1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitSelect function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CmpInstAnalysis.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/User.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 41 #include <cassert> 42 #include <utility> 43 44 using namespace llvm; 45 using namespace PatternMatch; 46 47 #define DEBUG_TYPE "instcombine" 48 49 static Value *createMinMax(InstCombiner::BuilderTy &Builder, 50 SelectPatternFlavor SPF, Value *A, Value *B) { 51 CmpInst::Predicate Pred = getMinMaxPred(SPF); 52 assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate"); 53 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 54 } 55 56 /// Replace a select operand based on an equality comparison with the identity 57 /// constant of a binop. 58 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 59 const TargetLibraryInfo &TLI) { 60 // The select condition must be an equality compare with a constant operand. 61 Value *X; 62 Constant *C; 63 CmpInst::Predicate Pred; 64 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 65 return nullptr; 66 67 bool IsEq; 68 if (ICmpInst::isEquality(Pred)) 69 IsEq = Pred == ICmpInst::ICMP_EQ; 70 else if (Pred == FCmpInst::FCMP_OEQ) 71 IsEq = true; 72 else if (Pred == FCmpInst::FCMP_UNE) 73 IsEq = false; 74 else 75 return nullptr; 76 77 // A select operand must be a binop. 78 BinaryOperator *BO; 79 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 80 return nullptr; 81 82 // The compare constant must be the identity constant for that binop. 83 // If this a floating-point compare with 0.0, any zero constant will do. 84 Type *Ty = BO->getType(); 85 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 86 if (IdC != C) { 87 if (!IdC || !CmpInst::isFPPredicate(Pred)) 88 return nullptr; 89 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 90 return nullptr; 91 } 92 93 // Last, match the compare variable operand with a binop operand. 94 Value *Y; 95 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 96 return nullptr; 97 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 98 return nullptr; 99 100 // +0.0 compares equal to -0.0, and so it does not behave as required for this 101 // transform. Bail out if we can not exclude that possibility. 102 if (isa<FPMathOperator>(BO)) 103 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) 104 return nullptr; 105 106 // BO = binop Y, X 107 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 108 // => 109 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 110 Sel.setOperand(IsEq ? 1 : 2, Y); 111 return &Sel; 112 } 113 114 /// This folds: 115 /// select (icmp eq (and X, C1)), TC, FC 116 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 117 /// To something like: 118 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 119 /// Or: 120 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 121 /// With some variations depending if FC is larger than TC, or the shift 122 /// isn't needed, or the bit widths don't match. 123 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 124 InstCombiner::BuilderTy &Builder) { 125 const APInt *SelTC, *SelFC; 126 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 127 !match(Sel.getFalseValue(), m_APInt(SelFC))) 128 return nullptr; 129 130 // If this is a vector select, we need a vector compare. 131 Type *SelType = Sel.getType(); 132 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 133 return nullptr; 134 135 Value *V; 136 APInt AndMask; 137 bool CreateAnd = false; 138 ICmpInst::Predicate Pred = Cmp->getPredicate(); 139 if (ICmpInst::isEquality(Pred)) { 140 if (!match(Cmp->getOperand(1), m_Zero())) 141 return nullptr; 142 143 V = Cmp->getOperand(0); 144 const APInt *AndRHS; 145 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 146 return nullptr; 147 148 AndMask = *AndRHS; 149 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 150 Pred, V, AndMask)) { 151 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 152 if (!AndMask.isPowerOf2()) 153 return nullptr; 154 155 CreateAnd = true; 156 } else { 157 return nullptr; 158 } 159 160 // In general, when both constants are non-zero, we would need an offset to 161 // replace the select. This would require more instructions than we started 162 // with. But there's one special-case that we handle here because it can 163 // simplify/reduce the instructions. 164 APInt TC = *SelTC; 165 APInt FC = *SelFC; 166 if (!TC.isNullValue() && !FC.isNullValue()) { 167 // If the select constants differ by exactly one bit and that's the same 168 // bit that is masked and checked by the select condition, the select can 169 // be replaced by bitwise logic to set/clear one bit of the constant result. 170 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 171 return nullptr; 172 if (CreateAnd) { 173 // If we have to create an 'and', then we must kill the cmp to not 174 // increase the instruction count. 175 if (!Cmp->hasOneUse()) 176 return nullptr; 177 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 178 } 179 bool ExtraBitInTC = TC.ugt(FC); 180 if (Pred == ICmpInst::ICMP_EQ) { 181 // If the masked bit in V is clear, clear or set the bit in the result: 182 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 183 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 184 Constant *C = ConstantInt::get(SelType, TC); 185 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 186 } 187 if (Pred == ICmpInst::ICMP_NE) { 188 // If the masked bit in V is set, set or clear the bit in the result: 189 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 190 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 191 Constant *C = ConstantInt::get(SelType, FC); 192 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 193 } 194 llvm_unreachable("Only expecting equality predicates"); 195 } 196 197 // Make sure one of the select arms is a power-of-2. 198 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 199 return nullptr; 200 201 // Determine which shift is needed to transform result of the 'and' into the 202 // desired result. 203 const APInt &ValC = !TC.isNullValue() ? TC : FC; 204 unsigned ValZeros = ValC.logBase2(); 205 unsigned AndZeros = AndMask.logBase2(); 206 207 // Insert the 'and' instruction on the input to the truncate. 208 if (CreateAnd) 209 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 210 211 // If types don't match, we can still convert the select by introducing a zext 212 // or a trunc of the 'and'. 213 if (ValZeros > AndZeros) { 214 V = Builder.CreateZExtOrTrunc(V, SelType); 215 V = Builder.CreateShl(V, ValZeros - AndZeros); 216 } else if (ValZeros < AndZeros) { 217 V = Builder.CreateLShr(V, AndZeros - ValZeros); 218 V = Builder.CreateZExtOrTrunc(V, SelType); 219 } else { 220 V = Builder.CreateZExtOrTrunc(V, SelType); 221 } 222 223 // Okay, now we know that everything is set up, we just don't know whether we 224 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 225 bool ShouldNotVal = !TC.isNullValue(); 226 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 227 if (ShouldNotVal) 228 V = Builder.CreateXor(V, ValC); 229 230 return V; 231 } 232 233 /// We want to turn code that looks like this: 234 /// %C = or %A, %B 235 /// %D = select %cond, %C, %A 236 /// into: 237 /// %C = select %cond, %B, 0 238 /// %D = or %A, %C 239 /// 240 /// Assuming that the specified instruction is an operand to the select, return 241 /// a bitmask indicating which operands of this instruction are foldable if they 242 /// equal the other incoming value of the select. 243 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 244 switch (I->getOpcode()) { 245 case Instruction::Add: 246 case Instruction::Mul: 247 case Instruction::And: 248 case Instruction::Or: 249 case Instruction::Xor: 250 return 3; // Can fold through either operand. 251 case Instruction::Sub: // Can only fold on the amount subtracted. 252 case Instruction::Shl: // Can only fold on the shift amount. 253 case Instruction::LShr: 254 case Instruction::AShr: 255 return 1; 256 default: 257 return 0; // Cannot fold 258 } 259 } 260 261 /// For the same transformation as the previous function, return the identity 262 /// constant that goes into the select. 263 static APInt getSelectFoldableConstant(BinaryOperator *I) { 264 switch (I->getOpcode()) { 265 default: llvm_unreachable("This cannot happen!"); 266 case Instruction::Add: 267 case Instruction::Sub: 268 case Instruction::Or: 269 case Instruction::Xor: 270 case Instruction::Shl: 271 case Instruction::LShr: 272 case Instruction::AShr: 273 return APInt::getNullValue(I->getType()->getScalarSizeInBits()); 274 case Instruction::And: 275 return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits()); 276 case Instruction::Mul: 277 return APInt(I->getType()->getScalarSizeInBits(), 1); 278 } 279 } 280 281 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 282 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI, 283 Instruction *FI) { 284 // Don't break up min/max patterns. The hasOneUse checks below prevent that 285 // for most cases, but vector min/max with bitcasts can be transformed. If the 286 // one-use restrictions are eased for other patterns, we still don't want to 287 // obfuscate min/max. 288 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 289 match(&SI, m_SMax(m_Value(), m_Value())) || 290 match(&SI, m_UMin(m_Value(), m_Value())) || 291 match(&SI, m_UMax(m_Value(), m_Value())))) 292 return nullptr; 293 294 // If this is a cast from the same type, merge. 295 Value *Cond = SI.getCondition(); 296 Type *CondTy = Cond->getType(); 297 if (TI->getNumOperands() == 1 && TI->isCast()) { 298 Type *FIOpndTy = FI->getOperand(0)->getType(); 299 if (TI->getOperand(0)->getType() != FIOpndTy) 300 return nullptr; 301 302 // The select condition may be a vector. We may only change the operand 303 // type if the vector width remains the same (and matches the condition). 304 if (CondTy->isVectorTy()) { 305 if (!FIOpndTy->isVectorTy()) 306 return nullptr; 307 if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()) 308 return nullptr; 309 310 // TODO: If the backend knew how to deal with casts better, we could 311 // remove this limitation. For now, there's too much potential to create 312 // worse codegen by promoting the select ahead of size-altering casts 313 // (PR28160). 314 // 315 // Note that ValueTracking's matchSelectPattern() looks through casts 316 // without checking 'hasOneUse' when it matches min/max patterns, so this 317 // transform may end up happening anyway. 318 if (TI->getOpcode() != Instruction::BitCast && 319 (!TI->hasOneUse() || !FI->hasOneUse())) 320 return nullptr; 321 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 322 // TODO: The one-use restrictions for a scalar select could be eased if 323 // the fold of a select in visitLoadInst() was enhanced to match a pattern 324 // that includes a cast. 325 return nullptr; 326 } 327 328 // Fold this by inserting a select from the input values. 329 Value *NewSI = 330 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0), 331 SI.getName() + ".v", &SI); 332 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 333 TI->getType()); 334 } 335 336 // Cond ? -X : -Y --> -(Cond ? X : Y) 337 Value *X, *Y; 338 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) && 339 (TI->hasOneUse() || FI->hasOneUse())) { 340 Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI); 341 // TODO: Remove the hack for the binop form when the unary op is optimized 342 // properly with all IR passes. 343 if (TI->getOpcode() != Instruction::FNeg) 344 return BinaryOperator::CreateFNegFMF(NewSel, cast<BinaryOperator>(TI)); 345 return UnaryOperator::CreateFNeg(NewSel); 346 } 347 348 // Only handle binary operators (including two-operand getelementptr) with 349 // one-use here. As with the cast case above, it may be possible to relax the 350 // one-use constraint, but that needs be examined carefully since it may not 351 // reduce the total number of instructions. 352 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 353 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 354 !TI->hasOneUse() || !FI->hasOneUse()) 355 return nullptr; 356 357 // Figure out if the operations have any operands in common. 358 Value *MatchOp, *OtherOpT, *OtherOpF; 359 bool MatchIsOpZero; 360 if (TI->getOperand(0) == FI->getOperand(0)) { 361 MatchOp = TI->getOperand(0); 362 OtherOpT = TI->getOperand(1); 363 OtherOpF = FI->getOperand(1); 364 MatchIsOpZero = true; 365 } else if (TI->getOperand(1) == FI->getOperand(1)) { 366 MatchOp = TI->getOperand(1); 367 OtherOpT = TI->getOperand(0); 368 OtherOpF = FI->getOperand(0); 369 MatchIsOpZero = false; 370 } else if (!TI->isCommutative()) { 371 return nullptr; 372 } else if (TI->getOperand(0) == FI->getOperand(1)) { 373 MatchOp = TI->getOperand(0); 374 OtherOpT = TI->getOperand(1); 375 OtherOpF = FI->getOperand(0); 376 MatchIsOpZero = true; 377 } else if (TI->getOperand(1) == FI->getOperand(0)) { 378 MatchOp = TI->getOperand(1); 379 OtherOpT = TI->getOperand(0); 380 OtherOpF = FI->getOperand(1); 381 MatchIsOpZero = true; 382 } else { 383 return nullptr; 384 } 385 386 // If the select condition is a vector, the operands of the original select's 387 // operands also must be vectors. This may not be the case for getelementptr 388 // for example. 