1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitSelect function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CmpInstAnalysis.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/OverflowInstAnalysis.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstrTypes.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/User.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/KnownBits.h" 42 #include "llvm/Transforms/InstCombine/InstCombiner.h" 43 #include <cassert> 44 #include <utility> 45 46 #define DEBUG_TYPE "instcombine" 47 #include "llvm/Transforms/Utils/InstructionWorklist.h" 48 49 using namespace llvm; 50 using namespace PatternMatch; 51 52 53 /// Replace a select operand based on an equality comparison with the identity 54 /// constant of a binop. 55 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 56 const TargetLibraryInfo &TLI, 57 InstCombinerImpl &IC) { 58 // The select condition must be an equality compare with a constant operand. 59 Value *X; 60 Constant *C; 61 CmpInst::Predicate Pred; 62 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 63 return nullptr; 64 65 bool IsEq; 66 if (ICmpInst::isEquality(Pred)) 67 IsEq = Pred == ICmpInst::ICMP_EQ; 68 else if (Pred == FCmpInst::FCMP_OEQ) 69 IsEq = true; 70 else if (Pred == FCmpInst::FCMP_UNE) 71 IsEq = false; 72 else 73 return nullptr; 74 75 // A select operand must be a binop. 76 BinaryOperator *BO; 77 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 78 return nullptr; 79 80 // The compare constant must be the identity constant for that binop. 81 // If this a floating-point compare with 0.0, any zero constant will do. 82 Type *Ty = BO->getType(); 83 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 84 if (IdC != C) { 85 if (!IdC || !CmpInst::isFPPredicate(Pred)) 86 return nullptr; 87 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 88 return nullptr; 89 } 90 91 // Last, match the compare variable operand with a binop operand. 92 Value *Y; 93 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 94 return nullptr; 95 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 96 return nullptr; 97 98 // +0.0 compares equal to -0.0, and so it does not behave as required for this 99 // transform. Bail out if we can not exclude that possibility. 100 if (isa<FPMathOperator>(BO)) 101 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) 102 return nullptr; 103 104 // BO = binop Y, X 105 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 106 // => 107 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 108 return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y); 109 } 110 111 /// This folds: 112 /// select (icmp eq (and X, C1)), TC, FC 113 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 114 /// To something like: 115 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 116 /// Or: 117 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 118 /// With some variations depending if FC is larger than TC, or the shift 119 /// isn't needed, or the bit widths don't match. 120 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 121 InstCombiner::BuilderTy &Builder) { 122 const APInt *SelTC, *SelFC; 123 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 124 !match(Sel.getFalseValue(), m_APInt(SelFC))) 125 return nullptr; 126 127 // If this is a vector select, we need a vector compare. 128 Type *SelType = Sel.getType(); 129 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 130 return nullptr; 131 132 Value *V; 133 APInt AndMask; 134 bool CreateAnd = false; 135 ICmpInst::Predicate Pred = Cmp->getPredicate(); 136 if (ICmpInst::isEquality(Pred)) { 137 if (!match(Cmp->getOperand(1), m_Zero())) 138 return nullptr; 139 140 V = Cmp->getOperand(0); 141 const APInt *AndRHS; 142 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 143 return nullptr; 144 145 AndMask = *AndRHS; 146 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 147 Pred, V, AndMask)) { 148 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 149 if (!AndMask.isPowerOf2()) 150 return nullptr; 151 152 CreateAnd = true; 153 } else { 154 return nullptr; 155 } 156 157 // In general, when both constants are non-zero, we would need an offset to 158 // replace the select. This would require more instructions than we started 159 // with. But there's one special-case that we handle here because it can 160 // simplify/reduce the instructions. 161 APInt TC = *SelTC; 162 APInt FC = *SelFC; 163 if (!TC.isZero() && !FC.isZero()) { 164 // If the select constants differ by exactly one bit and that's the same 165 // bit that is masked and checked by the select condition, the select can 166 // be replaced by bitwise logic to set/clear one bit of the constant result. 167 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 168 return nullptr; 169 if (CreateAnd) { 170 // If we have to create an 'and', then we must kill the cmp to not 171 // increase the instruction count. 172 if (!Cmp->hasOneUse()) 173 return nullptr; 174 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 175 } 176 bool ExtraBitInTC = TC.ugt(FC); 177 if (Pred == ICmpInst::ICMP_EQ) { 178 // If the masked bit in V is clear, clear or set the bit in the result: 179 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 180 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 181 Constant *C = ConstantInt::get(SelType, TC); 182 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 183 } 184 if (Pred == ICmpInst::ICMP_NE) { 185 // If the masked bit in V is set, set or clear the bit in the result: 186 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 187 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 188 Constant *C = ConstantInt::get(SelType, FC); 189 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 190 } 191 llvm_unreachable("Only expecting equality predicates"); 192 } 193 194 // Make sure one of the select arms is a power-of-2. 195 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 196 return nullptr; 197 198 // Determine which shift is needed to transform result of the 'and' into the 199 // desired result. 200 const APInt &ValC = !TC.isZero() ? TC : FC; 201 unsigned ValZeros = ValC.logBase2(); 202 unsigned AndZeros = AndMask.logBase2(); 203 204 // Insert the 'and' instruction on the input to the truncate. 205 if (CreateAnd) 206 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 207 208 // If types don't match, we can still convert the select by introducing a zext 209 // or a trunc of the 'and'. 