1 //===- InstCombineShifts.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitShl, visitLShr, and visitAShr functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/Analysis/InstructionSimplify.h" 15 #include "llvm/IR/IntrinsicInst.h" 16 #include "llvm/IR/PatternMatch.h" 17 #include "llvm/Transforms/InstCombine/InstCombiner.h" 18 using namespace llvm; 19 using namespace PatternMatch; 20 21 #define DEBUG_TYPE "instcombine" 22 23 bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1, 24 Value *ShAmt1) { 25 // We have two shift amounts from two different shifts. The types of those 26 // shift amounts may not match. If that's the case let's bailout now.. 27 if (ShAmt0->getType() != ShAmt1->getType()) 28 return false; 29 30 // As input, we have the following pattern: 31 // Sh0 (Sh1 X, Q), K 32 // We want to rewrite that as: 33 // Sh x, (Q+K) iff (Q+K) u< bitwidth(x) 34 // While we know that originally (Q+K) would not overflow 35 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 36 // shift amounts. so it may now overflow in smaller bitwidth. 37 // To ensure that does not happen, we need to ensure that the total maximal 38 // shift amount is still representable in that smaller bit width. 39 unsigned MaximalPossibleTotalShiftAmount = 40 (Sh0->getType()->getScalarSizeInBits() - 1) + 41 (Sh1->getType()->getScalarSizeInBits() - 1); 42 APInt MaximalRepresentableShiftAmount = 43 APInt::getAllOnes(ShAmt0->getType()->getScalarSizeInBits()); 44 return MaximalRepresentableShiftAmount.uge(MaximalPossibleTotalShiftAmount); 45 } 46 47 // Given pattern: 48 // (x shiftopcode Q) shiftopcode K 49 // we should rewrite it as 50 // x shiftopcode (Q+K) iff (Q+K) u< bitwidth(x) and 51 // 52 // This is valid for any shift, but they must be identical, and we must be 53 // careful in case we have (zext(Q)+zext(K)) and look past extensions, 54 // (Q+K) must not overflow or else (Q+K) u< bitwidth(x) is bogus. 55 // 56 // AnalyzeForSignBitExtraction indicates that we will only analyze whether this 57 // pattern has any 2 right-shifts that sum to 1 less than original bit width. 58 Value *InstCombinerImpl::reassociateShiftAmtsOfTwoSameDirectionShifts( 59 BinaryOperator *Sh0, const SimplifyQuery &SQ, 60 bool AnalyzeForSignBitExtraction) { 61 // Look for a shift of some instruction, ignore zext of shift amount if any. 62 Instruction *Sh0Op0; 63 Value *ShAmt0; 64 if (!match(Sh0, 65 m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0))))) 66 return nullptr; 67 68 // If there is a truncation between the two shifts, we must make note of it 69 // and look through it. The truncation imposes additional constraints on the 70 // transform. 71 Instruction *Sh1; 72 Value *Trunc = nullptr; 73 match(Sh0Op0, 74 m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)), 75 m_Instruction(Sh1))); 76 77 // Inner shift: (x shiftopcode ShAmt1) 78 // Like with other shift, ignore zext of shift amount if any. 79 Value *X, *ShAmt1; 80 if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1))))) 81 return nullptr; 82 83 // Verify that it would be safe to try to add those two shift amounts. 84 if (!canTryToConstantAddTwoShiftAmounts(Sh0, ShAmt0, Sh1, ShAmt1)) 85 return nullptr; 86 87 // We are only looking for signbit extraction if we have two right shifts. 88 bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) && 89 match(Sh1, m_Shr(m_Value(), m_Value())); 90 // ... and if it's not two right-shifts, we know the answer already. 91 if (AnalyzeForSignBitExtraction && !HadTwoRightShifts) 92 return nullptr; 93 94 // The shift opcodes must be identical, unless we are just checking whether 95 // this pattern can be interpreted as a sign-bit-extraction. 96 Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode(); 97 bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode(); 98 if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction) 99 return nullptr; 100 101 // If we saw truncation, we'll need to produce extra instruction, 102 // and for that one of the operands of the shift must be one-use, 103 // unless of course we don't actually plan to produce any instructions here. 104 if (Trunc && !AnalyzeForSignBitExtraction && 105 !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 106 return nullptr; 107 108 // Can we fold (ShAmt0+ShAmt1) ? 109 auto *NewShAmt = dyn_cast_or_null<Constant>( 110 simplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false, 111 SQ.getWithInstruction(Sh0))); 112 if (!NewShAmt) 113 return nullptr; // Did not simplify. 114 unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits(); 115 unsigned XBitWidth = X->getType()->getScalarSizeInBits(); 116 // Is the new shift amount smaller than the bit width of inner/new shift? 117 if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 118 APInt(NewShAmtBitWidth, XBitWidth)))) 119 return nullptr; // FIXME: could perform constant-folding. 120 121 // If there was a truncation, and we have a right-shift, we can only fold if 122 // we are left with the original sign bit. Likewise, if we were just checking 123 // that this is a sighbit extraction, this is the place to check it. 124 // FIXME: zero shift amount is also legal here, but we can't *easily* check 125 // more than one predicate so it's not really worth it. 126 if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) { 127 // If it's not a sign bit extraction, then we're done. 128 if (!match(NewShAmt, 129 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 130 APInt(NewShAmtBitWidth, XBitWidth - 1)))) 131 return nullptr; 132 // If it is, and that was the question, return the base value. 133 if (AnalyzeForSignBitExtraction) 134 return X; 135 } 136 137 assert(IdenticalShOpcodes && "Should not get here with different shifts."); 138 139 if (NewShAmt->getType() != X->getType()) { 140 NewShAmt = ConstantFoldCastOperand(Instruction::ZExt, NewShAmt, 141 X->getType(), SQ.DL); 142 if (!NewShAmt) 143 return nullptr; 144 } 145 146 // All good, we can do this fold. 147 BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt); 148 149 // The flags can only be propagated if there wasn't a trunc. 150 if (!Trunc) { 151 // If the pattern did not involve trunc, and both of the original shifts 152 // had the same flag set, preserve the flag. 153 if (ShiftOpcode == Instruction::BinaryOps::Shl) { 154 NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() && 155 Sh1->hasNoUnsignedWrap()); 156 NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() && 157 Sh1->hasNoSignedWrap()); 158 } else { 159 NewShift->setIsExact(Sh0->isExact() && Sh1->isExact()); 160 } 161 } 162 163 Instruction *Ret = NewShift; 164 if (Trunc) { 165 Builder.Insert(NewShift); 166 Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType()); 167 } 168 169 return Ret; 170 } 171 172 // If we have some pattern that leaves only some low bits set, and then performs 173 // left-shift of those bits, if none of the bits that are left after the final 174 // shift are modified by the mask, we can omit the mask. 175 // 176 // There are many variants to this pattern: 177 // a) (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt 178 // b) (x & (~(-1 << MaskShAmt))) << ShiftShAmt 179 // c) (x & (-1 l>> MaskShAmt)) << ShiftShAmt 180 // d) (x & ((-1 << MaskShAmt) l>> MaskShAmt)) << ShiftShAmt 181 // e) ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt 182 // f) ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt 183 // All these patterns can be simplified to just: 184 // x << ShiftShAmt 185 // iff: 186 // a,b) (MaskShAmt+ShiftShAmt) u>= bitwidth(x) 187 // c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt) 188 static Instruction * 189 dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift, 190 const SimplifyQuery &Q, 191 InstCombiner::BuilderTy &Builder) { 192 assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl && 193 "The input must be 'shl'!"); 194 195 Value *Masked, *ShiftShAmt; 196 match(OuterShift, 197 m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt)))); 198 199 // *If* there is a truncation between an outer shift and a possibly-mask, 200 // then said truncation *must* be one-use, else we can't perform the fold. 201 Value *Trunc; 202 if (match(Masked, m_CombineAnd(m_Trunc(m_Value(Masked)), m_Value(Trunc))) && 203 !Trunc->hasOneUse()) 204 return nullptr; 205 206 Type *NarrowestTy = OuterShift->getType(); 207 Type *WidestTy = Masked->getType(); 208 bool HadTrunc = WidestTy != NarrowestTy; 209 210 // The mask must be computed in a type twice as wide to ensure 211 // that no bits are lost if the sum-of-shifts is wider than the base type. 212 Type *ExtendedTy = WidestTy->getExtendedType(); 213 214 Value *MaskShAmt; 215 216 // ((1 << MaskShAmt) - 1) 217 auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes()); 218 // (~(-1 << maskNbits)) 219 auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes()); 220 // (-1 l>> MaskShAmt) 221 auto MaskC = m_LShr(m_AllOnes(), m_Value(MaskShAmt)); 222 // ((-1 << MaskShAmt) l>> MaskShAmt) 223 auto MaskD = 224 m_LShr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt)); 225 226 Value *X; 227 Constant *NewMask; 228 229 if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) { 230 // Peek through an optional zext of the shift amount. 