xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- InstCombineShifts.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitShl, visitLShr, and visitAShr functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/ConstantFolding.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/PatternMatch.h"
18 #include "llvm/Transforms/InstCombine/InstCombiner.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21 
22 #define DEBUG_TYPE "instcombine"
23 
24 bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1,
25                                         Value *ShAmt1) {
26   // We have two shift amounts from two different shifts. The types of those
27   // shift amounts may not match. If that's the case let's bailout now..
28   if (ShAmt0->getType() != ShAmt1->getType())
29     return false;
30 
31   // As input, we have the following pattern:
32   //   Sh0 (Sh1 X, Q), K
33   // We want to rewrite that as:
34   //   Sh x, (Q+K)  iff (Q+K) u< bitwidth(x)
35   // While we know that originally (Q+K) would not overflow
36   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
37   // shift amounts. so it may now overflow in smaller bitwidth.
38   // To ensure that does not happen, we need to ensure that the total maximal
39   // shift amount is still representable in that smaller bit width.
40   unsigned MaximalPossibleTotalShiftAmount =
41       (Sh0->getType()->getScalarSizeInBits() - 1) +
42       (Sh1->getType()->getScalarSizeInBits() - 1);
43   APInt MaximalRepresentableShiftAmount =
44       APInt::getAllOnes(ShAmt0->getType()->getScalarSizeInBits());
45   return MaximalRepresentableShiftAmount.uge(MaximalPossibleTotalShiftAmount);
46 }
47 
48 // Given pattern:
49 //   (x shiftopcode Q) shiftopcode K
50 // we should rewrite it as
51 //   x shiftopcode (Q+K)  iff (Q+K) u< bitwidth(x) and
52 //
53 // This is valid for any shift, but they must be identical, and we must be
54 // careful in case we have (zext(Q)+zext(K)) and look past extensions,
55 // (Q+K) must not overflow or else (Q+K) u< bitwidth(x) is bogus.
56 //
57 // AnalyzeForSignBitExtraction indicates that we will only analyze whether this
58 // pattern has any 2 right-shifts that sum to 1 less than original bit width.
59 Value *InstCombinerImpl::reassociateShiftAmtsOfTwoSameDirectionShifts(
60     BinaryOperator *Sh0, const SimplifyQuery &SQ,
61     bool AnalyzeForSignBitExtraction) {
62   // Look for a shift of some instruction, ignore zext of shift amount if any.
63   Instruction *Sh0Op0;
64   Value *ShAmt0;
65   if (!match(Sh0,
66              m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0)))))
67     return nullptr;
68 
69   // If there is a truncation between the two shifts, we must make note of it
70   // and look through it. The truncation imposes additional constraints on the
71   // transform.
72   Instruction *Sh1;
73   Value *Trunc = nullptr;
74   match(Sh0Op0,
75         m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)),
76                     m_Instruction(Sh1)));
77 
78   // Inner shift: (x shiftopcode ShAmt1)
79   // Like with other shift, ignore zext of shift amount if any.
80   Value *X, *ShAmt1;
81   if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1)))))
82     return nullptr;
83 
84   // Verify that it would be safe to try to add those two shift amounts.
85   if (!canTryToConstantAddTwoShiftAmounts(Sh0, ShAmt0, Sh1, ShAmt1))
86     return nullptr;
87 
88   // We are only looking for signbit extraction if we have two right shifts.
89   bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) &&
90                            match(Sh1, m_Shr(m_Value(), m_Value()));
91   // ... and if it's not two right-shifts, we know the answer already.
92   if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
93     return nullptr;
94 
95   // The shift opcodes must be identical, unless we are just checking whether
96   // this pattern can be interpreted as a sign-bit-extraction.
97   Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode();
98   bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode();
99   if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
100     return nullptr;
101 
102   // If we saw truncation, we'll need to produce extra instruction,
103   // and for that one of the operands of the shift must be one-use,
104   // unless of course we don't actually plan to produce any instructions here.
105   if (Trunc && !AnalyzeForSignBitExtraction &&
106       !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
107     return nullptr;
108 
109   // Can we fold (ShAmt0+ShAmt1) ?
110   auto *NewShAmt = dyn_cast_or_null<Constant>(
111       SimplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false,
112                       SQ.getWithInstruction(Sh0)));
113   if (!NewShAmt)
114     return nullptr; // Did not simplify.
115   unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
116   unsigned XBitWidth = X->getType()->getScalarSizeInBits();
117   // Is the new shift amount smaller than the bit width of inner/new shift?
118   if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
119                                           APInt(NewShAmtBitWidth, XBitWidth))))
120     return nullptr; // FIXME: could perform constant-folding.
121 
122   // If there was a truncation, and we have a right-shift, we can only fold if
123   // we are left with the original sign bit. Likewise, if we were just checking
124   // that this is a sighbit extraction, this is the place to check it.
125   // FIXME: zero shift amount is also legal here, but we can't *easily* check
126   // more than one predicate so it's not really worth it.
127   if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
128     // If it's not a sign bit extraction, then we're done.
129     if (!match(NewShAmt,
130                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
131                                   APInt(NewShAmtBitWidth, XBitWidth - 1))))
132       return nullptr;
133     // If it is, and that was the question, return the base value.
134     if (AnalyzeForSignBitExtraction)
135       return X;
136   }
137 
138   assert(IdenticalShOpcodes && "Should not get here with different shifts.");
139 
140   // All good, we can do this fold.
141   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType());
142 
143   BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt);
144 
145   // The flags can only be propagated if there wasn't a trunc.
146   if (!Trunc) {
147     // If the pattern did not involve trunc, and both of the original shifts
148     // had the same flag set, preserve the flag.
149     if (ShiftOpcode == Instruction::BinaryOps::Shl) {
150       NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() &&
151                                      Sh1->hasNoUnsignedWrap());
152       NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() &&
153                                    Sh1->hasNoSignedWrap());
154     } else {
155       NewShift->setIsExact(Sh0->isExact() && Sh1->isExact());
156     }
157   }
158 
159   Instruction *Ret = NewShift;
160   if (Trunc) {
161     Builder.Insert(NewShift);
162     Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType());
163   }
164 
165   return Ret;
166 }
167 
168 // If we have some pattern that leaves only some low bits set, and then performs
169 // left-shift of those bits, if none of the bits that are left after the final
170 // shift are modified by the mask, we can omit the mask.