210 if (ValZeros > AndZeros) { 211 V = Builder.CreateZExtOrTrunc(V, SelType); 212 V = Builder.CreateShl(V, ValZeros - AndZeros); 213 } else if (ValZeros < AndZeros) { 214 V = Builder.CreateLShr(V, AndZeros - ValZeros); 215 V = Builder.CreateZExtOrTrunc(V, SelType); 216 } else { 217 V = Builder.CreateZExtOrTrunc(V, SelType); 218 } 219 220 // Okay, now we know that everything is set up, we just don't know whether we 221 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 222 bool ShouldNotVal = !TC.isZero(); 223 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 224 if (ShouldNotVal) 225 V = Builder.CreateXor(V, ValC); 226 227 return V; 228 } 229 230 /// We want to turn code that looks like this: 231 /// %C = or %A, %B 232 /// %D = select %cond, %C, %A 233 /// into: 234 /// %C = select %cond, %B, 0 235 /// %D = or %A, %C 236 /// 237 /// Assuming that the specified instruction is an operand to the select, return 238 /// a bitmask indicating which operands of this instruction are foldable if they 239 /// equal the other incoming value of the select. 240 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 241 switch (I->getOpcode()) { 242 case Instruction::Add: 243 case Instruction::FAdd: 244 case Instruction::Mul: 245 case Instruction::FMul: 246 case Instruction::And: 247 case Instruction::Or: 248 case Instruction::Xor: 249 return 3; // Can fold through either operand. 250 case Instruction::Sub: // Can only fold on the amount subtracted. 251 case Instruction::FSub: 252 case Instruction::FDiv: // Can only fold on the divisor amount. 253 case Instruction::Shl: // Can only fold on the shift amount. 254 case Instruction::LShr: 255 case Instruction::AShr: 256 return 1; 257 default: 258 return 0; // Cannot fold 259 } 260 } 261 262 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 263 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI, 264 Instruction *FI) { 265 // Don't break up min/max patterns. The hasOneUse checks below prevent that 266 // for most cases, but vector min/max with bitcasts can be transformed. If the 267 // one-use restrictions are eased for other patterns, we still don't want to 268 // obfuscate min/max. 269 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 270 match(&SI, m_SMax(m_Value(), m_Value())) || 271 match(&SI, m_UMin(m_Value(), m_Value())) || 272 match(&SI, m_UMax(m_Value(), m_Value())))) 273 return nullptr; 274 275 // If this is a cast from the same type, merge. 276 Value *Cond = SI.getCondition(); 277 Type *CondTy = Cond->getType(); 278 if (TI->getNumOperands() == 1 && TI->isCast()) { 279 Type *FIOpndTy = FI->getOperand(0)->getType(); 280 if (TI->getOperand(0)->getType() != FIOpndTy) 281 return nullptr; 282 283 // The select condition may be a vector. We may only change the operand 284 // type if the vector width remains the same (and matches the condition). 285 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) { 286 if (!FIOpndTy->isVectorTy() || 287 CondVTy->getElementCount() != 288 cast<VectorType>(FIOpndTy)->getElementCount()) 289 return nullptr; 290 291 // TODO: If the backend knew how to deal with casts better, we could 292 // remove this limitation. For now, there's too much potential to create 293 // worse codegen by promoting the select ahead of size-altering casts 294 // (PR28160). 295 // 296 // Note that ValueTracking's matchSelectPattern() looks through casts 297 // without checking 'hasOneUse' when it matches min/max patterns, so this 298 // transform may end up happening anyway. 299 if (TI->getOpcode() != Instruction::BitCast && 300 (!TI->hasOneUse() || !FI->hasOneUse())) 301 return nullptr; 302 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 303 // TODO: The one-use restrictions for a scalar select could be eased if 304 // the fold of a select in visitLoadInst() was enhanced to match a pattern 305 // that includes a cast. 306 return nullptr; 307 } 308 309 // Fold this by inserting a select from the input values. 310 Value *NewSI = 311 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0), 312 SI.getName() + ".v", &SI); 313 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 314 TI->getType()); 315 } 316 317 // Cond ? -X : -Y --> -(Cond ? X : Y) 318 Value *X, *Y; 319 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) && 320 (TI->hasOneUse() || FI->hasOneUse())) { 321 // Intersect FMF from the fneg instructions and union those with the select. 322 FastMathFlags FMF = TI->getFastMathFlags(); 323 FMF &= FI->getFastMathFlags(); 324 FMF |= SI.getFastMathFlags(); 325 Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI); 326 if (auto *NewSelI = dyn_cast<Instruction>(NewSel)) 327 NewSelI->setFastMathFlags(FMF); 328 Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel); 329 NewFNeg->setFastMathFlags(FMF); 330 return NewFNeg; 331 } 332 333 // Min/max intrinsic with a common operand can have the common operand pulled 334 // after the select. This is the same transform as below for binops, but 335 // specialized for intrinsic matching and without the restrictive uses clause. 336 auto *TII = dyn_cast<IntrinsicInst>(TI); 337 auto *FII = dyn_cast<IntrinsicInst>(FI); 338 if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID() && 339 (TII->hasOneUse() || FII->hasOneUse())) { 340 Value *T0, *T1, *F0, *F1; 341 if (match(TII, m_MaxOrMin(m_Value(T0), m_Value(T1))) && 342 match(FII, m_MaxOrMin(m_Value(F0), m_Value(F1)))) { 343 if (T0 == F0) { 344 Value *NewSel = Builder.CreateSelect(Cond, T1, F1, "minmaxop", &SI); 345 return CallInst::Create(TII->getCalledFunction(), {NewSel, T0}); 346 } 347 if (T0 == F1) { 348 Value *NewSel = Builder.CreateSelect(Cond, T1, F0, "minmaxop", &SI); 349 return CallInst::Create(TII->getCalledFunction(), {NewSel, T0}); 350 } 351 if (T1 == F0) { 352 Value *NewSel = Builder.CreateSelect(Cond, T0, F1, "minmaxop", &SI); 353 return CallInst::Create(TII->getCalledFunction(), {NewSel, T1}); 354 } 355 if (T1 == F1) { 356 Value *NewSel = Builder.CreateSelect(Cond, T0, F0, "minmaxop", &SI); 357 return CallInst::Create(TII->getCalledFunction(), {NewSel, T1}); 358 } 359 } 360 } 361 362 // Only handle binary operators (including two-operand getelementptr) with 363 // one-use here. As with the cast case above, it may be possible to relax the 364 // one-use constraint, but that needs be examined carefully since it may not 365 // reduce the total number of instructions. 