231 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt))); 232 233 // Verify that it would be safe to try to add those two shift amounts. 234 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked, 235 MaskShAmt)) 236 return nullptr; 237 238 // Can we simplify (MaskShAmt+ShiftShAmt) ? 239 auto *SumOfShAmts = dyn_cast_or_null<Constant>(simplifyAddInst( 240 MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q)); 241 if (!SumOfShAmts) 242 return nullptr; // Did not simplify. 243 // In this pattern SumOfShAmts correlates with the number of low bits 244 // that shall remain in the root value (OuterShift). 245 246 // An extend of an undef value becomes zero because the high bits are never 247 // completely unknown. Replace the `undef` shift amounts with final 248 // shift bitwidth to ensure that the value remains undef when creating the 249 // subsequent shift op. 250 SumOfShAmts = Constant::replaceUndefsWith( 251 SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(), 252 ExtendedTy->getScalarSizeInBits())); 253 auto *ExtendedSumOfShAmts = ConstantFoldCastOperand( 254 Instruction::ZExt, SumOfShAmts, ExtendedTy, Q.DL); 255 if (!ExtendedSumOfShAmts) 256 return nullptr; 257 258 // And compute the mask as usual: ~(-1 << (SumOfShAmts)) 259 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy); 260 auto *ExtendedInvertedMask = 261 ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts); 262 NewMask = ConstantExpr::getNot(ExtendedInvertedMask); 263 } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) || 264 match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)), 265 m_Deferred(MaskShAmt)))) { 266 // Peek through an optional zext of the shift amount. 267 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt))); 268 269 // Verify that it would be safe to try to add those two shift amounts. 270 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked, 271 MaskShAmt)) 272 return nullptr; 273 274 // Can we simplify (ShiftShAmt-MaskShAmt) ? 275 auto *ShAmtsDiff = dyn_cast_or_null<Constant>(simplifySubInst( 276 ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q)); 277 if (!ShAmtsDiff) 278 return nullptr; // Did not simplify. 279 // In this pattern ShAmtsDiff correlates with the number of high bits that 280 // shall be unset in the root value (OuterShift). 281 282 // An extend of an undef value becomes zero because the high bits are never 283 // completely unknown. Replace the `undef` shift amounts with negated 284 // bitwidth of innermost shift to ensure that the value remains undef when 285 // creating the subsequent shift op. 286 unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits(); 287 ShAmtsDiff = Constant::replaceUndefsWith( 288 ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(), 289 -WidestTyBitWidth)); 290 auto *ExtendedNumHighBitsToClear = ConstantFoldCastOperand( 291 Instruction::ZExt, 292 ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(), 293 WidestTyBitWidth, 294 /*isSigned=*/false), 295 ShAmtsDiff), 296 ExtendedTy, Q.DL); 297 if (!ExtendedNumHighBitsToClear) 298 return nullptr; 299 300 // And compute the mask as usual: (-1 l>> (NumHighBitsToClear)) 301 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy); 302 NewMask = ConstantFoldBinaryOpOperands(Instruction::LShr, ExtendedAllOnes, 303 ExtendedNumHighBitsToClear, Q.DL); 304 if (!NewMask) 305 return nullptr; 306 } else 307 return nullptr; // Don't know anything about this pattern. 308 309 NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy); 310 311 // Does this mask has any unset bits? If not then we can just not apply it. 312 bool NeedMask = !match(NewMask, m_AllOnes()); 313 314 // If we need to apply a mask, there are several more restrictions we have. 315 if (NeedMask) { 316 // The old masking instruction must go away. 317 if (!Masked->hasOneUse()) 318 return nullptr; 319 // The original "masking" instruction must not have been`ashr`. 320 if (match(Masked, m_AShr(m_Value(), m_Value()))) 321 return nullptr; 322 } 323 324 // If we need to apply truncation, let's do it first, since we can. 325 // We have already ensured that the old truncation will go away. 326 if (HadTrunc) 327 X = Builder.CreateTrunc(X, NarrowestTy); 328 329 // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits. 330 // We didn't change the Type of this outermost shift, so we can just do it. 331 auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X, 332 OuterShift->getOperand(1)); 333 if (!NeedMask) 334 return NewShift; 335 336 Builder.Insert(NewShift); 337 return BinaryOperator::Create(Instruction::And, NewShift, NewMask); 338 } 339 340 /// If we have a shift-by-constant of a bin op (bitwise logic op or add/sub w/ 341 /// shl) that itself has a shift-by-constant operand with identical opcode, we 342 /// may be able to convert that into 2 independent shifts followed by the logic 343 /// op. This eliminates a use of an intermediate value (reduces dependency 344 /// chain). 345 static Instruction *foldShiftOfShiftedBinOp(BinaryOperator &I, 346 InstCombiner::BuilderTy &Builder) { 347 assert(I.isShift() && "Expected a shift as input"); 348 auto *BinInst = dyn_cast<BinaryOperator>(I.getOperand(0)); 349 if (!BinInst || 350 (!BinInst->isBitwiseLogicOp() && 351 BinInst->getOpcode() != Instruction::Add && 352 BinInst->getOpcode() != Instruction::Sub) || 353 !BinInst->hasOneUse()) 354 return nullptr; 355 356 Constant *C0, *C1; 357 if (!match(I.getOperand(1), m_Constant(C1))) 358 return nullptr; 359 360 Instruction::BinaryOps ShiftOpcode = I.getOpcode(); 361 // Transform for add/sub only works with shl. 362 if ((BinInst->getOpcode() == Instruction::Add || 363 BinInst->getOpcode() == Instruction::Sub) && 364 ShiftOpcode != Instruction::Shl) 365 return nullptr; 366 367 Type *Ty = I.getType(); 368 369 // Find a matching shift by constant. The fold is not valid if the sum 370 // of the shift values equals or exceeds bitwidth. 371 Value *X, *Y; 372 auto matchFirstShift = [&](Value *V, Value *W) { 373 unsigned Size = Ty->getScalarSizeInBits(); 374 APInt Threshold(Size, Size); 375 return match(V, m_BinOp(ShiftOpcode, m_Value(X), m_Constant(C0))) && 376 (V->hasOneUse() || match(W, m_ImmConstant())) && 377 match(ConstantExpr::getAdd(C0, C1), 378 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold)); 379 }; 380 381 // Logic ops and Add are commutative, so check each operand for a match. Sub 382 // is not so we cannot reoder if we match operand(1) and need to keep the 383 // operands in their original positions. 384 bool FirstShiftIsOp1 = false; 385 if (matchFirstShift(BinInst->getOperand(0), BinInst->getOperand(1))) 386 Y = BinInst->getOperand(1); 387 else if (matchFirstShift(BinInst->getOperand(1), BinInst->getOperand(0))) { 388 Y = BinInst->getOperand(0); 389 FirstShiftIsOp1 = BinInst->getOpcode() == Instruction::Sub; 390 } else 391 return nullptr; 392 393 // shift (binop (shift X, C0), Y), C1 -> binop (shift X, C0+C1), (shift Y, C1) 394 Constant *ShiftSumC = ConstantExpr::getAdd(C0, C1); 395 Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC); 396 Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, C1); 397 Value *Op1 = FirstShiftIsOp1 ? NewShift2 : NewShift1; 398 Value *Op2 = FirstShiftIsOp1 ? NewShift1 : NewShift2; 399 return BinaryOperator::Create(BinInst->getOpcode(), Op1, Op2); 400 } 401 402 Instruction *InstCombinerImpl::commonShiftTransforms(BinaryOperator &I) { 403 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 404 return Phi; 405 406 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 407 assert(Op0->getType() == Op1->getType()); 408 Type *Ty = I.getType(); 409 410 // If the shift amount is a one-use `sext`, we can demote it to `zext`. 