389 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() || 390 !OtherOpF->getType()->isVectorTy())) 391 return nullptr; 392 393 // If we reach here, they do have operations in common. 394 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 395 SI.getName() + ".v", &SI); 396 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 397 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 398 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 399 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 400 NewBO->copyIRFlags(TI); 401 NewBO->andIRFlags(FI); 402 return NewBO; 403 } 404 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 405 auto *FGEP = cast<GetElementPtrInst>(FI); 406 Type *ElementType = TGEP->getResultElementType(); 407 return TGEP->isInBounds() && FGEP->isInBounds() 408 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 409 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 410 } 411 llvm_unreachable("Expected BinaryOperator or GEP"); 412 return nullptr; 413 } 414 415 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 416 if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero. 417 return false; 418 return C1I.isOneValue() || C1I.isAllOnesValue() || 419 C2I.isOneValue() || C2I.isAllOnesValue(); 420 } 421 422 /// Try to fold the select into one of the operands to allow further 423 /// optimization. 424 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 425 Value *FalseVal) { 426 // See the comment above GetSelectFoldableOperands for a description of the 427 // transformation we are doing here. 428 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 429 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 430 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 431 unsigned OpToFold = 0; 432 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 433 OpToFold = 1; 434 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 435 OpToFold = 2; 436 } 437 438 if (OpToFold) { 439 APInt CI = getSelectFoldableConstant(TVI); 440 Value *OOp = TVI->getOperand(2-OpToFold); 441 // Avoid creating select between 2 constants unless it's selecting 442 // between 0, 1 and -1. 443 const APInt *OOpC; 444 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 445 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 446 Value *C = ConstantInt::get(OOp->getType(), CI); 447 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 448 NewSel->takeName(TVI); 449 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), 450 FalseVal, NewSel); 451 BO->copyIRFlags(TVI); 452 return BO; 453 } 454 } 455 } 456 } 457 } 458 459 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { 460 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { 461 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 462 unsigned OpToFold = 0; 463 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 464 OpToFold = 1; 465 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 466 OpToFold = 2; 467 } 468 469 if (OpToFold) { 470 APInt CI = getSelectFoldableConstant(FVI); 471 Value *OOp = FVI->getOperand(2-OpToFold); 472 // Avoid creating select between 2 constants unless it's selecting 473 // between 0, 1 and -1. 474 const APInt *OOpC; 475 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 476 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 477 Value *C = ConstantInt::get(OOp->getType(), CI); 478 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 479 NewSel->takeName(FVI); 480 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), 481 TrueVal, NewSel); 482 BO->copyIRFlags(FVI); 483 return BO; 484 } 485 } 486 } 487 } 488 } 489 490 return nullptr; 491 } 492 493 /// We want to turn: 494 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 495 /// into: 496 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 497 /// Note: 498 /// Z may be 0 if lshr is missing. 499 /// Worst-case scenario is that we will replace 5 instructions with 5 different 500 /// instructions, but we got rid of select. 501 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 502 Value *TVal, Value *FVal, 503 InstCombiner::BuilderTy &Builder) { 504 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 505 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 506 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 507 return nullptr; 508 509 // The TrueVal has general form of: and %B, 1 510 Value *B; 511 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 512 return nullptr; 513 514 // Where %B may be optionally shifted: lshr %X, %Z. 515 Value *X, *Z; 516 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 517 if (!HasShift) 518 X = B; 519 520 Value *Y; 521 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 522 return nullptr; 523 524 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 525 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 526 Constant *One = ConstantInt::get(SelType, 1); 527 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 528 Value *FullMask = Builder.CreateOr(Y, MaskB); 529 Value *MaskedX = Builder.CreateAnd(X, FullMask); 530 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 531 return new ZExtInst(ICmpNeZero, SelType); 532 } 533 534 /// We want to turn: 535 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 536 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0 537 /// into: 538 /// ashr (X, Y) 539 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, 540 Value *FalseVal, 541 InstCombiner::BuilderTy &Builder) { 542 ICmpInst::Predicate Pred = IC->getPredicate(); 543 Value *CmpLHS = IC->getOperand(0); 544 Value *CmpRHS = IC->getOperand(1); 545 if (!CmpRHS->getType()->isIntOrIntVectorTy()) 546 return nullptr; 547 548 Value *X, *Y; 549 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits(); 550 if ((Pred != ICmpInst::ICMP_SGT || 551 !match(CmpRHS, 552 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) && 553 (Pred != ICmpInst::ICMP_SLT || 554 !match(CmpRHS, 555 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0))))) 556 return nullptr; 557 558 // Canonicalize so that ashr is in FalseVal. 559 if (Pred == ICmpInst::ICMP_SLT) 560 std::swap(TrueVal, FalseVal); 561 562 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) && 563 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) && 564 match(CmpLHS, m_Specific(X))) { 565 const auto *Ashr = cast<Instruction>(FalseVal); 566 // if lshr is not exact and ashr is, this new ashr must not be exact. 567 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact(); 568 return Builder.CreateAShr(X, Y, IC->getName(), IsExact); 569 } 570 571 return nullptr; 572 } 573 574 /// We want to turn: 575 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 576 /// into: 577 /// (or (shl (and X, C1), C3), Y) 578 /// iff: 579 /// C1 and C2 are both powers of 2 580 /// where: 581 /// C3 = Log(C2) - Log(C1) 582 /// 583 /// This transform handles cases where: 584 /// 1. The icmp predicate is inverted 585 /// 2. The select operands are reversed 586 /// 3. The magnitude of C2 and C1 are flipped 587 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 588 Value *FalseVal, 589 InstCombiner::BuilderTy &Builder) { 590 // Only handle integer compares. Also, if this is a vector select, we need a 591 // vector compare. 592 if (!TrueVal->getType()->isIntOrIntVectorTy() || 593 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 594 return nullptr; 595 596 Value *CmpLHS = IC->getOperand(0); 597 Value *CmpRHS = IC->getOperand(1); 598 599 Value *V; 600 unsigned C1Log; 601 bool IsEqualZero; 602 bool NeedAnd = false; 603 if (IC->isEquality()) { 604 if (!match(CmpRHS, m_Zero())) 605 return nullptr; 606 607 const APInt *C1; 608 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 609 return nullptr; 610 611 V = CmpLHS; 612 C1Log = C1->logBase2(); 613 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 614 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 615 IC->getPredicate() == ICmpInst::ICMP_SGT) { 616 // We also need to recognize (icmp slt (trunc (X)), 0) and 617 // (icmp sgt (trunc (X)), -1). 618 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 619 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 620 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 621 return nullptr; 622 623 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 624 return nullptr; 625 626 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 627 NeedAnd = true; 628 } else { 629 return nullptr; 630 } 631 632 const APInt *C2; 633 bool OrOnTrueVal = false; 634 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 635 if (!OrOnFalseVal) 636 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 637 638 if (!OrOnFalseVal && !OrOnTrueVal) 639 return nullptr; 640 641 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 642 643 unsigned C2Log = C2->logBase2(); 644 645 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 646 bool NeedShift = C1Log != C2Log; 647 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 648 V->getType()->getScalarSizeInBits(); 649 650 // Make sure we don't create more instructions than we save. 651 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 652 if ((NeedShift + NeedXor + NeedZExtTrunc) > 653 (IC->hasOneUse() + Or->hasOneUse())) 654 return nullptr; 655 656 if (NeedAnd) { 657 // Insert the AND instruction on the input to the truncate. 658 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 659 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 660 } 661 662 if (C2Log > C1Log) { 663 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 664 V = Builder.CreateShl(V, C2Log - C1Log); 665 } else if (C1Log > C2Log) { 666 V = Builder.CreateLShr(V, C1Log - C2Log); 667 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 668 } else 669 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 670 671 if (NeedXor) 672 V = Builder.CreateXor(V, *C2); 673 674 return Builder.CreateOr(V, Y); 675 } 676 677 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). 678 /// There are 8 commuted/swapped variants of this pattern. 679 /// TODO: Also support a - UMIN(a,b) patterns. 680 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 681 const Value *TrueVal, 682 const Value *FalseVal, 683 InstCombiner::BuilderTy &Builder) { 684 ICmpInst::Predicate Pred = ICI->getPredicate(); 685 if (!ICmpInst::isUnsigned(Pred)) 686 return nullptr; 687 688 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 689 if (match(TrueVal, m_Zero())) { 690 Pred = ICmpInst::getInversePredicate(Pred); 691 std::swap(TrueVal, FalseVal); 692 } 693 if (!match(FalseVal, m_Zero())) 694 return nullptr; 695 696 Value *A = ICI->getOperand(0); 697 Value *B = ICI->getOperand(1); 698 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 699 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 700 std::swap(A, B); 701 Pred = ICmpInst::getSwappedPredicate(Pred); 702 } 703 704 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 705 "Unexpected isUnsigned predicate!"); 706 707 // Ensure the sub is of the form: 708 // (a > b) ? a - b : 0 -> usub.sat(a, b) 709 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 710 // Checking for both a-b and a+(-b) as a constant. 711 bool IsNegative = false; 712 const APInt *C; 713 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) || 714 (match(A, m_APInt(C)) && 715 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C))))) 716 IsNegative = true; 717 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) && 718 !(match(B, m_APInt(C)) && 719 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C))))) 720 return nullptr; 721 722 // If we are adding a negate and the sub and icmp are used anywhere else, we 723 // would end up with more instructions. 724 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse()) 725 return nullptr; 726 727 // (a > b) ? a - b : 0 -> usub.sat(a, b) 728 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 729 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); 730 if (IsNegative) 731 Result = Builder.CreateNeg(Result); 732 return Result; 733 } 734 735 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, 736 InstCombiner::BuilderTy &Builder) { 737 if (!Cmp->hasOneUse()) 738 return nullptr; 739 740 // Match unsigned saturated add with constant. 741 Value *Cmp0 = Cmp->getOperand(0); 742 Value *Cmp1 = Cmp->getOperand(1); 743 ICmpInst::Predicate Pred = Cmp->getPredicate(); 744 Value *X; 745 const APInt *C, *CmpC; 746 if (Pred == ICmpInst::ICMP_ULT && 747 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 && 748 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) { 749 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C) 750 return Builder.CreateBinaryIntrinsic( 751 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C)); 752 } 753 754 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 755 // There are 8 commuted variants. 756 // Canonicalize -1 (saturated result) to true value of the select. Just 757 // swapping the compare operands is legal, because the selected value is the 758 // same in case of equality, so we can interchange u< and u<=. 759 if (match(FVal, m_AllOnes())) { 760 std::swap(TVal, FVal); 761 std::swap(Cmp0, Cmp1); 762 } 763 if (!match(TVal, m_AllOnes())) 764 return nullptr; 765 766 // Canonicalize predicate to 'ULT'. 