1 //===- InstCombineShifts.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitShl, visitLShr, and visitAShr functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/Analysis/InstructionSimplify.h" 15 #include "llvm/IR/IntrinsicInst.h" 16 #include "llvm/IR/PatternMatch.h" 17 #include "llvm/Transforms/InstCombine/InstCombiner.h" 18 using namespace llvm; 19 using namespace PatternMatch; 20 21 #define DEBUG_TYPE "instcombine" 22 23 bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1, 24 Value *ShAmt1) { 25 // We have two shift amounts from two different shifts. The types of those 26 // shift amounts may not match. If that's the case let's bailout now.. 27 if (ShAmt0->getType() != ShAmt1->getType()) 28 return false; 29 30 // As input, we have the following pattern: 31 // Sh0 (Sh1 X, Q), K 32 // We want to rewrite that as: 33 // Sh x, (Q+K) iff (Q+K) u< bitwidth(x) 34 // While we know that originally (Q+K) would not overflow 35 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 36 // shift amounts. so it may now overflow in smaller bitwidth. 37 // To ensure that does not happen, we need to ensure that the total maximal 38 // shift amount is still representable in that smaller bit width. 39 unsigned MaximalPossibleTotalShiftAmount = 40 (Sh0->getType()->getScalarSizeInBits() - 1) + 41 (Sh1->getType()->getScalarSizeInBits() - 1); 42 APInt MaximalRepresentableShiftAmount = 43 APInt::getAllOnes(ShAmt0->getType()->getScalarSizeInBits()); 44 return MaximalRepresentableShiftAmount.uge(MaximalPossibleTotalShiftAmount); 45 } 46 47 // Given pattern: 48 // (x shiftopcode Q) shiftopcode K 49 // we should rewrite it as 50 // x shiftopcode (Q+K) iff (Q+K) u< bitwidth(x) and 51 // 52 // This is valid for any shift, but they must be identical, and we must be 53 // careful in case we have (zext(Q)+zext(K)) and look past extensions, 54 // (Q+K) must not overflow or else (Q+K) u< bitwidth(x) is bogus. 55 // 56 // AnalyzeForSignBitExtraction indicates that we will only analyze whether this 57 // pattern has any 2 right-shifts that sum to 1 less than original bit width. 58 Value *InstCombinerImpl::reassociateShiftAmtsOfTwoSameDirectionShifts( 59 BinaryOperator *Sh0, const SimplifyQuery &SQ, 60 bool AnalyzeForSignBitExtraction) { 61 // Look for a shift of some instruction, ignore zext of shift amount if any. 62 Instruction *Sh0Op0; 63 Value *ShAmt0; 64 if (!match(Sh0, 65 m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0))))) 66 return nullptr; 67 68 // If there is a truncation between the two shifts, we must make note of it 69 // and look through it. The truncation imposes additional constraints on the 70 // transform. 71 Instruction *Sh1; 72 Value *Trunc = nullptr; 73 match(Sh0Op0, 74 m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)), 75 m_Instruction(Sh1))); 76 77 // Inner shift: (x shiftopcode ShAmt1) 78 // Like with other shift, ignore zext of shift amount if any. 79 Value *X, *ShAmt1; 80 if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1))))) 81 return nullptr; 82 83 // Verify that it would be safe to try to add those two shift amounts. 84 if (!canTryToConstantAddTwoShiftAmounts(Sh0, ShAmt0, Sh1, ShAmt1)) 85 return nullptr; 86 87 // We are only looking for signbit extraction if we have two right shifts. 88 bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) && 89 match(Sh1, m_Shr(m_Value(), m_Value())); 90 // ... and if it's not two right-shifts, we know the answer already. 91 if (AnalyzeForSignBitExtraction && !HadTwoRightShifts) 92 return nullptr; 93 94 // The shift opcodes must be identical, unless we are just checking whether 95 // this pattern can be interpreted as a sign-bit-extraction. 96 Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode(); 97 bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode(); 98 if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction) 99 return nullptr; 100 101 // If we saw truncation, we'll need to produce extra instruction, 102 // and for that one of the operands of the shift must be one-use, 103 // unless of course we don't actually plan to produce any instructions here. 104 if (Trunc && !AnalyzeForSignBitExtraction && 105 !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 106 return nullptr; 107 108 // Can we fold (ShAmt0+ShAmt1) ? 109 auto *NewShAmt = dyn_cast_or_null<Constant>( 110 simplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false, 111 SQ.getWithInstruction(Sh0))); 112 if (!NewShAmt) 113 return nullptr; // Did not simplify. 114 unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits(); 115 unsigned XBitWidth = X->getType()->getScalarSizeInBits(); 116 // Is the new shift amount smaller than the bit width of inner/new shift? 117 if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 118 APInt(NewShAmtBitWidth, XBitWidth)))) 119 return nullptr; // FIXME: could perform constant-folding. 120 121 // If there was a truncation, and we have a right-shift, we can only fold if 122 // we are left with the original sign bit. Likewise, if we were just checking 123 // that this is a sighbit extraction, this is the place to check it. 124 // FIXME: zero shift amount is also legal here, but we can't *easily* check 125 // more than one predicate so it's not really worth it. 126 if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) { 127 // If it's not a sign bit extraction, then we're done. 128 if (!match(NewShAmt, 129 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 130 APInt(NewShAmtBitWidth, XBitWidth - 1)))) 131 return nullptr; 132 // If it is, and that was the question, return the base value. 133 if (AnalyzeForSignBitExtraction) 134 return X; 135 } 136 137 assert(IdenticalShOpcodes && "Should not get here with different shifts."); 138 139 // All good, we can do this fold. 140 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType()); 141 142 BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt); 143 144 // The flags can only be propagated if there wasn't a trunc. 145 if (!Trunc) { 146 // If the pattern did not involve trunc, and both of the original shifts 147 // had the same flag set, preserve the flag. 148 if (ShiftOpcode == Instruction::BinaryOps::Shl) { 149 NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() && 150 Sh1->hasNoUnsignedWrap()); 151 NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() && 152 Sh1->hasNoSignedWrap()); 153 } else { 154 NewShift->setIsExact(Sh0->isExact() && Sh1->isExact()); 155 } 156 } 157 158 Instruction *Ret = NewShift; 159 if (Trunc) { 160 Builder.Insert(NewShift); 161 Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType()); 162 } 163 164 return Ret; 165 } 166 167 // If we have some pattern that leaves only some low bits set, and then performs 168 // left-shift of those bits, if none of the bits that are left after the final 169 // shift are modified by the mask, we can omit the mask. 170 // 171 // There are many variants to this pattern: 172 // a) (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt 173 // b) (x & (~(-1 << MaskShAmt))) << ShiftShAmt 174 // c) (x & (-1 l>> MaskShAmt)) << ShiftShAmt 175 // d) (x & ((-1 << MaskShAmt) l>> MaskShAmt)) << ShiftShAmt 176 // e) ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt 177 // f) ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt 178 // All these patterns can be simplified to just: 179 // x << ShiftShAmt 180 // iff: 181 // a,b) (MaskShAmt+ShiftShAmt) u>= bitwidth(x) 182 // c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt) 183 static Instruction * 184 dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift, 185 const SimplifyQuery &Q, 186 InstCombiner::BuilderTy &Builder) { 187 assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl && 188 "The input must be 'shl'!"); 189 190 Value *Masked, *ShiftShAmt; 191 match(OuterShift, 192 m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt)))); 193 194 // *If* there is a truncation between an