411 Value *Y; 412 if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) { 413 Value *NewExt = Builder.CreateZExt(Y, Ty, Op1->getName()); 414 return BinaryOperator::Create(I.getOpcode(), Op0, NewExt); 415 } 416 417 // See if we can fold away this shift. 418 if (SimplifyDemandedInstructionBits(I)) 419 return &I; 420 421 // Try to fold constant and into select arguments. 422 if (isa<Constant>(Op0)) 423 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 424 if (Instruction *R = FoldOpIntoSelect(I, SI)) 425 return R; 426 427 if (Constant *CUI = dyn_cast<Constant>(Op1)) 428 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I)) 429 return Res; 430 431 if (auto *NewShift = cast_or_null<Instruction>( 432 reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ))) 433 return NewShift; 434 435 // Pre-shift a constant shifted by a variable amount with constant offset: 436 // C shift (A add nuw C1) --> (C shift C1) shift A 437 Value *A; 438 Constant *C, *C1; 439 if (match(Op0, m_Constant(C)) && 440 match(Op1, m_NUWAdd(m_Value(A), m_Constant(C1)))) { 441 Value *NewC = Builder.CreateBinOp(I.getOpcode(), C, C1); 442 return BinaryOperator::Create(I.getOpcode(), NewC, A); 443 } 444 445 unsigned BitWidth = Ty->getScalarSizeInBits(); 446 447 const APInt *AC, *AddC; 448 // Try to pre-shift a constant shifted by a variable amount added with a 449 // negative number: 450 // C << (X - AddC) --> (C >> AddC) << X 451 // and 452 // C >> (X - AddC) --> (C << AddC) >> X 453 if (match(Op0, m_APInt(AC)) && match(Op1, m_Add(m_Value(A), m_APInt(AddC))) && 454 AddC->isNegative() && (-*AddC).ult(BitWidth)) { 455 assert(!AC->isZero() && "Expected simplify of shifted zero"); 456 unsigned PosOffset = (-*AddC).getZExtValue(); 457 458 auto isSuitableForPreShift = [PosOffset, &I, AC]() { 459 switch (I.getOpcode()) { 460 default: 461 return false; 462 case Instruction::Shl: 463 return (I.hasNoSignedWrap() || I.hasNoUnsignedWrap()) && 464 AC->eq(AC->lshr(PosOffset).shl(PosOffset)); 465 case Instruction::LShr: 466 return I.isExact() && AC->eq(AC->shl(PosOffset).lshr(PosOffset)); 467 case Instruction::AShr: 468 return I.isExact() && AC->eq(AC->shl(PosOffset).ashr(PosOffset)); 469 } 470 }; 471 if (isSuitableForPreShift()) { 472 Constant *NewC = ConstantInt::get(Ty, I.getOpcode() == Instruction::Shl 473 ? AC->lshr(PosOffset) 474 : AC->shl(PosOffset)); 475 BinaryOperator *NewShiftOp = 476 BinaryOperator::Create(I.getOpcode(), NewC, A); 477 if (I.getOpcode() == Instruction::Shl) { 478 NewShiftOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 479 } else { 480 NewShiftOp->setIsExact(); 481 } 482 return NewShiftOp; 483 } 484 } 485 486 // X shift (A srem C) -> X shift (A and (C - 1)) iff C is a power of 2. 487 // Because shifts by negative values (which could occur if A were negative) 488 // are undefined. 489 if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Constant(C))) && 490 match(C, m_Power2())) { 491 // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't 492 // demand the sign bit (and many others) here?? 493 Constant *Mask = ConstantExpr::getSub(C, ConstantInt::get(Ty, 1)); 494 Value *Rem = Builder.CreateAnd(A, Mask, Op1->getName()); 495 return replaceOperand(I, 1, Rem); 496 } 497 498 if (Instruction *Logic = foldShiftOfShiftedBinOp(I, Builder)) 499 return Logic; 500 501 if (match(Op1, m_Or(m_Value(), m_SpecificInt(BitWidth - 1)))) 502 return replaceOperand(I, 1, ConstantInt::get(Ty, BitWidth - 1)); 503 504 return nullptr; 505 } 506 507 /// Return true if we can simplify two logical (either left or right) shifts 508 /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2. 509 static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl, 510 Instruction *InnerShift, 511 InstCombinerImpl &IC, Instruction *CxtI) { 512 assert(InnerShift->isLogicalShift() && "Unexpected instruction type"); 513 514 // We need constant scalar or constant splat shifts. 515 const APInt *InnerShiftConst; 516 if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst))) 517 return false; 518 519 // Two logical shifts in the same direction: 520 // shl (shl X, C1), C2 --> shl X, C1 + C2 521 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2 522 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl; 523 if (IsInnerShl == IsOuterShl) 524 return true; 525 526 // Equal shift amounts in opposite directions become bitwise 'and': 527 // lshr (shl X, C), C --> and X, C' 528 // shl (lshr X, C), C --> and X, C' 529 if (*InnerShiftConst == OuterShAmt) 530 return true; 531 532 // If the 2nd shift is bigger than the 1st, we can fold: 533 // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3 534 // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3 535 // but it isn't profitable unless we know the and'd out bits are already zero. 536 // Also, check that the inner shift is valid (less than the type width) or 537 // we'll crash trying to produce the bit mask for the 'and'. 538 unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits(); 539 if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) { 540 unsigned InnerShAmt = InnerShiftConst->getZExtValue(); 541 unsigned MaskShift = 542 IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt; 543 APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift; 544 if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI)) 545 return true; 546 } 547 548 return false; 549 } 550 551 /// See if we can compute the specified value, but shifted logically to the left 552 /// or right by some number of bits. This should return true if the expression 553 /// can be computed for the same cost as the current expression tree. This is 554 /// used to eliminate extraneous shifting from things like: 555 /// %C = shl i128 %A, 64 556 /// %D = shl i128 %B, 96 557 /// %E = or i128 %C, %D 558 /// %F = lshr i128 %E, 64 559 /// where the client will ask if E can be computed shifted right by 64-bits. If 560 /// this succeeds, getShiftedValue() will be called to produce the value. 561 static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift, 562 InstCombinerImpl &IC, Instruction *CxtI) { 563 // We can always evaluate immediate constants. 564 if (match(V, m_ImmConstant())) 565 return true; 566 567 Instruction *I = dyn_cast<Instruction>(V); 568 if (!I) return false; 569 570 // We can't mutate something that has multiple uses: doing so would 571 // require duplicating the instruction in general, which isn't profitable. 572 if (!I->hasOneUse()) return false; 573 574 switch (I->getOpcode()) { 575 default: return false; 576 case Instruction::And: 577 case Instruction::Or: 578 case Instruction::Xor: 579 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. 580 return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) && 581 canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I); 582 583 case Instruction::Shl: 584 case Instruction::LShr: 585 return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI); 586 587 case Instruction::Select: { 588 SelectInst *SI = cast<SelectInst>(I); 589 Value *TrueVal = SI->getTrueValue(); 590 Value *FalseVal = SI->getFalseValue(); 591 return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) && 592 canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI); 593 } 594 case Instruction::PHI: { 595 // We can change a phi if we can change all operands. Note that we never 596 // get into trouble with cyclic PHIs here because we only consider 597 // instructions with a single use. 598 PHINode *PN = cast<PHINode>(I); 599 for (Value *IncValue : PN->incoming_values()) 600 if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN)) 601 return false; 602 return true; 603 } 604 case Instruction::Mul: { 605 const APInt *MulConst; 606 // We can fold (shr (mul X, -(1 << C)), C) -> (and (neg X), C`) 607 return !IsLeftShift && match(I->getOperand(1), m_APInt(MulConst)) && 608 MulConst->isNegatedPowerOf2() && MulConst->countr_zero() == NumBits; 609 } 610 } 611 } 612 613 /// Fold OuterShift (InnerShift X, C1), C2. 