767 if (Pred == ICmpInst::ICMP_UGT) { 768 Pred = ICmpInst::ICMP_ULT; 769 std::swap(Cmp0, Cmp1); 770 } 771 if (Pred != ICmpInst::ICMP_ULT) 772 return nullptr; 773 774 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 775 Value *Y; 776 if (match(Cmp0, m_Not(m_Value(X))) && 777 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { 778 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 779 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) 780 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); 781 } 782 // The 'not' op may be included in the sum but not the compare. 783 X = Cmp0; 784 Y = Cmp1; 785 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) { 786 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) 787 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) 788 BinaryOperator *BO = cast<BinaryOperator>(FVal); 789 return Builder.CreateBinaryIntrinsic( 790 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); 791 } 792 // The overflow may be detected via the add wrapping round. 793 if (match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) && 794 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) { 795 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y) 796 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 797 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y); 798 } 799 800 return nullptr; 801 } 802 803 /// Fold the following code sequence: 804 /// \code 805 /// int a = ctlz(x & -x); 806 // x ? 31 - a : a; 807 /// \code 808 /// 809 /// into: 810 /// cttz(x) 811 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal, 812 Value *FalseVal, 813 InstCombiner::BuilderTy &Builder) { 814 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 815 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero())) 816 return nullptr; 817 818 if (ICI->getPredicate() == ICmpInst::ICMP_NE) 819 std::swap(TrueVal, FalseVal); 820 821 if (!match(FalseVal, 822 m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1)))) 823 return nullptr; 824 825 if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>())) 826 return nullptr; 827 828 Value *X = ICI->getOperand(0); 829 auto *II = cast<IntrinsicInst>(TrueVal); 830 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X))))) 831 return nullptr; 832 833 Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz, 834 II->getType()); 835 return CallInst::Create(F, {X, II->getArgOperand(1)}); 836 } 837 838 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 839 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 840 /// 841 /// For example, we can fold the following code sequence: 842 /// \code 843 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 844 /// %1 = icmp ne i32 %x, 0 845 /// %2 = select i1 %1, i32 %0, i32 32 846 /// \code 847 /// 848 /// into: 849 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 850 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 851 InstCombiner::BuilderTy &Builder) { 852 ICmpInst::Predicate Pred = ICI->getPredicate(); 853 Value *CmpLHS = ICI->getOperand(0); 854 Value *CmpRHS = ICI->getOperand(1); 855 856 // Check if the condition value compares a value for equality against zero. 857 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 858 return nullptr; 859 860 Value *Count = FalseVal; 861 Value *ValueOnZero = TrueVal; 862 if (Pred == ICmpInst::ICMP_NE) 863 std::swap(Count, ValueOnZero); 864 865 // Skip zero extend/truncate. 866 Value *V = nullptr; 867 if (match(Count, m_ZExt(m_Value(V))) || 868 match(Count, m_Trunc(m_Value(V)))) 869 Count = V; 870 871 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 872 // input to the cttz/ctlz is used as LHS for the compare instruction. 873 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) && 874 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) 875 return nullptr; 876 877 IntrinsicInst *II = cast<IntrinsicInst>(Count); 878 879 // Check if the value propagated on zero is a constant number equal to the 880 // sizeof in bits of 'Count'. 881 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 882 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 883 // Explicitly clear the 'undef_on_zero' flag. 884 IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone()); 885 NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext())); 886 Builder.Insert(NewI); 887 return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType()); 888 } 889 890 // If the ValueOnZero is not the bitwidth, we can at least make use of the 891 // fact that the cttz/ctlz result will not be used if the input is zero, so 892 // it's okay to relax it to undef for that case. 893 if (II->hasOneUse() && !match(II->getArgOperand(1), m_One())) 894 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 895 896 return nullptr; 897 } 898 899 /// Return true if we find and adjust an icmp+select pattern where the compare 900 /// is with a constant that can be incremented or decremented to match the 901 /// minimum or maximum idiom. 902 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 903 ICmpInst::Predicate Pred = Cmp.getPredicate(); 904 Value *CmpLHS = Cmp.getOperand(0); 905 Value *CmpRHS = Cmp.getOperand(1); 906 Value *TrueVal = Sel.getTrueValue(); 907 Value *FalseVal = Sel.getFalseValue(); 908 909 // We may move or edit the compare, so make sure the select is the only user. 910 const APInt *CmpC; 911 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 912 return false; 913 914 // These transforms only work for selects of integers or vector selects of 915 // integer vectors. 916 Type *SelTy = Sel.getType(); 917 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 918 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 919 return false; 920 921 Constant *AdjustedRHS; 922 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 923 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 924 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 925 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 926 else 927 return false; 928 929 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 930 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 931 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 932 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 933 ; // Nothing to do here. Values match without any sign/zero extension. 934 } 935 // Types do not match. Instead of calculating this with mixed types, promote 936 // all to the larger type. This enables scalar evolution to analyze this 937 // expression. 938 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 939 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 940 941 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 942 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 943 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 944 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 945 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 946 CmpLHS = TrueVal; 947 AdjustedRHS = SextRHS; 948 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 949 SextRHS == TrueVal) { 950 CmpLHS = FalseVal; 951 AdjustedRHS = SextRHS; 952 } else if (Cmp.isUnsigned()) { 953 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 954 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 955 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 956 // zext + signed compare cannot be changed: 957 // 0xff <s 0x00, but 0x00ff >s 0x0000 958 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 959 CmpLHS = TrueVal; 960 AdjustedRHS = ZextRHS; 961 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 962 ZextRHS == TrueVal) { 963 CmpLHS = FalseVal; 964 AdjustedRHS = ZextRHS; 965 } else { 966 return false; 967 } 968 } else { 969 return false; 970 } 971 } else { 972 return false; 973 } 974 975 Pred = ICmpInst::getSwappedPredicate(Pred); 976 CmpRHS = AdjustedRHS; 977 std::swap(FalseVal, TrueVal); 978 Cmp.setPredicate(Pred); 979 Cmp.setOperand(0, CmpLHS); 980 Cmp.setOperand(1, CmpRHS); 981 Sel.setOperand(1, TrueVal); 982 Sel.setOperand(2, FalseVal); 983 Sel.swapProfMetadata(); 984 985 // Move the compare instruction right before the select instruction. Otherwise 986 // the sext/zext value may be defined after the compare instruction uses it. 987 Cmp.moveBefore(&Sel); 988 989 return true; 990 } 991 992 /// If this is an integer min/max (icmp + select) with a constant operand, 993 /// create the canonical icmp for the min/max operation and canonicalize the 994 /// constant to the 'false' operand of the select: 995 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 996 /// Note: if C1 != C2, this will change the icmp constant to the existing 997 /// constant operand of the select. 998 static Instruction * 999 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp, 1000 InstCombiner::BuilderTy &Builder) { 1001 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1002 return nullptr; 1003 1004 // Canonicalize the compare predicate based on whether we have min or max. 1005 Value *LHS, *RHS; 1006 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 1007 if (!SelectPatternResult::isMinOrMax(SPR.Flavor)) 1008 return nullptr; 1009 1010 // Is this already canonical? 1011 ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor); 1012 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && 1013 Cmp.getPredicate() == CanonicalPred) 1014 return nullptr; 1015 1016 // Bail out on unsimplified X-0 operand (due to some worklist management bug), 1017 // as this may cause an infinite combine loop. Let the sub be folded first. 1018 if (match(LHS, m_Sub(m_Value(), m_Zero())) || 1019 match(RHS, m_Sub(m_Value(), m_Zero()))) 1020 return nullptr; 1021 1022 // Create the canonical compare and plug it into the select. 1023 Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS)); 1024 1025 // If the select operands did not change, we're done. 1026 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) 1027 return &Sel; 1028 1029 // If we are swapping the select operands, swap the metadata too. 1030 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && 1031 "Unexpected results from matchSelectPattern"); 1032 Sel.swapValues(); 1033 Sel.swapProfMetadata(); 1034 return &Sel; 1035 } 1036 1037 /// There are many select variants for each of ABS/NABS. 1038 /// In matchSelectPattern(), there are different compare constants, compare 1039 /// predicates/operands and select operands. 1040 /// In isKnownNegation(), there are different formats of negated operands. 1041 /// Canonicalize all these variants to 1 pattern. 1042 /// This makes CSE more likely. 1043 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp, 1044 InstCombiner::BuilderTy &Builder) { 1045 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1046 return nullptr; 1047 1048 // Choose a sign-bit check for the compare (likely simpler for codegen). 1049 // ABS: (X <s 0) ? -X : X 1050 // NABS: (X <s 0) ? X : -X 1051 Value *LHS, *RHS; 1052 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; 1053 if (SPF != SelectPatternFlavor::SPF_ABS && 1054 SPF != SelectPatternFlavor::SPF_NABS) 1055 return nullptr; 1056 1057 Value *TVal = Sel.getTrueValue(); 1058 Value *FVal = Sel.getFalseValue(); 1059 assert(isKnownNegation(TVal, FVal) && 1060 "Unexpected result from matchSelectPattern"); 1061 1062 // The compare may use the negated abs()/nabs() operand, or it may use 1063 // negation in non-canonical form such as: sub A, B. 1064 bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) || 1065 match(Cmp.getOperand(0), m_Neg(m_Specific(FVal))); 1066 1067 bool CmpCanonicalized = !CmpUsesNegatedOp && 1068 match(Cmp.getOperand(1), m_ZeroInt()) && 1069 Cmp.getPredicate() == ICmpInst::ICMP_SLT; 1070 bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS))); 1071 1072 // Is this already canonical? 1073 if (CmpCanonicalized && RHSCanonicalized) 1074 return nullptr; 1075 1076 // If RHS is used by other instructions except compare and select, don't 1077 // canonicalize it to not increase the instruction count. 1078 if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp))) 1079 return nullptr; 1080 1081 // Create the canonical compare: icmp slt LHS 0. 1082 if (!CmpCanonicalized) { 1083 Cmp.setPredicate(ICmpInst::ICMP_SLT); 1084 Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType())); 1085 if (CmpUsesNegatedOp) 1086 Cmp.setOperand(0, LHS); 1087 } 1088 1089 // Create the canonical RHS: RHS = sub (0, LHS). 1090 if (!RHSCanonicalized) { 1091 assert(RHS->hasOneUse() && "RHS use number is not right"); 1092 RHS = Builder.CreateNeg(LHS); 1093 if (TVal == LHS) { 1094 Sel.setFalseValue(RHS); 1095 FVal = RHS; 1096 } else { 1097 Sel.setTrueValue(RHS); 1098 TVal = RHS; 1099 } 1100 } 1101 1102 // If the select operands do not change, we're done. 1103 if (SPF == SelectPatternFlavor::SPF_NABS) { 1104 if (TVal == LHS) 1105 return &Sel; 1106 assert(FVal == LHS && "Unexpected results from matchSelectPattern"); 1107 } else { 1108 if (FVal == LHS) 1109 return &Sel; 1110 assert(TVal == LHS && "Unexpected results from matchSelectPattern"); 1111 } 1112 1113 // We are swapping the select operands, so swap the metadata too. 1114 Sel.swapValues(); 1115 Sel.swapProfMetadata(); 1116 return &Sel; 1117 } 1118 1119 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *ReplaceOp, 1120 const SimplifyQuery &Q) { 1121 // If this is a binary operator, try to simplify it with the replaced op 1122 // because we know Op and ReplaceOp are equivalant. 