outer shift and a possibly-mask, 195 // then said truncation *must* be one-use, else we can't perform the fold. 196 Value *Trunc; 197 if (match(Masked, m_CombineAnd(m_Trunc(m_Value(Masked)), m_Value(Trunc))) && 198 !Trunc->hasOneUse()) 199 return nullptr; 200 201 Type *NarrowestTy = OuterShift->getType(); 202 Type *WidestTy = Masked->getType(); 203 bool HadTrunc = WidestTy != NarrowestTy; 204 205 // The mask must be computed in a type twice as wide to ensure 206 // that no bits are lost if the sum-of-shifts is wider than the base type. 207 Type *ExtendedTy = WidestTy->getExtendedType(); 208 209 Value *MaskShAmt; 210 211 // ((1 << MaskShAmt) - 1) 212 auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes()); 213 // (~(-1 << maskNbits)) 214 auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes()); 215 // (-1 l>> MaskShAmt) 216 auto MaskC = m_LShr(m_AllOnes(), m_Value(MaskShAmt)); 217 // ((-1 << MaskShAmt) l>> MaskShAmt) 218 auto MaskD = 219 m_LShr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt)); 220 221 Value *X; 222 Constant *NewMask; 223 224 if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) { 225 // Peek through an optional zext of the shift amount. 226 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt))); 227 228 // Verify that it would be safe to try to add those two shift amounts. 229 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked, 230 MaskShAmt)) 231 return nullptr; 232 233 // Can we simplify (MaskShAmt+ShiftShAmt) ? 234 auto *SumOfShAmts = dyn_cast_or_null<Constant>(simplifyAddInst( 235 MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q)); 236 if (!SumOfShAmts) 237 return nullptr; // Did not simplify. 238 // In this pattern SumOfShAmts correlates with the number of low bits 239 // that shall remain in the root value (OuterShift). 240 241 // An extend of an undef value becomes zero because the high bits are never 242 // completely unknown. Replace the `undef` shift amounts with final 243 // shift bitwidth to ensure that the value remains undef when creating the 244 // subsequent shift op. 245 SumOfShAmts = Constant::replaceUndefsWith( 246 SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(), 247 ExtendedTy->getScalarSizeInBits())); 248 auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy); 249 // And compute the mask as usual: ~(-1 << (SumOfShAmts)) 250 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy); 251 auto *ExtendedInvertedMask = 252 ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts); 253 NewMask = ConstantExpr::getNot(ExtendedInvertedMask); 254 } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) || 255 match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)), 256 m_Deferred(MaskShAmt)))) { 257 // Peek through an optional zext of the shift amount. 258 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt))); 259 260 // Verify that it would be safe to try to add those two shift amounts. 261 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked, 262 MaskShAmt)) 263 return nullptr; 264 265 // Can we simplify (ShiftShAmt-MaskShAmt) ? 266 auto *ShAmtsDiff = dyn_cast_or_null<Constant>(simplifySubInst( 267 ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q)); 268 if (!ShAmtsDiff) 269 return nullptr; // Did not simplify. 270 // In this pattern ShAmtsDiff correlates with the number of high bits that 271 // shall be unset in the root value (OuterShift). 272 273 // An extend of an undef value becomes zero because the high bits are never 274 // completely unknown. Replace the `undef` shift amounts with negated 275 // bitwidth of innermost shift to ensure that the value remains undef when 276 // creating the subsequent shift op. 277 unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits(); 278 ShAmtsDiff = Constant::replaceUndefsWith( 279 ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(), 280 -WidestTyBitWidth)); 281 auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt( 282 ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(), 283 WidestTyBitWidth, 284 /*isSigned=*/false), 285 ShAmtsDiff), 286 ExtendedTy); 287 // And compute the mask as usual: (-1 l>> (NumHighBitsToClear)) 288 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy); 289 NewMask = 290 ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear); 291 } else 292 return nullptr; // Don't know anything about this pattern. 293 294 NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy); 295 296 // Does this mask has any unset bits? If not then we can just not apply it. 297 bool NeedMask = !match(NewMask, m_AllOnes()); 298 299 // If we need to apply a mask, there are several more restrictions we have. 300 if (NeedMask) { 301 // The old masking instruction must go away. 302 if (!Masked->hasOneUse()) 303 return nullptr; 304 // The original "masking" instruction must not have been`ashr`. 305 if (match(Masked, m_AShr(m_Value(), m_Value()))) 306 return nullptr; 307 } 308 309 // If we need to apply truncation, let's do it first, since we can. 310 // We have already ensured that the old truncation will go away. 311 if (HadTrunc) 312 X = Builder.CreateTrunc(X, NarrowestTy); 313 314 // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits. 315 // We didn't change the Type of this outermost shift, so we can just do it. 316 auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X, 317 OuterShift->getOperand(1)); 318 if (!NeedMask) 319 return NewShift; 320 321 Builder.Insert(NewShift); 322 return BinaryOperator::Create(Instruction::And, NewShift, NewMask); 323 } 324 325 /// If we have a shift-by-constant of a bitwise logic op that itself has a 326 /// shift-by-constant operand with identical opcode, we may be able to convert 327 /// that into 2 independent shifts followed by the logic op. This eliminates a 328 /// a use of an intermediate value (reduces dependency chain). 329 static Instruction *foldShiftOfShiftedLogic(BinaryOperator &I, 330 InstCombiner::BuilderTy &Builder) { 331 assert(I.isShift() && "Expected a shift as input"); 332 auto *LogicInst = dyn_cast<BinaryOperator>(I.getOperand(0)); 333 if (!LogicInst || !LogicInst->isBitwiseLogicOp() || !LogicInst->hasOneUse()) 334 return nullptr; 335 336 Constant *C0, *C1; 337 if (!match(I.getOperand(1), m_Constant(C1))) 338 return nullptr; 339 340 Instruction::BinaryOps ShiftOpcode = I.getOpcode(); 341 Type *Ty = I.getType(); 342 343 // Find a matching one-use shift by constant. The fold is not valid if the sum 344 // of the shift values equals or exceeds bitwidth. 345 // TODO: Remove the one-use check if the other logic operand (Y) is constant. 346 Value *X, *Y; 347 auto matchFirstShift = [&](Value *V) { 348 APInt Threshold(Ty->getScalarSizeInBits(), Ty->getScalarSizeInBits()); 349 return match(V, 350 m_OneUse(m_BinOp(ShiftOpcode, m_Value(X), m_Constant(C0)))) && 351 match(ConstantExpr::getAdd(C0, C1), 352 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold)); 353 }; 354 355 // Logic ops are commutative, so check each operand for a match. 356 if (matchFirstShift(LogicInst->getOperand(0))) 357 Y = LogicInst->getOperand(1); 358 else if (matchFirstShift(LogicInst->getOperand(1))) 359 Y = LogicInst->getOperand(0); 360 else 361 return nullptr; 362 363 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1) 364 Constant *ShiftSumC = ConstantExpr::getAdd(C0, C1); 365 Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC); 366 Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, C1); 367 return BinaryOperator::Create(LogicInst->getOpcode(), NewShift1, NewShift2); 368 } 369 370 Instruction *InstCombinerImpl::commonShiftTransforms(BinaryOperator &I) { 371 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 372 return Phi; 373 374 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 375 assert(Op0->getType() == Op1->getType()); 376 Type *Ty = I.getType(); 377 378 // If the shift amount is a one-use `sext`, we can demote it to `zext`. 