366 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 367 !TI->isSameOperationAs(FI) || 368 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 369 !TI->hasOneUse() || !FI->hasOneUse()) 370 return nullptr; 371 372 // Figure out if the operations have any operands in common. 373 Value *MatchOp, *OtherOpT, *OtherOpF; 374 bool MatchIsOpZero; 375 if (TI->getOperand(0) == FI->getOperand(0)) { 376 MatchOp = TI->getOperand(0); 377 OtherOpT = TI->getOperand(1); 378 OtherOpF = FI->getOperand(1); 379 MatchIsOpZero = true; 380 } else if (TI->getOperand(1) == FI->getOperand(1)) { 381 MatchOp = TI->getOperand(1); 382 OtherOpT = TI->getOperand(0); 383 OtherOpF = FI->getOperand(0); 384 MatchIsOpZero = false; 385 } else if (!TI->isCommutative()) { 386 return nullptr; 387 } else if (TI->getOperand(0) == FI->getOperand(1)) { 388 MatchOp = TI->getOperand(0); 389 OtherOpT = TI->getOperand(1); 390 OtherOpF = FI->getOperand(0); 391 MatchIsOpZero = true; 392 } else if (TI->getOperand(1) == FI->getOperand(0)) { 393 MatchOp = TI->getOperand(1); 394 OtherOpT = TI->getOperand(0); 395 OtherOpF = FI->getOperand(1); 396 MatchIsOpZero = true; 397 } else { 398 return nullptr; 399 } 400 401 // If the select condition is a vector, the operands of the original select's 402 // operands also must be vectors. This may not be the case for getelementptr 403 // for example. 404 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() || 405 !OtherOpF->getType()->isVectorTy())) 406 return nullptr; 407 408 // If we reach here, they do have operations in common. 409 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 410 SI.getName() + ".v", &SI); 411 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 412 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 413 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 414 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 415 NewBO->copyIRFlags(TI); 416 NewBO->andIRFlags(FI); 417 return NewBO; 418 } 419 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 420 auto *FGEP = cast<GetElementPtrInst>(FI); 421 Type *ElementType = TGEP->getResultElementType(); 422 return TGEP->isInBounds() && FGEP->isInBounds() 423 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 424 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 425 } 426 llvm_unreachable("Expected BinaryOperator or GEP"); 427 return nullptr; 428 } 429 430 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 431 if (!C1I.isZero() && !C2I.isZero()) // One side must be zero. 432 return false; 433 return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes(); 434 } 435 436 /// Try to fold the select into one of the operands to allow further 437 /// optimization. 438 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 439 Value *FalseVal) { 440 // See the comment above GetSelectFoldableOperands for a description of the 441 // transformation we are doing here. 442 auto TryFoldSelectIntoOp = [&](SelectInst &SI, Value *TrueVal, 443 Value *FalseVal, 444 bool Swapped) -> Instruction * { 445 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 446 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 447 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 448 unsigned OpToFold = 0; 449 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) 450 OpToFold = 1; 451 else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) 452 OpToFold = 2; 453 454 if (OpToFold) { 455 FastMathFlags FMF; 456 // TODO: We probably ought to revisit cases where the select and FP 457 // instructions have different flags and add tests to ensure the 458 // behaviour is correct. 459 if (isa<FPMathOperator>(&SI)) 460 FMF = SI.getFastMathFlags(); 461 Constant *C = ConstantExpr::getBinOpIdentity( 462 TVI->getOpcode(), TVI->getType(), true, FMF.noSignedZeros()); 463 Value *OOp = TVI->getOperand(2 - OpToFold); 464 // Avoid creating select between 2 constants unless it's selecting 465 // between 0, 1 and -1. 466 const APInt *OOpC; 467 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 468 if (!isa<Constant>(OOp) || 469 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) { 470 Value *NewSel = Builder.CreateSelect( 471 SI.getCondition(), Swapped ? C : OOp, Swapped ? OOp : C); 472 if (isa<FPMathOperator>(&SI)) 473 cast<Instruction>(NewSel)->setFastMathFlags(FMF); 474 NewSel->takeName(TVI); 475 BinaryOperator *BO = 476 BinaryOperator::Create(TVI->getOpcode(), FalseVal, NewSel); 477 BO->copyIRFlags(TVI); 478 return BO; 479 } 480 } 481 } 482 } 483 } 484 return nullptr; 485 }; 486 487 if (Instruction *R = TryFoldSelectIntoOp(SI, TrueVal, FalseVal, false)) 488 return R; 489 490 if (Instruction *R = TryFoldSelectIntoOp(SI, FalseVal, TrueVal, true)) 491 return R; 492 493 return nullptr; 494 } 495 496 /// We want to turn: 497 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 498 /// into: 499 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 500 /// Note: 501 /// Z may be 0 if lshr is missing. 502 /// Worst-case scenario is that we will replace 5 instructions with 5 different 503 /// instructions, but we got rid of select. 504 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 505 Value *TVal, Value *FVal, 506 InstCombiner::BuilderTy &Builder) { 507 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 508 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 509 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 510 return nullptr; 511 512 // The TrueVal has general form of: and %B, 1 513 Value *B; 514 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 515 return nullptr; 516 517 // Where %B may be optionally shifted: lshr %X, %Z. 518 Value *X, *Z; 519 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 520 521 // The shift must be valid. 