 must be it's bitwidth.
1212   Constant *C0;
1213   if (!match(NumLowBitsToSkip,
1214              m_ZExtOrSelf(
1215                  m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) ||
1216       !BitWidthSplat(C0, HighBitExtract))
1217     return nullptr;
1218 
1219   // Since the NBits is identical for all shifts, if the outermost and
1220   // innermost shifts are identical, then outermost shifts are redundant.
1221   // If we had truncation, do keep it though.
1222   if (HighBitExtract->getOpcode() == OldAShr.getOpcode())
1223     return replaceInstUsesWith(OldAShr, MaybeTrunc);
1224 
1225   // Else, if there was a truncation, then we need to ensure that one
1226   // instruction will go away.
1227   if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1228     return nullptr;
1229 
1230   // Finally, bypass two innermost shifts, and perform the outermost shift on
1231   // the operands of the innermost shift.
1232   Instruction *NewAShr =
1233       BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip);
1234   NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness.
1235   if (!HadTrunc)
1236     return NewAShr;
1237 
1238   Builder.Insert(NewAShr);
1239   return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType());
1240 }
1241 
1242 Instruction *InstCombinerImpl::visitAShr(BinaryOperator &I) {
1243   if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1244                                   SQ.getWithInstruction(&I)))
1245     return replaceInstUsesWith(I, V);
1246 
1247   if (Instruction *X = foldVectorBinop(I))
1248     return X;
1249 
1250   if (Instruction *R = commonShiftTransforms(I))
1251     return R;
1252 
1253   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1254   Type *Ty = I.getType();
1255   unsigned BitWidth = Ty->getScalarSizeInBits();
1256   const APInt *ShAmtAPInt;
1257   if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) {
1258     unsigned ShAmt = ShAmtAPInt->getZExtValue();
1259 
1260     // If the shift amount equals the difference in width of the destination
1261     // and source scalar types:
1262     // ashr (shl (zext X), C), C --> sext X
1263     Value *X;
1264     if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
1265         ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
1266       return new SExtInst(X, Ty);
1267 
1268     // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
1269     // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
1270     const APInt *ShOp1;
1271     if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) &&
1272         ShOp1->ult(BitWidth)) {
1273       unsigned ShlAmt = ShOp1->getZExtValue();
1274       if (ShlAmt < ShAmt) {
1275         // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
1276         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
1277         auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
1278         NewAShr->setIsExact(I.isExact());
1279         return NewAShr;
1280       }
1281       if (ShlAmt > ShAmt) {
1282         // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
1283         Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
1284         auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
1285         NewShl->setHasNoSignedWrap(true);
1286         return NewShl;
1287       }
1288     }
1289 
1290     if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) &&
1291         ShOp1->ult(BitWidth)) {
1292       unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
1293       // Oversized arithmetic shifts replicate the sign bit.
1294       AmtSum = std::min(AmtSum, BitWidth - 1);
1295       // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
1296       return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
1297     }
1298 
1299     if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
1300         (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
1301       // ashr (sext X), C --> sext (ashr X, C')
1302       Type *SrcTy = X->getType();
1303       ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
1304       Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
1305       return new SExtInst(NewSh, Ty);
1306     }
1307 
1308     // ashr i32 (X -nsw Y), 31 --> sext (X < Y)
1309     Value *Y;
1310     if (ShAmt == BitWidth - 1 &&
1311         match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
1312       return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty);
1313 
1314     // If the shifted-out value is known-zero, then this is an exact shift.
1315     if (!I.isExact() &&
1316         MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
1317       I.setIsExact();
1318       return &I;
1319     }
1320   }
1321 
1322   if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I))
1323     return R;
1324 
1325   // See if we can turn a signed shr into an unsigned shr.
1326   if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I))
1327     return BinaryOperator::CreateLShr(Op0, Op1);
1328 
1329   return nullptr;
1330 }
1331