379 Value *Y; 380 if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) { 381 Value *NewExt = Builder.CreateZExt(Y, Ty, Op1->getName()); 382 return BinaryOperator::Create(I.getOpcode(), Op0, NewExt); 383 } 384 385 // See if we can fold away this shift. 386 if (SimplifyDemandedInstructionBits(I)) 387 return &I; 388 389 // Try to fold constant and into select arguments. 390 if (isa<Constant>(Op0)) 391 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 392 if (Instruction *R = FoldOpIntoSelect(I, SI)) 393 return R; 394 395 if (Constant *CUI = dyn_cast<Constant>(Op1)) 396 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I)) 397 return Res; 398 399 if (auto *NewShift = cast_or_null<Instruction>( 400 reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ))) 401 return NewShift; 402 403 // Pre-shift a constant shifted by a variable amount with constant offset: 404 // C shift (A add nuw C1) --> (C shift C1) shift A 405 Value *A; 406 Constant *C, *C1; 407 if (match(Op0, m_Constant(C)) && 408 match(Op1, m_NUWAdd(m_Value(A), m_Constant(C1)))) { 409 Value *NewC = Builder.CreateBinOp(I.getOpcode(), C, C1); 410 return BinaryOperator::Create(I.getOpcode(), NewC, A); 411 } 412 413 unsigned BitWidth = Ty->getScalarSizeInBits(); 414 415 const APInt *AC, *AddC; 416 // Try to pre-shift a constant shifted by a variable amount added with a 417 // negative number: 418 // C << (X - AddC) --> (C >> AddC) << X 419 // and 420 // C >> (X - AddC) --> (C << AddC) >> X 421 if (match(Op0, m_APInt(AC)) && match(Op1, m_Add(m_Value(A), m_APInt(AddC))) && 422 AddC->isNegative() && (-*AddC).ult(BitWidth)) { 423 assert(!AC->isZero() && "Expected simplify of shifted zero"); 424 unsigned PosOffset = (-*AddC).getZExtValue(); 425 426 auto isSuitableForPreShift = [PosOffset, &I, AC]() { 427 switch (I.getOpcode()) { 428 default: 429 return false; 430 case Instruction::Shl: 431 return (I.hasNoSignedWrap() || I.hasNoUnsignedWrap()) && 432 AC->eq(AC->lshr(PosOffset).shl(PosOffset)); 433 case Instruction::LShr: 434 return I.isExact() && AC->eq(AC->shl(PosOffset).lshr(PosOffset)); 435 case Instruction::AShr: 436 return I.isExact() && AC->eq(AC->shl(PosOffset).ashr(PosOffset)); 437 } 438 }; 439 if (isSuitableForPreShift()) { 440 Constant *NewC = ConstantInt::get(Ty, I.getOpcode() == Instruction::Shl 441 ? AC->lshr(PosOffset) 442 : AC->shl(PosOffset)); 443 BinaryOperator *NewShiftOp = 444 BinaryOperator::Create(I.getOpcode(), NewC, A); 445 if (I.getOpcode() == Instruction::Shl) { 446 NewShiftOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 447 } else { 448 NewShiftOp->setIsExact(); 449 } 450 return NewShiftOp; 451 } 452 } 453 454 // X shift (A srem C) -> X shift (A and (C - 1)) iff C is a power of 2. 455 // Because shifts by negative values (which could occur if A were negative) 456 // are undefined. 457 if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Constant(C))) && 458 match(C, m_Power2())) { 459 // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't 460 // demand the sign bit (and many others) here?? 461 Constant *Mask = ConstantExpr::getSub(C, ConstantInt::get(Ty, 1)); 462 Value *Rem = Builder.CreateAnd(A, Mask, Op1->getName()); 463 return replaceOperand(I, 1, Rem); 464 } 465 466 if (Instruction *Logic = foldShiftOfShiftedLogic(I, Builder)) 467 return Logic; 468 469 return nullptr; 470 } 471 472 /// Return true if we can simplify two logical (either left or right) shifts 473 /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2. 474 static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl, 475 Instruction *InnerShift, 476 InstCombinerImpl &IC, Instruction *CxtI) { 477 assert(InnerShift->isLogicalShift() && "Unexpected instruction type"); 478 479 // We need constant scalar or constant splat shifts. 480 const APInt *InnerShiftConst; 481 if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst))) 482 return false; 483 484 // Two logical shifts in the same direction: 485 // shl (shl X, C1), C2 --> shl X, C1 + C2 486 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2 487 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl; 488 if (IsInnerShl == IsOuterShl) 489 return true; 490 491 // Equal shift amounts in opposite directions become bitwise 'and': 492 // lshr (shl X, C), C --> and X, C' 493 // shl (lshr X, C), C --> and X, C' 494 if (*InnerShiftConst == OuterShAmt) 495 return true; 496 497 // If the 2nd shift is bigger than the 1st, we can fold: 498 // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3 499 // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3 500 // but it isn't profitable unless we know the and'd out bits are already zero. 501 // Also, check that the inner shift is valid (less than the type width) or 502 // we'll crash trying to produce the bit mask for the 'and'. 503 unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits(); 504 if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) { 505 unsigned InnerShAmt = InnerShiftConst->getZExtValue(); 506 unsigned MaskShift = 507 IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt; 508 APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift; 509 if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI)) 510 return true; 511 } 512 513 return false; 514 } 515 516 /// See if we can compute the specified value, but shifted logically to the left 517 /// or right by some number of bits. This should return true if the expression 518 /// can be computed for the same cost as the current expression tree. This is 519 /// used to eliminate extraneous shifting from things like: 520 /// %C = shl i128 %A, 64 521 /// %D = shl i128 %B, 96 522 /// %E = or i128 %C, %D 523 /// %F = lshr i128 %E, 64 524 /// where the client will ask if E can be computed shifted right by 64-bits. If 525 /// this succeeds, getShiftedValue() will be called to produce the value. 526 static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift, 527 InstCombinerImpl &IC, Instruction *CxtI) { 528 // We can always evaluate constants shifted. 529 if (isa<Constant>(V)) 530 return true; 531 532 Instruction *I = dyn_cast<Instruction>(V); 533 if (!I) return false; 534 535 // We can't mutate something that has multiple uses: doing so would 536 // require duplicating the instruction in general, which isn't profitable. 537 if (!I->hasOneUse()) return false; 538 539 switch (I->getOpcode()) { 540 default: return false; 541 case Instruction::And: 542 case Instruction::Or: 543 case Instruction::Xor: 544 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. 545 return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) && 546 canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I); 547 548 case Instruction::Shl: 549 case Instruction::LShr: 550 return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI); 551 552 case Instruction::Select: { 553 SelectInst *SI = cast<SelectInst>(I); 554 Value *TrueVal = SI->getTrueValue(); 555 Value *FalseVal = SI->getFalseValue(); 556 return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) && 557 canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI); 558 } 559 case Instruction::PHI: { 560 // We can change a phi if we can change all operands. Note that we never 561 // get into trouble with cyclic PHIs here because we only consider 562 // instructions with a single use. 563 PHINode *PN = cast<PHINode>(I); 564 for (Value *IncValue : PN->incoming_values()) 565 if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN)) 566 return false; 567 return true; 568 } 569 case Instruction::Mul: { 570 const APInt *MulConst; 571 // We can fold (shr (mul X, -(1 << C)), C) -> (and (neg X), C`) 572 return !IsLeftShift && match(I->getOperand(1), m_APInt(MulConst)) && 573 MulConst->isNegatedPowerOf2() && 574 MulConst->countTrailingZeros() == NumBits; 575 } 576 } 577 } 578 579 /// Fold OuterShift (InnerShift X, C1), C2. 580 /// See canEvaluateShiftedShift() for the constraints on these instructions. 