522 // TODO: This restricts the fold to constant shift amounts. Is there a way to 523 // handle variable shifts safely? PR47012 524 if (HasShift && 525 !match(Z, m_SpecificInt_ICMP(CmpInst::ICMP_ULT, 526 APInt(SelType->getScalarSizeInBits(), 527 SelType->getScalarSizeInBits())))) 528 return nullptr; 529 530 if (!HasShift) 531 X = B; 532 533 Value *Y; 534 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 535 return nullptr; 536 537 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 538 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 539 Constant *One = ConstantInt::get(SelType, 1); 540 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 541 Value *FullMask = Builder.CreateOr(Y, MaskB); 542 Value *MaskedX = Builder.CreateAnd(X, FullMask); 543 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 544 return new ZExtInst(ICmpNeZero, SelType); 545 } 546 547 /// We want to turn: 548 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 549 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0 550 /// into: 551 /// ashr (X, Y) 552 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, 553 Value *FalseVal, 554 InstCombiner::BuilderTy &Builder) { 555 ICmpInst::Predicate Pred = IC->getPredicate(); 556 Value *CmpLHS = IC->getOperand(0); 557 Value *CmpRHS = IC->getOperand(1); 558 if (!CmpRHS->getType()->isIntOrIntVectorTy()) 559 return nullptr; 560 561 Value *X, *Y; 562 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits(); 563 if ((Pred != ICmpInst::ICMP_SGT || 564 !match(CmpRHS, 565 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) && 566 (Pred != ICmpInst::ICMP_SLT || 567 !match(CmpRHS, 568 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0))))) 569 return nullptr; 570 571 // Canonicalize so that ashr is in FalseVal. 572 if (Pred == ICmpInst::ICMP_SLT) 573 std::swap(TrueVal, FalseVal); 574 575 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) && 576 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) && 577 match(CmpLHS, m_Specific(X))) { 578 const auto *Ashr = cast<Instruction>(FalseVal); 579 // if lshr is not exact and ashr is, this new ashr must not be exact. 580 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact(); 581 return Builder.CreateAShr(X, Y, IC->getName(), IsExact); 582 } 583 584 return nullptr; 585 } 586 587 /// We want to turn: 588 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 589 /// into: 590 /// (or (shl (and X, C1), C3), Y) 591 /// iff: 592 /// C1 and C2 are both powers of 2 593 /// where: 594 /// C3 = Log(C2) - Log(C1) 595 /// 596 /// This transform handles cases where: 597 /// 1. The icmp predicate is inverted 598 /// 2. The select operands are reversed 599 /// 3. The magnitude of C2 and C1 are flipped 600 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 601 Value *FalseVal, 602 InstCombiner::BuilderTy &Builder) { 603 // Only handle integer compares. Also, if this is a vector select, we need a 604 // vector compare. 605 if (!TrueVal->getType()->isIntOrIntVectorTy() || 606 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 607 return nullptr; 608 609 Value *CmpLHS = IC->getOperand(0); 610 Value *CmpRHS = IC->getOperand(1); 611 612 Value *V; 613 unsigned C1Log; 614 bool IsEqualZero; 615 bool NeedAnd = false; 616 if (IC->isEquality()) { 617 if (!match(CmpRHS, m_Zero())) 618 return nullptr; 619 620 const APInt *C1; 621 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 622 return nullptr; 623 624 V = CmpLHS; 625 C1Log = C1->logBase2(); 626 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 627 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 628 IC->getPredicate() == ICmpInst::ICMP_SGT) { 629 // We also need to recognize (icmp slt (trunc (X)), 0) and 630 // (icmp sgt (trunc (X)), -1). 631 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 632 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 633 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 634 return nullptr; 635 636 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 637 return nullptr; 638 639 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 640 NeedAnd = true; 641 } else { 642 return nullptr; 643 } 644 645 const APInt *C2; 646 bool OrOnTrueVal = false; 647 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 648 if (!OrOnFalseVal) 649 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 650 651 if (!OrOnFalseVal && !OrOnTrueVal) 652 return nullptr; 653 654 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 655 656 unsigned C2Log = C2->logBase2(); 657 658 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 659 bool NeedShift = C1Log != C2Log; 660 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 661 V->getType()->getScalarSizeInBits(); 662 663 // Make sure we don't create more instructions than we save. 664 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 665 if ((NeedShift + NeedXor + NeedZExtTrunc) > 666 (IC->hasOneUse() + Or->hasOneUse())) 667 return nullptr; 668 669 if (NeedAnd) { 670 // Insert the AND instruction on the input to the truncate. 671 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 672 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 673 } 674 675 if (C2Log > C1Log) { 676 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 677 V = Builder.CreateShl(V, C2Log - C1Log); 678 } else if (C1Log > C2Log) { 679 V = Builder.CreateLShr(V, C1Log - C2Log); 680 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 681 } else 682 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 683 684 if (NeedXor) 685 V = Builder.CreateXor(V, *C2); 686 687 return Builder.CreateOr(V, Y); 688 } 689 690 /// Canonicalize a set or clear of a masked set of constant bits to 691 /// select-of-constants form. 692 static Instruction *foldSetClearBits(SelectInst &Sel, 693 InstCombiner::BuilderTy &Builder) { 694 Value *Cond = Sel.getCondition(); 695 Value *T = Sel.getTrueValue(); 696 Value *F = Sel.getFalseValue(); 697 Type *Ty = Sel.getType(); 698 Value *X; 699 const APInt *NotC, *C; 700 701 // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C) 702 if (match(T, m_And(m_Value(X), m_APInt(NotC))) && 703 match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 704 Constant *Zero = ConstantInt::getNullValue(Ty); 705 Constant *OrC = ConstantInt::get(Ty, *C); 706 Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel); 707 return BinaryOperator::CreateOr(T, NewSel); 708 } 709 710 // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0) 711 if (match(F, m_And(m_Value(X), m_APInt(NotC))) && 712 match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 713 Constant *Zero = ConstantInt::getNullValue(Ty); 714 Constant *OrC = ConstantInt::get(Ty, *C); 715 Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel); 716 return BinaryOperator::CreateOr(F, NewSel); 717 } 718 719 return nullptr; 720 } 721 722 // select (x == 0), 0, x * y --> freeze(y) * x 723 // select (y == 0), 0, x * y --> freeze(x) * y 724 // select (x == 0), undef, x * y --> freeze(y) * x 725 // select (x == undef), 0, x * y --> freeze(y) * x 726 // Usage of mul instead of 0 will make the result more poisonous, 727 // so the operand that was not checked in the condition should be frozen. 