614 /// See canEvaluateShiftedShift() for the constraints on these instructions. 615 static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt, 616 bool IsOuterShl, 617 InstCombiner::BuilderTy &Builder) { 618 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl; 619 Type *ShType = InnerShift->getType(); 620 unsigned TypeWidth = ShType->getScalarSizeInBits(); 621 622 // We only accept shifts-by-a-constant in canEvaluateShifted(). 623 const APInt *C1; 624 match(InnerShift->getOperand(1), m_APInt(C1)); 625 unsigned InnerShAmt = C1->getZExtValue(); 626 627 // Change the shift amount and clear the appropriate IR flags. 628 auto NewInnerShift = [&](unsigned ShAmt) { 629 InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt)); 630 if (IsInnerShl) { 631 InnerShift->setHasNoUnsignedWrap(false); 632 InnerShift->setHasNoSignedWrap(false); 633 } else { 634 InnerShift->setIsExact(false); 635 } 636 return InnerShift; 637 }; 638 639 // Two logical shifts in the same direction: 640 // shl (shl X, C1), C2 --> shl X, C1 + C2 641 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2 642 if (IsInnerShl == IsOuterShl) { 643 // If this is an oversized composite shift, then unsigned shifts get 0. 644 if (InnerShAmt + OuterShAmt >= TypeWidth) 645 return Constant::getNullValue(ShType); 646 647 return NewInnerShift(InnerShAmt + OuterShAmt); 648 } 649 650 // Equal shift amounts in opposite directions become bitwise 'and': 651 // lshr (shl X, C), C --> and X, C' 652 // shl (lshr X, C), C --> and X, C' 653 if (InnerShAmt == OuterShAmt) { 654 APInt Mask = IsInnerShl 655 ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt) 656 : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt); 657 Value *And = Builder.CreateAnd(InnerShift->getOperand(0), 658 ConstantInt::get(ShType, Mask)); 659 if (auto *AndI = dyn_cast<Instruction>(And)) { 660 AndI->moveBefore(InnerShift); 661 AndI->takeName(InnerShift); 662 } 663 return And; 664 } 665 666 assert(InnerShAmt > OuterShAmt && 667 "Unexpected opposite direction logical shift pair"); 668 669 // In general, we would need an 'and' for this transform, but 670 // canEvaluateShiftedShift() guarantees that the masked-off bits are not used. 671 // lshr (shl X, C1), C2 --> shl X, C1 - C2 672 // shl (lshr X, C1), C2 --> lshr X, C1 - C2 673 return NewInnerShift(InnerShAmt - OuterShAmt); 674 } 675 676 /// When canEvaluateShifted() returns true for an expression, this function 677 /// inserts the new computation that produces the shifted value. 678 static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift, 679 InstCombinerImpl &IC, const DataLayout &DL) { 680 // We can always evaluate constants shifted. 681 if (Constant *C = dyn_cast<Constant>(V)) { 682 if (isLeftShift) 683 return IC.Builder.CreateShl(C, NumBits); 684 else 685 return IC.Builder.CreateLShr(C, NumBits); 686 } 687 688 Instruction *I = cast<Instruction>(V); 689 IC.addToWorklist(I); 690 691 switch (I->getOpcode()) { 692 default: llvm_unreachable("Inconsistency with CanEvaluateShifted"); 693 case Instruction::And: 694 case Instruction::Or: 695 case Instruction::Xor: 696 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. 697 I->setOperand( 698 0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL)); 699 I->setOperand( 700 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL)); 701 return I; 702 703 case Instruction::Shl: 704 case Instruction::LShr: 705 return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift, 706 IC.Builder); 707 708 case Instruction::Select: 709 I->setOperand( 710 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL)); 711 I->setOperand( 712 2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL)); 713 return I; 714 case Instruction::PHI: { 715 // We can change a phi if we can change all operands. Note that we never 716 // get into trouble with cyclic PHIs here because we only consider 717 // instructions with a single use. 718 PHINode *PN = cast<PHINode>(I); 719 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 720 PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits, 721 isLeftShift, IC, DL)); 722 return PN; 723 } 724 case Instruction::Mul: { 725 assert(!isLeftShift && "Unexpected shift direction!"); 726 auto *Neg = BinaryOperator::CreateNeg(I->getOperand(0)); 727 IC.InsertNewInstWith(Neg, I->getIterator()); 728 unsigned TypeWidth = I->getType()->getScalarSizeInBits(); 729 APInt Mask = APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits); 730 auto *And = BinaryOperator::CreateAnd(Neg, 731 ConstantInt::get(I->getType(), Mask)); 732 And->takeName(I); 733 return IC.InsertNewInstWith(And, I->getIterator()); 734 } 735 } 736 } 737 738 // If this is a bitwise operator or add with a constant RHS we might be able 739 // to pull it through a shift. 740 static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift, 741 BinaryOperator *BO) { 742 switch (BO->getOpcode()) { 743 default: 744 return false; // Do not perform transform! 745 case Instruction::Add: 746 return Shift.getOpcode() == Instruction::Shl; 747 case Instruction::Or: 748 case Instruction::And: 749 return true; 750 case Instruction::Xor: 751 // Do not change a 'not' of logical shift because that would create a normal 752 // 'xor'. The 'not' is likely better for analysis, SCEV, and codegen. 753 return !(Shift.isLogicalShift() && match(BO, m_Not(m_Value()))); 754 } 755 } 756 757 Instruction *InstCombinerImpl::FoldShiftByConstant(Value *Op0, Constant *C1, 758 BinaryOperator &I) { 759 // (C2 << X) << C1 --> (C2 << C1) << X 760 // (C2 >> X) >> C1 --> (C2 >> C1) >> X 761 Constant *C2; 762 Value *X; 763 if (match(Op0, m_BinOp(I.getOpcode(), m_ImmConstant(C2), m_Value(X)))) 764 return BinaryOperator::Create( 765 I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), C2, C1), X); 766 767 bool IsLeftShift = I.getOpcode() == Instruction::Shl; 768 Type *Ty = I.getType(); 769 unsigned TypeBits = Ty->getScalarSizeInBits(); 770 771 // (X / +DivC) >> (Width - 1) --> ext (X <= -DivC) 772 // (X / -DivC) >> (Width - 1) --> ext (X >= +DivC) 773 const APInt *DivC; 774 if (!IsLeftShift && match(C1, m_SpecificIntAllowUndef(TypeBits - 1)) && 775 match(Op0, m_SDiv(m_Value(X), m_APInt(DivC))) && !DivC->isZero() && 776 !DivC->isMinSignedValue()) { 777 Constant *NegDivC = ConstantInt::get(Ty, -(*DivC)); 778 ICmpInst::Predicate Pred = 779 DivC->isNegative() ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_SLE; 780 Value *Cmp = Builder.CreateICmp(Pred, X, NegDivC); 781 auto ExtOpcode = (I.getOpcode() == Instruction::AShr) ? Instruction::SExt 782 : Instruction::ZExt; 783 return CastInst::Create(ExtOpcode, Cmp, Ty); 784 } 785 786 const APInt *Op1C; 787 if (!match(C1, m_APInt(Op1C))) 788 return nullptr; 789 790 assert(!Op1C->uge(TypeBits) && 791 "Shift over the type width should have been removed already"); 792 793 // See if we can propagate this shift into the input, this covers the trivial 794 // cast of lshr(shl(x,c1),c2) as well as other more complex cases. 795 if (I.getOpcode() != Instruction::AShr && 796 canEvaluateShifted(Op0, Op1C->getZExtValue(), IsLeftShift, *this, &I)) { 797 LLVM_DEBUG( 798 dbgs() << "ICE: GetShiftedValue propagating shift through expression" 799 " to eliminate shift:\n IN: " 800 << *Op0 << "\n SH: " << I << "\n"); 801 802 return replaceInstUsesWith( 803 I, getShiftedValue(Op0, Op1C->getZExtValue(), IsLeftShift, *this, DL)); 804 } 805 806 if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I)) 807 return FoldedShift; 808 809 if (!Op0->hasOneUse()) 810 return nullptr; 811 812 if (auto *Op0BO = dyn_cast<BinaryOperator>(Op0)) { 813 // If the operand is a bitwise operator with a constant RHS, and the 814 // shift is the only use, we can pull it out of the shift. 815 const APInt *Op0C; 816 if (match(Op0BO->getOperand(1), m_APInt(Op0C))) { 817 if (canShiftBinOpWithConstantRHS(I, Op0BO)) { 818 Value *NewRHS = 819 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(1), C1); 820 821 Value *NewShift = 822 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), C1); 823 NewShift->takeName(Op0BO); 824 825 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, NewRHS); 826 } 827 } 828 } 829 830 // If we have a select that conditionally executes some binary operator, 831 // see if we can pull it the select and operator through the shift. 