581 static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt, 582 bool IsOuterShl, 583 InstCombiner::BuilderTy &Builder) { 584 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl; 585 Type *ShType = InnerShift->getType(); 586 unsigned TypeWidth = ShType->getScalarSizeInBits(); 587 588 // We only accept shifts-by-a-constant in canEvaluateShifted(). 589 const APInt *C1; 590 match(InnerShift->getOperand(1), m_APInt(C1)); 591 unsigned InnerShAmt = C1->getZExtValue(); 592 593 // Change the shift amount and clear the appropriate IR flags. 594 auto NewInnerShift = [&](unsigned ShAmt) { 595 InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt)); 596 if (IsInnerShl) { 597 InnerShift->setHasNoUnsignedWrap(false); 598 InnerShift->setHasNoSignedWrap(false); 599 } else { 600 InnerShift->setIsExact(false); 601 } 602 return InnerShift; 603 }; 604 605 // Two logical shifts in the same direction: 606 // shl (shl X, C1), C2 --> shl X, C1 + C2 607 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2 608 if (IsInnerShl == IsOuterShl) { 609 // If this is an oversized composite shift, then unsigned shifts get 0. 610 if (InnerShAmt + OuterShAmt >= TypeWidth) 611 return Constant::getNullValue(ShType); 612 613 return NewInnerShift(InnerShAmt + OuterShAmt); 614 } 615 616 // Equal shift amounts in opposite directions become bitwise 'and': 617 // lshr (shl X, C), C --> and X, C' 618 // shl (lshr X, C), C --> and X, C' 619 if (InnerShAmt == OuterShAmt) { 620 APInt Mask = IsInnerShl 621 ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt) 622 : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt); 623 Value *And = Builder.CreateAnd(InnerShift->getOperand(0), 624 ConstantInt::get(ShType, Mask)); 625 if (auto *AndI = dyn_cast<Instruction>(And)) { 626 AndI->moveBefore(InnerShift); 627 AndI->takeName(InnerShift); 628 } 629 return And; 630 } 631 632 assert(InnerShAmt > OuterShAmt && 633 "Unexpected opposite direction logical shift pair"); 634 635 // In general, we would need an 'and' for this transform, but 636 // canEvaluateShiftedShift() guarantees that the masked-off bits are not used. 637 // lshr (shl X, C1), C2 --> shl X, C1 - C2 638 // shl (lshr X, C1), C2 --> lshr X, C1 - C2 639 return NewInnerShift(InnerShAmt - OuterShAmt); 640 } 641 642 /// When canEvaluateShifted() returns true for an expression, this function 643 /// inserts the new computation that produces the shifted value. 644 static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift, 645 InstCombinerImpl &IC, const DataLayout &DL) { 646 // We can always evaluate constants shifted. 647 if (Constant *C = dyn_cast<Constant>(V)) { 648 if (isLeftShift) 649 return IC.Builder.CreateShl(C, NumBits); 650 else 651 return IC.Builder.CreateLShr(C, NumBits); 652 } 653 654 Instruction *I = cast<Instruction>(V); 655 IC.addToWorklist(I); 656 657 switch (I->getOpcode()) { 658 default: llvm_unreachable("Inconsistency with CanEvaluateShifted"); 659 case Instruction::And: 660 case Instruction::Or: 661 case Instruction::Xor: 662 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. 663 I->setOperand( 664 0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL)); 665 I->setOperand( 666 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL)); 667 return I; 668 669 case Instruction::Shl: 670 case Instruction::LShr: 671 return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift, 672 IC.Builder); 673 674 case Instruction::Select: 675 I->setOperand( 676 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL)); 677 I->setOperand( 678 2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL)); 679 return I; 680 case Instruction::PHI: { 681 // We can change a phi if we can change all operands. Note that we never 682 // get into trouble with cyclic PHIs here because we only consider 683 // instructions with a single use. 684 PHINode *PN = cast<PHINode>(I); 685 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 686 PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits, 687 isLeftShift, IC, DL)); 688 return PN; 689 } 690 case Instruction::Mul: { 691 assert(!isLeftShift && "Unexpected shift direction!"); 692 auto *Neg = BinaryOperator::CreateNeg(I->getOperand(0)); 693 IC.InsertNewInstWith(Neg, *I); 694 unsigned TypeWidth = I->getType()->getScalarSizeInBits(); 695 APInt Mask = APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits); 696 auto *And = BinaryOperator::CreateAnd(Neg, 697 ConstantInt::get(I->getType(), Mask)); 698 And->takeName(I); 699 return IC.InsertNewInstWith(And, *I); 700 } 701 } 702 } 703 704 // If this is a bitwise operator or add with a constant RHS we might be able 705 // to pull it through a shift. 706 static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift, 707 BinaryOperator *BO) { 708 switch (BO->getOpcode()) { 709 default: 710 return false; // Do not perform transform! 711 case Instruction::Add: 712 return Shift.getOpcode() == Instruction::Shl; 713 case Instruction::Or: 714 case Instruction::And: 715 return true; 716 case Instruction::Xor: 717 // Do not change a 'not' of logical shift because that would create a normal 718 // 'xor'. The 'not' is likely better for analysis, SCEV, and codegen. 719 return !(Shift.isLogicalShift() && match(BO, m_Not(m_Value()))); 720 } 721 } 722 723 Instruction *InstCombinerImpl::FoldShiftByConstant(Value *Op0, Constant *C1, 724 BinaryOperator &I) { 725 // (C2 << X) << C1 --> (C2 << C1) << X 726 // (C2 >> X) >> C1 --> (C2 >> C1) >> X 727 Constant *C2; 728 Value *X; 729 if (match(Op0, m_BinOp(I.getOpcode(), m_Constant(C2), m_Value(X)))) 730 return BinaryOperator::Create( 731 I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), C2, C1), X); 732 733 bool IsLeftShift = I.getOpcode() == Instruction::Shl; 734 Type *Ty = I.getType(); 735 unsigned TypeBits = Ty->getScalarSizeInBits(); 736 737 // (X / +DivC) >> (Width - 1) --> ext (X <= -DivC) 738 // (X / -DivC) >> (Width - 1) --> ext (X >= +DivC) 739 const APInt *DivC; 740 if (!IsLeftShift && match(C1, m_SpecificIntAllowUndef(TypeBits - 1)) && 741 match(Op0, m_SDiv(m_Value(X), m_APInt(DivC))) && !DivC->isZero() && 742 !DivC->isMinSignedValue()) { 743 Constant *NegDivC = ConstantInt::get(Ty, -(*DivC)); 744 ICmpInst::Predicate Pred = 745 DivC->isNegative() ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_SLE; 746 Value *Cmp = Builder.CreateICmp(Pred, X, NegDivC); 747 auto ExtOpcode = (I.getOpcode() == Instruction::AShr) ? Instruction::SExt 748 : Instruction::ZExt; 749 return CastInst::Create(ExtOpcode, Cmp, Ty); 750 } 751 752 const APInt *Op1C; 753 if (!match(C1, m_APInt(Op1C))) 754 return nullptr; 755 756 assert(!Op1C->uge(TypeBits) && 757 "Shift over the type width should have been removed already"); 758 759 // See if we can propagate this shift into the input, this covers the trivial 760 // cast of lshr(shl(x,c1),c2) as well as other more complex cases. 761 if (I.getOpcode() != Instruction::AShr && 762 canEvaluateShifted(Op0, Op1C->getZExtValue(), IsLeftShift, *this, &I)) { 763 LLVM_DEBUG( 764 dbgs() << "ICE: GetShiftedValue propagating shift through expression" 765 " to eliminate shift:\n IN: " 766 << *Op0 << "\n SH: " << I << "\n"); 767 768 return replaceInstUsesWith( 769 I, getShiftedValue(Op0, Op1C->getZExtValue(), IsLeftShift, *this, DL)); 770 } 771 772 if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I)) 773 return FoldedShift; 774 775 if (!Op0->hasOneUse()) 776 return nullptr; 777 778 if (auto *Op0BO = dyn_cast<BinaryOperator>(Op0)) { 779 // If the operand is a bitwise operator with a constant RHS, and the 780 // shift is the only use, we can pull it out of the shift. 781 const APInt *Op0C; 782 if (match(Op0BO->getOperand(1), m_APInt(Op0C))) { 783 if (canShiftBinOpWithConstantRHS(I, Op0BO)) { 784 Value *NewRHS = 785 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(1), C1); 786 787 Value *NewShift = 788 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), C1); 789 NewShift->takeName(Op0BO); 790 791 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, NewRHS); 792 } 793 } 794 } 795 796 // If we have a select that conditionally executes some binary operator, 797 // see if we can pull it the select and operator through the shift. 