728 // The latter folding is applied only when a constant compared with x is 729 // is a vector consisting of 0 and undefs. If a constant compared with x 730 // is a scalar undefined value or undefined vector then an expression 731 // should be already folded into a constant. 732 static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) { 733 auto *CondVal = SI.getCondition(); 734 auto *TrueVal = SI.getTrueValue(); 735 auto *FalseVal = SI.getFalseValue(); 736 Value *X, *Y; 737 ICmpInst::Predicate Predicate; 738 739 // Assuming that constant compared with zero is not undef (but it may be 740 // a vector with some undef elements). Otherwise (when a constant is undef) 741 // the select expression should be already simplified. 742 if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) || 743 !ICmpInst::isEquality(Predicate)) 744 return nullptr; 745 746 if (Predicate == ICmpInst::ICMP_NE) 747 std::swap(TrueVal, FalseVal); 748 749 // Check that TrueVal is a constant instead of matching it with m_Zero() 750 // to handle the case when it is a scalar undef value or a vector containing 751 // non-zero elements that are masked by undef elements in the compare 752 // constant. 753 auto *TrueValC = dyn_cast<Constant>(TrueVal); 754 if (TrueValC == nullptr || 755 !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) || 756 !isa<Instruction>(FalseVal)) 757 return nullptr; 758 759 auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1)); 760 auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC); 761 // If X is compared with 0 then TrueVal could be either zero or undef. 762 // m_Zero match vectors containing some undef elements, but for scalars 763 // m_Undef should be used explicitly. 764 if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef())) 765 return nullptr; 766 767 auto *FalseValI = cast<Instruction>(FalseVal); 768 auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"), 769 *FalseValI); 770 IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY); 771 return IC.replaceInstUsesWith(SI, FalseValI); 772 } 773 774 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). 775 /// There are 8 commuted/swapped variants of this pattern. 776 /// TODO: Also support a - UMIN(a,b) patterns. 777 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 778 const Value *TrueVal, 779 const Value *FalseVal, 780 InstCombiner::BuilderTy &Builder) { 781 ICmpInst::Predicate Pred = ICI->getPredicate(); 782 if (!ICmpInst::isUnsigned(Pred)) 783 return nullptr; 784 785 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 786 if (match(TrueVal, m_Zero())) { 787 Pred = ICmpInst::getInversePredicate(Pred); 788 std::swap(TrueVal, FalseVal); 789 } 790 if (!match(FalseVal, m_Zero())) 791 return nullptr; 792 793 Value *A = ICI->getOperand(0); 794 Value *B = ICI->getOperand(1); 795 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 796 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 797 std::swap(A, B); 798 Pred = ICmpInst::getSwappedPredicate(Pred); 799 } 800 801 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 802 "Unexpected isUnsigned predicate!"); 803 804 // Ensure the sub is of the form: 805 // (a > b) ? a - b : 0 -> usub.sat(a, b) 806 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 807 // Checking for both a-b and a+(-b) as a constant. 808 bool IsNegative = false; 809 const APInt *C; 810 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) || 811 (match(A, m_APInt(C)) && 812 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C))))) 813 IsNegative = true; 814 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) && 815 !(match(B, m_APInt(C)) && 816 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C))))) 817 return nullptr; 818 819 // If we are adding a negate and the sub and icmp are used anywhere else, we 820 // would end up with more instructions. 821 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse()) 822 return nullptr; 823 824 // (a > b) ? a - b : 0 -> usub.sat(a, b) 825 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 826 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); 827 if (IsNegative) 828 Result = Builder.CreateNeg(Result); 829 return Result; 830 } 831 832 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, 833 InstCombiner::BuilderTy &Builder) { 834 if (!Cmp->hasOneUse()) 835 return nullptr; 836 837 // Match unsigned saturated add with constant. 838 Value *Cmp0 = Cmp->getOperand(0); 839 Value *Cmp1 = Cmp->getOperand(1); 840 ICmpInst::Predicate Pred = Cmp->getPredicate(); 841 Value *X; 842 const APInt *C, *CmpC; 843 if (Pred == ICmpInst::ICMP_ULT && 844 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 && 845 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) { 846 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C) 847 return Builder.CreateBinaryIntrinsic( 848 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C)); 849 } 850 851 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 852 // There are 8 commuted variants. 853 // Canonicalize -1 (saturated result) to true value of the select. 854 if (match(FVal, m_AllOnes())) { 855 std::swap(TVal, FVal); 856 Pred = CmpInst::getInversePredicate(Pred); 857 } 858 if (!match(TVal, m_AllOnes())) 859 return nullptr; 860 861 // Canonicalize predicate to less-than or less-or-equal-than. 862 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 863 std::swap(Cmp0, Cmp1); 864 Pred = CmpInst::getSwappedPredicate(Pred); 865 } 866 if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE) 867 return nullptr; 868 869 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 870 // Strictness of the comparison is irrelevant. 871 Value *Y; 872 if (match(Cmp0, m_Not(m_Value(X))) && 873 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { 874 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 875 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) 876 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); 877 } 878 // The 'not' op may be included in the sum but not the compare. 879 // Strictness of the comparison is irrelevant. 880 X = Cmp0; 881 Y = Cmp1; 882 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) { 883 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) 884 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) 885 BinaryOperator *BO = cast<BinaryOperator>(FVal); 886 return Builder.CreateBinaryIntrinsic( 887 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); 888 } 889 // The overflow may be detected via the add wrapping round. 