171 //
172 // There are many variants to this pattern:
173 //   a)  (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt
174 //   b)  (x & (~(-1 << MaskShAmt))) << ShiftShAmt
175 //   c)  (x & (-1 l>> MaskShAmt)) << ShiftShAmt
176 //   d)  (x & ((-1 << MaskShAmt) l>> MaskShAmt)) << ShiftShAmt
177 //   e)  ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt
178 //   f)  ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt
179 // All these patterns can be simplified to just:
180 //   x << ShiftShAmt
181 // iff:
182 //   a,b)     (MaskShAmt+ShiftShAmt) u>= bitwidth(x)
183 //   c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt)
184 static Instruction *
185 dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift,
186                                      const SimplifyQuery &Q,
187                                      InstCombiner::BuilderTy &Builder) {
188   assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl &&
189          "The input must be 'shl'!");
190 
191   Value *Masked, *ShiftShAmt;
192   match(OuterShift,
193         m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt))));
194 
195   // *If* there is a truncation between an outer shift and a possibly-mask,
196   // then said truncation *must* be one-use, else we can't perform the fold.
197   Value *Trunc;
198   if (match(Masked, m_CombineAnd(m_Trunc(m_Value(Masked)), m_Value(Trunc))) &&
199       !Trunc->hasOneUse())
200     return nullptr;
201 
202   Type *NarrowestTy = OuterShift->getType();
203   Type *WidestTy = Masked->getType();
204   bool HadTrunc = WidestTy != NarrowestTy;
205 
206   // The mask must be computed in a type twice as wide to ensure
207   // that no bits are lost if the sum-of-shifts is wider than the base type.
208   Type *ExtendedTy = WidestTy->getExtendedType();
209 
210   Value *MaskShAmt;
211 
212   // ((1 << MaskShAmt) - 1)
213   auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes());
214   // (~(-1 << maskNbits))
215   auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes());
216   // (-1 l>> MaskShAmt)
217   auto MaskC = m_LShr(m_AllOnes(), m_Value(MaskShAmt));
218   // ((-1 << MaskShAmt) l>> MaskShAmt)
219   auto MaskD =
220       m_LShr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt));
221 
222   Value *X;
223   Constant *NewMask;
224 
225   if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) {
226     // Peek through an optional zext of the shift amount.
227     match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
228 
229     // Verify that it would be safe to try to add those two shift amounts.
230     if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
231                                             MaskShAmt))
232       return nullptr;
233 
234     // Can we simplify (MaskShAmt+ShiftShAmt) ?
235     auto *SumOfShAmts = dyn_cast_or_null<Constant>(SimplifyAddInst(
236         MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
237     if (!SumOfShAmts)
238       return nullptr; // Did not simplify.
239     // In this pattern SumOfShAmts correlates with the number of low bits
240     // that shall remain in the root value (OuterShift).
241 
242     // An extend of an undef value becomes zero because the high bits are never
243     // completely unknown. Replace the `undef` shift amounts with final
244     // shift bitwidth to ensure that the value remains undef when creating the
245     // subsequent shift op.
246     SumOfShAmts = Constant::replaceUndefsWith(
247         SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(),
248                                       ExtendedTy->getScalarSizeInBits()));
249     auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy);
250     // And compute the mask as usual: ~(-1 << (SumOfShAmts))
251     auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
252     auto *ExtendedInvertedMask =
253         ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts);
254     NewMask = ConstantExpr::getNot(ExtendedInvertedMask);
255   } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) ||
256              match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)),
257                                  m_Deferred(MaskShAmt)))) {
258     // Peek through an optional zext of the shift amount.
259     match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
260 
261     // Verify that it would be safe to try to add those two shift amounts.
262     if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
263                                             MaskShAmt))
264       return nullptr;
265 
266     // Can we simplify (ShiftShAmt-MaskShAmt) ?
267     auto *ShAmtsDiff = dyn_cast_or_null<Constant>(SimplifySubInst(
268         ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
269     if (!ShAmtsDiff)
270       return nullptr; // Did not simplify.
271     // In this pattern ShAmtsDiff correlates with the number of high bits that
272     // shall be unset in the root value (OuterShift).
273 
274     // An extend of an undef value becomes zero because the high bits are never
275     // completely unknown. Replace the `undef` shift amounts with negated
276     // bitwidth of innermost shift to ensure that the value remains undef when
277     // creating the subsequent shift op.
278     unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits();
279     ShAmtsDiff = Constant::replaceUndefsWith(
280         ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(),
281                                      -WidestTyBitWidth));
282     auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt(
283         ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(),
284                                               WidestTyBitWidth,
285                                               /*isSigned=*/false),
286                              ShAmtsDiff),
287         ExtendedTy);
288     // And compute the mask as usual: (-1 l>> (NumHighBitsToClear))
289     auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
290     NewMask =
291         ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear);
292   } else
293     return nullptr; // Don't know anything about this pattern.
294 
295   NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy);
296 
297   // Does this mask has any unset bits? If not then we can just not apply it.
298   bool NeedMask = !match(NewMask, m_AllOnes());
299 
300   // If we need to apply a mask, there are several more restrictions we have.
301   if (NeedMask) {
302     // The old masking instruction must go away.
303     if (!Masked->hasOneUse())
304       return nullptr;
305     // The original "masking" instruction must not have been`ashr`.
306     if (match(Masked, m_AShr(m_Value(), m_Value())))
307       return nullptr;
308   }
309 
310   // If we need to apply truncation, let's do it first, since we can.
311   // We have already ensured that the old truncation will go away.
312   if (HadTrunc)
313     X = Builder.CreateTrunc(X, NarrowestTy);
314 
315   // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits.
316   // We didn't change the Type of this outermost shift, so we can just do it.
317   auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X,
318                                           OuterShift->getOperand(1));
319   if (!NeedMask)
320     return NewShift;
321 
322   Builder.Insert(NewShift);
323   return BinaryOperator::Create(Instruction::And, NewShift, NewMask);
324 }
325 
326 /// If we have a shift-by-constant of a bitwise logic op that itself has a
327 /// shift-by-constant operand with identical opcode, we may be able to convert
328 /// that into 2 independent shifts followed by the logic op. This eliminates a
329 /// a use of an intermediate value (reduces dependency chain).
330 static Instruction *foldShiftOfShiftedLogic(BinaryOperator &I,
331                                             InstCombiner::BuilderTy &Builder) {
332   assert(I.isShift() && "Expected a shift as input");
333   auto *LogicInst = dyn_cast<BinaryOperator>(I.getOperand(0));
334   if (!LogicInst || !LogicInst->isBitwiseLogicOp() || !LogicInst->hasOneUse())
335     return nullptr;
336 
337   Constant *C0, *C1;
338   if (!match(I.getOperand(1), m_Constant(C1)))
339     return nullptr;
340 
341   Instruction::BinaryOps ShiftOpcode = I.getOpcode();
342   Type *Ty = I.getType();
343 
344   // Find a matching one-use shift by constant. The fold is not valid if the sum
345   // of the shift values equals or exceeds bitwidth.