1123 // For example: V = X + 1, Op = X, ReplaceOp = 42 1124 // Simplifies as: add(42, 1) --> 43 1125 if (auto *BO = dyn_cast<BinaryOperator>(V)) { 1126 if (BO->getOperand(0) == Op) 1127 return SimplifyBinOp(BO->getOpcode(), ReplaceOp, BO->getOperand(1), Q); 1128 if (BO->getOperand(1) == Op) 1129 return SimplifyBinOp(BO->getOpcode(), BO->getOperand(0), ReplaceOp, Q); 1130 } 1131 1132 return nullptr; 1133 } 1134 1135 /// If we have a select with an equality comparison, then we know the value in 1136 /// one of the arms of the select. See if substituting this value into an arm 1137 /// and simplifying the result yields the same value as the other arm. 1138 /// 1139 /// To make this transform safe, we must drop poison-generating flags 1140 /// (nsw, etc) if we simplified to a binop because the select may be guarding 1141 /// that poison from propagating. If the existing binop already had no 1142 /// poison-generating flags, then this transform can be done by instsimplify. 1143 /// 1144 /// Consider: 1145 /// %cmp = icmp eq i32 %x, 2147483647 1146 /// %add = add nsw i32 %x, 1 1147 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add 1148 /// 1149 /// We can't replace %sel with %add unless we strip away the flags. 1150 /// TODO: Wrapping flags could be preserved in some cases with better analysis. 1151 static Value *foldSelectValueEquivalence(SelectInst &Sel, ICmpInst &Cmp, 1152 const SimplifyQuery &Q) { 1153 if (!Cmp.isEquality()) 1154 return nullptr; 1155 1156 // Canonicalize the pattern to ICMP_EQ by swapping the select operands. 1157 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 1158 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1159 std::swap(TrueVal, FalseVal); 1160 1161 // Try each equivalence substitution possibility. 1162 // We have an 'EQ' comparison, so the select's false value will propagate. 1163 // Example: 1164 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1 1165 // (X == 42) ? (X + 1) : 43 --> (X == 42) ? (42 + 1) : 43 --> 43 1166 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1); 1167 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q) == TrueVal || 1168 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q) == TrueVal || 1169 simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q) == FalseVal || 1170 simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q) == FalseVal) { 1171 if (auto *FalseInst = dyn_cast<Instruction>(FalseVal)) 1172 FalseInst->dropPoisonGeneratingFlags(); 1173 return FalseVal; 1174 } 1175 return nullptr; 1176 } 1177 1178 // See if this is a pattern like: 1179 // %old_cmp1 = icmp slt i32 %x, C2 1180 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high 1181 // %old_x_offseted = add i32 %x, C1 1182 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0 1183 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement 1184 // This can be rewritten as more canonical pattern: 1185 // %new_cmp1 = icmp slt i32 %x, -C1 1186 // %new_cmp2 = icmp sge i32 %x, C0-C1 1187 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x 1188 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low 1189 // Iff -C1 s<= C2 s<= C0-C1 1190 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result) 1191 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.) 1192 static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0, 1193 InstCombiner::BuilderTy &Builder) { 1194 Value *X = Sel0.getTrueValue(); 1195 Value *Sel1 = Sel0.getFalseValue(); 1196 1197 // First match the condition of the outermost select. 1198 // Said condition must be one-use. 1199 if (!Cmp0.hasOneUse()) 1200 return nullptr; 1201 Value *Cmp00 = Cmp0.getOperand(0); 1202 Constant *C0; 1203 if (!match(Cmp0.getOperand(1), 1204 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))) 1205 return nullptr; 1206 // Canonicalize Cmp0 into the form we expect. 1207 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1208 switch (Cmp0.getPredicate()) { 1209 case ICmpInst::Predicate::ICMP_ULT: 1210 break; // Great! 1211 case ICmpInst::Predicate::ICMP_ULE: 1212 // We'd have to increment C0 by one, and for that it must not have all-ones 1213 // element, but then it would have been canonicalized to 'ult' before 1214 // we get here. So we can't do anything useful with 'ule'. 1215 return nullptr; 1216 case ICmpInst::Predicate::ICMP_UGT: 1217 // We want to canonicalize it to 'ult', so we'll need to increment C0, 1218 // which again means it must not have any all-ones elements. 1219 if (!match(C0, 1220 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1221 APInt::getAllOnesValue( 1222 C0->getType()->getScalarSizeInBits())))) 1223 return nullptr; // Can't do, have all-ones element[s]. 1224 C0 = AddOne(C0); 1225 std::swap(X, Sel1); 1226 break; 1227 case ICmpInst::Predicate::ICMP_UGE: 1228 // The only way we'd get this predicate if this `icmp` has extra uses, 1229 // but then we won't be able to do this fold. 1230 return nullptr; 1231 default: 1232 return nullptr; // Unknown predicate. 1233 } 1234 1235 // Now that we've canonicalized the ICmp, we know the X we expect; 1236 // the select in other hand should be one-use. 1237 if (!Sel1->hasOneUse()) 1238 return nullptr; 1239 1240 // We now can finish matching the condition of the outermost select: 1241 // it should either be the X itself, or an addition of some constant to X. 1242 Constant *C1; 1243 if (Cmp00 == X) 1244 C1 = ConstantInt::getNullValue(Sel0.getType()); 1245 else if (!match(Cmp00, 1246 m_Add(m_Specific(X), 1247 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1))))) 1248 return nullptr; 1249 1250 Value *Cmp1; 1251 ICmpInst::Predicate Pred1; 1252 Constant *C2; 1253 Value *ReplacementLow, *ReplacementHigh; 1254 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow), 1255 m_Value(ReplacementHigh))) || 1256 !match(Cmp1, 1257 m_ICmp(Pred1, m_Specific(X), 1258 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2))))) 1259 return nullptr; 1260 1261 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse())) 1262 return nullptr; // Not enough one-use instructions for the fold. 1263 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of 1264 // two comparisons we'll need to build. 1265 1266 // Canonicalize Cmp1 into the form we expect. 1267 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1268 switch (Pred1) { 1269 case ICmpInst::Predicate::ICMP_SLT: 1270 break; 1271 case ICmpInst::Predicate::ICMP_SLE: 1272 // We'd have to increment C2 by one, and for that it must not have signed 1273 // max element, but then it would have been canonicalized to 'slt' before 1274 // we get here. So we can't do anything useful with 'sle'. 1275 return nullptr; 1276 case ICmpInst::Predicate::ICMP_SGT: 1277 // We want to canonicalize it to 'slt', so we'll need to increment C2, 1278 // which again means it must not have any signed max elements. 1279 if (!match(C2, 1280 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1281 APInt::getSignedMaxValue( 1282 C2->getType()->getScalarSizeInBits())))) 1283 return nullptr; // Can't do, have signed max element[s]. 1284 C2 = AddOne(C2); 1285 LLVM_FALLTHROUGH; 1286 case ICmpInst::Predicate::ICMP_SGE: 1287 // Also non-canonical, but here we don't need to change C2, 1288 // so we don't have any restrictions on C2, so we can just handle it. 1289 std::swap(ReplacementLow, ReplacementHigh); 1290 break; 1291 default: 1292 return nullptr; // Unknown predicate. 1293 } 1294 1295 // The thresholds of this clamp-like pattern. 1296 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1); 1297 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1); 1298 1299 // The fold has a precondition 1: C2 s>= ThresholdLow 1300 auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2, 1301 ThresholdLowIncl); 1302 if (!match(Precond1, m_One())) 1303 return nullptr; 1304 // The fold has a precondition 2: C2 s<= ThresholdHigh 1305 auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2, 1306 ThresholdHighExcl); 1307 if (!match(Precond2, m_One())) 1308 return nullptr; 1309 1310 // All good, finally emit the new pattern. 1311 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl); 1312 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl); 1313 Value *MaybeReplacedLow = 1314 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X); 1315 Instruction *MaybeReplacedHigh = 1316 SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow); 1317 1318 return MaybeReplacedHigh; 1319 } 1320 1321 // If we have 1322 // %cmp = icmp [canonical predicate] i32 %x, C0 1323 // %r = select i1 %cmp, i32 %y, i32 C1 1324 // Where C0 != C1 and %x may be different from %y, see if the constant that we 1325 // will have if we flip the strictness of the predicate (i.e. without changing 1326 // the result) is identical to the C1 in select. If it matches we can change 1327 // original comparison to one with swapped predicate, reuse the constant, 1328 // and swap the hands of select. 1329 static Instruction * 1330 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp, 1331 InstCombiner::BuilderTy &Builder) { 1332 ICmpInst::Predicate Pred; 1333 Value *X; 1334 Constant *C0; 1335 if (!match(&Cmp, m_OneUse(m_ICmp( 1336 Pred, m_Value(X), 1337 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))))) 1338 return nullptr; 1339 1340 // If comparison predicate is non-relational, we won't be able to do anything. 1341 if (ICmpInst::isEquality(Pred)) 1342 return nullptr; 1343 1344 // If comparison predicate is non-canonical, then we certainly won't be able 1345 // to make it canonical; canonicalizeCmpWithConstant() already tried. 1346 if (!isCanonicalPredicate(Pred)) 1347 return nullptr; 1348 1349 // If the [input] type of comparison and select type are different, lets abort 1350 // for now. We could try to compare constants with trunc/[zs]ext though. 1351 if (C0->getType() != Sel.getType()) 1352 return nullptr; 1353 1354 // FIXME: are there any magic icmp predicate+constant pairs we must not touch? 1355 1356 Value *SelVal0, *SelVal1; // We do not care which one is from where. 1357 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1))); 1358 // At least one of these values we are selecting between must be a constant 1359 // else we'll never succeed. 1360 if (!match(SelVal0, m_AnyIntegralConstant()) && 1361 !match(SelVal1, m_AnyIntegralConstant())) 1362 return nullptr; 1363 1364 // Does this constant C match any of the `select` values? 1365 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) { 1366 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1); 1367 }; 1368 1369 // If C0 *already* matches true/false value of select, we are done. 1370 if (MatchesSelectValue(C0)) 1371 return nullptr; 1372 1373 // Check the constant we'd have with flipped-strictness predicate. 1374 auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, C0); 1375 if (!FlippedStrictness) 1376 return nullptr; 1377 1378 // If said constant doesn't match either, then there is no hope, 1379 if (!MatchesSelectValue(FlippedStrictness->second)) 1380 return nullptr; 1381 1382 // It matched! Lets insert the new comparison just before select. 1383 InstCombiner::BuilderTy::InsertPointGuard Guard(Builder); 1384 Builder.SetInsertPoint(&Sel); 1385 1386 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped. 1387 Value *NewCmp = Builder.CreateICmp(Pred, X, FlippedStrictness->second, 1388 Cmp.getName() + ".inv"); 1389 Sel.setCondition(NewCmp); 1390 Sel.swapValues(); 1391 Sel.swapProfMetadata(); 1392 1393 return &Sel; 1394 } 1395 1396 /// Visit a SelectInst that has an ICmpInst as its first operand. 