1 //===- InstCombineShifts.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitShl, visitLShr, and visitAShr functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/Analysis/ConstantFolding.h" 15 #include "llvm/Analysis/InstructionSimplify.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/PatternMatch.h" 18 #include "llvm/Transforms/InstCombine/InstCombiner.h" 19 using namespace llvm; 20 using namespace PatternMatch; 21 22 #define DEBUG_TYPE "instcombine" 23 24 bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1, 25 Value *ShAmt1) { 26 // We have two shift amounts from two different shifts. The types of those 27 // shift amounts may not match. If that's the case let's bailout now.. 28 if (ShAmt0->getType() != ShAmt1->getType()) 29 return false; 30 31 // As input, we have the following pattern: 32 // Sh0 (Sh1 X, Q), K 33 // We want to rewrite that as: 34 // Sh x, (Q+K) iff (Q+K) u< bitwidth(x) 35 // While we know that originally (Q+K) would not overflow 36 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 37 // shift amounts. so it may now overflow in smaller bitwidth. 38 // To ensure that does not happen, we need to ensure that the total maximal 39 // shift amount is still representable in that smaller bit width. 40 unsigned MaximalPossibleTotalShiftAmount = 41 (Sh0->getType()->getScalarSizeInBits() - 1) + 42 (Sh1->getType()->getScalarSizeInBits() - 1); 43 APInt MaximalRepresentableShiftAmount = 44 APInt::getAllOnes(ShAmt0->getType()->getScalarSizeInBits()); 45 return MaximalRepresentableShiftAmount.uge(MaximalPossibleTotalShiftAmount); 46 } 47 48 // Given pattern: 49 // (x shiftopcode Q) shiftopcode K 50 // we should rewrite it as 51 // x shiftopcode (Q+K) iff (Q+K) u< bitwidth(x) and 52 // 53 // This is valid for any shift, but they must be identical, and we must be 54 // careful in case we have (zext(Q)+zext(K)) and look past extensions, 55 // (Q+K) must not overflow or else (Q+K) u< bitwidth(x) is bogus. 56 // 57 // AnalyzeForSignBitExtraction indicates that we will only analyze whether this 58 // pattern has any 2 right-shifts that sum to 1 less than original bit width. 59 Value *InstCombinerImpl::reassociateShiftAmtsOfTwoSameDirectionShifts( 60 BinaryOperator *Sh0, const SimplifyQuery &SQ, 61 bool AnalyzeForSignBitExtraction) { 62 // Look for a shift of some instruction, ignore zext of shift amount if any. 63 Instruction *Sh0Op0; 64 Value *ShAmt0; 65 if (!match(Sh0, 66 m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0))))) 67 return nullptr; 68 69 // If there is a truncation between the two shifts, we must make note of it 70 // and look through it. The truncation imposes additional constraints on the 71 // transform. 72 Instruction *Sh1; 73 Value *Trunc = nullptr; 74 match(Sh0Op0, 75 m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)), 76 m_Instruction(Sh1))); 77 78 // Inner shift: (x shiftopcode ShAmt1) 79 // Like with other shift, ignore zext of shift amount if any. 80 Value *X, *ShAmt1; 81 if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1))))) 82 return nullptr; 83 84 // Verify that it would be safe to try to add those two shift amounts. 85 if (!canTryToConstantAddTwoShiftAmounts(Sh0, ShAmt0, Sh1, ShAmt1)) 86 return nullptr; 87 88 // We are only looking for signbit extraction if we have two right shifts. 89 bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) && 90 match(Sh1, m_Shr(m_Value(), m_Value())); 91 // ... and if it's not two right-shifts, we know the answer already. 92 if (AnalyzeForSignBitExtraction && !HadTwoRightShifts) 93 return nullptr; 94 95 // The shift opcodes must be identical, unless we are just checking whether 96 // this pattern can be interpreted as a sign-bit-extraction. 97 Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode(); 98 bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode(); 99 if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction) 100 return nullptr; 101 102 // If we saw truncation, we'll need to produce extra instruction, 103 // and for that one of the operands of the shift must be one-use, 104 // unless of course we don't actually plan to produce any instructions here. 105 if (Trunc && !AnalyzeForSignBitExtraction && 106 !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 107 return nullptr; 108 109 // Can we fold (ShAmt0+ShAmt1) ? 110 auto *NewShAmt = dyn_cast_or_null<Constant>( 111 SimplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false, 112 SQ.getWithInstruction(Sh0))); 113 if (!NewShAmt) 114 return nullptr; // Did not simplify. 115 unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits(); 116 unsigned XBitWidth = X->getType()->getScalarSizeInBits(); 117 // Is the new shift amount smaller than the bit width of inner/new shift? 118 if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 119 APInt(NewShAmtBitWidth, XBitWidth)))) 120 return nullptr; // FIXME: could perform constant-folding. 121 122 // If there was a truncation, and we have a right-shift, we can only fold if 123 // we are left with the original sign bit. Likewise, if we were just checking 124 // that this is a sighbit extraction, this is the place to check it. 125 // FIXME: zero shift amount is also legal here, but we can't *easily* check 126 // more than one predicate so it's not really worth it. 127 if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) { 128 // If it's not a sign bit extraction, then we're done. 129 if (!match(NewShAmt, 130 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 131 APInt(NewShAmtBitWidth, XBitWidth - 1)))) 132 return nullptr; 133 // If it is, and that was the question, return the base value. 134 if (AnalyzeForSignBitExtraction) 135 return X; 136 } 137 138 assert(IdenticalShOpcodes && "Should not get here with different shifts."); 139 140 // All good, we can do this fold. 141 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType()); 142 143 BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt); 144 145 // The flags can only be propagated if there wasn't a trunc. 