346   // TODO: Remove the one-use check if the other logic operand (Y) is constant.
347   Value *X, *Y;
348   auto matchFirstShift = [&](Value *V) {
349     APInt Threshold(Ty->getScalarSizeInBits(), Ty->getScalarSizeInBits());
350     return match(V, m_BinOp(ShiftOpcode, m_Value(), m_Value())) &&
351            match(V, m_OneUse(m_Shift(m_Value(X), m_Constant(C0)))) &&
352            match(ConstantExpr::getAdd(C0, C1),
353                  m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
354   };
355 
356   // Logic ops are commutative, so check each operand for a match.
357   if (matchFirstShift(LogicInst->getOperand(0)))
358     Y = LogicInst->getOperand(1);
359   else if (matchFirstShift(LogicInst->getOperand(1)))
360     Y = LogicInst->getOperand(0);
361   else
362     return nullptr;
363 
364   // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
365   Constant *ShiftSumC = ConstantExpr::getAdd(C0, C1);
366   Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC);
367   Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, I.getOperand(1));
368   return BinaryOperator::Create(LogicInst->getOpcode(), NewShift1, NewShift2);
369 }
370 
371 Instruction *InstCombinerImpl::commonShiftTransforms(BinaryOperator &I) {
372   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
373   assert(Op0->getType() == Op1->getType());
374 
375   // If the shift amount is a one-use `sext`, we can demote it to `zext`.
376   Value *Y;
377   if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) {
378     Value *NewExt = Builder.CreateZExt(Y, I.getType(), Op1->getName());
379     return BinaryOperator::Create(I.getOpcode(), Op0, NewExt);
380   }
381 
382   // See if we can fold away this shift.
383   if (SimplifyDemandedInstructionBits(I))
384     return &I;
385 
386   // Try to fold constant and into select arguments.
387   if (isa<Constant>(Op0))
388     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
389       if (Instruction *R = FoldOpIntoSelect(I, SI))
390         return R;
391 
392   if (Constant *CUI = dyn_cast<Constant>(Op1))
393     if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
394       return Res;
395 
396   if (auto *NewShift = cast_or_null<Instruction>(
397           reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ)))
398     return NewShift;
399 
400   // (C1 shift (A add C2)) -> (C1 shift C2) shift A)
401   // iff A and C2 are both positive.
402   Value *A;
403   Constant *C;
404   if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C))))
405     if (isKnownNonNegative(A, DL, 0, &AC, &I, &DT) &&
406         isKnownNonNegative(C, DL, 0, &AC, &I, &DT))
407       return BinaryOperator::Create(
408           I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), Op0, C), A);
409 
410   // X shift (A srem C) -> X shift (A and (C - 1)) iff C is a power of 2.
411   // Because shifts by negative values (which could occur if A were negative)
412   // are undefined.
413   if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Constant(C))) &&
414       match(C, m_Power2())) {
415     // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
416     // demand the sign bit (and many others) here??
417     Constant *Mask = ConstantExpr::getSub(C, ConstantInt::get(I.getType(), 1));
418     Value *Rem = Builder.CreateAnd(A, Mask, Op1->getName());
419     return replaceOperand(I, 1, Rem);
420   }
421 
422   if (Instruction *Logic = foldShiftOfShiftedLogic(I, Builder))
423     return Logic;
424 
425   return nullptr;
426 }
427 
428 /// Return true if we can simplify two logical (either left or right) shifts
429 /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
430 static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
431                                     Instruction *InnerShift,
432                                     InstCombinerImpl &IC, Instruction *CxtI) {
433   assert(InnerShift->isLogicalShift() && "Unexpected instruction type");
434 
435   // We need constant scalar or constant splat shifts.
436   const APInt *InnerShiftConst;
437   if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
438     return false;
439 
440   // Two logical shifts in the same direction:
441   // shl (shl X, C1), C2 -->  shl X, C1 + C2
442   // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
443   bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
444   if (IsInnerShl == IsOuterShl)
445     return true;
446 
447   // Equal shift amounts in opposite directions become bitwise 'and':
448   // lshr (shl X, C), C --> and X, C'
449   // shl (lshr X, C), C --> and X, C'
450   if (*InnerShiftConst == OuterShAmt)
451     return true;
452 
453   // If the 2nd shift is bigger than the 1st, we can fold:
454   // lshr (shl X, C1), C2 -->  and (shl X, C1 - C2), C3
455   // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
456   // but it isn't profitable unless we know the and'd out bits are already zero.
457   // Also, check that the inner shift is valid (less than the type width) or
458   // we'll crash trying to produce the bit mask for the 'and'.
459   unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
460   if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) {
461     unsigned InnerShAmt = InnerShiftConst->getZExtValue();
462     unsigned MaskShift =
463         IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
464     APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
465     if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
466       return true;
467   }
468 
469   return false;
470 }
471 
472 /// See if we can compute the specified value, but shifted logically to the left
473 /// or right by some number of bits. This should return true if the expression
474 /// can be computed for the same cost as the current expression tree. This is
475 /// used to eliminate extraneous shifting from things like:
476 ///      %C = shl i128 %A, 64
477 ///      %D = shl i128 %B, 96
478 ///      %E = or i128 %C, %D
479 ///      %F = lshr i128 %E, 64
480 /// where the client will ask if E can be computed shifted right by 64-bits. If
481 /// this succeeds, getShiftedValue() will be called to produce the value.
482 static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
483                                InstCombinerImpl &IC, Instruction *CxtI) {
484   // We can always evaluate constants shifted.
485   if (isa<Constant>(V))
486     return true;
487 
488   Instruction *I = dyn_cast<Instruction>(V);
489   if (!I) return false;
490 
491   // We can't mutate something that has multiple uses: doing so would
492   // require duplicating the instruction in general, which isn't profitable.
493   if (!I->hasOneUse()) return false;
494 
495   switch (I->getOpcode()) {
496   default: return false;
497   case Instruction::And:
498   case Instruction::Or:
499   case Instruction::Xor:
500     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
501     return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
502            canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);
503 
504   case Instruction::Shl:
505   case Instruction::LShr:
506     return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);
507 
508   case Instruction::Select: {
509     SelectInst *SI = cast<SelectInst>(I);
510     Value *TrueVal = SI->getTrueValue();
511     Value *FalseVal = SI->getFalseValue();
512     return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
513            canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
514   }
515   case Instruction::PHI: {
516     // We can change a phi if we can change all operands.  Note that we never
517     // get into trouble with cyclic PHIs here because we only consider
518     // instructions with a single use.