1397 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI, 1398 ICmpInst *ICI) { 1399 if (Value *V = foldSelectValueEquivalence(SI, *ICI, SQ)) 1400 return replaceInstUsesWith(SI, V); 1401 1402 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder)) 1403 return NewSel; 1404 1405 if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder)) 1406 return NewAbs; 1407 1408 if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder)) 1409 return NewAbs; 1410 1411 if (Instruction *NewSel = 1412 tryToReuseConstantFromSelectInComparison(SI, *ICI, Builder)) 1413 return NewSel; 1414 1415 bool Changed = adjustMinMax(SI, *ICI); 1416 1417 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 1418 return replaceInstUsesWith(SI, V); 1419 1420 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 1421 Value *TrueVal = SI.getTrueValue(); 1422 Value *FalseVal = SI.getFalseValue(); 1423 ICmpInst::Predicate Pred = ICI->getPredicate(); 1424 Value *CmpLHS = ICI->getOperand(0); 1425 Value *CmpRHS = ICI->getOperand(1); 1426 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 1427 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 1428 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 1429 SI.setOperand(1, CmpRHS); 1430 Changed = true; 1431 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 1432 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 1433 SI.setOperand(2, CmpRHS); 1434 Changed = true; 1435 } 1436 } 1437 1438 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 1439 // decomposeBitTestICmp() might help. 1440 { 1441 unsigned BitWidth = 1442 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 1443 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 1444 Value *X; 1445 const APInt *Y, *C; 1446 bool TrueWhenUnset; 1447 bool IsBitTest = false; 1448 if (ICmpInst::isEquality(Pred) && 1449 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 1450 match(CmpRHS, m_Zero())) { 1451 IsBitTest = true; 1452 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 1453 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 1454 X = CmpLHS; 1455 Y = &MinSignedValue; 1456 IsBitTest = true; 1457 TrueWhenUnset = false; 1458 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 1459 X = CmpLHS; 1460 Y = &MinSignedValue; 1461 IsBitTest = true; 1462 TrueWhenUnset = true; 1463 } 1464 if (IsBitTest) { 1465 Value *V = nullptr; 1466 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1467 if (TrueWhenUnset && TrueVal == X && 1468 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1469 V = Builder.CreateAnd(X, ~(*Y)); 1470 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1471 else if (!TrueWhenUnset && FalseVal == X && 1472 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1473 V = Builder.CreateAnd(X, ~(*Y)); 1474 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1475 else if (TrueWhenUnset && FalseVal == X && 1476 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1477 V = Builder.CreateOr(X, *Y); 1478 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1479 else if (!TrueWhenUnset && TrueVal == X && 1480 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1481 V = Builder.CreateOr(X, *Y); 1482 1483 if (V) 1484 return replaceInstUsesWith(SI, V); 1485 } 1486 } 1487 1488 if (Instruction *V = 1489 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1490 return V; 1491 1492 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder)) 1493 return V; 1494 1495 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 1496 return replaceInstUsesWith(SI, V); 1497 1498 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder)) 1499 return replaceInstUsesWith(SI, V); 1500 1501 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 1502 return replaceInstUsesWith(SI, V); 1503 1504 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1505 return replaceInstUsesWith(SI, V); 1506 1507 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) 1508 return replaceInstUsesWith(SI, V); 1509 1510 return Changed ? &SI : nullptr; 1511 } 1512 1513 /// SI is a select whose condition is a PHI node (but the two may be in 1514 /// different blocks). See if the true/false values (V) are live in all of the 1515 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1516 /// 1517 /// X = phi [ C1, BB1], [C2, BB2] 1518 /// Y = add 1519 /// Z = select X, Y, 0 1520 /// 1521 /// because Y is not live in BB1/BB2. 1522 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1523 const SelectInst &SI) { 1524 // If the value is a non-instruction value like a constant or argument, it 1525 // can always be mapped. 1526 const Instruction *I = dyn_cast<Instruction>(V); 1527 if (!I) return true; 1528 1529 // If V is a PHI node defined in the same block as the condition PHI, we can 1530 // map the arguments. 1531 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1532 1533 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1534 if (VP->getParent() == CondPHI->getParent()) 1535 return true; 1536 1537 // Otherwise, if the PHI and select are defined in the same block and if V is 1538 // defined in a different block, then we can transform it. 1539 if (SI.getParent() == CondPHI->getParent() && 1540 I->getParent() != CondPHI->getParent()) 1541 return true; 1542 1543 // Otherwise we have a 'hard' case and we can't tell without doing more 1544 // detailed dominator based analysis, punt. 1545 return false; 1546 } 1547 1548 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1549 /// SPF2(SPF1(A, B), C) 1550 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner, 1551 SelectPatternFlavor SPF1, 1552 Value *A, Value *B, 1553 Instruction &Outer, 1554 SelectPatternFlavor SPF2, Value *C) { 1555 if (Outer.getType() != Inner->getType()) 1556 return nullptr; 1557 1558 if (C == A || C == B) { 1559 // MAX(MAX(A, B), B) -> MAX(A, B) 1560 // MIN(MIN(a, b), a) -> MIN(a, b) 1561 // TODO: This could be done in instsimplify. 1562 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 1563 return replaceInstUsesWith(Outer, Inner); 1564 1565 // MAX(MIN(a, b), a) -> a 1566 // MIN(MAX(a, b), a) -> a 1567 // TODO: This could be done in instsimplify. 1568 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 1569 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 1570 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 1571 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 1572 return replaceInstUsesWith(Outer, C); 1573 } 1574 1575 if (SPF1 == SPF2) { 1576 const APInt *CB, *CC; 1577 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 1578 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 1579 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 1580 // TODO: This could be done in instsimplify. 1581 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 1582 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 1583 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 1584 (SPF1 == SPF_SMAX && CB->sge(*CC))) 1585 return replaceInstUsesWith(Outer, Inner); 1586 1587 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 1588 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 1589 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 1590 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 1591 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 1592 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 1593 Outer.replaceUsesOfWith(Inner, A); 1594 return &Outer; 1595 } 1596 } 1597 } 1598 1599 // max(max(A, B), min(A, B)) --> max(A, B) 1600 // min(min(A, B), max(A, B)) --> min(A, B) 1601 // TODO: This could be done in instsimplify. 1602 if (SPF1 == SPF2 && 1603 ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) || 1604 (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) || 1605 (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) || 1606 (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B)))))) 1607 return replaceInstUsesWith(Outer, Inner); 1608 1609 // ABS(ABS(X)) -> ABS(X) 1610 // NABS(NABS(X)) -> NABS(X) 1611 // TODO: This could be done in instsimplify. 1612 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 1613 return replaceInstUsesWith(Outer, Inner); 1614 } 1615 1616 // ABS(NABS(X)) -> ABS(X) 1617 // NABS(ABS(X)) -> NABS(X) 1618 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 1619 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 1620 SelectInst *SI = cast<SelectInst>(Inner); 1621 Value *NewSI = 1622 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 1623 SI->getTrueValue(), SI->getName(), SI); 1624 return replaceInstUsesWith(Outer, NewSI); 1625 } 1626 1627 auto IsFreeOrProfitableToInvert = 1628 [&](Value *V, Value *&NotV, bool &ElidesXor) { 1629 if (match(V, m_Not(m_Value(NotV)))) { 1630 // If V has at most 2 uses then we can get rid of the xor operation 1631 // entirely. 1632 ElidesXor |= !V->hasNUsesOrMore(3); 1633 return true; 1634 } 1635 1636 if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) { 1637 NotV = nullptr; 1638 return true; 1639 } 1640 1641 return false; 1642 }; 1643 1644 Value *NotA, *NotB, *NotC; 1645 bool ElidesXor = false; 1646 1647 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 1648 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 1649 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 1650 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 1651 // 1652 // This transform is performance neutral if we can elide at least one xor from 1653 // the set of three operands, since we'll be tacking on an xor at the very 1654 // end. 1655 if (SelectPatternResult::isMinOrMax(SPF1) && 1656 SelectPatternResult::isMinOrMax(SPF2) && 1657 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 1658 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 1659 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 1660 if (!NotA) 1661 NotA = Builder.CreateNot(A); 1662 if (!NotB) 1663 NotB = Builder.CreateNot(B); 1664 if (!NotC) 1665 NotC = Builder.CreateNot(C); 1666 1667 Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA, 1668 NotB); 1669 Value *NewOuter = Builder.CreateNot( 1670 createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC)); 1671 return replaceInstUsesWith(Outer, NewOuter); 1672 } 1673 1674 return nullptr; 1675 } 1676 1677 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1678 /// This is even legal for FP. 1679 static Instruction *foldAddSubSelect(SelectInst &SI, 1680 InstCombiner::BuilderTy &Builder) { 1681 Value *CondVal = SI.getCondition(); 1682 Value *TrueVal = SI.getTrueValue(); 1683 Value *FalseVal = SI.getFalseValue(); 1684 auto *TI = dyn_cast<Instruction>(TrueVal); 1685 auto *FI = dyn_cast<Instruction>(FalseVal); 1686 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1687 return nullptr; 1688 1689 Instruction *AddOp = nullptr, *SubOp = nullptr; 1690 if ((TI->getOpcode() == Instruction::Sub && 1691 FI->getOpcode() == Instruction::Add) || 1692 (TI->getOpcode() == Instruction::FSub && 1693 FI->getOpcode() == Instruction::FAdd)) { 1694 AddOp = FI; 1695 SubOp = TI; 1696 } else if ((FI->getOpcode() == Instruction::Sub && 1697 TI->getOpcode() == Instruction::Add) || 1698 (FI->getOpcode() == Instruction::FSub && 1699 TI->getOpcode() == Instruction::FAdd)) { 1700 AddOp = TI; 1701 SubOp = FI; 1702 } 1703 1704 if (AddOp) { 1705 Value *OtherAddOp = nullptr; 1706 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1707 OtherAddOp = AddOp->getOperand(1); 1708 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1709 OtherAddOp = AddOp->getOperand(0); 1710 } 1711 1712 if (OtherAddOp) { 1713 // So at this point we know we have (Y -> OtherAddOp): 1714 // select C, (add X, Y), (sub X, Z) 1715 Value *NegVal; // Compute -Z 1716 if (SI.getType()->isFPOrFPVectorTy()) { 1717 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1718 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1719 FastMathFlags Flags = AddOp->getFastMathFlags(); 1720 Flags &= SubOp->getFastMathFlags(); 1721 NegInst->setFastMathFlags(Flags); 1722 } 1723 } else { 1724 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1725 } 1726 1727 Value *NewTrueOp = OtherAddOp; 1728 Value *NewFalseOp = NegVal; 1729 if (AddOp != TI) 1730 std::swap(NewTrueOp, NewFalseOp); 1731 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1732 SI.getName() + ".p", &SI); 1733 1734 if (SI.getType()->isFPOrFPVectorTy()) { 1735 Instruction *RI = 1736 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1737 1738 FastMathFlags Flags = AddOp->getFastMathFlags(); 1739 Flags &= SubOp->getFastMathFlags(); 1740 RI->setFastMathFlags(Flags); 1741 return RI; 1742 } else 1743 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1744 } 1745 } 1746 return nullptr; 1747 } 1748 1749 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1750 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1751 /// Along with a number of patterns similar to: 1752 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1753 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1754 static Instruction * 1755 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) { 1756 Value *CondVal = SI.getCondition(); 1757 Value *TrueVal = SI.getTrueValue(); 1758 Value *FalseVal = SI.getFalseValue(); 1759 1760 WithOverflowInst *II; 1761 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) || 1762 !match(FalseVal, m_ExtractValue<0>(m_Specific(II)))) 1763 return nullptr; 1764 1765 Value *X = II->getLHS(); 1766 Value *Y = II->getRHS(); 1767 1768 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) { 1769 Type *Ty = Limit->getType(); 1770 1771 ICmpInst::Predicate Pred; 1772 Value *TrueVal, *FalseVal, *Op; 1773 const APInt *C; 1774 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)), 1775 m_Value(TrueVal), m_Value(FalseVal)))) 1776 return false; 1777 1778 auto IsZeroOrOne = [](const APInt &C) { 1779 return C.isNullValue() || C.isOneValue(); 1780 }; 1781 auto IsMinMax = [&](Value *Min, Value *Max) { 1782 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 1783 APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 1784 return match(Min, m_SpecificInt(MinVal)) && 1785 match(Max, m_SpecificInt(MaxVal)); 1786 }; 1787 1788 if (Op != X && Op != Y) 1789 return false; 1790 1791 if (IsAdd) { 1792 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1793 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1794 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1795 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1796 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1797 IsMinMax(TrueVal, FalseVal)) 1798 return true; 1799 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1800 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1801 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1802 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1803 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1804 