146 if (!Trunc) { 147 // If the pattern did not involve trunc, and both of the original shifts 148 // had the same flag set, preserve the flag. 149 if (ShiftOpcode == Instruction::BinaryOps::Shl) { 150 NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() && 151 Sh1->hasNoUnsignedWrap()); 152 NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() && 153 Sh1->hasNoSignedWrap()); 154 } else { 155 NewShift->setIsExact(Sh0->isExact() && Sh1->isExact()); 156 } 157 } 158 159 Instruction *Ret = NewShift; 160 if (Trunc) { 161 Builder.Insert(NewShift); 162 Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType()); 163 } 164 165 return Ret; 166 } 167 168 // If we have some pattern that leaves only some low bits set, and then performs 169 // left-shift of those bits, if none of the bits that are left after the final 170 // shift are modified by the mask, we can omit the mask. 171 // 172 // There are many variants to this pattern: 173 // a) (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt 174 // b) (x & (~(-1 << MaskShAmt))) << ShiftShAmt 175 // c) (x & (-1 l>> MaskShAmt)) << ShiftShAmt 176 // d) (x & ((-1 << MaskShAmt) l>> MaskShAmt)) << ShiftShAmt 177 // e) ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt 178 // f) ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt 179 // All these patterns can be simplified to just: 180 // x << ShiftShAmt 181 // iff: 182 // a,b) (MaskShAmt+ShiftShAmt) u>= bitwidth(x) 183 // c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt) 184 static Instruction * 185 dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift, 186 const SimplifyQuery &Q, 187 InstCombiner::BuilderTy &Builder) { 188 assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl && 189 "The input must be 'shl'!"); 190 191 Value *Masked, *ShiftShAmt; 192 match(OuterShift, 193 m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt)))); 194 195 // *If* there is a truncation between an outer shift and a possibly-mask, 196 // then said truncation *must* be one-use, else we can't perform the fold. 197 Value *Trunc; 198 if (match(Masked, m_CombineAnd(m_Trunc(m_Value(Masked)), m_Value(Trunc))) && 199 !Trunc->hasOneUse()) 200 return nullptr; 201 202 Type *NarrowestTy = OuterShift->getType(); 203 Type *WidestTy = Masked->getType(); 204 bool HadTrunc = WidestTy != NarrowestTy; 205 206 // The mask must be computed in a type twice as wide to ensure 207 // that no bits are lost if the sum-of-shifts is wider than the base type. 208 Type *ExtendedTy = WidestTy->getExtendedType(); 209 210 Value *MaskShAmt; 211 212 // ((1 << MaskShAmt) - 1) 213 auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes()); 214 // (~(-1 << maskNbits)) 215 auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes()); 216 // (-1 l>> MaskShAmt) 217 auto MaskC = m_LShr(m_AllOnes(), m_Value(MaskShAmt)); 218 // ((-1 << MaskShAmt) l>> MaskShAmt) 219 auto MaskD = 220 m_LShr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt)); 221 222 Value *X; 223 Constant *NewMask; 224 225 if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) { 226 // Peek through an optional zext of the shift amount. 227 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt))); 228 229 // Verify that it would be safe to try to add those two shift amounts. 230 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked, 231 MaskShAmt)) 232 return nullptr; 233 234 // Can we simplify (MaskShAmt+ShiftShAmt) ? 235 auto *SumOfShAmts = dyn_cast_or_null<Constant>(SimplifyAddInst( 236 MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q)); 237 if (!SumOfShAmts) 238 return nullptr; // Did not simplify. 239 // In this pattern SumOfShAmts correlates with the number of low bits 240 // that shall remain in the root value (OuterShift). 241 242 // An extend of an undef value becomes zero because the high bits are never 243 // completely unknown. Replace the `undef` shift amounts with final 244 // shift bitwidth to ensure that the value remains undef when creating the 245 // subsequent shift op. 246 SumOfShAmts = Constant::replaceUndefsWith( 247 SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(), 248 ExtendedTy->getScalarSizeInBits())); 249 auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy); 250 // And compute the mask as usual: ~(-1 << (SumOfShAmts)) 251 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy); 252 auto *ExtendedInvertedMask = 253 ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts); 254 NewMask = ConstantExpr::getNot(ExtendedInvertedMask); 255 } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) || 256 match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)), 257 m_Deferred(MaskShAmt)))) { 258 // Peek through an optional zext of the shift amount. 259 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt))); 260 261 // Verify that it would be safe to try to add those two shift amounts. 262 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked, 263 MaskShAmt)) 264 return nullptr; 265 266 // Can we simplify (ShiftShAmt-MaskShAmt) ? 267 auto *ShAmtsDiff = dyn_cast_or_null<Constant>(SimplifySubInst( 268 ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q)); 269 if (!ShAmtsDiff) 270 return nullptr; // Did not simplify. 271 // In this pattern ShAmtsDiff correlates with the number of high bits that 272 // shall be unset in the root value (OuterShift). 273 274 // An extend of an undef value becomes zero because the high bits are never 275 // completely unknown. Replace the `undef` shift amounts with negated 276 // bitwidth of innermost shift to ensure that the value remains undef when 277 // creating the subsequent shift op. 278 unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits(); 279 ShAmtsDiff = Constant::replaceUndefsWith( 280 ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(), 281 -WidestTyBitWidth)); 282 auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt( 283 ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(), 284 WidestTyBitWidth, 285 /*isSigned=*/false), 286 ShAmtsDiff), 287 ExtendedTy); 288 // And compute the mask as usual: (-1 l>> (NumHighBitsToClear)) 289 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy); 290 NewMask = 291 ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear); 292 } else 293 return nullptr; // Don't know anything about this pattern. 294 295 NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy); 296 297 // Does this mask has any unset bits? If not then we can just not apply it. 298 bool NeedMask = !match(NewMask, m_AllOnes()); 299 300 // If we need to apply a mask, there are several more restrictions we have. 301 if (NeedMask) { 302 // The old masking instruction must go away. 303 if (!Masked->hasOneUse()) 304 return nullptr; 305 // The original "masking" instruction must not have been`ashr`. 306 if (match(Masked, m_AShr(m_Value(), m_Value()))) 307 return nullptr; 308 } 309 310 // If we need to apply truncation, let's do it first, since we can. 311 // We have already ensured that the old truncation will go away. 312 if (HadTrunc) 313 X = Builder.CreateTrunc(X, NarrowestTy); 314 315 // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits. 316 // We didn't change the Type of this outermost shift, so we can just do it. 317 auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X, 318 OuterShift->getOperand(1)); 319 if (!NeedMask) 320 return NewShift; 321 322 Builder.Insert(NewShift); 323 return BinaryOperator::Create(Instruction::And, NewShift, NewMask); 324 } 325 326 /// If we have a shift-by-constant of a bitwise logic op that itself has a 327 /// shift-by-constant operand with identical opcode, we may be able to convert 328 /// that into 2 independent shifts followed by the logic op. This eliminates a 329 /// a use of an intermediate value (reduces dependency chain). 