519     PHINode *PN = cast<PHINode>(I);
520     for (Value *IncValue : PN->incoming_values())
521       if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
522         return false;
523     return true;
524   }
525   }
526 }
527 
528 /// Fold OuterShift (InnerShift X, C1), C2.
529 /// See canEvaluateShiftedShift() for the constraints on these instructions.
530 static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
531                                bool IsOuterShl,
532                                InstCombiner::BuilderTy &Builder) {
533   bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
534   Type *ShType = InnerShift->getType();
535   unsigned TypeWidth = ShType->getScalarSizeInBits();
536 
537   // We only accept shifts-by-a-constant in canEvaluateShifted().
538   const APInt *C1;
539   match(InnerShift->getOperand(1), m_APInt(C1));
540   unsigned InnerShAmt = C1->getZExtValue();
541 
542   // Change the shift amount and clear the appropriate IR flags.
543   auto NewInnerShift = [&](unsigned ShAmt) {
544     InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
545     if (IsInnerShl) {
546       InnerShift->setHasNoUnsignedWrap(false);
547       InnerShift->setHasNoSignedWrap(false);
548     } else {
549       InnerShift->setIsExact(false);
550     }
551     return InnerShift;
552   };
553 
554   // Two logical shifts in the same direction:
555   // shl (shl X, C1), C2 -->  shl X, C1 + C2
556   // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
557   if (IsInnerShl == IsOuterShl) {
558     // If this is an oversized composite shift, then unsigned shifts get 0.
559     if (InnerShAmt + OuterShAmt >= TypeWidth)
560       return Constant::getNullValue(ShType);
561 
562     return NewInnerShift(InnerShAmt + OuterShAmt);
563   }
564 
565   // Equal shift amounts in opposite directions become bitwise 'and':
566   // lshr (shl X, C), C --> and X, C'
567   // shl (lshr X, C), C --> and X, C'
568   if (InnerShAmt == OuterShAmt) {
569     APInt Mask = IsInnerShl
570                      ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
571                      : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
572     Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
573                                    ConstantInt::get(ShType, Mask));
574     if (auto *AndI = dyn_cast<Instruction>(And)) {
575       AndI->moveBefore(InnerShift);
576       AndI->takeName(InnerShift);
577     }
578     return And;
579   }
580 
581   assert(InnerShAmt > OuterShAmt &&
582          "Unexpected opposite direction logical shift pair");
583 
584   // In general, we would need an 'and' for this transform, but
585   // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
586   // lshr (shl X, C1), C2 -->  shl X, C1 - C2
587   // shl (lshr X, C1), C2 --> lshr X, C1 - C2
588   return NewInnerShift(InnerShAmt - OuterShAmt);
589 }
590 
591 /// When canEvaluateShifted() returns true for an expression, this function
592 /// inserts the new computation that produces the shifted value.
593 static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
594                               InstCombinerImpl &IC, const DataLayout &DL) {
595   // We can always evaluate constants shifted.
596   if (Constant *C = dyn_cast<Constant>(V)) {
597     if (isLeftShift)
598       return IC.Builder.CreateShl(C, NumBits);
599     else
600       return IC.Builder.CreateLShr(C, NumBits);
601   }
602 
603   Instruction *I = cast<Instruction>(V);
604   IC.addToWorklist(I);
605 
606   switch (I->getOpcode()) {
607   default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
608   case Instruction::And:
609   case Instruction::Or:
610   case Instruction::Xor:
611     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
612     I->setOperand(
613         0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
614     I->setOperand(
615         1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
616     return I;
617 
618   case Instruction::Shl:
619   case Instruction::LShr:
620     return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
621                             IC.Builder);
622 
623   case Instruction::Select:
624     I->setOperand(
625         1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
626     I->setOperand(
627         2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
628     return I;
629   case Instruction::PHI: {
630     // We can change a phi if we can change all operands.  Note that we never
631     // get into trouble with cyclic PHIs here because we only consider
632     // instructions with a single use.
633     PHINode *PN = cast<PHINode>(I);
634     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
635       PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits,
636                                               isLeftShift, IC, DL));
637     return PN;
638   }
639   }
640 }
641 
642 // If this is a bitwise operator or add with a constant RHS we might be able
643 // to pull it through a shift.
644 static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift,
645                                          BinaryOperator *BO) {
646   switch (BO->getOpcode()) {
647   default:
648     return false; // Do not perform transform!
649   case Instruction::Add:
650     return Shift.getOpcode() == Instruction::Shl;
651   case Instruction::Or:
652   case Instruction::And:
653     return true;
654   case Instruction::Xor:
655     // Do not change a 'not' of logical shift because that would create a normal
656     // 'xor'. The 'not' is likely better for analysis, SCEV, and codegen.
657     return !(Shift.isLogicalShift() && match(BO, m_Not(m_Value())));
658   }
659 }
660 
661 Instruction *InstCombinerImpl::FoldShiftByConstant(Value *Op0, Constant *Op1,
662                                                    BinaryOperator &I) {
663   const APInt *Op1C;
664   if (!match(Op1, m_APInt(Op1C)))
665     return nullptr;
666 
667   // See if we can propagate this shift into the input, this covers the trivial
668   // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
669   bool IsLeftShift = I.getOpcode() == Instruction::Shl;
670   if (I.getOpcode() != Instruction::AShr &&
671       canEvaluateShifted(Op0, Op1C->getZExtValue(), IsLeftShift, *this, &I)) {
672     LLVM_DEBUG(
673         dbgs() << "ICE: GetShiftedValue propagating shift through expression"
674                   " to eliminate shift:\n  IN: "
675                << *Op0 << "\n  SH: " << I << "\n");
676 
677     return replaceInstUsesWith(
678         I, getShiftedValue(Op0, Op1C->getZExtValue(), IsLeftShift, *this, DL));
679   }
680 
681   // See if we can simplify any instructions used by the instruction whose sole
682   // purpose is to compute bits we don't care about.
683   Type *Ty = I.getType();
684   unsigned TypeBits = Ty->getScalarSizeInBits();
685   assert(!Op1C->uge(TypeBits) &&
686          "Shift over the type width should have been removed already");
687   (void)TypeBits;
688 
689   if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I))
690     return FoldedShift;
691 
692   if (!Op0->hasOneUse())
693     return nullptr;
694 
695   if (auto *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
696     // If the operand is a bitwise operator with a constant RHS, and the
697     // shift is the only use, we can pull it out of the shift.