IsMinMax(FalseVal, TrueVal)) 1805 return true; 1806 } else { 1807 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1808 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1809 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) && 1810 IsMinMax(TrueVal, FalseVal)) 1811 return true; 1812 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1813 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1814 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) && 1815 IsMinMax(FalseVal, TrueVal)) 1816 return true; 1817 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1818 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1819 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1820 IsMinMax(FalseVal, TrueVal)) 1821 return true; 1822 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1823 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1824 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1825 IsMinMax(TrueVal, FalseVal)) 1826 return true; 1827 } 1828 1829 return false; 1830 }; 1831 1832 Intrinsic::ID NewIntrinsicID; 1833 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow && 1834 match(TrueVal, m_AllOnes())) 1835 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1836 NewIntrinsicID = Intrinsic::uadd_sat; 1837 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow && 1838 match(TrueVal, m_Zero())) 1839 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1840 NewIntrinsicID = Intrinsic::usub_sat; 1841 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow && 1842 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true)) 1843 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1844 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1845 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1846 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1847 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1848 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1849 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1850 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1851 NewIntrinsicID = Intrinsic::sadd_sat; 1852 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow && 1853 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false)) 1854 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1855 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1856 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1857 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1858 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1859 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1860 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1861 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1862 NewIntrinsicID = Intrinsic::ssub_sat; 1863 else 1864 return nullptr; 1865 1866 Function *F = 1867 Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType()); 1868 return CallInst::Create(F, {X, Y}); 1869 } 1870 1871 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) { 1872 Constant *C; 1873 if (!match(Sel.getTrueValue(), m_Constant(C)) && 1874 !match(Sel.getFalseValue(), m_Constant(C))) 1875 return nullptr; 1876 1877 Instruction *ExtInst; 1878 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 1879 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 1880 return nullptr; 1881 1882 auto ExtOpcode = ExtInst->getOpcode(); 1883 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 1884 return nullptr; 1885 1886 // If we are extending from a boolean type or if we can create a select that 1887 // has the same size operands as its condition, try to narrow the select. 1888 Value *X = ExtInst->getOperand(0); 1889 Type *SmallType = X->getType(); 1890 Value *Cond = Sel.getCondition(); 1891 auto *Cmp = dyn_cast<CmpInst>(Cond); 1892 if (!SmallType->isIntOrIntVectorTy(1) && 1893 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 1894 return nullptr; 1895 1896 // If the constant is the same after truncation to the smaller type and 1897 // extension to the original type, we can narrow the select. 1898 Type *SelType = Sel.getType(); 1899 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 1900 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 1901 if (ExtC == C) { 1902 Value *TruncCVal = cast<Value>(TruncC); 1903 if (ExtInst == Sel.getFalseValue()) 1904 std::swap(X, TruncCVal); 1905 1906 // select Cond, (ext X), C --> ext(select Cond, X, C') 1907 // select Cond, C, (ext X) --> ext(select Cond, C', X) 1908 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 1909 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 1910 } 1911 1912 // If one arm of the select is the extend of the condition, replace that arm 1913 // with the extension of the appropriate known bool value. 1914 if (Cond == X) { 1915 if (ExtInst == Sel.getTrueValue()) { 1916 // select X, (sext X), C --> select X, -1, C 1917 // select X, (zext X), C --> select X, 1, C 1918 Constant *One = ConstantInt::getTrue(SmallType); 1919 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 1920 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 1921 } else { 1922 // select X, C, (sext X) --> select X, C, 0 1923 // select X, C, (zext X) --> select X, C, 0 1924 Constant *Zero = ConstantInt::getNullValue(SelType); 1925 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 1926 } 1927 } 1928 1929 return nullptr; 1930 } 1931 1932 /// Try to transform a vector select with a constant condition vector into a 1933 /// shuffle for easier combining with other shuffles and insert/extract. 1934 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 1935 Value *CondVal = SI.getCondition(); 1936 Constant *CondC; 1937 if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC))) 1938 return nullptr; 1939 1940 unsigned NumElts = CondVal->getType()->getVectorNumElements(); 1941 SmallVector<Constant *, 16> Mask; 1942 Mask.reserve(NumElts); 1943 Type *Int32Ty = Type::getInt32Ty(CondVal->getContext()); 1944 for (unsigned i = 0; i != NumElts; ++i) { 1945 Constant *Elt = CondC->getAggregateElement(i); 1946 if (!Elt) 1947 return nullptr; 1948 1949 if (Elt->isOneValue()) { 1950 // If the select condition element is true, choose from the 1st vector. 1951 Mask.push_back(ConstantInt::get(Int32Ty, i)); 1952 } else if (Elt->isNullValue()) { 1953 // If the select condition element is false, choose from the 2nd vector. 1954 Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts)); 1955 } else if (isa<UndefValue>(Elt)) { 1956 // Undef in a select condition (choose one of the operands) does not mean 1957 // the same thing as undef in a shuffle mask (any value is acceptable), so 1958 // give up. 1959 return nullptr; 1960 } else { 1961 // Bail out on a constant expression. 1962 return nullptr; 1963 } 1964 } 1965 1966 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), 1967 ConstantVector::get(Mask)); 1968 } 1969 1970 /// If we have a select of vectors with a scalar condition, try to convert that 1971 /// to a vector select by splatting the condition. A splat may get folded with 1972 /// other operations in IR and having all operands of a select be vector types 1973 /// is likely better for vector codegen. 1974 static Instruction *canonicalizeScalarSelectOfVecs( 1975 SelectInst &Sel, InstCombiner::BuilderTy &Builder) { 1976 Type *Ty = Sel.getType(); 1977 if (!Ty->isVectorTy()) 1978 return nullptr; 1979 1980 // We can replace a single-use extract with constant index. 1981 Value *Cond = Sel.getCondition(); 1982 if (!match(Cond, m_OneUse(m_ExtractElement(m_Value(), m_ConstantInt())))) 1983 return nullptr; 1984 1985 // select (extelt V, Index), T, F --> select (splat V, Index), T, F 1986 // Splatting the extracted condition reduces code (we could directly create a 1987 // splat shuffle of the source vector to eliminate the intermediate step). 1988 unsigned NumElts = Ty->getVectorNumElements(); 1989 Value *SplatCond = Builder.CreateVectorSplat(NumElts, Cond); 1990 Sel.setCondition(SplatCond); 1991 return &Sel; 1992 } 1993 1994 /// Reuse bitcasted operands between a compare and select: 1995 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1996 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 1997 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 1998 InstCombiner::BuilderTy &Builder) { 1999 Value *Cond = Sel.getCondition(); 2000 Value *TVal = Sel.getTrueValue(); 2001 Value *FVal = Sel.getFalseValue(); 2002 2003 CmpInst::Predicate Pred; 2004 Value *A, *B; 2005 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 2006 return nullptr; 2007 2008 // The select condition is a compare instruction. If the select's true/false 2009 // values are already the same as the compare operands, there's nothing to do. 2010 if (TVal == A || TVal == B || FVal == A || FVal == B) 2011 return nullptr; 2012 2013 Value *C, *D; 2014 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 2015 return nullptr; 2016 2017 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 2018 Value *TSrc, *FSrc; 2019 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 2020 !match(FVal, m_BitCast(m_Value(FSrc)))) 2021 return nullptr; 2022 2023 // If the select true/false values are *different bitcasts* of the same source 2024 // operands, make the select operands the same as the compare operands and 2025 // cast the result. This is the canonical select form for min/max. 2026 Value *NewSel; 2027 if (TSrc == C && FSrc == D) { 2028 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2029 // bitcast (select (cmp A, B), A, B) 2030 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 2031 } else if (TSrc == D && FSrc == C) { 2032 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 2033 // bitcast (select (cmp A, B), B, A) 2034 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 2035 } else { 2036 return nullptr; 2037 } 2038 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 2039 } 2040 2041 /// Try to eliminate select instructions that test the returned flag of cmpxchg 2042 /// instructions. 2043 /// 2044 /// If a select instruction tests the returned flag of a cmpxchg instruction and 2045 /// selects between the returned value of the cmpxchg instruction its compare 2046 /// operand, the result of the select will always be equal to its false value. 2047 /// For example: 2048 /// 2049 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2050 /// %1 = extractvalue { i64, i1 } %0, 1 2051 /// %2 = extractvalue { i64, i1 } %0, 0 2052 /// %3 = select i1 %1, i64 %compare, i64 %2 2053 /// ret i64 %3 2054 /// 2055 /// The returned value of the cmpxchg instruction (%2) is the original value 2056 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 2057 /// must have been equal to %compare. Thus, the result of the select is always 2058 /// equal to %2, and the code can be simplified to: 2059 /// 2060 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2061 /// %1 = extractvalue { i64, i1 } %0, 0 2062 /// ret i64 %1 2063 /// 2064 static Instruction *foldSelectCmpXchg(SelectInst &SI) { 2065 // A helper that determines if V is an extractvalue instruction whose 2066 // aggregate operand is a cmpxchg instruction and whose single index is equal 2067 // to I. If such conditions are true, the helper returns the cmpxchg 2068 // instruction; otherwise, a nullptr is returned. 2069 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 2070 auto *Extract = dyn_cast<ExtractValueInst>(V); 2071 if (!Extract) 2072 return nullptr; 2073 if (Extract->getIndices()[0] != I) 2074 return nullptr; 2075 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 2076 }; 2077 2078 // If the select has a single user, and this user is a select instruction that 2079 // we can simplify, skip the cmpxchg simplification for now. 2080 if (SI.hasOneUse()) 2081 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 2082 if (Select->getCondition() == SI.getCondition()) 2083 if (Select->getFalseValue() == SI.getTrueValue() || 2084 Select->getTrueValue() == SI.getFalseValue()) 2085 return nullptr; 2086 2087 // Ensure the select condition is the returned flag of a cmpxchg instruction. 2088 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 2089 if (!CmpXchg) 2090 return nullptr; 2091 2092 // Check the true value case: The true value of the select is the returned 2093 // value of the same cmpxchg used by the condition, and the false value is the 2094 // cmpxchg instruction's compare operand. 2095 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 2096 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) { 2097 SI.setTrueValue(SI.getFalseValue()); 2098 return &SI; 2099 } 2100 2101 // Check the false value case: The false value of the select is the returned 2102 // value of the same cmpxchg used by the condition, and the true value is the 2103 // cmpxchg instruction's compare operand. 2104 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 2105 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) { 2106 SI.setTrueValue(SI.getFalseValue()); 2107 return &SI; 2108 } 2109 2110 return nullptr; 2111 } 2112 2113 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X, 2114 Value *Y, 2115 InstCombiner::BuilderTy &Builder) { 2116 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern"); 2117 bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN || 2118 SPF == SelectPatternFlavor::SPF_UMAX; 2119 // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change 2120 // the constant value check to an assert. 