798 // 799 // For example, turning: 800 // shl (select C, (add X, C1), X), C2 801 // Into: 802 // Y = shl X, C2 803 // select C, (add Y, C1 << C2), Y 804 Value *Cond; 805 BinaryOperator *TBO; 806 Value *FalseVal; 807 if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)), 808 m_Value(FalseVal)))) { 809 const APInt *C; 810 if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal && 811 match(TBO->getOperand(1), m_APInt(C)) && 812 canShiftBinOpWithConstantRHS(I, TBO)) { 813 Value *NewRHS = 814 Builder.CreateBinOp(I.getOpcode(), TBO->getOperand(1), C1); 815 816 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), FalseVal, C1); 817 Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift, NewRHS); 818 return SelectInst::Create(Cond, NewOp, NewShift); 819 } 820 } 821 822 BinaryOperator *FBO; 823 Value *TrueVal; 824 if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal), 825 m_OneUse(m_BinOp(FBO))))) { 826 const APInt *C; 827 if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal && 828 match(FBO->getOperand(1), m_APInt(C)) && 829 canShiftBinOpWithConstantRHS(I, FBO)) { 830 Value *NewRHS = 831 Builder.CreateBinOp(I.getOpcode(), FBO->getOperand(1), C1); 832 833 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), TrueVal, C1); 834 Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift, NewRHS); 835 return SelectInst::Create(Cond, NewShift, NewOp); 836 } 837 } 838 839 return nullptr; 840 } 841 842 // Tries to perform 843 // (lshr (add (zext X), (zext Y)), K) 844 // -> (icmp ult (add X, Y), X) 845 // where 846 // - The add's operands are zexts from a K-bits integer to a bigger type. 847 // - The add is only used by the shr, or by iK (or narrower) truncates. 848 // - The lshr type has more than 2 bits (other types are boolean math). 849 // - K > 1 850 // note that 851 // - The resulting add cannot have nuw/nsw, else on overflow we get a 852 // poison value and the transform isn't legal anymore. 853 Instruction *InstCombinerImpl::foldLShrOverflowBit(BinaryOperator &I) { 854 assert(I.getOpcode() == Instruction::LShr); 855 856 Value *Add = I.getOperand(0); 857 Value *ShiftAmt = I.getOperand(1); 858 Type *Ty = I.getType(); 859 860 if (Ty->getScalarSizeInBits() < 3) 861 return nullptr; 862 863 const APInt *ShAmtAPInt = nullptr; 864 Value *X = nullptr, *Y = nullptr; 865 if (!match(ShiftAmt, m_APInt(ShAmtAPInt)) || 866 !match(Add, 867 m_Add(m_OneUse(m_ZExt(m_Value(X))), m_OneUse(m_ZExt(m_Value(Y)))))) 868 return nullptr; 869 870 const unsigned ShAmt = ShAmtAPInt->getZExtValue(); 871 if (ShAmt == 1) 872 return nullptr; 873 874 // X/Y are zexts from `ShAmt`-sized ints. 875 if (X->getType()->getScalarSizeInBits() != ShAmt || 876 Y->getType()->getScalarSizeInBits() != ShAmt) 877 return nullptr; 878 879 // Make sure that `Add` is only used by `I` and `ShAmt`-truncates. 880 if (!Add->hasOneUse()) { 881 for (User *U : Add->users()) { 882 if (U == &I) 883 continue; 884 885 TruncInst *Trunc = dyn_cast<TruncInst>(U); 886 if (!Trunc || Trunc->getType()->getScalarSizeInBits() > ShAmt) 887 return nullptr; 888 } 889 } 890 891 // Insert at Add so that the newly created `NarrowAdd` will dominate it's 892 // users (i.e. `Add`'s users). 893 Instruction *AddInst = cast<Instruction>(Add); 894 Builder.SetInsertPoint(AddInst); 895 896 Value *NarrowAdd = Builder.CreateAdd(X, Y, "add.narrowed"); 897 Value *Overflow = 898 Builder.CreateICmpULT(NarrowAdd, X, "add.narrowed.overflow"); 899 900 // Replace the uses of the original add with a zext of the 901 // NarrowAdd's result. Note that all users at this stage are known to 902 // be ShAmt-sized truncs, or the lshr itself. 903 if (!Add->hasOneUse()) 904 replaceInstUsesWith(*AddInst, Builder.CreateZExt(NarrowAdd, Ty)); 905 906 // Replace the LShr with a zext of the overflow check. 907 return new ZExtInst(Overflow, Ty); 908 } 909 910 Instruction *InstCombinerImpl::visitShl(BinaryOperator &I) { 911 const SimplifyQuery Q = SQ.getWithInstruction(&I); 912 913 if (Value *V = simplifyShlInst(I.getOperand(0), I.getOperand(1), 914 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q)) 915 return replaceInstUsesWith(I, V); 916 917 if (Instruction *X = foldVectorBinop(I)) 918 return X; 919 920 if (Instruction *V = commonShiftTransforms(I)) 921 return V; 922 923 if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder)) 924 return V; 925 926 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 927 Type *Ty = I.getType(); 928 unsigned BitWidth = Ty->getScalarSizeInBits(); 929 930 const APInt *C; 931 if (match(Op1, m_APInt(C))) { 932 unsigned ShAmtC = C->getZExtValue(); 933 934 // shl (zext X), C --> zext (shl X, C) 935 // This is only valid if X would have zeros shifted out. 936 Value *X; 937 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) { 938 unsigned SrcWidth = X->getType()->getScalarSizeInBits(); 939 if (ShAmtC < SrcWidth && 940 MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmtC), 0, &I)) 941 return new ZExtInst(Builder.CreateShl(X, ShAmtC), Ty); 942 } 943 944 // (X >> C) << C --> X & (-1 << C) 945 if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) { 946 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 947 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask)); 948 } 949 950 const APInt *C1; 951 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(C1)))) && 952 C1->ult(BitWidth)) { 953 unsigned ShrAmt = C1->getZExtValue(); 954 if (ShrAmt < ShAmtC) { 955 // If C1 < C: (X >>?,exact C1) << C --> X << (C - C1) 956 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt); 957 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); 958 NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 959 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap()); 960 return NewShl; 961 } 962 if (ShrAmt > ShAmtC) { 963 // If C1 > C: (X >>?exact C1) << C --> X >>?exact (C1 - C) 964 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC); 965 auto *NewShr = BinaryOperator::Create( 966 cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff); 967 NewShr->setIsExact(true); 968 return NewShr; 969 } 970 } 971 972 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_APInt(C1)))) && 973 C1->ult(BitWidth)) { 974 unsigned ShrAmt = C1->getZExtValue(); 975 if (ShrAmt < ShAmtC) { 976 // If C1 < C: (X >>? C1) << C --> (X << (C - C1)) & (-1 << C) 977 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt); 978 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); 979 NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 980 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap()); 981 Builder.Insert(NewShl); 982 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 983 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask)); 984 } 985 if (ShrAmt > ShAmtC) { 986 // If C1 > C: (X >>? C1) << C --> (X >>? (C1 - C)) & (-1 << C) 987 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC); 988 auto *OldShr = cast<BinaryOperator>(Op0); 989 auto *NewShr = 990 BinaryOperator::Create(OldShr->getOpcode(), X, ShiftDiff); 991 NewShr->setIsExact(OldShr->isExact()); 992 Builder.Insert(NewShr); 993 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 994 return BinaryOperator::CreateAnd(NewShr, ConstantInt::get(Ty, Mask)); 995 } 996 } 997 998 // Similar to above, but look through an intermediate trunc instruction. 999 BinaryOperator *Shr; 1000 if (match(Op0, m_OneUse(m_Trunc(m_OneUse(m_BinOp(Shr))))) && 1001 match(Shr, m_Shr(m_Value(X), m_APInt(C1)))) { 1002 // The larger shift direction survives through the transform. 