890 // This is only valid for strict comparison! 891 if (Pred == ICmpInst::ICMP_ULT && 892 match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) && 893 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) { 894 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y) 895 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 896 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y); 897 } 898 899 return nullptr; 900 } 901 902 /// Fold the following code sequence: 903 /// \code 904 /// int a = ctlz(x & -x); 905 // x ? 31 - a : a; 906 /// \code 907 /// 908 /// into: 909 /// cttz(x) 910 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal, 911 Value *FalseVal, 912 InstCombiner::BuilderTy &Builder) { 913 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 914 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero())) 915 return nullptr; 916 917 if (ICI->getPredicate() == ICmpInst::ICMP_NE) 918 std::swap(TrueVal, FalseVal); 919 920 if (!match(FalseVal, 921 m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1)))) 922 return nullptr; 923 924 if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>())) 925 return nullptr; 926 927 Value *X = ICI->getOperand(0); 928 auto *II = cast<IntrinsicInst>(TrueVal); 929 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X))))) 930 return nullptr; 931 932 Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz, 933 II->getType()); 934 return CallInst::Create(F, {X, II->getArgOperand(1)}); 935 } 936 937 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 938 /// call to cttz/ctlz with flag 'is_zero_poison' cleared. 939 /// 940 /// For example, we can fold the following code sequence: 941 /// \code 942 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 943 /// %1 = icmp ne i32 %x, 0 944 /// %2 = select i1 %1, i32 %0, i32 32 945 /// \code 946 /// 947 /// into: 948 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 949 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 950 InstCombiner::BuilderTy &Builder) { 951 ICmpInst::Predicate Pred = ICI->getPredicate(); 952 Value *CmpLHS = ICI->getOperand(0); 953 Value *CmpRHS = ICI->getOperand(1); 954 955 // Check if the condition value compares a value for equality against zero. 956 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 957 return nullptr; 958 959 Value *SelectArg = FalseVal; 960 Value *ValueOnZero = TrueVal; 961 if (Pred == ICmpInst::ICMP_NE) 962 std::swap(SelectArg, ValueOnZero); 963 964 // Skip zero extend/truncate. 965 Value *Count = nullptr; 966 if (!match(SelectArg, m_ZExt(m_Value(Count))) && 967 !match(SelectArg, m_Trunc(m_Value(Count)))) 968 Count = SelectArg; 969 970 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 971 // input to the cttz/ctlz is used as LHS for the compare instruction. 972 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) && 973 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) 974 return nullptr; 975 976 IntrinsicInst *II = cast<IntrinsicInst>(Count); 977 978 // Check if the value propagated on zero is a constant number equal to the 979 // sizeof in bits of 'Count'. 980 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 981 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 982 // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from 983 // true to false on this flag, so we can replace it for all users. 984 II->setArgOperand(1, ConstantInt::getFalse(II->getContext())); 985 return SelectArg; 986 } 987 988 // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional 989 // zext/trunc) have one use (ending at the select), the cttz/ctlz result will 990 // not be used if the input is zero. Relax to 'zero is poison' for that case. 991 if (II->hasOneUse() && SelectArg->hasOneUse() && 992 !match(II->getArgOperand(1), m_One())) 993 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 994 995 return nullptr; 996 } 997 998 /// Return true if we find and adjust an icmp+select pattern where the compare 999 /// is with a constant that can be incremented or decremented to match the 1000 /// minimum or maximum idiom. 1001 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 1002 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1003 Value *CmpLHS = Cmp.getOperand(0); 1004 Value *CmpRHS = Cmp.getOperand(1); 1005 Value *TrueVal = Sel.getTrueValue(); 1006 Value *FalseVal = Sel.getFalseValue(); 1007 1008 // We may move or edit the compare, so make sure the select is the only user. 1009 const APInt *CmpC; 1010 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 1011 return false; 1012 1013 // These transforms only work for selects of integers or vector selects of 1014 // integer vectors. 1015 Type *SelTy = Sel.getType(); 1016 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 1017 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 1018 return false; 1019 1020 Constant *AdjustedRHS; 1021 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 1022 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 1023 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 1024 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 1025 else 1026 return false; 1027 1028 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 1029 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 1030 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 1031 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 1032 ; // Nothing to do here. Values match without any sign/zero extension. 1033 } 1034 // Types do not match. Instead of calculating this with mixed types, promote 1035 // all to the larger type. This enables scalar evolution to analyze this 1036 // expression. 