698     const APInt *Op0C;
699     if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
700       if (canShiftBinOpWithConstantRHS(I, Op0BO)) {
701         Constant *NewRHS = ConstantExpr::get(
702             I.getOpcode(), cast<Constant>(Op0BO->getOperand(1)), Op1);
703 
704         Value *NewShift =
705             Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
706         NewShift->takeName(Op0BO);
707 
708         return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, NewRHS);
709       }
710     }
711   }
712 
713   // If we have a select that conditionally executes some binary operator,
714   // see if we can pull it the select and operator through the shift.
715   //
716   // For example, turning:
717   //   shl (select C, (add X, C1), X), C2
718   // Into:
719   //   Y = shl X, C2
720   //   select C, (add Y, C1 << C2), Y
721   Value *Cond;
722   BinaryOperator *TBO;
723   Value *FalseVal;
724   if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)),
725                           m_Value(FalseVal)))) {
726     const APInt *C;
727     if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal &&
728         match(TBO->getOperand(1), m_APInt(C)) &&
729         canShiftBinOpWithConstantRHS(I, TBO)) {
730       Constant *NewRHS = ConstantExpr::get(
731           I.getOpcode(), cast<Constant>(TBO->getOperand(1)), Op1);
732 
733       Value *NewShift = Builder.CreateBinOp(I.getOpcode(), FalseVal, Op1);
734       Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift, NewRHS);
735       return SelectInst::Create(Cond, NewOp, NewShift);
736     }
737   }
738 
739   BinaryOperator *FBO;
740   Value *TrueVal;
741   if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal),
742                           m_OneUse(m_BinOp(FBO))))) {
743     const APInt *C;
744     if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal &&
745         match(FBO->getOperand(1), m_APInt(C)) &&
746         canShiftBinOpWithConstantRHS(I, FBO)) {
747       Constant *NewRHS = ConstantExpr::get(
748           I.getOpcode(), cast<Constant>(FBO->getOperand(1)), Op1);
749 
750       Value *NewShift = Builder.CreateBinOp(I.getOpcode(), TrueVal, Op1);
751       Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift, NewRHS);
752       return SelectInst::Create(Cond, NewShift, NewOp);
753     }
754   }
755 
756   return nullptr;
757 }
758 
759 Instruction *InstCombinerImpl::visitShl(BinaryOperator &I) {
760   const SimplifyQuery Q = SQ.getWithInstruction(&I);
761 
762   if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
763                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q))
764     return replaceInstUsesWith(I, V);
765 
766   if (Instruction *X = foldVectorBinop(I))
767     return X;
768 
769   if (Instruction *V = commonShiftTransforms(I))
770     return V;
771 
772   if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder))
773     return V;
774 
775   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
776   Type *Ty = I.getType();
777   unsigned BitWidth = Ty->getScalarSizeInBits();
778 
779   const APInt *C;
780   if (match(Op1, m_APInt(C))) {
781     unsigned ShAmtC = C->getZExtValue();
782 
783     // shl (zext X), C --> zext (shl X, C)
784     // This is only valid if X would have zeros shifted out.
785     Value *X;
786     if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
787       unsigned SrcWidth = X->getType()->getScalarSizeInBits();
788       if (ShAmtC < SrcWidth &&
789           MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmtC), 0, &I))
790         return new ZExtInst(Builder.CreateShl(X, ShAmtC), Ty);
791     }
792 
793     // (X >> C) << C --> X & (-1 << C)
794     if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
795       APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
796       return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
797     }
798 
799     const APInt *C1;
800     if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(C1)))) &&
801         C1->ult(BitWidth)) {
802       unsigned ShrAmt = C1->getZExtValue();
803       if (ShrAmt < ShAmtC) {
804         // If C1 < C: (X >>?,exact C1) << C --> X << (C - C1)
805         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
806         auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
807         NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
808         NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
809         return NewShl;
810       }
811       if (ShrAmt > ShAmtC) {
812         // If C1 > C: (X >>?exact C1) << C --> X >>?exact (C1 - C)
813         Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
814         auto *NewShr = BinaryOperator::Create(
815             cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
816         NewShr->setIsExact(true);
817         return NewShr;
818       }
819     }
820 
821     if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_APInt(C1)))) &&
822         C1->ult(BitWidth)) {
823       unsigned ShrAmt = C1->getZExtValue();
824       if (ShrAmt < ShAmtC) {
825         // If C1 < C: (X >>? C1) << C --> (X << (C - C1)) & (-1 << C)
826         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
827         auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
828         NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
829         NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
830         Builder.Insert(NewShl);
831         APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
832         return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
833       }
834       if (ShrAmt > ShAmtC) {
835         // If C1 > C: (X >>? C1) << C --> (X >>? (C1 - C)) & (-1 << C)
836         Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
837         auto *OldShr = cast<BinaryOperator>(Op0);
838         auto *NewShr =
839             BinaryOperator::Create(OldShr->getOpcode(), X, ShiftDiff);
840         NewShr->setIsExact(OldShr->isExact());
841         Builder.Insert(NewShr);
842         APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
843         return BinaryOperator::CreateAnd(NewShr, ConstantInt::get(Ty, Mask));
844       }
845     }
846 
847     // Similar to above, but look through an intermediate trunc instruction.
848     BinaryOperator *Shr;
849     if (match(Op0, m_OneUse(m_Trunc(m_OneUse(m_BinOp(Shr))))) &&
850         match(Shr, m_Shr(m_Value(X), m_APInt(C1)))) {
851       // The larger shift direction survives through the transform.
852       unsigned ShrAmtC = C1->getZExtValue();
853       unsigned ShDiff = ShrAmtC > ShAmtC ? ShrAmtC - ShAmtC : ShAmtC - ShrAmtC;
854       Constant *ShiftDiffC = ConstantInt::get(X->getType(), ShDiff);
855       auto ShiftOpc = ShrAmtC > ShAmtC ? Shr->getOpcode() : Instruction::Shl;
856 
857       // If C1 > C:
858       // (trunc (X >> C1)) << C --> (trunc (X >> (C1 - C))) && (-1 << C)
859       // If C > C1:
860       // (trunc (X >> C1)) << C --> (trunc (X << (C - C1))) && (-1 << C)
861       Value *NewShift = Builder.CreateBinOp(ShiftOpc, X, ShiftDiffC, "sh.diff");
862       Value *Trunc = Builder.CreateTrunc(NewShift, Ty, "tr.sh.diff");
863       APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
864       return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, Mask));
865     }
866 
867     if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) {
868       unsigned AmtSum = ShAmtC + C1->getZExtValue();
869       // Oversized shifts are simplified to zero in InstSimplify.