330 static Instruction *foldShiftOfShiftedLogic(BinaryOperator &I, 331 InstCombiner::BuilderTy &Builder) { 332 assert(I.isShift() && "Expected a shift as input"); 333 auto *LogicInst = dyn_cast<BinaryOperator>(I.getOperand(0)); 334 if (!LogicInst || !LogicInst->isBitwiseLogicOp() || !LogicInst->hasOneUse()) 335 return nullptr; 336 337 Constant *C0, *C1; 338 if (!match(I.getOperand(1), m_Constant(C1))) 339 return nullptr; 340 341 Instruction::BinaryOps ShiftOpcode = I.getOpcode(); 342 Type *Ty = I.getType(); 343 344 // Find a matching one-use shift by constant. The fold is not valid if the sum 345 // of the shift values equals or exceeds bitwidth. 346 // TODO: Remove the one-use check if the other logic operand (Y) is constant. 347 Value *X, *Y; 348 auto matchFirstShift = [&](Value *V) { 349 APInt Threshold(Ty->getScalarSizeInBits(), Ty->getScalarSizeInBits()); 350 return match(V, m_BinOp(ShiftOpcode, m_Value(), m_Value())) && 351 match(V, m_OneUse(m_Shift(m_Value(X), m_Constant(C0)))) && 352 match(ConstantExpr::getAdd(C0, C1), 353 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold)); 354 }; 355 356 // Logic ops are commutative, so check each operand for a match. 357 if (matchFirstShift(LogicInst->getOperand(0))) 358 Y = LogicInst->getOperand(1); 359 else if (matchFirstShift(LogicInst->getOperand(1))) 360 Y = LogicInst->getOperand(0); 361 else 362 return nullptr; 363 364 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1) 365 Constant *ShiftSumC = ConstantExpr::getAdd(C0, C1); 366 Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC); 367 Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, I.getOperand(1)); 368 return BinaryOperator::Create(LogicInst->getOpcode(), NewShift1, NewShift2); 369 } 370 371 Instruction *InstCombinerImpl::commonShiftTransforms(BinaryOperator &I) { 372 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 373 assert(Op0->getType() == Op1->getType()); 374 375 // If the shift amount is a one-use `sext`, we can demote it to `zext`. 376 Value *Y; 377 if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) { 378 Value *NewExt = Builder.CreateZExt(Y, I.getType(), Op1->getName()); 379 return BinaryOperator::Create(I.getOpcode(), Op0, NewExt); 380 } 381 382 // See if we can fold away this shift. 383 if (SimplifyDemandedInstructionBits(I)) 384 return &I; 385 386 // Try to fold constant and into select arguments. 387 if (isa<Constant>(Op0)) 388 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 389 if (Instruction *R = FoldOpIntoSelect(I, SI)) 390 return R; 391 392 if (Constant *CUI = dyn_cast<Constant>(Op1)) 393 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I)) 394 return Res; 395 396 if (auto *NewShift = cast_or_null<Instruction>( 397 reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ))) 398 return NewShift; 399 400 // (C1 shift (A add C2)) -> (C1 shift C2) shift A) 401 // iff A and C2 are both positive. 402 Value *A; 403 Constant *C; 404 if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C)))) 405 if (isKnownNonNegative(A, DL, 0, &AC, &I, &DT) && 406 isKnownNonNegative(C, DL, 0, &AC, &I, &DT)) 407 return BinaryOperator::Create( 408 I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), Op0, C), A); 409 410 // X shift (A srem C) -> X shift (A and (C - 1)) iff C is a power of 2. 411 // Because shifts by negative values (which could occur if A were negative) 412 // are undefined. 413 if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Constant(C))) && 414 match(C, m_Power2())) { 415 // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't 416 // demand the sign bit (and many others) here?? 417 Constant *Mask = ConstantExpr::getSub(C, ConstantInt::get(I.getType(), 1)); 418 Value *Rem = Builder.CreateAnd(A, Mask, Op1->getName()); 419 return replaceOperand(I, 1, Rem); 420 } 421 422 if (Instruction *Logic = foldShiftOfShiftedLogic(I, Builder)) 423 return Logic; 424 425 return nullptr; 426 } 427 428 /// Return true if we can simplify two logical (either left or right) shifts 429 /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2. 430 static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl, 431 Instruction *InnerShift, 432 InstCombinerImpl &IC, Instruction *CxtI) { 433 assert(InnerShift->isLogicalShift() && "Unexpected instruction type"); 434 435 // We need constant scalar or constant splat shifts. 436 const APInt *InnerShiftConst; 437 if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst))) 438 return false; 439 440 // Two logical shifts in the same direction: 441 // shl (shl X, C1), C2 --> shl X, C1 + C2 442 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2 443 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl; 444 if (IsInnerShl == IsOuterShl) 445 return true; 446 447 // Equal shift amounts in opposite directions become bitwise 'and': 448 // lshr (shl X, C), C --> and X, C' 449 // shl (lshr X, C), C --> and X, C' 450 if (*InnerShiftConst == OuterShAmt) 451 return true; 452 453 // If the 2nd shift is bigger than the 1st, we can fold: 454 // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3 455 // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3 456 // but it isn't profitable unless we know the and'd out bits are already zero. 457 // Also, check that the inner shift is valid (less than the type width) or 458 // we'll crash trying to produce the bit mask for the 'and'. 459 unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits(); 460 if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) { 461 unsigned InnerShAmt = InnerShiftConst->getZExtValue(); 462 unsigned MaskShift = 463 IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt; 464 APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift; 465 if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI)) 466 return true; 467 } 468 469 return false; 470 } 471 472 /// See if we can compute the specified value, but shifted logically to the left 473 /// or right by some number of bits. This should return true if the expression 474 /// can be computed for the same cost as the current expression tree. This is 475 /// used to eliminate extraneous shifting from things like: 476 /// %C = shl i128 %A, 64 477 /// %D = shl i128 %B, 96 478 /// %E = or i128 %C, %D 479 /// %F = lshr i128 %E, 64 480 /// where the client will ask if E can be computed shifted right by 64-bits. If 481 /// this succeeds, getShiftedValue() will be called to produce the value. 482 static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift, 483 InstCombinerImpl &IC, Instruction *CxtI) { 484 // We can always evaluate constants shifted. 