2121 Value *A; 2122 const APInt *C1, *C2; 2123 if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) && 2124 match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) { 2125 // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1 2126 // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1 2127 Value *NewMinMax = createMinMax(Builder, SPF, A, 2128 ConstantInt::get(X->getType(), *C2 - *C1)); 2129 return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax, 2130 ConstantInt::get(X->getType(), *C1)); 2131 } 2132 2133 if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) && 2134 match(Y, m_APInt(C2)) && X->hasNUses(2)) { 2135 bool Overflow; 2136 APInt Diff = C2->ssub_ov(*C1, Overflow); 2137 if (!Overflow) { 2138 // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1 2139 // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1 2140 Value *NewMinMax = createMinMax(Builder, SPF, A, 2141 ConstantInt::get(X->getType(), Diff)); 2142 return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax, 2143 ConstantInt::get(X->getType(), *C1)); 2144 } 2145 } 2146 2147 return nullptr; 2148 } 2149 2150 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value. 2151 Instruction *InstCombiner::matchSAddSubSat(SelectInst &MinMax1) { 2152 Type *Ty = MinMax1.getType(); 2153 2154 // We are looking for a tree of: 2155 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B)))) 2156 // Where the min and max could be reversed 2157 Instruction *MinMax2; 2158 BinaryOperator *AddSub; 2159 const APInt *MinValue, *MaxValue; 2160 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) { 2161 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue)))) 2162 return nullptr; 2163 } else if (match(&MinMax1, 2164 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) { 2165 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue)))) 2166 return nullptr; 2167 } else 2168 return nullptr; 2169 2170 // Check that the constants clamp a saturate, and that the new type would be 2171 // sensible to convert to. 2172 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1) 2173 return nullptr; 2174 // In what bitwidth can this be treated as saturating arithmetics? 2175 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1; 2176 // FIXME: This isn't quite right for vectors, but using the scalar type is a 2177 // good first approximation for what should be done there. 2178 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth)) 2179 return nullptr; 2180 2181 // Also make sure that the number of uses is as expected. The "3"s are for the 2182 // the two items of min/max (the compare and the select). 2183 if (MinMax2->hasNUsesOrMore(3) || AddSub->hasNUsesOrMore(3)) 2184 return nullptr; 2185 2186 // Create the new type (which can be a vector type) 2187 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth); 2188 // Match the two extends from the add/sub 2189 Value *A, *B; 2190 if(!match(AddSub, m_BinOp(m_SExt(m_Value(A)), m_SExt(m_Value(B))))) 2191 return nullptr; 2192 // And check the incoming values are of a type smaller than or equal to the 2193 // size of the saturation. Otherwise the higher bits can cause different 2194 // results. 2195 if (A->getType()->getScalarSizeInBits() > NewBitWidth || 2196 B->getType()->getScalarSizeInBits() > NewBitWidth) 2197 return nullptr; 2198 2199 Intrinsic::ID IntrinsicID; 2200 if (AddSub->getOpcode() == Instruction::Add) 2201 IntrinsicID = Intrinsic::sadd_sat; 2202 else if (AddSub->getOpcode() == Instruction::Sub) 2203 IntrinsicID = Intrinsic::ssub_sat; 2204 else 2205 return nullptr; 2206 2207 // Finally create and return the sat intrinsic, truncated to the new type 2208 Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy); 2209 Value *AT = Builder.CreateSExt(A, NewTy); 2210 Value *BT = Builder.CreateSExt(B, NewTy); 2211 Value *Sat = Builder.CreateCall(F, {AT, BT}); 2212 return CastInst::Create(Instruction::SExt, Sat, Ty); 2213 } 2214 2215 /// Reduce a sequence of min/max with a common operand. 2216 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS, 2217 Value *RHS, 2218 InstCombiner::BuilderTy &Builder) { 2219 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"); 2220 // TODO: Allow FP min/max with nnan/nsz. 2221 if (!LHS->getType()->isIntOrIntVectorTy()) 2222 return nullptr; 2223 2224 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 2225 Value *A, *B, *C, *D; 2226 SelectPatternResult L = matchSelectPattern(LHS, A, B); 2227 SelectPatternResult R = matchSelectPattern(RHS, C, D); 2228 if (SPF != L.Flavor || L.Flavor != R.Flavor) 2229 return nullptr; 2230 2231 // Look for a common operand. The use checks are different than usual because 2232 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by 2233 // the select. 2234 Value *MinMaxOp = nullptr; 2235 Value *ThirdOp = nullptr; 2236 if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) { 2237 // If the LHS is only used in this chain and the RHS is used outside of it, 2238 // reuse the RHS min/max because that will eliminate the LHS. 2239 if (D == A || C == A) { 2240 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 2241 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 2242 MinMaxOp = RHS; 2243 ThirdOp = B; 2244 } else if (D == B || C == B) { 2245 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 2246 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 2247 MinMaxOp = RHS; 2248 ThirdOp = A; 2249 } 2250 } else if (!RHS->hasNUsesOrMore(3)) { 2251 // Reuse the LHS. This will eliminate the RHS. 2252 if (D == A || D == B) { 2253 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 2254 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 2255 MinMaxOp = LHS; 2256 ThirdOp = C; 2257 } else if (C == A || C == B) { 2258 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 2259 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 2260 MinMaxOp = LHS; 2261 ThirdOp = D; 2262 } 2263 } 2264 if (!MinMaxOp || !ThirdOp) 2265 return nullptr; 2266 2267 CmpInst::Predicate P = getMinMaxPred(SPF); 2268 Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp); 2269 return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp); 2270 } 2271 2272 /// Try to reduce a rotate pattern that includes a compare and select into a 2273 /// funnel shift intrinsic. Example: 2274 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 2275 /// --> call llvm.fshl.i32(a, a, b) 2276 static Instruction *foldSelectRotate(SelectInst &Sel) { 2277 // The false value of the select must be a rotate of the true value. 2278 Value *Or0, *Or1; 2279 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1))))) 2280 return nullptr; 2281 2282 Value *TVal = Sel.getTrueValue(); 2283 Value *SA0, *SA1; 2284 if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA0)))) || 2285 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA1))))) 2286 return nullptr; 2287 2288 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode(); 2289 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode(); 2290 if (ShiftOpcode0 == ShiftOpcode1) 2291 return nullptr; 2292 2293 // We have one of these patterns so far: 2294 // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1)) 2295 // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1)) 2296 // This must be a power-of-2 rotate for a bitmasking transform to be valid. 2297 unsigned Width = Sel.getType()->getScalarSizeInBits(); 2298 if (!isPowerOf2_32(Width)) 2299 return nullptr; 2300 2301 // Check the shift amounts to see if they are an opposite pair. 2302 Value *ShAmt; 2303 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 2304 ShAmt = SA0; 2305 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 2306 ShAmt = SA1; 2307 else 2308 return nullptr; 2309 2310 // Finally, see if the select is filtering out a shift-by-zero. 2311 Value *Cond = Sel.getCondition(); 2312 ICmpInst::Predicate Pred; 2313 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || 2314 Pred != ICmpInst::ICMP_EQ) 2315 return nullptr; 2316 2317 // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way. 2318 // Convert to funnel shift intrinsic. 2319 bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) || 2320 (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl); 2321 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 2322 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); 2323 return IntrinsicInst::Create(F, { TVal, TVal, ShAmt }); 2324 } 2325 2326 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { 2327 Value *CondVal = SI.getCondition(); 2328 Value *TrueVal = SI.getTrueValue(); 2329 Value *FalseVal = SI.getFalseValue(); 2330 Type *SelType = SI.getType(); 2331 2332 // FIXME: Remove this workaround when freeze related patches are done. 2333 // For select with undef operand which feeds into an equality comparison, 2334 // don't simplify it so loop unswitch can know the equality comparison 2335 // may have an undef operand. This is a workaround for PR31652 caused by 2336 // descrepancy about branch on undef between LoopUnswitch and GVN. 2337 if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) { 2338 if (llvm::any_of(SI.users(), [&](User *U) { 2339 ICmpInst *CI = dyn_cast<ICmpInst>(U); 2340 if (CI && CI->isEquality()) 2341 return true; 2342 return false; 2343 })) { 2344 return nullptr; 2345 } 2346 } 2347 2348 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 2349 SQ.getWithInstruction(&SI))) 2350 return replaceInstUsesWith(SI, V); 2351 2352 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 2353 return I; 2354 2355 if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, Builder)) 2356 return I; 2357 2358 // Canonicalize a one-use integer compare with a non-canonical predicate by 2359 // inverting the predicate and swapping the select operands. This matches a 2360 // compare canonicalization for conditional branches. 2361 // TODO: Should we do the same for FP compares? 2362 CmpInst::Predicate Pred; 2363 if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) && 2364 !isCanonicalPredicate(Pred)) { 2365 // Swap true/false values and condition. 2366 CmpInst *Cond = cast<CmpInst>(CondVal); 2367 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 2368 SI.setOperand(1, FalseVal); 2369 SI.setOperand(2, TrueVal); 2370 SI.swapProfMetadata(); 2371 Worklist.Add(Cond); 2372 return &SI; 2373 } 2374 2375 if (SelType->isIntOrIntVectorTy(1) && 2376 TrueVal->getType() == CondVal->getType()) { 2377 if (match(TrueVal, m_One())) { 2378 // Change: A = select B, true, C --> A = or B, C 2379 return BinaryOperator::CreateOr(CondVal, FalseVal); 2380 } 2381 if (match(TrueVal, m_Zero())) { 2382 // Change: A = select B, false, C --> A = and !B, C 2383 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2384 return BinaryOperator::CreateAnd(NotCond, FalseVal); 2385 } 2386 if (match(FalseVal, m_Zero())) { 2387 // Change: A = select B, C, false --> A = and B, C 2388 return BinaryOperator::CreateAnd(CondVal, TrueVal); 2389 } 2390 if (match(FalseVal, m_One())) { 2391 // Change: A = select B, C, true --> A = or !B, C 2392 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2393 return BinaryOperator::CreateOr(NotCond, TrueVal); 2394 } 2395 2396 // select a, a, b -> a | b 2397 // select a, b, a -> a & b 2398 if (CondVal == TrueVal) 2399 return BinaryOperator::CreateOr(CondVal, FalseVal); 2400 if (CondVal == FalseVal) 2401 return BinaryOperator::CreateAnd(CondVal, TrueVal); 2402 2403 // select a, ~a, b -> (~a) & b 2404 // select a, b, ~a -> (~a) | b 2405 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 2406 return BinaryOperator::CreateAnd(TrueVal, FalseVal); 2407 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 2408 return BinaryOperator::CreateOr(TrueVal, FalseVal); 2409 } 2410 2411 // Selecting between two integer or vector splat integer constants? 2412 // 2413 // Note that we don't handle a scalar select of vectors: 2414 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 2415 // because that may need 3 instructions to splat the condition value: 2416 // extend, insertelement, shufflevector. 2417 if (SelType->isIntOrIntVectorTy() && 2418 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 2419 // select C, 1, 0 -> zext C to int 2420 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 2421 return new ZExtInst(CondVal, SelType); 2422 2423 // select C, -1, 0 -> sext C to int 2424 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 2425 return new SExtInst(CondVal, SelType); 2426 2427 // select C, 0, 1 -> zext !C to int 2428 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 2429 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2430 return new ZExtInst(NotCond, SelType); 2431 } 2432 2433 // select C, 0, -1 -> sext !C to int 2434 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 2435 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2436 return new SExtInst(NotCond, SelType); 2437 } 2438 } 2439 2440 // See if we are selecting two values based on a comparison of the two values. 2441 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 2442 Value *Cmp0 = FCI->getOperand(0), *Cmp1 = FCI->getOperand(1); 2443 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) || 2444 (Cmp0 == FalseVal && Cmp1 == TrueVal)) { 2445 // Canonicalize to use ordered comparisons by swapping the select 2446 // operands. 