832 // 833 // For example, turning: 834 // shl (select C, (add X, C1), X), C2 835 // Into: 836 // Y = shl X, C2 837 // select C, (add Y, C1 << C2), Y 838 Value *Cond; 839 BinaryOperator *TBO; 840 Value *FalseVal; 841 if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)), 842 m_Value(FalseVal)))) { 843 const APInt *C; 844 if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal && 845 match(TBO->getOperand(1), m_APInt(C)) && 846 canShiftBinOpWithConstantRHS(I, TBO)) { 847 Value *NewRHS = 848 Builder.CreateBinOp(I.getOpcode(), TBO->getOperand(1), C1); 849 850 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), FalseVal, C1); 851 Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift, NewRHS); 852 return SelectInst::Create(Cond, NewOp, NewShift); 853 } 854 } 855 856 BinaryOperator *FBO; 857 Value *TrueVal; 858 if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal), 859 m_OneUse(m_BinOp(FBO))))) { 860 const APInt *C; 861 if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal && 862 match(FBO->getOperand(1), m_APInt(C)) && 863 canShiftBinOpWithConstantRHS(I, FBO)) { 864 Value *NewRHS = 865 Builder.CreateBinOp(I.getOpcode(), FBO->getOperand(1), C1); 866 867 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), TrueVal, C1); 868 Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift, NewRHS); 869 return SelectInst::Create(Cond, NewShift, NewOp); 870 } 871 } 872 873 return nullptr; 874 } 875 876 // Tries to perform 877 // (lshr (add (zext X), (zext Y)), K) 878 // -> (icmp ult (add X, Y), X) 879 // where 880 // - The add's operands are zexts from a K-bits integer to a bigger type. 881 // - The add is only used by the shr, or by iK (or narrower) truncates. 882 // - The lshr type has more than 2 bits (other types are boolean math). 883 // - K > 1 884 // note that 885 // - The resulting add cannot have nuw/nsw, else on overflow we get a 886 // poison value and the transform isn't legal anymore. 887 Instruction *InstCombinerImpl::foldLShrOverflowBit(BinaryOperator &I) { 888 assert(I.getOpcode() == Instruction::LShr); 889 890 Value *Add = I.getOperand(0); 891 Value *ShiftAmt = I.getOperand(1); 892 Type *Ty = I.getType(); 893 894 if (Ty->getScalarSizeInBits() < 3) 895 return nullptr; 896 897 const APInt *ShAmtAPInt = nullptr; 898 Value *X = nullptr, *Y = nullptr; 899 if (!match(ShiftAmt, m_APInt(ShAmtAPInt)) || 900 !match(Add, 901 m_Add(m_OneUse(m_ZExt(m_Value(X))), m_OneUse(m_ZExt(m_Value(Y)))))) 902 return nullptr; 903 904 const unsigned ShAmt = ShAmtAPInt->getZExtValue(); 905 if (ShAmt == 1) 906 return nullptr; 907 908 // X/Y are zexts from `ShAmt`-sized ints. 909 if (X->getType()->getScalarSizeInBits() != ShAmt || 910 Y->getType()->getScalarSizeInBits() != ShAmt) 911 return nullptr; 912 913 // Make sure that `Add` is only used by `I` and `ShAmt`-truncates. 914 if (!Add->hasOneUse()) { 915 for (User *U : Add->users()) { 916 if (U == &I) 917 continue; 918 919 TruncInst *Trunc = dyn_cast<TruncInst>(U); 920 if (!Trunc || Trunc->getType()->getScalarSizeInBits() > ShAmt) 921 return nullptr; 922 } 923 } 924 925 // Insert at Add so that the newly created `NarrowAdd` will dominate it's 926 // users (i.e. `Add`'s users). 927 Instruction *AddInst = cast<Instruction>(Add); 928 Builder.SetInsertPoint(AddInst); 929 930 Value *NarrowAdd = Builder.CreateAdd(X, Y, "add.narrowed"); 931 Value *Overflow = 932 Builder.CreateICmpULT(NarrowAdd, X, "add.narrowed.overflow"); 933 934 // Replace the uses of the original add with a zext of the 935 // NarrowAdd's result. Note that all users at this stage are known to 936 // be ShAmt-sized truncs, or the lshr itself. 937 if (!Add->hasOneUse()) { 938 replaceInstUsesWith(*AddInst, Builder.CreateZExt(NarrowAdd, Ty)); 939 eraseInstFromFunction(*AddInst); 940 } 941 942 // Replace the LShr with a zext of the overflow check. 943 return new ZExtInst(Overflow, Ty); 944 } 945 946 // Try to set nuw/nsw flags on shl or exact flag on lshr/ashr using knownbits. 947 static bool setShiftFlags(BinaryOperator &I, const SimplifyQuery &Q) { 948 assert(I.isShift() && "Expected a shift as input"); 949 // We already have all the flags. 950 if (I.getOpcode() == Instruction::Shl) { 951 if (I.hasNoUnsignedWrap() && I.hasNoSignedWrap()) 952 return false; 953 } else { 954 if (I.isExact()) 955 return false; 956 957 // shr (shl X, Y), Y 958 if (match(I.getOperand(0), m_Shl(m_Value(), m_Specific(I.getOperand(1))))) { 959 I.setIsExact(); 960 return true; 961 } 962 } 963 964 // Compute what we know about shift count. 965 KnownBits KnownCnt = computeKnownBits(I.getOperand(1), /* Depth */ 0, Q); 966 unsigned BitWidth = KnownCnt.getBitWidth(); 967 // Since shift produces a poison value if RHS is equal to or larger than the 968 // bit width, we can safely assume that RHS is less than the bit width. 969 uint64_t MaxCnt = KnownCnt.getMaxValue().getLimitedValue(BitWidth - 1); 970 971 KnownBits KnownAmt = computeKnownBits(I.getOperand(0), /* Depth */ 0, Q); 972 bool Changed = false; 973 974 if (I.getOpcode() == Instruction::Shl) { 975 // If we have as many leading zeros than maximum shift cnt we have nuw. 976 if (!I.hasNoUnsignedWrap() && MaxCnt <= KnownAmt.countMinLeadingZeros()) { 977 I.setHasNoUnsignedWrap(); 978 Changed = true; 979 } 980 // If we have more sign bits than maximum shift cnt we have nsw. 981 if (!I.hasNoSignedWrap()) { 982 if (MaxCnt < KnownAmt.countMinSignBits() || 983 MaxCnt < ComputeNumSignBits(I.getOperand(0), Q.DL, /*Depth*/ 0, Q.AC, 984 Q.CxtI, Q.DT)) { 985 I.setHasNoSignedWrap(); 986 Changed = true; 987 } 988 } 989 return Changed; 990 } 991 992 // If we have at least as many trailing zeros as maximum count then we have 993 // exact. 994 Changed = MaxCnt <= KnownAmt.countMinTrailingZeros(); 995 I.setIsExact(Changed); 996 997 return Changed; 998 } 999 1000 Instruction *InstCombinerImpl::visitShl(BinaryOperator &I) { 1001 const SimplifyQuery Q = SQ.getWithInstruction(&I); 1002 1003 if (Value *V = simplifyShlInst(I.getOperand(0), I.getOperand(1), 1004 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q)) 1005 return replaceInstUsesWith(I, V); 1006 1007 if (Instruction *X = foldVectorBinop(I)) 1008 return X; 1009 1010 if (Instruction *V = commonShiftTransforms(I)) 1011 return V; 1012 1013 if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder)) 1014 return V; 1015 1016 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1017 Type *Ty = I.getType(); 1018 unsigned BitWidth = Ty->getScalarSizeInBits(); 1019 1020 const APInt *C; 1021 if (match(Op1, m_APInt(C))) { 1022 unsigned ShAmtC = C->getZExtValue(); 1023 1024 // shl (zext X), C --> zext (shl X, C) 1025 // This is only valid if X would have zeros shifted out. 1026 Value *X; 1027 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) { 1028 unsigned SrcWidth = X->getType()->getScalarSizeInBits(); 1029 if (ShAmtC < SrcWidth && 1030 MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmtC), 0, &I)) 1031 return new ZExtInst(Builder.CreateShl(X, ShAmtC), Ty); 1032 } 1033 1034 // (X >> C) << C --> X & (-1 << C) 1035 if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) { 1036 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 1037 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask)); 1038 } 1039 1040 const APInt *C1; 1041 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(C1)))) && 1042 C1->ult(BitWidth)) { 1043 unsigned ShrAmt = C1->getZExtValue(); 1044 if (ShrAmt < ShAmtC) { 1045 // If C1 < C: (X >>?,exact C1) << C --> X << (C - C1) 1046 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt); 1047 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); 1048 NewShl->setHasNoUnsignedWrap( 1049 I.hasNoUnsignedWrap() || 1050 (ShrAmt && 1051 cast<Instruction>(Op0)->getOpcode() == Instruction::LShr && 1052 I.hasNoSignedWrap())); 1053 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap()); 1054 return NewShl; 1055 } 1056 if (ShrAmt > ShAmtC) { 1057 // If C1 > C: (X >>?exact C1) << C --> X >>?exact (C1 - C) 1058 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC); 1059 auto *NewShr = BinaryOperator::Create( 1060 cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff); 1061 NewShr->setIsExact(true); 1062 return NewShr; 1063 } 1064 } 1065 1066 