1037 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 1038 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 1039 1040 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 1041 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 1042 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 1043 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 1044 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 1045 CmpLHS = TrueVal; 1046 AdjustedRHS = SextRHS; 1047 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 1048 SextRHS == TrueVal) { 1049 CmpLHS = FalseVal; 1050 AdjustedRHS = SextRHS; 1051 } else if (Cmp.isUnsigned()) { 1052 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 1053 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 1054 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 1055 // zext + signed compare cannot be changed: 1056 // 0xff <s 0x00, but 0x00ff >s 0x0000 1057 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 1058 CmpLHS = TrueVal; 1059 AdjustedRHS = ZextRHS; 1060 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 1061 ZextRHS == TrueVal) { 1062 CmpLHS = FalseVal; 1063 AdjustedRHS = ZextRHS; 1064 } else { 1065 return false; 1066 } 1067 } else { 1068 return false; 1069 } 1070 } else { 1071 return false; 1072 } 1073 1074 Pred = ICmpInst::getSwappedPredicate(Pred); 1075 CmpRHS = AdjustedRHS; 1076 std::swap(FalseVal, TrueVal); 1077 Cmp.setPredicate(Pred); 1078 Cmp.setOperand(0, CmpLHS); 1079 Cmp.setOperand(1, CmpRHS); 1080 Sel.setOperand(1, TrueVal); 1081 Sel.setOperand(2, FalseVal); 1082 Sel.swapProfMetadata(); 1083 1084 // Move the compare instruction right before the select instruction. Otherwise 1085 // the sext/zext value may be defined after the compare instruction uses it. 1086 Cmp.moveBefore(&Sel); 1087 1088 return true; 1089 } 1090 1091 static Instruction *canonicalizeSPF(SelectInst &Sel, ICmpInst &Cmp, 1092 InstCombinerImpl &IC) { 1093 Value *LHS, *RHS; 1094 // TODO: What to do with pointer min/max patterns? 1095 if (!Sel.getType()->isIntOrIntVectorTy()) 1096 return nullptr; 1097 1098 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; 1099 if (SPF == SelectPatternFlavor::SPF_ABS || 1100 SPF == SelectPatternFlavor::SPF_NABS) { 1101 if (!Cmp.hasOneUse() && !RHS->hasOneUse()) 1102 return nullptr; // TODO: Relax this restriction. 1103 1104 // Note that NSW flag can only be propagated for normal, non-negated abs! 1105 bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS && 1106 match(RHS, m_NSWNeg(m_Specific(LHS))); 1107 Constant *IntMinIsPoisonC = 1108 ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison); 1109 Instruction *Abs = 1110 IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC); 1111 1112 if (SPF == SelectPatternFlavor::SPF_NABS) 1113 return BinaryOperator::CreateNeg(Abs); // Always without NSW flag! 1114 return IC.replaceInstUsesWith(Sel, Abs); 1115 } 1116 1117 if (SelectPatternResult::isMinOrMax(SPF)) { 1118 Intrinsic::ID IntrinsicID; 1119 switch (SPF) { 1120 case SelectPatternFlavor::SPF_UMIN: 1121 IntrinsicID = Intrinsic::umin; 1122 break; 1123 case SelectPatternFlavor::SPF_UMAX: 1124 IntrinsicID = Intrinsic::umax; 1125 break; 1126 case SelectPatternFlavor::SPF_SMIN: 1127 IntrinsicID = Intrinsic::smin; 1128 break; 1129 case SelectPatternFlavor::SPF_SMAX: 1130 IntrinsicID = Intrinsic::smax; 1131 break; 1132 default: 1133 llvm_unreachable("Unexpected SPF"); 1134 } 1135 return IC.replaceInstUsesWith( 1136 Sel, IC.Builder.CreateBinaryIntrinsic(IntrinsicID, LHS, RHS)); 1137 } 1138 1139 return nullptr; 1140 } 1141 1142 /// If we have a select with an equality comparison, then we know the value in 1143 /// one of the arms of the select. See if substituting this value into an arm 1144 /// and simplifying the result yields the same value as the other arm. 1145 /// 1146 /// To make this transform safe, we must drop poison-generating flags 1147 /// (nsw, etc) if we simplified to a binop because the select may be guarding 1148 /// that poison from propagating. If the existing binop already had no 1149 /// poison-generating flags, then this transform can be done by instsimplify. 1150 /// 1151 /// Consider: 1152 /// %cmp = icmp eq i32 %x, 2147483647 1153 /// %add = add nsw i32 %x, 1 1154 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add 1155 /// 1156 /// We can't replace %sel with %add unless we strip away the flags. 1157 /// TODO: Wrapping flags could be preserved in some cases with better analysis. 1158 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel, 1159 ICmpInst &Cmp) { 1160 // Value equivalence substitution requires an all-or-nothing replacement. 1161 // It does not make sense for a vector compare where each lane is chosen 1162 // independently. 1163 if (!Cmp.isEquality() || Cmp.getType()->isVectorTy()) 1164 return nullptr; 1165 1166 // Canonicalize the pattern to ICMP_EQ by swapping the select operands. 1167 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 1168 bool Swapped = false; 1169 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) { 1170 std::swap(TrueVal, FalseVal); 1171 Swapped = true; 1172 } 1173 1174 // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand. 1175 // Make sure Y cannot be undef though, as we might pick different values for 1176 // undef in the icmp and in f(Y). Additionally, take care to avoid replacing 1177 // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite 1178 // replacement cycle. 1179 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1); 1180 if (TrueVal != CmpLHS && 1181 isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) { 1182 if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ, 1183 /* AllowRefinement */ true)) 1184 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1185 1186 // Even if TrueVal does not simplify, we can directly replace a use of 1187 // CmpLHS with CmpRHS, as long as the instruction is not used anywhere 1188 // else and is safe to speculatively execute (we may end up executing it 1189 // with different operands, which should not cause side-effects or trigger 1190 // undefined behavior). Only do this if CmpRHS is a constant, as 1191 // profitability is not clear for other cases. 1192 // FIXME: The replacement could be performed recursively. 1193 if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant())) 1194 if (auto *I = dyn_cast<Instruction>(TrueVal)) 1195 if (I->hasOneUse() && isSafeToSpeculativelyExecute(I)) 1196 for (Use &U : I->operands()) 1197 if (U == CmpLHS) { 1198 replaceUse(U, CmpRHS); 1199 return &Sel; 1200 } 1201 } 1202 if (TrueVal != CmpRHS && 1203 isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT)) 1204 if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ, 1205 /* AllowRefinement */ true)) 1206 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1207 1208 auto *FalseInst = dyn_cast<Instruction>(FalseVal); 1209 if (!FalseInst) 1210 return nullptr; 1211 1212 // InstSimplify already performed this fold if it was possible subject to 1213 // current poison-generating flags. Try the transform again with 1214 // poison-generating flags temporarily dropped. 