870       if (AmtSum < BitWidth)
871         // (X << C1) << C2 --> X << (C1 + C2)
872         return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum));
873     }
874 
875     // If we have an opposite shift by the same amount, we may be able to
876     // reorder binops and shifts to eliminate math/logic.
877     auto isSuitableBinOpcode = [](Instruction::BinaryOps BinOpcode) {
878       switch (BinOpcode) {
879       default:
880         return false;
881       case Instruction::Add:
882       case Instruction::And:
883       case Instruction::Or:
884       case Instruction::Xor:
885       case Instruction::Sub:
886         // NOTE: Sub is not commutable and the tranforms below may not be valid
887         //       when the shift-right is operand 1 (RHS) of the sub.
888         return true;
889       }
890     };
891     BinaryOperator *Op0BO;
892     if (match(Op0, m_OneUse(m_BinOp(Op0BO))) &&
893         isSuitableBinOpcode(Op0BO->getOpcode())) {
894       // Commute so shift-right is on LHS of the binop.
895       // (Y bop (X >> C)) << C         ->  ((X >> C) bop Y) << C
896       // (Y bop ((X >> C) & CC)) << C  ->  (((X >> C) & CC) bop Y) << C
897       Value *Shr = Op0BO->getOperand(0);
898       Value *Y = Op0BO->getOperand(1);
899       Value *X;
900       const APInt *CC;
901       if (Op0BO->isCommutative() && Y->hasOneUse() &&
902           (match(Y, m_Shr(m_Value(), m_Specific(Op1))) ||
903            match(Y, m_And(m_OneUse(m_Shr(m_Value(), m_Specific(Op1))),
904                           m_APInt(CC)))))
905         std::swap(Shr, Y);
906 
907       // ((X >> C) bop Y) << C  ->  (X bop (Y << C)) & (~0 << C)
908       if (match(Shr, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
909         // Y << C
910         Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName());
911         // (X bop (Y << C))
912         Value *B =
913             Builder.CreateBinOp(Op0BO->getOpcode(), X, YS, Shr->getName());
914         unsigned Op1Val = C->getLimitedValue(BitWidth);
915         APInt Bits = APInt::getHighBitsSet(BitWidth, BitWidth - Op1Val);
916         Constant *Mask = ConstantInt::get(Ty, Bits);
917         return BinaryOperator::CreateAnd(B, Mask);
918       }
919 
920       // (((X >> C) & CC) bop Y) << C  ->  (X & (CC << C)) bop (Y << C)
921       if (match(Shr,
922                 m_OneUse(m_And(m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))),
923                                m_APInt(CC))))) {
924         // Y << C
925         Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName());
926         // X & (CC << C)
927         Value *M = Builder.CreateAnd(X, ConstantInt::get(Ty, CC->shl(*C)),
928                                      X->getName() + ".mask");
929         return BinaryOperator::Create(Op0BO->getOpcode(), M, YS);
930       }
931     }
932 
933     // (C1 - X) << C --> (C1 << C) - (X << C)
934     if (match(Op0, m_OneUse(m_Sub(m_APInt(C1), m_Value(X))))) {
935       Constant *NewLHS = ConstantInt::get(Ty, C1->shl(*C));
936       Value *NewShift = Builder.CreateShl(X, Op1);
937       return BinaryOperator::CreateSub(NewLHS, NewShift);
938     }
939 
940     // If the shifted-out value is known-zero, then this is a NUW shift.
941     if (!I.hasNoUnsignedWrap() &&
942         MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmtC), 0,
943                           &I)) {
944       I.setHasNoUnsignedWrap();
945       return &I;
946     }
947 
948     // If the shifted-out value is all signbits, then this is a NSW shift.
949     if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmtC) {
950       I.setHasNoSignedWrap();
951       return &I;
952     }
953   }
954 
955   // Transform  (x >> y) << y  to  x & (-1 << y)
956   // Valid for any type of right-shift.
957   Value *X;
958   if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
959     Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
960     Value *Mask = Builder.CreateShl(AllOnes, Op1);
961     return BinaryOperator::CreateAnd(Mask, X);
962   }
963 
964   Constant *C1;
965   if (match(Op1, m_Constant(C1))) {
966     Constant *C2;
967     Value *X;
968     // (C2 << X) << C1 --> (C2 << C1) << X
969     if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X)))))
970       return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X);
971 
972     // (X * C2) << C1 --> X * (C2 << C1)
973     if (match(Op0, m_Mul(m_Value(X), m_Constant(C2))))
974       return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1));
975 
976     // shl (zext i1 X), C1 --> select (X, 1 << C1, 0)
977     if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
978       auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1);
979       return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
980     }
981   }
982 
983   // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1
984   if (match(Op0, m_One()) &&
985       match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X))))
986     return BinaryOperator::CreateLShr(
987         ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X);
988 
989   return nullptr;
990 }
991 
992 Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) {
993   if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
994                                   SQ.getWithInstruction(&I)))
995     return replaceInstUsesWith(I, V);
996 
997   if (Instruction *X = foldVectorBinop(I))
998     return X;
999 
1000   if (Instruction *R = commonShiftTransforms(I))
1001     return R;
1002 
1003   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1004   Type *Ty = I.getType();
1005   const APInt *C;
1006   if (match(Op1, m_APInt(C))) {
1007     unsigned ShAmtC = C->getZExtValue();
1008     unsigned BitWidth = Ty->getScalarSizeInBits();
1009     auto *II = dyn_cast<IntrinsicInst>(Op0);
1010     if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmtC &&
1011         (II->getIntrinsicID() == Intrinsic::ctlz ||
1012          II->getIntrinsicID() == Intrinsic::cttz ||
1013          II->getIntrinsicID() == Intrinsic::ctpop)) {
1014       // ctlz.i32(x)>>5  --> zext(x == 0)
1015       // cttz.i32(x)>>5  --> zext(x == 0)
1016       // ctpop.i32(x)>>5 --> zext(x == -1)
1017       bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
1018       Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
1019       Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
1020       return new ZExtInst(Cmp, Ty);
1021     }
1022 
1023     Value *X;
1024     const APInt *C1;
1025     if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) {
1026       if (C1->ult(ShAmtC)) {
1027         unsigned ShlAmtC = C1->getZExtValue();
1028         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShlAmtC);
1029         if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1030           // (X <<nuw C1) >>u C --> X >>u (C - C1)
1031           auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
1032           NewLShr->setIsExact(I.isExact());
1033           return NewLShr;
1034         }
1035         // (X << C1) >>u C  --> (X >>u (C - C1)) & (-1 >> C)
1036         Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
1037         APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1038         return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
1039       }
1040       if (C1->ugt(ShAmtC)) {
1041         unsigned ShlAmtC = C1->getZExtValue();
1042         Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmtC - ShAmtC);
1043         if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1044           // (X <<nuw C1) >>u C --> X <<nuw (C1 - C)
1045           auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
1046           NewShl->setHasNoUnsignedWrap(true);
1047           return NewShl;
1048         }
1049         // (X << C1) >>u C  --> X << (C1 - C) & (-1 >> C)
1050         Value *NewShl = Builder.CreateShl(X, ShiftDiff);
1051         APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1052         return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
1053       }
1054       assert(*C1 == ShAmtC);
1055       // (X << C) >>u C --> X & (-1 >>u C)
1056       APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1057       return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
1058     }
1059 
1060     if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
1061         (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
1062       assert(ShAmtC < X->getType()->getScalarSizeInBits() &&
1063              "Big shift not simplified to zero?");
1064       // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
1065       Value *NewLShr = Builder.CreateLShr(X, ShAmtC);
1066       return new ZExtInst(NewLShr, Ty);
1067     }
1068 
1069     if (match(Op0, m_SExt(m_Value(X)))) {
1070       unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
1071       // lshr (sext i1 X to iN), C --> select (X, -1 >> C, 0)
1072       if (SrcTyBitWidth == 1) {
1073         auto *NewC = ConstantInt::get(
1074             Ty, APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1075         return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
1076       }
1077 
1078       if ((!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType())) &&
1079           Op0->hasOneUse()) {
1080         // Are we moving the sign bit to the low bit and widening with high
1081         // zeros? lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
1082         if (ShAmtC == BitWidth - 1) {
1083           Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
1084           return new ZExtInst(NewLShr, Ty);
1085         }
1086 
1087         // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
1088         if (ShAmtC == BitWidth - SrcTyBitWidth) {
1089           // The new shift amount can't be more than the narrow source type.