485 if (isa<Constant>(V)) 486 return true; 487 488 Instruction *I = dyn_cast<Instruction>(V); 489 if (!I) return false; 490 491 // We can't mutate something that has multiple uses: doing so would 492 // require duplicating the instruction in general, which isn't profitable. 493 if (!I->hasOneUse()) return false; 494 495 switch (I->getOpcode()) { 496 default: return false; 497 case Instruction::And: 498 case Instruction::Or: 499 case Instruction::Xor: 500 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. 501 return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) && 502 canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I); 503 504 case Instruction::Shl: 505 case Instruction::LShr: 506 return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI); 507 508 case Instruction::Select: { 509 SelectInst *SI = cast<SelectInst>(I); 510 Value *TrueVal = SI->getTrueValue(); 511 Value *FalseVal = SI->getFalseValue(); 512 return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) && 513 canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI); 514 } 515 case Instruction::PHI: { 516 // We can change a phi if we can change all operands. Note that we never 517 // get into trouble with cyclic PHIs here because we only consider 518 // instructions with a single use. 519 PHINode *PN = cast<PHINode>(I); 520 for (Value *IncValue : PN->incoming_values()) 521 if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN)) 522 return false; 523 return true; 524 } 525 } 526 } 527 528 /// Fold OuterShift (InnerShift X, C1), C2. 529 /// See canEvaluateShiftedShift() for the constraints on these instructions. 530 static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt, 531 bool IsOuterShl, 532 InstCombiner::BuilderTy &Builder) { 533 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl; 534 Type *ShType = InnerShift->getType(); 535 unsigned TypeWidth = ShType->getScalarSizeInBits(); 536 537 // We only accept shifts-by-a-constant in canEvaluateShifted(). 538 const APInt *C1; 539 match(InnerShift->getOperand(1), m_APInt(C1)); 540 unsigned InnerShAmt = C1->getZExtValue(); 541 542 // Change the shift amount and clear the appropriate IR flags. 543 auto NewInnerShift = [&](unsigned ShAmt) { 544 InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt)); 545 if (IsInnerShl) { 546 InnerShift->setHasNoUnsignedWrap(false); 547 InnerShift->setHasNoSignedWrap(false); 548 } else { 549 InnerShift->setIsExact(false); 550 } 551 return InnerShift; 552 }; 553 554 // Two logical shifts in the same direction: 555 // shl (shl X, C1), C2 --> shl X, C1 + C2 556 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2 557 if (IsInnerShl == IsOuterShl) { 558 // If this is an oversized composite shift, then unsigned shifts get 0. 559 if (InnerShAmt + OuterShAmt >= TypeWidth) 560 return Constant::getNullValue(ShType); 561 562 return NewInnerShift(InnerShAmt + OuterShAmt); 563 } 564 565 // Equal shift amounts in opposite directions become bitwise 'and': 566 // lshr (shl X, C), C --> and X, C' 567 // shl (lshr X, C), C --> and X, C' 568 if (InnerShAmt == OuterShAmt) { 569 APInt Mask = IsInnerShl 570 ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt) 571 : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt); 572 Value *And = Builder.CreateAnd(InnerShift->getOperand(0), 573 ConstantInt::get(ShType, Mask)); 574 if (auto *AndI = dyn_cast<Instruction>(And)) { 575 AndI->moveBefore(InnerShift); 576 AndI->takeName(InnerShift); 577 } 578 return And; 579 } 580 581 assert(InnerShAmt > OuterShAmt && 582 "Unexpected opposite direction logical shift pair"); 583 584 // In general, we would need an 'and' for this transform, but 585 // canEvaluateShiftedShift() guarantees that the masked-off bits are not used. 586 // lshr (shl X, C1), C2 --> shl X, C1 - C2 587 // shl (lshr X, C1), C2 --> lshr X, C1 - C2 588 return NewInnerShift(InnerShAmt - OuterShAmt); 589 } 590 591 /// When canEvaluateShifted() returns true for an expression, this function 592 /// inserts the new computation that produces the shifted value. 593 static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift, 594 InstCombinerImpl &IC, const DataLayout &DL) { 595 // We can always evaluate constants shifted. 596 if (Constant *C = dyn_cast<Constant>(V)) { 597 if (isLeftShift) 598 return IC.Builder.CreateShl(C, NumBits); 599 else 600 return IC.Builder.CreateLShr(C, NumBits); 601 } 602 603 Instruction *I = cast<Instruction>(V); 604 IC.addToWorklist(I); 605 606 switch (I->getOpcode()) { 607 default: llvm_unreachable("Inconsistency with CanEvaluateShifted"); 608 case Instruction::And: 609 case Instruction::Or: 610 case Instruction::Xor: 611 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. 612 I->setOperand( 613 0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL)); 614 I->setOperand( 615 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL)); 616 return I; 617 618 case Instruction::Shl: 619 case Instruction::LShr: 620 return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift, 621 IC.Builder); 622 623 case Instruction::Select: 624 I->setOperand( 625 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL)); 626 I->setOperand( 627 2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL)); 628 return I; 629 case Instruction::PHI: { 630 // We can change a phi if we can change all operands. Note that we never 631 // get into trouble with cyclic PHIs here because we only consider 632 // instructions with a single use. 633 PHINode *PN = cast<PHINode>(I); 634 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 635 PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits, 636 isLeftShift, IC, DL)); 637 return PN; 638 } 639 } 640 } 641 642 // If this is a bitwise operator or add with a constant RHS we might be able 643 // to pull it through a shift. 644 static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift, 645 BinaryOperator *BO) { 646 switch (BO->getOpcode()) { 647 default: 648 return false; // Do not perform transform! 649 case Instruction::Add: 650 return Shift.getOpcode() == Instruction::Shl; 651 case Instruction::Or: 652 case Instruction::And: 653 return true; 654 case Instruction::Xor: 655 // Do not change a 'not' of logical shift because that would create a normal 656 // 'xor'. The 'not' is likely better for analysis, SCEV, and codegen. 657 return !(Shift.isLogicalShift() && match(BO, m_Not(m_Value()))); 658 } 659 } 660 661 Instruction *InstCombinerImpl::FoldShiftByConstant(Value *Op0, Constant *Op1, 662 BinaryOperator &I) { 663 const APInt *Op1C; 664 if (!match(Op1, m_APInt(Op1C))) 665 return nullptr; 666 667 // See if we can propagate this shift into the input, this covers the trivial 668 // cast of lshr(shl(x,c1),c2) as well as other more complex cases. 