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_APInt(C1)))) && 1067 C1->ult(BitWidth)) { 1068 unsigned ShrAmt = C1->getZExtValue(); 1069 if (ShrAmt < ShAmtC) { 1070 // If C1 < C: (X >>? C1) << C --> (X << (C - C1)) & (-1 << C) 1071 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt); 1072 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); 1073 NewShl->setHasNoUnsignedWrap( 1074 I.hasNoUnsignedWrap() || 1075 (ShrAmt && 1076 cast<Instruction>(Op0)->getOpcode() == Instruction::LShr && 1077 I.hasNoSignedWrap())); 1078 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap()); 1079 Builder.Insert(NewShl); 1080 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 1081 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask)); 1082 } 1083 if (ShrAmt > ShAmtC) { 1084 // If C1 > C: (X >>? C1) << C --> (X >>? (C1 - C)) & (-1 << C) 1085 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC); 1086 auto *OldShr = cast<BinaryOperator>(Op0); 1087 auto *NewShr = 1088 BinaryOperator::Create(OldShr->getOpcode(), X, ShiftDiff); 1089 NewShr->setIsExact(OldShr->isExact()); 1090 Builder.Insert(NewShr); 1091 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 1092 return BinaryOperator::CreateAnd(NewShr, ConstantInt::get(Ty, Mask)); 1093 } 1094 } 1095 1096 // Similar to above, but look through an intermediate trunc instruction. 1097 BinaryOperator *Shr; 1098 if (match(Op0, m_OneUse(m_Trunc(m_OneUse(m_BinOp(Shr))))) && 1099 match(Shr, m_Shr(m_Value(X), m_APInt(C1)))) { 1100 // The larger shift direction survives through the transform. 1101 unsigned ShrAmtC = C1->getZExtValue(); 1102 unsigned ShDiff = ShrAmtC > ShAmtC ? ShrAmtC - ShAmtC : ShAmtC - ShrAmtC; 1103 Constant *ShiftDiffC = ConstantInt::get(X->getType(), ShDiff); 1104 auto ShiftOpc = ShrAmtC > ShAmtC ? Shr->getOpcode() : Instruction::Shl; 1105 1106 // If C1 > C: 1107 // (trunc (X >> C1)) << C --> (trunc (X >> (C1 - C))) && (-1 << C) 1108 // If C > C1: 1109 // (trunc (X >> C1)) << C --> (trunc (X << (C - C1))) && (-1 << C) 1110 Value *NewShift = Builder.CreateBinOp(ShiftOpc, X, ShiftDiffC, "sh.diff"); 1111 Value *Trunc = Builder.CreateTrunc(NewShift, Ty, "tr.sh.diff"); 1112 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 1113 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, Mask)); 1114 } 1115 1116 if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) { 1117 unsigned AmtSum = ShAmtC + C1->getZExtValue(); 1118 // Oversized shifts are simplified to zero in InstSimplify. 1119 if (AmtSum < BitWidth) 1120 // (X << C1) << C2 --> X << (C1 + C2) 1121 return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum)); 1122 } 1123 1124 // If we have an opposite shift by the same amount, we may be able to 1125 // reorder binops and shifts to eliminate math/logic. 1126 auto isSuitableBinOpcode = [](Instruction::BinaryOps BinOpcode) { 1127 switch (BinOpcode) { 1128 default: 1129 return false; 1130 case Instruction::Add: 1131 case Instruction::And: 1132 case Instruction::Or: 1133 case Instruction::Xor: 1134 case Instruction::Sub: 1135 // NOTE: Sub is not commutable and the tranforms below may not be valid 1136 // when the shift-right is operand 1 (RHS) of the sub. 1137 return true; 1138 } 1139 }; 1140 BinaryOperator *Op0BO; 1141 if (match(Op0, m_OneUse(m_BinOp(Op0BO))) && 1142 isSuitableBinOpcode(Op0BO->getOpcode())) { 1143 // Commute so shift-right is on LHS of the binop. 1144 // (Y bop (X >> C)) << C -> ((X >> C) bop Y) << C 1145 // (Y bop ((X >> C) & CC)) << C -> (((X >> C) & CC) bop Y) << C 1146 Value *Shr = Op0BO->getOperand(0); 1147 Value *Y = Op0BO->getOperand(1); 1148 Value *X; 1149 const APInt *CC; 1150 if (Op0BO->isCommutative() && Y->hasOneUse() && 1151 (match(Y, m_Shr(m_Value(), m_Specific(Op1))) || 1152 match(Y, m_And(m_OneUse(m_Shr(m_Value(), m_Specific(Op1))), 1153 m_APInt(CC))))) 1154 std::swap(Shr, Y); 1155 1156 // ((X >> C) bop Y) << C -> (X bop (Y << C)) & (~0 << C) 1157 if (match(Shr, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) { 1158 // Y << C 1159 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName()); 1160 // (X bop (Y << C)) 1161 Value *B = 1162 Builder.CreateBinOp(Op0BO->getOpcode(), X, YS, Shr->getName()); 1163 unsigned Op1Val = C->getLimitedValue(BitWidth); 1164 APInt Bits = APInt::getHighBitsSet(BitWidth, BitWidth - Op1Val); 1165 Constant *Mask = ConstantInt::get(Ty, Bits); 1166 return BinaryOperator::CreateAnd(B, Mask); 1167 } 1168 1169 // (((X >> C) & CC) bop Y) << C -> (X & (CC << C)) bop (Y << C) 1170 if (match(Shr, 1171 m_OneUse(m_And(m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))), 1172 m_APInt(CC))))) { 1173 // Y << C 1174 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName()); 1175 // X & (CC << C) 1176 Value *M = Builder.CreateAnd(X, ConstantInt::get(Ty, CC->shl(*C)), 1177 X->getName() + ".mask"); 1178 return BinaryOperator::Create(Op0BO->getOpcode(), M, YS); 1179 } 1180 } 1181 1182 // (C1 - X) << C --> (C1 << C) - (X << C) 1183 if (match(Op0, m_OneUse(m_Sub(m_APInt(C1), m_Value(X))))) { 1184 Constant *NewLHS = ConstantInt::get(Ty, C1->shl(*C)); 1185 Value *NewShift = Builder.CreateShl(X, Op1); 1186 return BinaryOperator::CreateSub(NewLHS, NewShift); 1187 } 1188 } 1189 1190 if (setShiftFlags(I, Q)) 1191 return &I; 1192 1193 // Transform (x >> y) << y to x & (-1 << y) 1194 // Valid for any type of right-shift. 1195 Value *X; 1196 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) { 1197 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); 1198 Value *Mask = Builder.CreateShl(AllOnes, Op1); 1199 return BinaryOperator::CreateAnd(Mask, X); 1200 } 1201 1202 Constant *C1; 1203 if (match(Op1, m_Constant(C1))) { 1204 Constant *C2; 1205 Value *X; 1206 // (X * C2) << C1 --> X * (C2 << C1) 1207 if (match(Op0, m_Mul(m_Value(X), m_Constant(C2)))) 1208 return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1)); 1209 1210 // shl (zext i1 X), C1 --> select (X, 1 << C1, 0) 1211 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 1212 auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1); 1213 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty)); 1214 } 1215 } 1216 1217 if (match(Op0, m_One())) { 1218 // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1 1219 if (match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X)))) 1220 return BinaryOperator::CreateLShr( 1221 ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X); 1222 1223 // Canonicalize "extract lowest set bit" using cttz to and-with-negate: 1224 // 1 << (cttz X) --> -X & X 1225 if (match(Op1, 1226 m_OneUse(m_Intrinsic<Intrinsic::cttz>(m_Value(X), m_Value())))) { 1227 Value *NegX = Builder.CreateNeg(X, "neg"); 1228 return BinaryOperator::CreateAnd(NegX, X); 1229 } 1230 } 1231 1232 return nullptr; 1233 } 1234 1235 Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) { 1236 if (Value *V = simplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), 1237 SQ.getWithInstruction(&I))) 1238 return replaceInstUsesWith(I, V); 1239 1240 if (Instruction *X = foldVectorBinop(I)) 1241 return X; 1242 1243 if (Instruction *R = commonShiftTransforms(I)) 1244 return R; 1245 1246 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1247 Type *Ty = I.getType(); 1248 Value *X; 1249 const APInt *C; 1250 unsigned BitWidth = Ty->getScalarSizeInBits(); 1251 1252 // (iN (~X) u>> (N - 1)) --> zext (X > -1) 1253 if (match(Op0, m_OneUse(m_Not(m_Value(X)))) && 1254 match(Op1, m_SpecificIntAllowUndef(BitWidth - 1))) 1255 return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty); 1256 1257 if (match(Op1, m_APInt(C))) { 1258 unsigned ShAmtC = C->getZExtValue(); 1259 auto *II = dyn_cast<IntrinsicInst>(Op0); 1260 if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmtC && 1261 (II->getIntrinsicID() == Intrinsic::ctlz || 1262 II->getIntrinsicID() == Intrinsic::cttz || 1263 II->getIntrinsicID() == Intrinsic::ctpop)) { 1264 // ctlz.i32(x)>>5 --> zext(x == 0) 1265 // cttz.i32(x)>>5 --> zext(x == 0) 1266 // ctpop.i32(x)>>5 --> zext(x == -1) 1267 bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop; 1268 Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0); 1269 Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS); 1270 return new ZExtInst(Cmp, Ty); 1271 } 1272 1273 Value *X; 1274 const APInt *C1; 1275 if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) { 