1090           unsigned NewShAmt = std::min(ShAmtC, SrcTyBitWidth - 1);
1091           Value *AShr = Builder.CreateAShr(X, NewShAmt);
1092           return new ZExtInst(AShr, Ty);
1093         }
1094       }
1095     }
1096 
1097     Value *Y;
1098     if (ShAmtC == BitWidth - 1) {
1099       // lshr i32 or(X,-X), 31 --> zext (X != 0)
1100       if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X)))))
1101         return new ZExtInst(Builder.CreateIsNotNull(X), Ty);
1102 
1103       // lshr i32 (X -nsw Y), 31 --> zext (X < Y)
1104       if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
1105         return new ZExtInst(Builder.CreateICmpSLT(X, Y), Ty);
1106 
1107       // Check if a number is negative and odd:
1108       // lshr i32 (srem X, 2), 31 --> and (X >> 31), X
1109       if (match(Op0, m_OneUse(m_SRem(m_Value(X), m_SpecificInt(2))))) {
1110         Value *Signbit = Builder.CreateLShr(X, ShAmtC);
1111         return BinaryOperator::CreateAnd(Signbit, X);
1112       }
1113     }
1114 
1115     // (X >>u C1) >>u C --> X >>u (C1 + C)
1116     if (match(Op0, m_LShr(m_Value(X), m_APInt(C1)))) {
1117       // Oversized shifts are simplified to zero in InstSimplify.
1118       unsigned AmtSum = ShAmtC + C1->getZExtValue();
1119       if (AmtSum < BitWidth)
1120         return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
1121     }
1122 
1123     Instruction *TruncSrc;
1124     if (match(Op0, m_OneUse(m_Trunc(m_Instruction(TruncSrc)))) &&
1125         match(TruncSrc, m_LShr(m_Value(X), m_APInt(C1)))) {
1126       unsigned SrcWidth = X->getType()->getScalarSizeInBits();
1127       unsigned AmtSum = ShAmtC + C1->getZExtValue();
1128 
1129       // If the combined shift fits in the source width:
1130       // (trunc (X >>u C1)) >>u C --> and (trunc (X >>u (C1 + C)), MaskC
1131       //
1132       // If the first shift covers the number of bits truncated, then the
1133       // mask instruction is eliminated (and so the use check is relaxed).
1134       if (AmtSum < SrcWidth &&
1135           (TruncSrc->hasOneUse() || C1->uge(SrcWidth - BitWidth))) {
1136         Value *SumShift = Builder.CreateLShr(X, AmtSum, "sum.shift");
1137         Value *Trunc = Builder.CreateTrunc(SumShift, Ty, I.getName());
1138 
1139         // If the first shift does not cover the number of bits truncated, then
1140         // we require a mask to get rid of high bits in the result.
1141         APInt MaskC = APInt::getAllOnes(BitWidth).lshr(ShAmtC);
1142         return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, MaskC));
1143       }
1144     }
1145 
1146     // Look for a "splat" mul pattern - it replicates bits across each half of
1147     // a value, so a right shift is just a mask of the low bits:
1148     // lshr i32 (mul nuw X, Pow2+1), 16 --> and X, Pow2-1
1149     // TODO: Generalize to allow more than just half-width shifts?
1150     const APInt *MulC;
1151     if (match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC))) &&
1152         ShAmtC * 2 == BitWidth && (*MulC - 1).isPowerOf2() &&
1153         MulC->logBase2() == ShAmtC)
1154       return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *MulC - 2));
1155 
1156     // If the shifted-out value is known-zero, then this is an exact shift.
1157     if (!I.isExact() &&
1158         MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmtC), 0, &I)) {
1159       I.setIsExact();
1160       return &I;
1161     }
1162   }
1163 
1164   // Transform  (x << y) >> y  to  x & (-1 >> y)
1165   Value *X;
1166   if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) {
1167     Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1168     Value *Mask = Builder.CreateLShr(AllOnes, Op1);
1169     return BinaryOperator::CreateAnd(Mask, X);
1170   }
1171 
1172   return nullptr;
1173 }
1174 
1175 Instruction *
1176 InstCombinerImpl::foldVariableSignZeroExtensionOfVariableHighBitExtract(
1177     BinaryOperator &OldAShr) {
1178   assert(OldAShr.getOpcode() == Instruction::AShr &&
1179          "Must be called with arithmetic right-shift instruction only.");
1180 
1181   // Check that constant C is a splat of the element-wise bitwidth of V.