2447 // 2448 // e.g. 2449 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 2450 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 2451 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 2452 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2453 // FIXME: The FMF should propagate from the select, not the fcmp. 2454 Builder.setFastMathFlags(FCI->getFastMathFlags()); 2455 Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1, 2456 FCI->getName() + ".inv"); 2457 Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal); 2458 return replaceInstUsesWith(SI, NewSel); 2459 } 2460 2461 // NOTE: if we wanted to, this is where to detect MIN/MAX 2462 } 2463 } 2464 2465 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 2466 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We 2467 // also require nnan because we do not want to unintentionally change the 2468 // sign of a NaN value. 2469 // FIXME: These folds should test/propagate FMF from the select, not the 2470 // fsub or fneg. 2471 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X) 2472 Instruction *FSub; 2473 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2474 match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) && 2475 match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() && 2476 (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) { 2477 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub); 2478 return replaceInstUsesWith(SI, Fabs); 2479 } 2480 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X) 2481 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2482 match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) && 2483 match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() && 2484 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) { 2485 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub); 2486 return replaceInstUsesWith(SI, Fabs); 2487 } 2488 // With nnan and nsz: 2489 // (X < +/-0.0) ? -X : X --> fabs(X) 2490 // (X <= +/-0.0) ? -X : X --> fabs(X) 2491 Instruction *FNeg; 2492 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2493 match(TrueVal, m_FNeg(m_Specific(FalseVal))) && 2494 match(TrueVal, m_Instruction(FNeg)) && 2495 FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() && 2496 (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE || 2497 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) { 2498 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg); 2499 return replaceInstUsesWith(SI, Fabs); 2500 } 2501 // With nnan and nsz: 2502 // (X > +/-0.0) ? X : -X --> fabs(X) 2503 // (X >= +/-0.0) ? X : -X --> fabs(X) 2504 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2505 match(FalseVal, m_FNeg(m_Specific(TrueVal))) && 2506 match(FalseVal, m_Instruction(FNeg)) && 2507 FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() && 2508 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE || 2509 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) { 2510 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg); 2511 return replaceInstUsesWith(SI, Fabs); 2512 } 2513 2514 // See if we are selecting two values based on a comparison of the two values. 2515 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 2516 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 2517 return Result; 2518 2519 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 2520 return Add; 2521 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder)) 2522 return Add; 2523 2524 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 2525 auto *TI = dyn_cast<Instruction>(TrueVal); 2526 auto *FI = dyn_cast<Instruction>(FalseVal); 2527 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 2528 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 2529 return IV; 2530 2531 if (Instruction *I = foldSelectExtConst(SI)) 2532 return I; 2533 2534 // See if we can fold the select into one of our operands. 2535 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 2536 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 2537 return FoldI; 2538 2539 Value *LHS, *RHS; 2540 Instruction::CastOps CastOp; 2541 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 2542 auto SPF = SPR.Flavor; 2543 if (SPF) { 2544 Value *LHS2, *RHS2; 2545 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 2546 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 2547 RHS2, SI, SPF, RHS)) 2548 return R; 2549 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 2550 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 2551 RHS2, SI, SPF, LHS)) 2552 return R; 2553 // TODO. 2554 // ABS(-X) -> ABS(X) 2555 } 2556 2557 if (SelectPatternResult::isMinOrMax(SPF)) { 2558 // Canonicalize so that 2559 // - type casts are outside select patterns. 2560 // - float clamp is transformed to min/max pattern 2561 2562 bool IsCastNeeded = LHS->getType() != SelType; 2563 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 2564 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 2565 if (IsCastNeeded || 2566 (LHS->getType()->isFPOrFPVectorTy() && 2567 ((CmpLHS != LHS && CmpLHS != RHS) || 2568 (CmpRHS != LHS && CmpRHS != RHS)))) { 2569 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered); 2570 2571 Value *Cmp; 2572 if (CmpInst::isIntPredicate(MinMaxPred)) { 2573 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS); 2574 } else { 2575 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2576 auto FMF = 2577 cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 2578 Builder.setFastMathFlags(FMF); 2579 Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS); 2580 } 2581 2582 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 2583 if (!IsCastNeeded) 2584 return replaceInstUsesWith(SI, NewSI); 2585 2586 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 2587 return replaceInstUsesWith(SI, NewCast); 2588 } 2589 2590 // MAX(~a, ~b) -> ~MIN(a, b) 2591 // MAX(~a, C) -> ~MIN(a, ~C) 2592 // MIN(~a, ~b) -> ~MAX(a, b) 2593 // MIN(~a, C) -> ~MAX(a, ~C) 2594 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { 2595 Value *A; 2596 if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) && 2597 !isFreeToInvert(A, A->hasOneUse()) && 2598 // Passing false to only consider m_Not and constants. 2599 isFreeToInvert(Y, false)) { 2600 Value *B = Builder.CreateNot(Y); 2601 Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF), 2602 A, B); 2603 // Copy the profile metadata. 2604 if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) { 2605 cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD); 2606 // Swap the metadata if the operands are swapped. 2607 if (X == SI.getFalseValue() && Y == SI.getTrueValue()) 2608 cast<SelectInst>(NewMinMax)->swapProfMetadata(); 2609 } 2610 2611 return BinaryOperator::CreateNot(NewMinMax); 2612 } 2613 2614 return nullptr; 2615 }; 2616 2617 if (Instruction *I = moveNotAfterMinMax(LHS, RHS)) 2618 return I; 2619 if (Instruction *I = moveNotAfterMinMax(RHS, LHS)) 2620 return I; 2621 2622 if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder)) 2623 return I; 2624 2625 if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder)) 2626 return I; 2627 if (Instruction *I = matchSAddSubSat(SI)) 2628 return I; 2629 } 2630 } 2631 2632 // Canonicalize select of FP values where NaN and -0.0 are not valid as 2633 // minnum/maxnum intrinsics. 2634 if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) { 2635 Value *X, *Y; 2636 if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y)))) 2637 return replaceInstUsesWith( 2638 SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI)); 2639 2640 if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y)))) 2641 return replaceInstUsesWith( 2642 SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI)); 2643 } 2644 2645 // See if we can fold the select into a phi node if the condition is a select. 2646 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 2647 // The true/false values have to be live in the PHI predecessor's blocks. 2648 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 2649 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 2650 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 2651 return NV; 2652 2653 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 2654 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 2655 // select(C, select(C, a, b), c) -> select(C, a, c) 2656 if (TrueSI->getCondition() == CondVal) { 2657 if (SI.getTrueValue() == TrueSI->getTrueValue()) 2658 return nullptr; 2659 SI.setOperand(1, TrueSI->getTrueValue()); 2660 return &SI; 2661 } 2662 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 2663 // We choose this as normal form to enable folding on the And and shortening 2664 // paths for the values (this helps GetUnderlyingObjects() for example). 2665 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 2666 Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition()); 2667 SI.setOperand(0, And); 2668 SI.setOperand(1, TrueSI->getTrueValue()); 2669 return &SI; 2670 } 2671 } 2672 } 2673 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 2674 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 2675 // select(C, a, select(C, b, c)) -> select(C, a, c) 2676 if (FalseSI->getCondition() == CondVal) { 2677 if (SI.getFalseValue() == FalseSI->getFalseValue()) 2678 return nullptr; 2679 SI.setOperand(2, FalseSI->getFalseValue()); 2680 return &SI; 2681 } 2682 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 2683 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 2684 Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition()); 2685 SI.setOperand(0, Or); 2686 SI.setOperand(2, FalseSI->getFalseValue()); 2687 return &SI; 2688 } 2689 } 2690 } 2691 2692 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { 2693 // The select might be preventing a division by 0. 2694 switch (BO->getOpcode()) { 2695 default: 2696 return true; 2697 case Instruction::SRem: 2698 case Instruction::URem: 2699 case Instruction::SDiv: 2700 case Instruction::UDiv: 2701 return false; 2702 } 2703 }; 2704 2705 // Try to simplify a binop sandwiched between 2 selects with the same 2706 // condition. 2707 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 2708 BinaryOperator *TrueBO; 2709 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && 2710 canMergeSelectThroughBinop(TrueBO)) { 2711 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 2712 if (TrueBOSI->getCondition() == CondVal) { 2713 TrueBO->setOperand(0, TrueBOSI->getTrueValue()); 2714 Worklist.Add(TrueBO); 2715 return &SI; 2716 } 2717 } 2718 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 2719 if (TrueBOSI->getCondition() == CondVal) { 2720 TrueBO->setOperand(1, TrueBOSI->getTrueValue()); 2721 Worklist.Add(TrueBO); 2722 return &SI; 2723 } 2724 } 2725 } 2726 2727 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 2728 BinaryOperator *FalseBO; 2729 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && 2730 canMergeSelectThroughBinop(FalseBO)) { 2731 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 2732 if (FalseBOSI->getCondition() == CondVal) { 2733 FalseBO->setOperand(0, FalseBOSI->getFalseValue()); 2734 Worklist.Add(FalseBO); 2735 return &SI; 2736 } 2737 } 2738 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 2739 if (FalseBOSI->getCondition() == CondVal) { 2740 FalseBO->setOperand(1, FalseBOSI->getFalseValue()); 2741 Worklist.Add(FalseBO); 2742 return &SI; 2743 } 2744 } 2745 } 2746 2747 Value *NotCond; 2748 if (match(CondVal, m_Not(m_Value(NotCond)))) { 2749 SI.setOperand(0, NotCond); 2750 SI.setOperand(1, FalseVal); 2751 SI.setOperand(2, TrueVal); 2752 SI.swapProfMetadata(); 2753 return &SI; 2754 } 2755 2756 if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) { 2757 unsigned VWidth = VecTy->getNumElements(); 2758 APInt UndefElts(VWidth, 0); 2759 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 2760 if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { 2761 if (V != &SI) 2762 return replaceInstUsesWith(SI, V); 2763 return &SI; 2764 } 2765 } 2766 2767 // If we can compute the condition, there's no need for a select. 2768 // Like the above fold, we are attempting to reduce compile-time cost by 2769 // putting this fold here with limitations rather than in InstSimplify. 2770 // The motivation for this call into value tracking is to take advantage of 2771 // the assumption cache, so make sure that is populated. 2772 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 2773 KnownBits Known(1); 2774 computeKnownBits(CondVal, Known, 0, &SI); 2775 if (Known.One.isOneValue()) 2776 return replaceInstUsesWith(SI, TrueVal); 2777 if (Known.Zero.isOneValue()) 2778 return replaceInstUsesWith(SI, FalseVal); 2779 } 2780 2781 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 2782 return BitCastSel; 2783 2784 // Simplify selects that test the returned flag of cmpxchg instructions. 2785 if (Instruction *Select = foldSelectCmpXchg(SI)) 2786 return Select; 2787 2788 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI)) 2789 return Select; 2790 2791 if (Instruction *Rot = foldSelectRotate(SI)) 2792 return Rot; 2793 2794 return nullptr; 2795 } 2796