1003 unsigned ShrAmtC = C1->getZExtValue(); 1004 unsigned ShDiff = ShrAmtC > ShAmtC ? ShrAmtC - ShAmtC : ShAmtC - ShrAmtC; 1005 Constant *ShiftDiffC = ConstantInt::get(X->getType(), ShDiff); 1006 auto ShiftOpc = ShrAmtC > ShAmtC ? Shr->getOpcode() : Instruction::Shl; 1007 1008 // If C1 > C: 1009 // (trunc (X >> C1)) << C --> (trunc (X >> (C1 - C))) && (-1 << C) 1010 // If C > C1: 1011 // (trunc (X >> C1)) << C --> (trunc (X << (C - C1))) && (-1 << C) 1012 Value *NewShift = Builder.CreateBinOp(ShiftOpc, X, ShiftDiffC, "sh.diff"); 1013 Value *Trunc = Builder.CreateTrunc(NewShift, Ty, "tr.sh.diff"); 1014 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 1015 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, Mask)); 1016 } 1017 1018 if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) { 1019 unsigned AmtSum = ShAmtC + C1->getZExtValue(); 1020 // Oversized shifts are simplified to zero in InstSimplify. 1021 if (AmtSum < BitWidth) 1022 // (X << C1) << C2 --> X << (C1 + C2) 1023 return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum)); 1024 } 1025 1026 // If we have an opposite shift by the same amount, we may be able to 1027 // reorder binops and shifts to eliminate math/logic. 1028 auto isSuitableBinOpcode = [](Instruction::BinaryOps BinOpcode) { 1029 switch (BinOpcode) { 1030 default: 1031 return false; 1032 case Instruction::Add: 1033 case Instruction::And: 1034 case Instruction::Or: 1035 case Instruction::Xor: 1036 case Instruction::Sub: 1037 // NOTE: Sub is not commutable and the tranforms below may not be valid 1038 // when the shift-right is operand 1 (RHS) of the sub. 1039 return true; 1040 } 1041 }; 1042 BinaryOperator *Op0BO; 1043 if (match(Op0, m_OneUse(m_BinOp(Op0BO))) && 1044 isSuitableBinOpcode(Op0BO->getOpcode())) { 1045 // Commute so shift-right is on LHS of the binop. 1046 // (Y bop (X >> C)) << C -> ((X >> C) bop Y) << C 1047 // (Y bop ((X >> C) & CC)) << C -> (((X >> C) & CC) bop Y) << C 1048 Value *Shr = Op0BO->getOperand(0); 1049 Value *Y = Op0BO->getOperand(1); 1050 Value *X; 1051 const APInt *CC; 1052 if (Op0BO->isCommutative() && Y->hasOneUse() && 1053 (match(Y, m_Shr(m_Value(), m_Specific(Op1))) || 1054 match(Y, m_And(m_OneUse(m_Shr(m_Value(), m_Specific(Op1))), 1055 m_APInt(CC))))) 1056 std::swap(Shr, Y); 1057 1058 // ((X >> C) bop Y) << C -> (X bop (Y << C)) & (~0 << C) 1059 if (match(Shr, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) { 1060 // Y << C 1061 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName()); 1062 // (X bop (Y << C)) 1063 Value *B = 1064 Builder.CreateBinOp(Op0BO->getOpcode(), X, YS, Shr->getName()); 1065 unsigned Op1Val = C->getLimitedValue(BitWidth); 1066 APInt Bits = APInt::getHighBitsSet(BitWidth, BitWidth - Op1Val); 1067 Constant *Mask = ConstantInt::get(Ty, Bits); 1068 return BinaryOperator::CreateAnd(B, Mask); 1069 } 1070 1071 // (((X >> C) & CC) bop Y) << C -> (X & (CC << C)) bop (Y << C) 1072 if (match(Shr, 1073 m_OneUse(m_And(m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))), 1074 m_APInt(CC))))) { 1075 // Y << C 1076 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName()); 1077 // X & (CC << C) 1078 Value *M = Builder.CreateAnd(X, ConstantInt::get(Ty, CC->shl(*C)), 1079 X->getName() + ".mask"); 1080 return BinaryOperator::Create(Op0BO->getOpcode(), M, YS); 1081 } 1082 } 1083 1084 // (C1 - X) << C --> (C1 << C) - (X << C) 1085 if (match(Op0, m_OneUse(m_Sub(m_APInt(C1), m_Value(X))))) { 1086 Constant *NewLHS = ConstantInt::get(Ty, C1->shl(*C)); 1087 Value *NewShift = Builder.CreateShl(X, Op1); 1088 return BinaryOperator::CreateSub(NewLHS, NewShift); 1089 } 1090 1091 // If the shifted-out value is known-zero, then this is a NUW shift. 1092 if (!I.hasNoUnsignedWrap() && 1093 MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmtC), 0, 1094 &I)) { 1095 I.setHasNoUnsignedWrap(); 1096 return &I; 1097 } 1098 1099 // If the shifted-out value is all signbits, then this is a NSW shift. 1100 if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmtC) { 1101 I.setHasNoSignedWrap(); 1102 return &I; 1103 } 1104 } 1105 1106 // Transform (x >> y) << y to x & (-1 << y) 1107 // Valid for any type of right-shift. 1108 Value *X; 1109 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) { 1110 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); 1111 Value *Mask = Builder.CreateShl(AllOnes, Op1); 1112 return BinaryOperator::CreateAnd(Mask, X); 1113 } 1114 1115 Constant *C1; 1116 if (match(Op1, m_Constant(C1))) { 1117 Constant *C2; 1118 Value *X; 1119 // (X * C2) << C1 --> X * (C2 << C1) 1120 if (match(Op0, m_Mul(m_Value(X), m_Constant(C2)))) 1121 return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1)); 1122 1123 // shl (zext i1 X), C1 --> select (X, 1 << C1, 0) 1124 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 1125 auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1); 1126 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty)); 1127 } 1128 } 1129 1130 if (match(Op0, m_One())) { 1131 // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1 1132 if (match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X)))) 1133 return BinaryOperator::CreateLShr( 1134 ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X); 1135 1136 // The only way to shift out the 1 is with an over-shift, so that would 1137 // be poison with or without "nuw". Undef is excluded because (undef << X) 1138 // is not undef (it is zero). 1139 Constant *ConstantOne = cast<Constant>(Op0); 1140 if (!I.hasNoUnsignedWrap() && !ConstantOne->containsUndefElement()) { 1141 I.setHasNoUnsignedWrap(); 1142 return &I; 1143 } 1144 } 1145 1146 return nullptr; 1147 } 1148 1149 Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) { 1150 if (Value *V = simplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), 1151 SQ.getWithInstruction(&I))) 1152 return replaceInstUsesWith(I, V); 1153 1154 if (Instruction *X = foldVectorBinop(I)) 1155 return X; 1156 1157 if (Instruction *R = commonShiftTransforms(I)) 1158 return R; 1159 1160 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1161 Type *Ty = I.getType(); 1162 Value *X; 1163 const APInt *C; 1164 unsigned BitWidth = Ty->getScalarSizeInBits(); 1165 1166 // (iN (~X) u>> (N - 1)) --> zext (X > -1) 1167 if (match(Op0, m_OneUse(m_Not(m_Value(X)))) && 1168 match(Op1, m_SpecificIntAllowUndef(BitWidth - 1))) 1169 return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty); 1170 1171 if (match(Op1, m_APInt(C))) { 1172 unsigned ShAmtC = C->getZExtValue(); 1173 auto *II = dyn_cast<IntrinsicInst>(Op0); 1174 if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmtC && 1175 (II->getIntrinsicID() == Intrinsic::ctlz || 1176 II->getIntrinsicID() == Intrinsic::cttz || 1177 II->getIntrinsicID() == Intrinsic::ctpop)) { 1178 // ctlz.i32(x)>>5 --> zext(x == 0) 1179 // cttz.i32(x)>>5 --> zext(x == 0) 1180 // ctpop.i32(x)>>5 --> zext(x == -1) 1181 bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop; 1182 Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0); 1183 Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS); 1184 return new ZExtInst(Cmp, Ty); 1185 } 1186 1187 Value *X; 1188 const APInt *C1; 1189 if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) { 1190 if (C1->ult(ShAmtC)) { 1191 unsigned ShlAmtC = C1->getZExtValue(); 1192 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShlAmtC); 1193 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) { 1194 // (X <<nuw C1) >>u C --> X >>u (C - C1) 1195 auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff); 1196 NewLShr->setIsExact(I.isExact()); 1197 return NewLShr; 1198 } 1199 if (Op0->hasOneUse()) { 1200 // (X << C1) >>u C --> (X >>u (C - C1)) & (-1 >> C) 1201 Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact()); 1202 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1203 return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask)); 1204 } 1205 } else if (C1->ugt(ShAmtC)) { 1206 unsigned ShlAmtC = C1->getZExtValue(); 1207 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmtC - ShAmtC); 1208 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) { 1209 // (X <<nuw C1) >>u C --> X <<nuw (C1 - C) 1210 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); 1211 NewShl->setHasNoUnsignedWrap(true); 1212 return NewShl; 1213 } 1214 if (Op0->hasOneUse()) { 1215 // (X << C1) >>u C --> X << (C1 - C) & (-1 >> C) 1216 Value *NewShl = Builder.CreateShl(X, ShiftDiff); 1217 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1218 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask)); 1219 } 1220 } else { 1221 assert(*C1 == ShAmtC); 1222 // (X << C) >>u C --> X & (-1 >>u C) 1223 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1224 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask)); 1225 } 1226 } 1227 1228 // ((X << C) + Y) >>u C --> (X + (Y >>u C)) & (-1 >>u C) 1229 // TODO: Consolidate with the more general transform that starts from shl 1230 // (the shifts are in the opposite order). 