669 bool IsLeftShift = I.getOpcode() == Instruction::Shl; 670 if (I.getOpcode() != Instruction::AShr && 671 canEvaluateShifted(Op0, Op1C->getZExtValue(), IsLeftShift, *this, &I)) { 672 LLVM_DEBUG( 673 dbgs() << "ICE: GetShiftedValue propagating shift through expression" 674 " to eliminate shift:\n IN: " 675 << *Op0 << "\n SH: " << I << "\n"); 676 677 return replaceInstUsesWith( 678 I, getShiftedValue(Op0, Op1C->getZExtValue(), IsLeftShift, *this, DL)); 679 } 680 681 // See if we can simplify any instructions used by the instruction whose sole 682 // purpose is to compute bits we don't care about. 683 Type *Ty = I.getType(); 684 unsigned TypeBits = Ty->getScalarSizeInBits(); 685 assert(!Op1C->uge(TypeBits) && 686 "Shift over the type width should have been removed already"); 687 (void)TypeBits; 688 689 if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I)) 690 return FoldedShift; 691 692 if (!Op0->hasOneUse()) 693 return nullptr; 694 695 if (auto *Op0BO = dyn_cast<BinaryOperator>(Op0)) { 696 // If the operand is a bitwise operator with a constant RHS, and the 697 // shift is the only use, we can pull it out of the shift. 698 const APInt *Op0C; 699 if (match(Op0BO->getOperand(1), m_APInt(Op0C))) { 700 if (canShiftBinOpWithConstantRHS(I, Op0BO)) { 701 Constant *NewRHS = ConstantExpr::get( 702 I.getOpcode(), cast<Constant>(Op0BO->getOperand(1)), Op1); 703 704 Value *NewShift = 705 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1); 706 NewShift->takeName(Op0BO); 707 708 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, NewRHS); 709 } 710 } 711 } 712 713 // If we have a select that conditionally executes some binary operator, 714 // see if we can pull it the select and operator through the shift. 715 // 716 // For example, turning: 717 // shl (select C, (add X, C1), X), C2 718 // Into: 719 // Y = shl X, C2 720 // select C, (add Y, C1 << C2), Y 721 Value *Cond; 722 BinaryOperator *TBO; 723 Value *FalseVal; 724 if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)), 725 m_Value(FalseVal)))) { 726 const APInt *C; 727 if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal && 728 match(TBO->getOperand(1), m_APInt(C)) && 729 canShiftBinOpWithConstantRHS(I, TBO)) { 730 Constant *NewRHS = ConstantExpr::get( 731 I.getOpcode(), cast<Constant>(TBO->getOperand(1)), Op1); 732 733 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), FalseVal, Op1); 734 Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift, NewRHS); 735 return SelectInst::Create(Cond, NewOp, NewShift); 736 } 737 } 738 739 BinaryOperator *FBO; 740 Value *TrueVal; 741 if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal), 742 m_OneUse(m_BinOp(FBO))))) { 743 const APInt *C; 744 if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal && 745 match(FBO->getOperand(1), m_APInt(C)) && 746 canShiftBinOpWithConstantRHS(I, FBO)) { 747 Constant *NewRHS = ConstantExpr::get( 748 I.getOpcode(), cast<Constant>(FBO->getOperand(1)), Op1); 749 750 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), TrueVal, Op1); 751 Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift, NewRHS); 752 return SelectInst::Create(Cond, NewShift, NewOp); 753 } 754 } 755 756 return nullptr; 757 } 758 759 Instruction *InstCombinerImpl::visitShl(BinaryOperator &I) { 760 const SimplifyQuery Q = SQ.getWithInstruction(&I); 761 762 if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1), 763 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q)) 764 return replaceInstUsesWith(I, V); 765 766 if (Instruction *X = foldVectorBinop(I)) 767 return X; 768 769 if (Instruction *V = commonShiftTransforms(I)) 770 return V; 771 772 if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder)) 773 return V; 774 775 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 776 Type *Ty = I.getType(); 777 unsigned BitWidth = Ty->getScalarSizeInBits(); 778 779 const APInt *C; 780 if (match(Op1, m_APInt(C))) { 781 unsigned ShAmtC = C->getZExtValue(); 782 783 // shl (zext X), C --> zext (shl X, C) 784 // This is only valid if X would have zeros shifted out. 785 Value *X; 786 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) { 787 unsigned SrcWidth = X->getType()->getScalarSizeInBits(); 788 if (ShAmtC < SrcWidth && 789 MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmtC), 0, &I)) 790 return new ZExtInst(Builder.CreateShl(X, ShAmtC), Ty); 791 } 792 793 // (X >> C) << C --> X & (-1 << C) 794 if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) { 795 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 796 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask)); 797 } 798 799 const APInt *C1; 800 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(C1)))) && 801 C1->ult(BitWidth)) { 802 unsigned ShrAmt = C1->getZExtValue(); 803 if (ShrAmt < ShAmtC) { 804 // If C1 < C: (X >>?,exact C1) << C --> X << (C - C1) 805 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt); 806 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); 807 NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 808 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap()); 809 return NewShl; 810 } 811 if (ShrAmt > ShAmtC) { 812 // If C1 > C: (X >>?exact C1) << C --> X >>?exact (C1 - C) 813 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC); 814 auto *NewShr = BinaryOperator::Create( 815 cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff); 816 NewShr->setIsExact(true); 817 return NewShr; 818 } 819 } 820 821 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_APInt(C1)))) && 822 C1->ult(BitWidth)) { 823 unsigned ShrAmt = C1->getZExtValue(); 824 if (ShrAmt < ShAmtC) { 825 // If C1 < C: (X >>? C1) << C --> (X << (C - C1)) & (-1 << C) 826 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt); 827 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); 828 NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 829 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap()); 830 Builder.Insert(NewShl); 831 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 832 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask)); 833 } 834 if (ShrAmt > ShAmtC) { 835 // If C1 > C: (X >>? C1) << C --> (X >>? (C1 - C)) & (-1 << C) 836 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC); 837 auto *OldShr = cast<BinaryOperator>(Op0); 838 auto *NewShr = 839 BinaryOperator::Create(OldShr->getOpcode(), X, ShiftDiff); 840 NewShr->setIsExact(OldShr->isExact()); 841 Builder.Insert(NewShr); 842 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 843 return BinaryOperator::CreateAnd(NewShr, ConstantInt::get(Ty, Mask)); 844 } 845 } 846 847 // Similar to above, but look through an intermediate trunc instruction. 848 BinaryOperator *Shr; 849 if (match(Op0, m_OneUse(m_Trunc(m_OneUse(m_BinOp(Shr))))) && 850 match(Shr, m_Shr(m_Value(X), m_APInt(C1)))) { 851 // The larger shift direction survives through the transform. 