1182   auto BitWidthSplat = [](Constant *C, Value *V) {
1183     return match(
1184         C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1185                               APInt(C->getType()->getScalarSizeInBits(),
1186                                     V->getType()->getScalarSizeInBits())));
1187   };
1188 
1189   // It should look like variable-length sign-extension on the outside:
1190   //   (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits)
1191   Value *NBits;
1192   Instruction *MaybeTrunc;
1193   Constant *C1, *C2;
1194   if (!match(&OldAShr,
1195              m_AShr(m_Shl(m_Instruction(MaybeTrunc),
1196                           m_ZExtOrSelf(m_Sub(m_Constant(C1),
1197                                              m_ZExtOrSelf(m_Value(NBits))))),
1198                     m_ZExtOrSelf(m_Sub(m_Constant(C2),
1199                                        m_ZExtOrSelf(m_Deferred(NBits)))))) ||
1200       !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
1201     return nullptr;
1202 
1203   // There may or may not be a truncation after outer two shifts.
1204   Instruction *HighBitExtract;
1205   match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract)));
1206   bool HadTrunc = MaybeTrunc != HighBitExtract;
1207 
1208   // And finally, the innermost part of the pattern must be a right-shift.
1209   Value *X, *NumLowBitsToSkip;
1210   if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip))))
1211     return nullptr;
1212 
1213   // Said right-shift must extract high NBits bits - C0 must be it's bitwidth.
1214   Constant *C0;
1215   if (!match(NumLowBitsToSkip,
1216              m_ZExtOrSelf(
1217                  m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) ||
1218       !BitWidthSplat(C0, HighBitExtract))
1219     return nullptr;
1220 
1221   // Since the NBits is identical for all shifts, if the outermost and
1222   // innermost shifts are identical, then outermost shifts are redundant.
1223   // If we had truncation, do keep it though.
1224   if (HighBitExtract->getOpcode() == OldAShr.getOpcode())
1225     return replaceInstUsesWith(OldAShr, MaybeTrunc);
1226 
1227   // Else, if there was a truncation, then we need to ensure that one
1228   // instruction will go away.
1229   if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1230     return nullptr;
1231 
1232   // Finally, bypass two innermost shifts, and perform the outermost shift on
1233   // the operands of the innermost shift.
1234   Instruction *NewAShr =
1235       BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip);
1236   NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness.
1237   if (!HadTrunc)
1238     return NewAShr;
1239 
1240   Builder.Insert(NewAShr);
1241   return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType());
1242 }
1243 
1244 Instruction *InstCombinerImpl::visitAShr(BinaryOperator &I) {
1245   if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1246                                   SQ.getWithInstruction(&I)))
1247     return replaceInstUsesWith(I, V);
1248 
1249   if (Instruction *X = foldVectorBinop(I))
1250     return X;
1251 
1252   if (Instruction *R = commonShiftTransforms(I))
1253     return R;
1254 
1255   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1256   Type *Ty = I.getType();
1257   unsigned BitWidth = Ty->getScalarSizeInBits();
1258   const APInt *ShAmtAPInt;
1259   if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) {
1260     unsigned ShAmt = ShAmtAPInt->getZExtValue();
1261 
1262     // If the shift amount equals the difference in width of the destination
1263     // and source scalar types:
1264     // ashr (shl (zext X), C), C --> sext X
1265     Value *X;
1266     if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
1267         ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
1268       return new SExtInst(X, Ty);
1269 
1270     // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
1271     // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
1272     const APInt *ShOp1;
1273     if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) &&
1274         ShOp1->ult(BitWidth)) {
1275       unsigned ShlAmt = ShOp1->getZExtValue();
1276       if (ShlAmt < ShAmt) {
1277         // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
1278         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
1279         auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
1280         NewAShr->setIsExact(I.isExact());
1281         return NewAShr;
1282       }
1283       if (ShlAmt > ShAmt) {
1284         // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
1285         Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
1286         auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
1287         NewShl->setHasNoSignedWrap(true);
1288         return NewShl;
1289       }
1290     }
1291 
1292     if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) &&
1293         ShOp1->ult(BitWidth)) {
1294       unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
1295       // Oversized arithmetic shifts replicate the sign bit.
1296       AmtSum = std::min(AmtSum, BitWidth - 1);
1297       // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
1298       return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
1299     }
1300 
1301     if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
1302         (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
1303       // ashr (sext X), C --> sext (ashr X, C')
1304       Type *SrcTy = X->getType();
1305       ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
1306       Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
1307       return new SExtInst(NewSh, Ty);
1308     }
1309 
1310     if (ShAmt == BitWidth - 1) {
1311       // ashr i32 or(X,-X), 31 --> sext (X != 0)
1312       if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X)))))
1313         return new SExtInst(Builder.CreateIsNotNull(X), Ty);
1314 
1315       // ashr i32 (X -nsw Y), 31 --> sext (X < Y)
1316       Value *Y;
1317       if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
1318         return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty);
1319     }
1320 
1321     // If the shifted-out value is known-zero, then this is an exact shift.
1322     if (!I.isExact() &&
1323         MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
1324       I.setIsExact();
1325       return &I;
1326     }
1327   }
1328 
1329   // Prefer `-(x & 1)` over `(x << (bitwidth(x)-1)) a>> (bitwidth(x)-1)`
1330   // as the pattern to splat the lowest bit.
1331   // FIXME: iff X is already masked, we don't need the one-use check.
1332   Value *X;
1333   if (match(Op1, m_SpecificIntAllowUndef(BitWidth - 1)) &&
1334       match(Op0, m_OneUse(m_Shl(m_Value(X),
1335                                 m_SpecificIntAllowUndef(BitWidth - 1))))) {
1336     Constant *Mask = ConstantInt::get(Ty, 1);
1337     // Retain the knowledge about the ignored lanes.
1338     Mask = Constant::mergeUndefsWith(
1339         Constant::mergeUndefsWith(Mask, cast<Constant>(Op1)),
1340         cast<Constant>(cast<Instruction>(Op0)->getOperand(1)));
1341     X = Builder.CreateAnd(X, Mask);
1342     return BinaryOperator::CreateNeg(X);
1343   }
1344 
1345   if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I))
1346     return R;
1347 
1348   // See if we can turn a signed shr into an unsigned shr.
1349   if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I))
1350     return BinaryOperator::CreateLShr(Op0, Op1);
1351 
1352   // ashr (xor %x, -1), %y  -->  xor (ashr %x, %y), -1
1353   if (match(Op0, m_OneUse(m_Not(m_Value(X))))) {
1354     // Note that we must drop 'exact'-ness of the shift!
1355     // Note that we can't keep undef's in -1 vector constant!
1356     auto *NewAShr = Builder.CreateAShr(X, Op1, Op0->getName() + ".not");
1357     return BinaryOperator::CreateNot(NewAShr);
1358   }
1359 
1360   return nullptr;
1361 }
1362