1231 Value *Y; 1232 if (match(Op0, 1233 m_OneUse(m_c_Add(m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))), 1234 m_Value(Y))))) { 1235 Value *NewLshr = Builder.CreateLShr(Y, Op1); 1236 Value *NewAdd = Builder.CreateAdd(NewLshr, X); 1237 unsigned Op1Val = C->getLimitedValue(BitWidth); 1238 APInt Bits = APInt::getLowBitsSet(BitWidth, BitWidth - Op1Val); 1239 Constant *Mask = ConstantInt::get(Ty, Bits); 1240 return BinaryOperator::CreateAnd(NewAdd, Mask); 1241 } 1242 1243 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && 1244 (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) { 1245 assert(ShAmtC < X->getType()->getScalarSizeInBits() && 1246 "Big shift not simplified to zero?"); 1247 // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN 1248 Value *NewLShr = Builder.CreateLShr(X, ShAmtC); 1249 return new ZExtInst(NewLShr, Ty); 1250 } 1251 1252 if (match(Op0, m_SExt(m_Value(X)))) { 1253 unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits(); 1254 // lshr (sext i1 X to iN), C --> select (X, -1 >> C, 0) 1255 if (SrcTyBitWidth == 1) { 1256 auto *NewC = ConstantInt::get( 1257 Ty, APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1258 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty)); 1259 } 1260 1261 if ((!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType())) && 1262 Op0->hasOneUse()) { 1263 // Are we moving the sign bit to the low bit and widening with high 1264 // zeros? lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN 1265 if (ShAmtC == BitWidth - 1) { 1266 Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1); 1267 return new ZExtInst(NewLShr, Ty); 1268 } 1269 1270 // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN 1271 if (ShAmtC == BitWidth - SrcTyBitWidth) { 1272 // The new shift amount can't be more than the narrow source type. 1273 unsigned NewShAmt = std::min(ShAmtC, SrcTyBitWidth - 1); 1274 Value *AShr = Builder.CreateAShr(X, NewShAmt); 1275 return new ZExtInst(AShr, Ty); 1276 } 1277 } 1278 } 1279 1280 if (ShAmtC == BitWidth - 1) { 1281 // lshr i32 or(X,-X), 31 --> zext (X != 0) 1282 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X))))) 1283 return new ZExtInst(Builder.CreateIsNotNull(X), Ty); 1284 1285 // lshr i32 (X -nsw Y), 31 --> zext (X < Y) 1286 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y))))) 1287 return new ZExtInst(Builder.CreateICmpSLT(X, Y), Ty); 1288 1289 // Check if a number is negative and odd: 1290 // lshr i32 (srem X, 2), 31 --> and (X >> 31), X 1291 if (match(Op0, m_OneUse(m_SRem(m_Value(X), m_SpecificInt(2))))) { 1292 Value *Signbit = Builder.CreateLShr(X, ShAmtC); 1293 return BinaryOperator::CreateAnd(Signbit, X); 1294 } 1295 } 1296 1297 // (X >>u C1) >>u C --> X >>u (C1 + C) 1298 if (match(Op0, m_LShr(m_Value(X), m_APInt(C1)))) { 1299 // Oversized shifts are simplified to zero in InstSimplify. 1300 unsigned AmtSum = ShAmtC + C1->getZExtValue(); 1301 if (AmtSum < BitWidth) 1302 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum)); 1303 } 1304 1305 Instruction *TruncSrc; 1306 if (match(Op0, m_OneUse(m_Trunc(m_Instruction(TruncSrc)))) && 1307 match(TruncSrc, m_LShr(m_Value(X), m_APInt(C1)))) { 1308 unsigned SrcWidth = X->getType()->getScalarSizeInBits(); 1309 unsigned AmtSum = ShAmtC + C1->getZExtValue(); 1310 1311 // If the combined shift fits in the source width: 1312 // (trunc (X >>u C1)) >>u C --> and (trunc (X >>u (C1 + C)), MaskC 1313 // 1314 // If the first shift covers the number of bits truncated, then the 1315 // mask instruction is eliminated (and so the use check is relaxed). 1316 if (AmtSum < SrcWidth && 1317 (TruncSrc->hasOneUse() || C1->uge(SrcWidth - BitWidth))) { 1318 Value *SumShift = Builder.CreateLShr(X, AmtSum, "sum.shift"); 1319 Value *Trunc = Builder.CreateTrunc(SumShift, Ty, I.getName()); 1320 1321 // If the first shift does not cover the number of bits truncated, then 1322 // we require a mask to get rid of high bits in the result. 1323 APInt MaskC = APInt::getAllOnes(BitWidth).lshr(ShAmtC); 1324 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, MaskC)); 1325 } 1326 } 1327 1328 const APInt *MulC; 1329 if (match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC)))) { 1330 // Look for a "splat" mul pattern - it replicates bits across each half of 1331 // a value, so a right shift is just a mask of the low bits: 1332 // lshr i[2N] (mul nuw X, (2^N)+1), N --> and iN X, (2^N)-1 1333 // TODO: Generalize to allow more than just half-width shifts? 1334 if (BitWidth > 2 && ShAmtC * 2 == BitWidth && (*MulC - 1).isPowerOf2() && 1335 MulC->logBase2() == ShAmtC) 1336 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *MulC - 2)); 1337 1338 // The one-use check is not strictly necessary, but codegen may not be 1339 // able to invert the transform and perf may suffer with an extra mul 1340 // instruction. 1341 if (Op0->hasOneUse()) { 1342 APInt NewMulC = MulC->lshr(ShAmtC); 1343 // if c is divisible by (1 << ShAmtC): 1344 // lshr (mul nuw x, MulC), ShAmtC -> mul nuw x, (MulC >> ShAmtC) 1345 if (MulC->eq(NewMulC.shl(ShAmtC))) { 1346 auto *NewMul = 1347 BinaryOperator::CreateNUWMul(X, ConstantInt::get(Ty, NewMulC)); 1348 BinaryOperator *OrigMul = cast<BinaryOperator>(Op0); 1349 NewMul->setHasNoSignedWrap(OrigMul->hasNoSignedWrap()); 1350 return NewMul; 1351 } 1352 } 1353 } 1354 1355 // Try to narrow bswap. 1356 // In the case where the shift amount equals the bitwidth difference, the 1357 // shift is eliminated. 1358 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::bswap>( 1359 m_OneUse(m_ZExt(m_Value(X))))))) { 1360 unsigned SrcWidth = X->getType()->getScalarSizeInBits(); 1361 unsigned WidthDiff = BitWidth - SrcWidth; 1362 if (SrcWidth % 16 == 0) { 1363 Value *NarrowSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X); 1364 if (ShAmtC >= WidthDiff) { 1365 // (bswap (zext X)) >> C --> zext (bswap X >> C') 1366 Value *NewShift = Builder.CreateLShr(NarrowSwap, ShAmtC - WidthDiff); 1367 return new ZExtInst(NewShift, Ty); 1368 } else { 1369 // (bswap (zext X)) >> C --> (zext (bswap X)) << C' 1370 Value *NewZExt = Builder.CreateZExt(NarrowSwap, Ty); 1371 Constant *ShiftDiff = ConstantInt::get(Ty, WidthDiff - ShAmtC); 1372 return BinaryOperator::CreateShl(NewZExt, ShiftDiff); 1373 } 1374 } 1375 } 1376 1377 // Reduce add-carry of bools to logic: 1378 // ((zext BoolX) + (zext BoolY)) >> 1 --> zext (BoolX && BoolY) 1379 Value *BoolX, *BoolY; 1380 if (ShAmtC == 1 && match(Op0, m_Add(m_Value(X), m_Value(Y))) && 1381 match(X, m_ZExt(m_Value(BoolX))) && match(Y, m_ZExt(m_Value(BoolY))) && 1382 BoolX->getType()->isIntOrIntVectorTy(1) && 1383 BoolY->getType()->isIntOrIntVectorTy(1) && 1384 (X->hasOneUse() || Y->hasOneUse() || Op0->hasOneUse())) { 1385 Value *And = Builder.CreateAnd(BoolX, BoolY); 1386 return new ZExtInst(And, Ty); 1387 } 1388 1389 // If the shifted-out value is known-zero, then this is an exact shift. 