1276 if (C1->ult(ShAmtC)) { 1277 unsigned ShlAmtC = C1->getZExtValue(); 1278 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShlAmtC); 1279 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) { 1280 // (X <<nuw C1) >>u C --> X >>u (C - C1) 1281 auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff); 1282 NewLShr->setIsExact(I.isExact()); 1283 return NewLShr; 1284 } 1285 if (Op0->hasOneUse()) { 1286 // (X << C1) >>u C --> (X >>u (C - C1)) & (-1 >> C) 1287 Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact()); 1288 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1289 return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask)); 1290 } 1291 } else if (C1->ugt(ShAmtC)) { 1292 unsigned ShlAmtC = C1->getZExtValue(); 1293 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmtC - ShAmtC); 1294 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) { 1295 // (X <<nuw C1) >>u C --> X <<nuw/nsw (C1 - C) 1296 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); 1297 NewShl->setHasNoUnsignedWrap(true); 1298 NewShl->setHasNoSignedWrap(ShAmtC > 0); 1299 return NewShl; 1300 } 1301 if (Op0->hasOneUse()) { 1302 // (X << C1) >>u C --> X << (C1 - C) & (-1 >> C) 1303 Value *NewShl = Builder.CreateShl(X, ShiftDiff); 1304 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1305 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask)); 1306 } 1307 } else { 1308 assert(*C1 == ShAmtC); 1309 // (X << C) >>u C --> X & (-1 >>u C) 1310 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1311 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask)); 1312 } 1313 } 1314 1315 // ((X << C) + Y) >>u C --> (X + (Y >>u C)) & (-1 >>u C) 1316 // TODO: Consolidate with the more general transform that starts from shl 1317 // (the shifts are in the opposite order). 1318 Value *Y; 1319 if (match(Op0, 1320 m_OneUse(m_c_Add(m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))), 1321 m_Value(Y))))) { 1322 Value *NewLshr = Builder.CreateLShr(Y, Op1); 1323 Value *NewAdd = Builder.CreateAdd(NewLshr, X); 1324 unsigned Op1Val = C->getLimitedValue(BitWidth); 1325 APInt Bits = APInt::getLowBitsSet(BitWidth, BitWidth - Op1Val); 1326 Constant *Mask = ConstantInt::get(Ty, Bits); 1327 return BinaryOperator::CreateAnd(NewAdd, Mask); 1328 } 1329 1330 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && 1331 (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) { 1332 assert(ShAmtC < X->getType()->getScalarSizeInBits() && 1333 "Big shift not simplified to zero?"); 1334 // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN 1335 Value *NewLShr = Builder.CreateLShr(X, ShAmtC); 1336 return new ZExtInst(NewLShr, Ty); 1337 } 1338 1339 if (match(Op0, m_SExt(m_Value(X)))) { 1340 unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits(); 1341 // lshr (sext i1 X to iN), C --> select (X, -1 >> C, 0) 1342 if (SrcTyBitWidth == 1) { 1343 auto *NewC = ConstantInt::get( 1344 Ty, APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1345 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty)); 1346 } 1347 1348 if ((!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType())) && 1349 Op0->hasOneUse()) { 1350 // Are we moving the sign bit to the low bit and widening with high 1351 // zeros? lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN 1352 if (ShAmtC == BitWidth - 1) { 1353 Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1); 1354 return new ZExtInst(NewLShr, Ty); 1355 } 1356 1357 // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN 1358 if (ShAmtC == BitWidth - SrcTyBitWidth) { 1359 // The new shift amount can't be more than the narrow source type. 1360 unsigned NewShAmt = std::min(ShAmtC, SrcTyBitWidth - 1); 1361 Value *AShr = Builder.CreateAShr(X, NewShAmt); 1362 return new ZExtInst(AShr, Ty); 1363 } 1364 } 1365 } 1366 1367 if (ShAmtC == BitWidth - 1) { 1368 // lshr i32 or(X,-X), 31 --> zext (X != 0) 1369 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X))))) 1370 return new ZExtInst(Builder.CreateIsNotNull(X), Ty); 1371 1372 // lshr i32 (X -nsw Y), 31 --> zext (X < Y) 1373 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y))))) 1374 return new ZExtInst(Builder.CreateICmpSLT(X, Y), Ty); 1375 1376 // Check if a number is negative and odd: 1377 // lshr i32 (srem X, 2), 31 --> and (X >> 31), X 1378 if (match(Op0, m_OneUse(m_SRem(m_Value(X), m_SpecificInt(2))))) { 1379 Value *Signbit = Builder.CreateLShr(X, ShAmtC); 1380 return BinaryOperator::CreateAnd(Signbit, X); 1381 } 1382 } 1383 1384 // (X >>u C1) >>u C --> X >>u (C1 + C) 1385 if (match(Op0, m_LShr(m_Value(X), m_APInt(C1)))) { 1386 // Oversized shifts are simplified to zero in InstSimplify. 1387 unsigned AmtSum = ShAmtC + C1->getZExtValue(); 1388 if (AmtSum < BitWidth) 1389 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum)); 1390 } 1391 1392 Instruction *TruncSrc; 1393 if (match(Op0, m_OneUse(m_Trunc(m_Instruction(TruncSrc)))) && 1394 match(TruncSrc, m_LShr(m_Value(X), m_APInt(C1)))) { 1395 unsigned SrcWidth = X->getType()->getScalarSizeInBits(); 1396 unsigned AmtSum = ShAmtC + C1->getZExtValue(); 1397 1398 // If the combined shift fits in the source width: 1399 // (trunc (X >>u C1)) >>u C --> and (trunc (X >>u (C1 + C)), MaskC 1400 // 1401 // If the first shift covers the number of bits truncated, then the 1402 // mask instruction is eliminated (and so the use check is relaxed). 1403 if (AmtSum < SrcWidth && 1404 (TruncSrc->hasOneUse() || C1->uge(SrcWidth - BitWidth))) { 1405 Value *SumShift = Builder.CreateLShr(X, AmtSum, "sum.shift"); 1406 Value *Trunc = Builder.CreateTrunc(SumShift, Ty, I.getName()); 1407 1408 // If the first shift does not cover the number of bits truncated, then 1409 // we require a mask to get rid of high bits in the result. 1410 APInt MaskC = APInt::getAllOnes(BitWidth).lshr(ShAmtC); 1411 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, MaskC)); 1412 } 1413 } 1414 1415 const APInt *MulC; 1416 if (match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC)))) { 1417 // Look for a "splat" mul pattern - it replicates bits across each half of 1418 // a value, so a right shift is just a mask of the low bits: 1419 // lshr i[2N] (mul nuw X, (2^N)+1), N --> and iN X, (2^N)-1 1420 // TODO: Generalize to allow more than just half-width shifts? 1421 if (BitWidth > 2 && ShAmtC * 2 == BitWidth && (*MulC - 1).isPowerOf2() && 1422 MulC->logBase2() == ShAmtC) 1423 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *MulC - 2)); 1424 1425 // The one-use check is not strictly necessary, but codegen may not be 1426 // able to invert the transform and perf may suffer with an extra mul 1427 // instruction. 1428 if (Op0->hasOneUse()) { 1429 APInt NewMulC = MulC->lshr(ShAmtC); 1430 // if c is divisible by (1 << ShAmtC): 1431 // lshr (mul nuw x, MulC), ShAmtC -> mul nuw nsw x, (MulC >> ShAmtC) 1432 if (MulC->eq(NewMulC.shl(ShAmtC))) { 1433 auto *NewMul = 1434 BinaryOperator::CreateNUWMul(X, ConstantInt::get(Ty, NewMulC)); 1435 assert(ShAmtC != 0 && 1436 "lshr X, 0 should be handled by simplifyLShrInst."); 1437 NewMul->setHasNoSignedWrap(true); 1438 return NewMul; 1439 } 1440 } 1441 } 1442 1443 // Try to narrow bswap. 1444 // In the case where the shift amount equals the bitwidth difference, the 1445 // shift is eliminated. 