852 unsigned ShrAmtC = C1->getZExtValue(); 853 unsigned ShDiff = ShrAmtC > ShAmtC ? ShrAmtC - ShAmtC : ShAmtC - ShrAmtC; 854 Constant *ShiftDiffC = ConstantInt::get(X->getType(), ShDiff); 855 auto ShiftOpc = ShrAmtC > ShAmtC ? Shr->getOpcode() : Instruction::Shl; 856 857 // If C1 > C: 858 // (trunc (X >> C1)) << C --> (trunc (X >> (C1 - C))) && (-1 << C) 859 // If C > C1: 860 // (trunc (X >> C1)) << C --> (trunc (X << (C - C1))) && (-1 << C) 861 Value *NewShift = Builder.CreateBinOp(ShiftOpc, X, ShiftDiffC, "sh.diff"); 862 Value *Trunc = Builder.CreateTrunc(NewShift, Ty, "tr.sh.diff"); 863 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 864 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, Mask)); 865 } 866 867 if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) { 868 unsigned AmtSum = ShAmtC + C1->getZExtValue(); 869 // Oversized shifts are simplified to zero in InstSimplify. 870 if (AmtSum < BitWidth) 871 // (X << C1) << C2 --> X << (C1 + C2) 872 return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum)); 873 } 874 875 // If we have an opposite shift by the same amount, we may be able to 876 // reorder binops and shifts to eliminate math/logic. 877 auto isSuitableBinOpcode = [](Instruction::BinaryOps BinOpcode) { 878 switch (BinOpcode) { 879 default: 880 return false; 881 case Instruction::Add: 882 case Instruction::And: 883 case Instruction::Or: 884 case Instruction::Xor: 885 case Instruction::Sub: 886 // NOTE: Sub is not commutable and the tranforms below may not be valid 887 // when the shift-right is operand 1 (RHS) of the sub. 888 return true; 889 } 890 }; 891 BinaryOperator *Op0BO; 892 if (match(Op0, m_OneUse(m_BinOp(Op0BO))) && 893 isSuitableBinOpcode(Op0BO->getOpcode())) { 894 // Commute so shift-right is on LHS of the binop. 895 // (Y bop (X >> C)) << C -> ((X >> C) bop Y) << C 896 // (Y bop ((X >> C) & CC)) << C -> (((X >> C) & CC) bop Y) << C 897 Value *Shr = Op0BO->getOperand(0); 898 Value *Y = Op0BO->getOperand(1); 899 Value *X; 900 const APInt *CC; 901 if (Op0BO->isCommutative() && Y->hasOneUse() && 902 (match(Y, m_Shr(m_Value(), m_Specific(Op1))) || 903 match(Y, m_And(m_OneUse(m_Shr(m_Value(), m_Specific(Op1))), 904 m_APInt(CC))))) 905 std::swap(Shr, Y); 906 907 // ((X >> C) bop Y) << C -> (X bop (Y << C)) & (~0 << C) 908 if (match(Shr, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) { 909 // Y << C 910 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName()); 911 // (X bop (Y << C)) 912 Value *B = 913 Builder.CreateBinOp(Op0BO->getOpcode(), X, YS, Shr->getName()); 914 unsigned Op1Val = C->getLimitedValue(BitWidth); 915 APInt Bits = APInt::getHighBitsSet(BitWidth, BitWidth - Op1Val); 916 Constant *Mask = ConstantInt::get(Ty, Bits); 917 return BinaryOperator::CreateAnd(B, Mask); 918 } 919 920 // (((X >> C) & CC) bop Y) << C -> (X & (CC << C)) bop (Y << C) 921 if (match(Shr, 922 m_OneUse(m_And(m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))), 923 m_APInt(CC))))) { 924 // Y << C 925 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName()); 926 // X & (CC << C) 927 Value *M = Builder.CreateAnd(X, ConstantInt::get(Ty, CC->shl(*C)), 928 X->getName() + ".mask"); 929 return BinaryOperator::Create(Op0BO->getOpcode(), M, YS); 930 } 931 } 932 933 // (C1 - X) << C --> (C1 << C) - (X << C) 934 if (match(Op0, m_OneUse(m_Sub(m_APInt(C1), m_Value(X))))) { 935 Constant *NewLHS = ConstantInt::get(Ty, C1->shl(*C)); 936 Value *NewShift = Builder.CreateShl(X, Op1); 937 return BinaryOperator::CreateSub(NewLHS, NewShift); 938 } 939 940 // If the shifted-out value is known-zero, then this is a NUW shift. 941 if (!I.hasNoUnsignedWrap() && 942 MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmtC), 0, 943 &I)) { 944 I.setHasNoUnsignedWrap(); 945 return &I; 946 } 947 948 // If the shifted-out value is all signbits, then this is a NSW shift. 949 if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmtC) { 950 I.setHasNoSignedWrap(); 951 return &I; 952 } 953 } 954 955 // Transform (x >> y) << y to x & (-1 << y) 956 // Valid for any type of right-shift. 957 Value *X; 958 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) { 959 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); 960 Value *Mask = Builder.CreateShl(AllOnes, Op1); 961 return BinaryOperator::CreateAnd(Mask, X); 962 } 963 964 Constant *C1; 965 if (match(Op1, m_Constant(C1))) { 966 Constant *C2; 967 Value *X; 968 // (C2 << X) << C1 --> (C2 << C1) << X 969 if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X))))) 970 return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X); 971 972 // (X * C2) << C1 --> X * (C2 << C1) 973 if (match(Op0, m_Mul(m_Value(X), m_Constant(C2)))) 974 return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1)); 975 976 // shl (zext i1 X), C1 --> select (X, 1 << C1, 0) 977 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 978 auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1); 979 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty)); 980 } 981 } 982 983 // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1 984 if (match(Op0, m_One()) && 985 match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X)))) 986 return BinaryOperator::CreateLShr( 987 ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X); 988 989 return nullptr; 990 } 991 992 Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) { 993 if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), 994 SQ.getWithInstruction(&I))) 995 return replaceInstUsesWith(I, V); 996 997 if (Instruction *X = foldVectorBinop(I)) 998 return X; 999 1000 if (Instruction *R = commonShiftTransforms(I)) 1001 return R; 1002 1003 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1004 Type *Ty = I.getType(); 1005 const APInt *C; 1006 if (match(Op1, m_APInt(C))) { 1007 unsigned ShAmtC = C->getZExtValue(); 1008 unsigned BitWidth = Ty->getScalarSizeInBits(); 1009 auto *II = dyn_cast<IntrinsicInst>(Op0); 1010 if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmtC && 1011 (II->getIntrinsicID() == Intrinsic::ctlz || 1012 II->getIntrinsicID() == Intrinsic::cttz || 1013 II->getIntrinsicID() == Intrinsic::ctpop)) { 1014 // ctlz.i32(x)>>5 --> zext(x == 0) 1015 // cttz.i32(x)>>5 --> zext(x == 0) 1016 // ctpop.i32(x)>>5 --> zext(x == -1) 1017 bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop; 1018 Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0); 1019 Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS); 1020 return new ZExtInst(Cmp, Ty); 1021 } 1022 1023 Value *X; 1024 const APInt *C1; 1025 if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) { 1026 if (C1->ult(ShAmtC)) { 1027 unsigned ShlAmtC = C1->getZExtValue(); 1028 