1390 if (!I.isExact() && 1391 MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmtC), 0, &I)) { 1392 I.setIsExact(); 1393 return &I; 1394 } 1395 } 1396 1397 // Transform (x << y) >> y to x & (-1 >> y) 1398 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) { 1399 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); 1400 Value *Mask = Builder.CreateLShr(AllOnes, Op1); 1401 return BinaryOperator::CreateAnd(Mask, X); 1402 } 1403 1404 if (Instruction *Overflow = foldLShrOverflowBit(I)) 1405 return Overflow; 1406 1407 return nullptr; 1408 } 1409 1410 Instruction * 1411 InstCombinerImpl::foldVariableSignZeroExtensionOfVariableHighBitExtract( 1412 BinaryOperator &OldAShr) { 1413 assert(OldAShr.getOpcode() == Instruction::AShr && 1414 "Must be called with arithmetic right-shift instruction only."); 1415 1416 // Check that constant C is a splat of the element-wise bitwidth of V. 1417 auto BitWidthSplat = [](Constant *C, Value *V) { 1418 return match( 1419 C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1420 APInt(C->getType()->getScalarSizeInBits(), 1421 V->getType()->getScalarSizeInBits()))); 1422 }; 1423 1424 // It should look like variable-length sign-extension on the outside: 1425 // (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits) 1426 Value *NBits; 1427 Instruction *MaybeTrunc; 1428 Constant *C1, *C2; 1429 if (!match(&OldAShr, 1430 m_AShr(m_Shl(m_Instruction(MaybeTrunc), 1431 m_ZExtOrSelf(m_Sub(m_Constant(C1), 1432 m_ZExtOrSelf(m_Value(NBits))))), 1433 m_ZExtOrSelf(m_Sub(m_Constant(C2), 1434 m_ZExtOrSelf(m_Deferred(NBits)))))) || 1435 !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr)) 1436 return nullptr; 1437 1438 // There may or may not be a truncation after outer two shifts. 1439 Instruction *HighBitExtract; 1440 match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract))); 1441 bool HadTrunc = MaybeTrunc != HighBitExtract; 1442 1443 // And finally, the innermost part of the pattern must be a right-shift. 1444 Value *X, *NumLowBitsToSkip; 1445 if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip)))) 1446 return nullptr; 1447 1448 // Said right-shift must extract high NBits bits - C0 must be it's bitwidth. 1449 Constant *C0; 1450 if (!match(NumLowBitsToSkip, 1451 m_ZExtOrSelf( 1452 m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) || 1453 !BitWidthSplat(C0, HighBitExtract)) 1454 return nullptr; 1455 1456 // Since the NBits is identical for all shifts, if the outermost and 1457 // innermost shifts are identical, then outermost shifts are redundant. 1458 // If we had truncation, do keep it though. 1459 if (HighBitExtract->getOpcode() == OldAShr.getOpcode()) 1460 return replaceInstUsesWith(OldAShr, MaybeTrunc); 1461 1462 // Else, if there was a truncation, then we need to ensure that one 1463 // instruction will go away. 1464 if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 1465 return nullptr; 1466 1467 // Finally, bypass two innermost shifts, and perform the outermost shift on 1468 // the operands of the innermost shift. 1469 Instruction *NewAShr = 1470 BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip); 1471 NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness. 1472 if (!HadTrunc) 1473 return NewAShr; 1474 1475 Builder.Insert(NewAShr); 1476 return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType()); 1477 } 1478 1479 Instruction *InstCombinerImpl::visitAShr(BinaryOperator &I) { 1480 if (Value *V = simplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), 1481 SQ.getWithInstruction(&I))) 1482 return replaceInstUsesWith(I, V); 1483 1484 if (Instruction *X = foldVectorBinop(I)) 1485 return X; 1486 1487 if (Instruction *R = commonShiftTransforms(I)) 1488 return R; 1489 1490 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1491 Type *Ty = I.getType(); 1492 unsigned BitWidth = Ty->getScalarSizeInBits(); 1493 const APInt *ShAmtAPInt; 1494 if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) { 1495 unsigned ShAmt = ShAmtAPInt->getZExtValue(); 1496 1497 // If the shift amount equals the difference in width of the destination 1498 // and source scalar types: 1499 // ashr (shl (zext X), C), C --> sext X 1500 Value *X; 1501 if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) && 1502 ShAmt == BitWidth - X->getType()->getScalarSizeInBits()) 1503 return new SExtInst(X, Ty); 1504 1505 // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However, 1506 // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits. 1507 const APInt *ShOp1; 1508 if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) && 1509 ShOp1->ult(BitWidth)) { 1510 unsigned ShlAmt = ShOp1->getZExtValue(); 1511 if (ShlAmt < ShAmt) { 1512 // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1) 1513 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt); 1514 auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff); 1515 NewAShr->setIsExact(I.isExact()); 1516 return NewAShr; 1517 } 1518 if (ShlAmt > ShAmt) { 1519 // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2) 1520 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt); 1521 auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff); 1522 NewShl->setHasNoSignedWrap(true); 1523 return NewShl; 1524 } 1525 } 1526 1527 if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) && 1528 ShOp1->ult(BitWidth)) { 1529 unsigned AmtSum = ShAmt + ShOp1->getZExtValue(); 1530 // Oversized arithmetic shifts replicate the sign bit. 1531 AmtSum = std::min(AmtSum, BitWidth - 1); 1532 // (X >>s C1) >>s C2 --> X >>s (C1 + C2) 1533 return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum)); 1534 } 1535 1536 if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) && 1537 (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) { 1538 // ashr (sext X), C --> sext (ashr X, C') 1539 Type *SrcTy = X->getType(); 1540 ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1); 1541 Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt)); 1542 return new SExtInst(NewSh, Ty); 1543 } 1544 1545 if (ShAmt == BitWidth - 1) { 1546 // ashr i32 or(X,-X), 31 --> sext (X != 0) 1547 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X))))) 1548 return new SExtInst(Builder.CreateIsNotNull(X), Ty); 1549 1550 // ashr i32 (X -nsw Y), 31 --> sext (X < Y) 1551 Value *Y; 1552 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y))))) 1553 return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty); 1554 } 1555 1556 // If the shifted-out value is known-zero, then this is an exact shift. 1557 if (!I.isExact() && 1558 MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) { 1559 I.setIsExact(); 1560 return &I; 1561 } 1562 } 1563 1564 // Prefer `-(x & 1)` over `(x << (bitwidth(x)-1)) a>> (bitwidth(x)-1)` 1565 // as the pattern to splat the lowest bit. 1566 // FIXME: iff X is already masked, we don't need the one-use check. 1567 Value *X; 1568 if (match(Op1, m_SpecificIntAllowUndef(BitWidth - 1)) && 1569 match(Op0, m_OneUse(m_Shl(m_Value(X), 1570 m_SpecificIntAllowUndef(BitWidth - 1))))) { 1571 Constant *Mask = ConstantInt::get(Ty, 1); 1572 // Retain the knowledge about the ignored lanes. 1573 Mask = Constant::mergeUndefsWith( 1574 Constant::mergeUndefsWith(Mask, cast<Constant>(Op1)), 1575 cast<Constant>(cast<Instruction>(Op0)->getOperand(1))); 1576 X = Builder.CreateAnd(X, Mask); 1577 return BinaryOperator::CreateNeg(X); 1578 } 1579 1580 if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I)) 1581 return R; 1582 1583 // See if we can turn a signed shr into an unsigned shr. 1584 if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I)) { 1585 Instruction *Lshr = BinaryOperator::CreateLShr(Op0, Op1); 1586 Lshr->setIsExact(I.isExact()); 1587 return Lshr; 1588 } 1589 1590 // ashr (xor %x, -1), %y --> xor (ashr %x, %y), -1 1591 if (match(Op0, m_OneUse(m_Not(m_Value(X))))) { 1592 // Note that we must drop 'exact'-ness of the shift! 1593 // Note that we can't keep undef's in -1 vector constant! 1594 auto *NewAShr = Builder.CreateAShr(X, Op1, Op0->getName() + ".not"); 1595 return BinaryOperator::CreateNot(NewAShr); 1596 } 1597 1598 return nullptr; 1599 } 1600