1446 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::bswap>( 1447 m_OneUse(m_ZExt(m_Value(X))))))) { 1448 unsigned SrcWidth = X->getType()->getScalarSizeInBits(); 1449 unsigned WidthDiff = BitWidth - SrcWidth; 1450 if (SrcWidth % 16 == 0) { 1451 Value *NarrowSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X); 1452 if (ShAmtC >= WidthDiff) { 1453 // (bswap (zext X)) >> C --> zext (bswap X >> C') 1454 Value *NewShift = Builder.CreateLShr(NarrowSwap, ShAmtC - WidthDiff); 1455 return new ZExtInst(NewShift, Ty); 1456 } else { 1457 // (bswap (zext X)) >> C --> (zext (bswap X)) << C' 1458 Value *NewZExt = Builder.CreateZExt(NarrowSwap, Ty); 1459 Constant *ShiftDiff = ConstantInt::get(Ty, WidthDiff - ShAmtC); 1460 return BinaryOperator::CreateShl(NewZExt, ShiftDiff); 1461 } 1462 } 1463 } 1464 1465 // Reduce add-carry of bools to logic: 1466 // ((zext BoolX) + (zext BoolY)) >> 1 --> zext (BoolX && BoolY) 1467 Value *BoolX, *BoolY; 1468 if (ShAmtC == 1 && match(Op0, m_Add(m_Value(X), m_Value(Y))) && 1469 match(X, m_ZExt(m_Value(BoolX))) && match(Y, m_ZExt(m_Value(BoolY))) && 1470 BoolX->getType()->isIntOrIntVectorTy(1) && 1471 BoolY->getType()->isIntOrIntVectorTy(1) && 1472 (X->hasOneUse() || Y->hasOneUse() || Op0->hasOneUse())) { 1473 Value *And = Builder.CreateAnd(BoolX, BoolY); 1474 return new ZExtInst(And, Ty); 1475 } 1476 } 1477 1478 const SimplifyQuery Q = SQ.getWithInstruction(&I); 1479 if (setShiftFlags(I, Q)) 1480 return &I; 1481 1482 // Transform (x << y) >> y to x & (-1 >> y) 1483 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) { 1484 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); 1485 Value *Mask = Builder.CreateLShr(AllOnes, Op1); 1486 return BinaryOperator::CreateAnd(Mask, X); 1487 } 1488 1489 if (Instruction *Overflow = foldLShrOverflowBit(I)) 1490 return Overflow; 1491 1492 return nullptr; 1493 } 1494 1495 Instruction * 1496 InstCombinerImpl::foldVariableSignZeroExtensionOfVariableHighBitExtract( 1497 BinaryOperator &OldAShr) { 1498 assert(OldAShr.getOpcode() == Instruction::AShr && 1499 "Must be called with arithmetic right-shift instruction only."); 1500 1501 // Check that constant C is a splat of the element-wise bitwidth of V. 1502 auto BitWidthSplat = [](Constant *C, Value *V) { 1503 return match( 1504 C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1505 APInt(C->getType()->getScalarSizeInBits(), 1506 V->getType()->getScalarSizeInBits()))); 1507 }; 1508 1509 // It should look like variable-length sign-extension on the outside: 1510 // (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits) 1511 Value *NBits; 1512 Instruction *MaybeTrunc; 1513 Constant *C1, *C2; 1514 if (!match(&OldAShr, 1515 m_AShr(m_Shl(m_Instruction(MaybeTrunc), 1516 m_ZExtOrSelf(m_Sub(m_Constant(C1), 1517 m_ZExtOrSelf(m_Value(NBits))))), 1518 m_ZExtOrSelf(m_Sub(m_Constant(C2), 1519 m_ZExtOrSelf(m_Deferred(NBits)))))) || 1520 !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr)) 1521 return nullptr; 1522 1523 // There may or may not be a truncation after outer two shifts. 1524 Instruction *HighBitExtract; 1525 match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract))); 1526 bool HadTrunc = MaybeTrunc != HighBitExtract; 1527 1528 // And finally, the innermost part of the pattern must be a right-shift. 1529 Value *X, *NumLowBitsToSkip; 1530 if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip)))) 1531 return nullptr; 1532 1533 // Said right-shift must extract high NBits bits - C0 must be it's bitwidth. 1534 Constant *C0; 1535 if (!match(NumLowBitsToSkip, 1536 m_ZExtOrSelf( 1537 m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) || 1538 !BitWidthSplat(C0, HighBitExtract)) 1539 return nullptr; 1540 1541 // Since the NBits is identical for all shifts, if the outermost and 1542 // innermost shifts are identical, then outermost shifts are redundant. 1543 // If we had truncation, do keep it though. 1544 if (HighBitExtract->getOpcode() == OldAShr.getOpcode()) 1545 return replaceInstUsesWith(OldAShr, MaybeTrunc); 1546 1547 // Else, if there was a truncation, then we need to ensure that one 1548 // instruction will go away. 1549 if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 1550 return nullptr; 1551 1552 // Finally, bypass two innermost shifts, and perform the outermost shift on 1553 // the operands of the innermost shift. 1554 Instruction *NewAShr = 1555 BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip); 1556 NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness. 1557 if (!HadTrunc) 1558 return NewAShr; 1559 1560 Builder.Insert(NewAShr); 1561 return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType()); 1562 } 1563 1564 Instruction *InstCombinerImpl::visitAShr(BinaryOperator &I) { 1565 if (Value *V = simplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), 1566 SQ.getWithInstruction(&I))) 1567 return replaceInstUsesWith(I, V); 1568 1569 if (Instruction *X = foldVectorBinop(I)) 1570 return X; 1571 1572 if (Instruction *R = commonShiftTransforms(I)) 1573 return R; 1574 1575 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1576 Type *Ty = I.getType(); 1577 unsigned BitWidth = Ty->getScalarSizeInBits(); 1578 const APInt *ShAmtAPInt; 1579 if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) { 1580 unsigned ShAmt = ShAmtAPInt->getZExtValue(); 1581 1582 // If the shift amount equals the difference in width of the destination 1583 // and source scalar types: 1584 // ashr (shl (zext X), C), C --> sext X 1585 Value *X; 1586 if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) && 1587 ShAmt == BitWidth - X->getType()->getScalarSizeInBits()) 1588 return new SExtInst(X, Ty); 1589 1590 // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However, 1591 // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits. 1592 const APInt *ShOp1; 1593 if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) && 1594 ShOp1->ult(BitWidth)) { 1595 unsigned ShlAmt = ShOp1->getZExtValue(); 1596 if (ShlAmt < ShAmt) { 1597 // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1) 1598 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt); 1599 auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff); 1600 NewAShr->setIsExact(I.isExact()); 1601 return NewAShr; 1602 } 1603 if (ShlAmt > ShAmt) { 1604 // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2) 1605 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt); 1606 auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff); 1607 NewShl->setHasNoSignedWrap(true); 1608 return NewShl; 1609 } 1610 } 1611 1612 if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) && 1613 ShOp1->ult(BitWidth)) { 1614 unsigned AmtSum = ShAmt + ShOp1->getZExtValue(); 1615 // Oversized arithmetic shifts replicate the sign bit. 1616 AmtSum = std::min(AmtSum, BitWidth - 1); 1617 // (X >>s C1) >>s C2 --> X >>s (C1 + C2) 1618 return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum)); 1619 } 1620 1621 if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) && 1622 (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) { 1623 // ashr (sext X), C --> sext (ashr X, C') 1624 Type *SrcTy = X->getType(); 1625 ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1); 1626 Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt)); 1627 return new SExtInst(NewSh, Ty); 1628 } 1629 1630 if (ShAmt == BitWidth - 1) { 1631 // ashr i32 or(X,-X), 31 --> sext (X != 0) 1632 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X))))) 1633 return new SExtInst(Builder.CreateIsNotNull(X), Ty); 1634 1635 // ashr i32 (X -nsw Y), 31 --> sext (X < Y) 1636 Value *Y; 1637 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y))))) 1638 return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty); 1639 } 1640 } 1641 1642 const SimplifyQuery Q = SQ.getWithInstruction(&I); 1643 if (setShiftFlags(I, Q)) 1644 return &I; 1645 1646 // Prefer `-(x & 1)` over `(x << (bitwidth(x)-1)) a>> (bitwidth(x)-1)` 1647 // as the pattern to splat the lowest bit. 1648 // FIXME: iff X is already masked, we don't need the one-use check. 1649 Value *X; 1650 if (match(Op1, m_SpecificIntAllowUndef(BitWidth - 1)) && 1651 match(Op0, m_OneUse(m_Shl(m_Value(X), 1652 m_SpecificIntAllowUndef(BitWidth - 1))))) { 1653 Constant *Mask = ConstantInt::get(Ty, 1); 1654 // Retain the knowledge about the ignored lanes. 1655 Mask = Constant::mergeUndefsWith( 1656 Constant::mergeUndefsWith(Mask, cast<Constant>(Op1)), 1657 cast<Constant>(cast<Instruction>(Op0)->getOperand(1))); 1658 X = Builder.CreateAnd(X, Mask); 1659 return BinaryOperator::CreateNeg(X); 1660 } 1661 1662 if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I)) 1663 return R; 1664 1665 // See if we can turn a signed shr into an unsigned shr. 1666 if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I)) { 1667 Instruction *Lshr = BinaryOperator::CreateLShr(Op0, Op1); 1668 Lshr->setIsExact(I.isExact()); 1669 return Lshr; 1670 } 1671 1672 // ashr (xor %x, -1), %y --> xor (ashr %x, %y), -1 1673 if (match(Op0, m_OneUse(m_Not(m_Value(X))))) { 1674 // Note that we must drop 'exact'-ness of the shift! 1675 // Note that we can't keep undef's in -1 vector constant! 1676 auto *NewAShr = Builder.CreateAShr(X, Op1, Op0->getName() + ".not"); 1677 return BinaryOperator::CreateNot(NewAShr); 1678 } 1679 1680 return nullptr; 1681 } 1682