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShlAmtC); 1029 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) { 1030 // (X <<nuw C1) >>u C --> X >>u (C - C1) 1031 auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff); 1032 NewLShr->setIsExact(I.isExact()); 1033 return NewLShr; 1034 } 1035 // (X << C1) >>u C --> (X >>u (C - C1)) & (-1 >> C) 1036 Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact()); 1037 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1038 return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask)); 1039 } 1040 if (C1->ugt(ShAmtC)) { 1041 unsigned ShlAmtC = C1->getZExtValue(); 1042 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmtC - ShAmtC); 1043 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) { 1044 // (X <<nuw C1) >>u C --> X <<nuw (C1 - C) 1045 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); 1046 NewShl->setHasNoUnsignedWrap(true); 1047 return NewShl; 1048 } 1049 // (X << C1) >>u C --> X << (C1 - C) & (-1 >> C) 1050 Value *NewShl = Builder.CreateShl(X, ShiftDiff); 1051 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1052 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask)); 1053 } 1054 assert(*C1 == ShAmtC); 1055 // (X << C) >>u C --> X & (-1 >>u C) 1056 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1057 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask)); 1058 } 1059 1060 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && 1061 (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) { 1062 assert(ShAmtC < X->getType()->getScalarSizeInBits() && 1063 "Big shift not simplified to zero?"); 1064 // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN 1065 Value *NewLShr = Builder.CreateLShr(X, ShAmtC); 1066 return new ZExtInst(NewLShr, Ty); 1067 } 1068 1069 if (match(Op0, m_SExt(m_Value(X)))) { 1070 unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits(); 1071 // lshr (sext i1 X to iN), C --> select (X, -1 >> C, 0) 1072 if (SrcTyBitWidth == 1) { 1073 auto *NewC = ConstantInt::get( 1074 Ty, APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1075 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty)); 1076 } 1077 1078 if ((!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType())) && 1079 Op0->hasOneUse()) { 1080 // Are we moving the sign bit to the low bit and widening with high 1081 // zeros? lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN 1082 if (ShAmtC == BitWidth - 1) { 1083 Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1); 1084 return new ZExtInst(NewLShr, Ty); 1085 } 1086 1087 // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN 1088 if (ShAmtC == BitWidth - SrcTyBitWidth) { 1089 // The new shift amount can't be more than the narrow source type. 1090 unsigned NewShAmt = std::min(ShAmtC, SrcTyBitWidth - 1); 1091 Value *AShr = Builder.CreateAShr(X, NewShAmt); 1092 return new ZExtInst(AShr, Ty); 1093 } 1094 } 1095 } 1096 1097 Value *Y; 1098 if (ShAmtC == BitWidth - 1) { 1099 // lshr i32 or(X,-X), 31 --> zext (X != 0) 1100 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X))))) 1101 return new ZExtInst(Builder.CreateIsNotNull(X), Ty); 1102 1103 // lshr i32 (X -nsw Y), 31 --> zext (X < Y) 1104 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y))))) 1105 return new ZExtInst(Builder.CreateICmpSLT(X, Y), Ty); 1106 1107 // Check if a number is negative and odd: 1108 // lshr i32 (srem X, 2), 31 --> and (X >> 31), X 1109 if (match(Op0, m_OneUse(m_SRem(m_Value(X), m_SpecificInt(2))))) { 1110 Value *Signbit = Builder.CreateLShr(X, ShAmtC); 1111 return BinaryOperator::CreateAnd(Signbit, X); 1112 } 1113 } 1114 1115 // (X >>u C1) >>u C --> X >>u (C1 + C) 1116 if (match(Op0, m_LShr(m_Value(X), m_APInt(C1)))) { 1117 // Oversized shifts are simplified to zero in InstSimplify. 1118 unsigned AmtSum = ShAmtC + C1->getZExtValue(); 1119 if (AmtSum < BitWidth) 1120 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum)); 1121 } 1122 1123 Instruction *TruncSrc; 1124 if (match(Op0, m_OneUse(m_Trunc(m_Instruction(TruncSrc)))) && 1125 match(TruncSrc, m_LShr(m_Value(X), m_APInt(C1)))) { 1126 unsigned SrcWidth = X->getType()->getScalarSizeInBits(); 1127 unsigned AmtSum = ShAmtC + C1->getZExtValue(); 1128 1129 // If the combined shift fits in the source width: 1130 // (trunc (X >>u C1)) >>u C --> and (trunc (X >>u (C1 + C)), MaskC 1131 // 1132 // If the first shift covers the number of bits truncated, then the 1133 // mask instruction is eliminated (and so the use check is relaxed). 1134 if (AmtSum < SrcWidth && 1135 (TruncSrc->hasOneUse() || C1->uge(SrcWidth - BitWidth))) { 1136 Value *SumShift = Builder.CreateLShr(X, AmtSum, "sum.shift"); 1137 Value *Trunc = Builder.CreateTrunc(SumShift, Ty, I.getName()); 1138 1139 // If the first shift does not cover the number of bits truncated, then 1140 // we require a mask to get rid of high bits in the result. 1141 APInt MaskC = APInt::getAllOnes(BitWidth).lshr(ShAmtC); 1142 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, MaskC)); 1143 } 1144 } 1145 1146 // Look for a "splat" mul pattern - it replicates bits across each half of 1147 // a value, so a right shift is just a mask of the low bits: 1148 // lshr i32 (mul nuw X, Pow2+1), 16 --> and X, Pow2-1 1149 // TODO: Generalize to allow more than just half-width shifts? 1150 const APInt *MulC; 1151 if (match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC))) && 1152 ShAmtC * 2 == BitWidth && (*MulC - 1).isPowerOf2() && 1153 MulC->logBase2() == ShAmtC) 1154 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *MulC - 2)); 1155 1156 // If the shifted-out value is known-zero, then this is an exact shift. 1157 if (!I.isExact() && 1158 MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmtC), 0, &I)) { 1159 I.setIsExact(); 1160 return &I; 1161 } 1162 } 1163 1164 // Transform (x << y) >> y to x & (-1 >> y) 1165 Value *X; 1166 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) { 1167 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); 1168 Value *Mask = Builder.CreateLShr(AllOnes, Op1); 1169 return BinaryOperator::CreateAnd(Mask, X); 1170 } 1171 1172 return nullptr; 1173 } 1174 1175 Instruction * 1176 InstCombinerImpl::foldVariableSignZeroExtensionOfVariableHighBitExtract( 1177 BinaryOperator &OldAShr) { 1178 assert(OldAShr.getOpcode() == Instruction::AShr && 1179 "Must be called with arithmetic right-shift instruction only."); 1180 1181 // Check that constant C is a splat of the element-wise bitwidth of V. 1182 auto BitWidthSplat = [](Constant *C, Value *V) { 1183 return match( 1184 C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1185 APInt(C->getType()->getScalarSizeInBits(), 1186 V->getType()->getScalarSizeInBits()))); 1187 }; 1188 1189 // It should look like variable-length sign-extension on the outside: 1190 // (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits) 1191 Value *NBits; 1192 Instruction *MaybeTrunc; 1193 Constant *C1, *C2; 1194 if (!match(&OldAShr, 1195 m_AShr(m_Shl(m_Instruction(MaybeTrunc), 1196 m_ZExtOrSelf(m_Sub(m_Constant(C1), 1197 m_ZExtOrSelf(m_Value(NBits))))), 1198 m_ZExtOrSelf(m_Sub(m_Constant(C2), 1199 m_ZExtOrSelf(m_Deferred(NBits)))))) || 1200 !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr)) 1201 return nullptr; 1202 1203 // There may or may not be a truncation after outer two shifts. 1204 Instruction *HighBitExtract; 1205 match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract))); 1206 bool HadTrunc = MaybeTrunc != HighBitExtract; 1207 1208 // And finally, the innermost part of the pattern must be a right-shift. 1209 Value *X, *NumLowBitsToSkip; 1210 if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip)))) 1211 return nullptr; 1212 1213 // Said right-shift must extract high NBits bits - C0 must be it's bitwidth. 1214 Constant *C0; 1215 if (!match(NumLowBitsToSkip, 1216 m_ZExtOrSelf( 1217 m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) || 1218 !BitWidthSplat(C0, HighBitExtract)) 1219 return nullptr; 1220 1221 // Since the NBits is identical for all shifts, if the outermost and 1222 // innermost shifts are identical, then outermost shifts are redundant. 1223 // If we had truncation, do keep it though. 1224 if (HighBitExtract->getOpcode() == OldAShr.getOpcode()) 1225 return replaceInstUsesWith(OldAShr, MaybeTrunc); 1226 1227 // Else, if there was a truncation, then we need to ensure that one 1228 // instruction will go away. 1229 if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 1230 return nullptr; 1231 1232 // Finally, bypass two innermost shifts, and perform the outermost shift on 1233 // the operands of the innermost shift. 1234 Instruction *NewAShr = 1235 BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip); 1236 NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness. 1237 if (!HadTrunc) 1238 return NewAShr; 1239 1240 Builder.Insert(NewAShr); 1241 return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType()); 1242 } 1243 1244 Instruction *InstCombinerImpl::visitAShr(BinaryOperator &I) { 1245 if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), 1246 SQ.getWithInstruction(&I))) 1247 return replaceInstUsesWith(I, V); 1248 1249 if (Instruction *X = foldVectorBinop(I)) 1250 return X; 1251 1252 if (Instruction *R = commonShiftTransforms(I)) 1253 return R; 1254 1255 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1256 Type *Ty = I.getType(); 1257 unsigned BitWidth = Ty->getScalarSizeInBits(); 1258 const APInt *ShAmtAPInt; 1259 if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) { 1260 unsigned ShAmt = ShAmtAPInt->getZExtValue(); 1261 1262 // If the shift amount equals the difference in width of the destination 1263 // and source scalar types: 1264 // ashr (shl (zext X), C), C --> sext X 1265 Value *X; 1266 if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) && 1267 ShAmt == BitWidth - X->getType()->getScalarSizeInBits()) 1268 return new SExtInst(X, Ty); 1269 1270 // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However, 1271 // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits. 1272 const APInt *ShOp1; 1273 if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) && 1274 ShOp1->ult(BitWidth)) { 1275 unsigned ShlAmt = ShOp1->getZExtValue(); 1276 if (ShlAmt < ShAmt) { 1277 // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1) 1278 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt); 1279 auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff); 1280 NewAShr->setIsExact(I.isExact()); 1281 return NewAShr; 1282 } 1283 if (ShlAmt > ShAmt) { 1284 // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2) 1285 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt); 1286 auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff); 1287 NewShl->setHasNoSignedWrap(true); 1288 return NewShl; 1289 } 1290 } 1291 1292 if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) && 1293 ShOp1->ult(BitWidth)) { 1294 unsigned AmtSum = ShAmt + ShOp1->getZExtValue(); 1295 // Oversized arithmetic shifts replicate the sign bit. 1296 AmtSum = std::min(AmtSum, BitWidth - 1); 1297 // (X >>s C1) >>s C2 --> X >>s (C1 + C2) 1298 return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum)); 1299 } 1300 1301 if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) && 1302 (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) { 1303 // ashr (sext X), C --> sext (ashr X, C') 1304 Type *SrcTy = X->getType(); 1305 ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1); 1306 Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt)); 1307 return new SExtInst(NewSh, Ty); 1308 } 1309 1310 if (ShAmt == BitWidth - 1) { 1311 // ashr i32 or(X,-X), 31 --> sext (X != 0) 1312 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X))))) 1313 return new SExtInst(Builder.CreateIsNotNull(X), Ty); 1314 1315 // ashr i32 (X -nsw Y), 31 --> sext (X < Y) 1316 Value *Y; 1317 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y))))) 1318 return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty); 1319 } 1320 1321 // If the shifted-out value is known-zero, then this is an exact shift. 1322 if (!I.isExact() && 1323 MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) { 1324 I.setIsExact(); 1325 return &I; 1326 } 1327 } 1328 1329 // Prefer `-(x & 1)` over `(x << (bitwidth(x)-1)) a>> (bitwidth(x)-1)` 1330 // as the pattern to splat the lowest bit. 1331 // FIXME: iff X is already masked, we don't need the one-use check. 1332 Value *X; 1333 if (match(Op1, m_SpecificIntAllowUndef(BitWidth - 1)) && 1334 match(Op0, m_OneUse(m_Shl(m_Value(X), 1335 m_SpecificIntAllowUndef(BitWidth - 1))))) { 1336 Constant *Mask = ConstantInt::get(Ty, 1); 1337 // Retain the knowledge about the ignored lanes. 1338 Mask = Constant::mergeUndefsWith( 1339 Constant::mergeUndefsWith(Mask, cast<Constant>(Op1)), 1340 cast<Constant>(cast<Instruction>(Op0)->getOperand(1))); 1341 X = Builder.CreateAnd(X, Mask); 1342 return BinaryOperator::CreateNeg(X); 1343 } 1344 1345 if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I)) 1346 return R; 1347 1348 // See if we can turn a signed shr into an unsigned shr. 1349 if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I)) 1350 return BinaryOperator::CreateLShr(Op0, Op1); 1351 1352 // ashr (xor %x, -1), %y --> xor (ashr %x, %y), -1 1353 if (match(Op0, m_OneUse(m_Not(m_Value(X))))) { 1354 // Note that we must drop 'exact'-ness of the shift! 1355 // Note that we can't keep undef's in -1 vector constant! 1356 auto *NewAShr = Builder.CreateAShr(X, Op1, Op0->getName() + ".not"); 1357 return BinaryOperator::CreateNot(NewAShr); 1358 } 1359 1360 return nullptr; 1361 } 1362