1215 bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false; 1216 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) { 1217 WasNUW = OBO->hasNoUnsignedWrap(); 1218 WasNSW = OBO->hasNoSignedWrap(); 1219 FalseInst->setHasNoUnsignedWrap(false); 1220 FalseInst->setHasNoSignedWrap(false); 1221 } 1222 if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) { 1223 WasExact = PEO->isExact(); 1224 FalseInst->setIsExact(false); 1225 } 1226 if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) { 1227 WasInBounds = GEP->isInBounds(); 1228 GEP->setIsInBounds(false); 1229 } 1230 1231 // Try each equivalence substitution possibility. 1232 // We have an 'EQ' comparison, so the select's false value will propagate. 1233 // Example: 1234 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1 1235 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ, 1236 /* AllowRefinement */ false) == TrueVal || 1237 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ, 1238 /* AllowRefinement */ false) == TrueVal) { 1239 return replaceInstUsesWith(Sel, FalseVal); 1240 } 1241 1242 // Restore poison-generating flags if the transform did not apply. 1243 if (WasNUW) 1244 FalseInst->setHasNoUnsignedWrap(); 1245 if (WasNSW) 1246 FalseInst->setHasNoSignedWrap(); 1247 if (WasExact) 1248 FalseInst->setIsExact(); 1249 if (WasInBounds) 1250 cast<GetElementPtrInst>(FalseInst)->setIsInBounds(); 1251 1252 return nullptr; 1253 } 1254 1255 // See if this is a pattern like: 1256 // %old_cmp1 = icmp slt i32 %x, C2 1257 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high 1258 // %old_x_offseted = add i32 %x, C1 1259 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0 1260 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement 1261 // This can be rewritten as more canonical pattern: 1262 // %new_cmp1 = icmp slt i32 %x, -C1 1263 // %new_cmp2 = icmp sge i32 %x, C0-C1 1264 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x 1265 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low 1266 // Iff -C1 s<= C2 s<= C0-C1 1267 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result) 1268 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.) 1269 static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0, 1270 InstCombiner::BuilderTy &Builder) { 1271 Value *X = Sel0.getTrueValue(); 1272 Value *Sel1 = Sel0.getFalseValue(); 1273 1274 // First match the condition of the outermost select. 1275 // Said condition must be one-use. 1276 if (!Cmp0.hasOneUse()) 1277 return nullptr; 1278 ICmpInst::Predicate Pred0 = Cmp0.getPredicate(); 1279 Value *Cmp00 = Cmp0.getOperand(0); 1280 Constant *C0; 1281 if (!match(Cmp0.getOperand(1), 1282 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))) 1283 return nullptr; 1284 1285 if (!isa<SelectInst>(Sel1)) { 1286 Pred0 = ICmpInst::getInversePredicate(Pred0); 1287 std::swap(X, Sel1); 1288 } 1289 1290 // Canonicalize Cmp0 into ult or uge. 1291 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1292 switch (Pred0) { 1293 case ICmpInst::Predicate::ICMP_ULT: 1294 case ICmpInst::Predicate::ICMP_UGE: 1295 // Although icmp ult %x, 0 is an unusual thing to try and should generally 1296 // have been simplified, it does not verify with undef inputs so ensure we 1297 // are not in a strange state. 1298 if (!match(C0, m_SpecificInt_ICMP( 1299 ICmpInst::Predicate::ICMP_NE, 1300 APInt::getZero(C0->getType()->getScalarSizeInBits())))) 1301 return nullptr; 1302 break; // Great! 1303 case ICmpInst::Predicate::ICMP_ULE: 1304 case ICmpInst::Predicate::ICMP_UGT: 1305 // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment 1306 // C0, which again means it must not have any all-ones elements. 1307 if (!match(C0, 1308 m_SpecificInt_ICMP( 1309 ICmpInst::Predicate::ICMP_NE, 1310 APInt::getAllOnes(C0->getType()->getScalarSizeInBits())))) 1311 return nullptr; // Can't do, have all-ones element[s]. 1312 Pred0 = ICmpInst::getFlippedStrictnessPredicate(Pred0); 1313 C0 = InstCombiner::AddOne(C0); 1314 break; 1315 default: 1316 return nullptr; // Unknown predicate. 1317 } 1318 1319 // Now that we've canonicalized the ICmp, we know the X we expect; 1320 // the select in other hand should be one-use. 1321 if (!Sel1->hasOneUse()) 1322 return nullptr; 1323 1324 // If the types do not match, look through any truncs to the underlying 1325 // instruction. 1326 if (Cmp00->getType() != X->getType() && X->hasOneUse()) 1327 match(X, m_TruncOrSelf(m_Value(X))); 1328 1329 // We now can finish matching the condition of the outermost select: 1330 // it should either be the X itself, or an addition of some constant to X. 1331 Constant *C1; 1332 if (Cmp00 == X) 1333 C1 = ConstantInt::getNullValue(X->getType()); 1334 else if (!match(Cmp00, 1335 m_Add(m_Specific(X), 1336 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1))))) 1337 return nullptr; 1338 1339 Value *Cmp1; 1340 ICmpInst::Predicate Pred1; 1341 Constant *C2; 1342 Value *ReplacementLow, *ReplacementHigh; 1343 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow), 1344 m_Value(ReplacementHigh))) || 1345 !match(Cmp1, 1346 m_ICmp(Pred1, m_Specific(X), 1347 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2))))) 1348 return nullptr; 1349 1350 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse())) 1351 return nullptr; // Not enough one-use instructions for the fold. 1352 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of 1353 // two comparisons we'll need to build. 1354 1355 // Canonicalize Cmp1 into the form we expect. 1356 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1357 switch (Pred1) { 1358 case ICmpInst::Predicate::ICMP_SLT: 1359 break; 1360 case ICmpInst::Predicate::ICMP_SLE: 1361 // We'd have to increment C2 by one, and for that it must not have signed 1362 // max element, but then it would have been canonicalized to 'slt' before 1363 // we get here. So we can't do anything useful with 'sle'. 1364 return nullptr; 1365 case ICmpInst::Predicate::ICMP_SGT: 1366 // We want to canonicalize it to 'slt', so we'll need to increment C2, 1367 // which again means it must not have any signed max elements. 1368 if (!match(C2, 1369 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1370 APInt::getSignedMaxValue( 1371 C2->getType()->getScalarSizeInBits())))) 1372 return nullptr; // Can't do, have signed max element[s]. 1373 C2 = InstCombiner::AddOne(C2); 1374 LLVM_FALLTHROUGH; 1375 case ICmpInst::Predicate::ICMP_SGE: 1376 // Also non-canonical, but here we don't need to change C2, 1377 // so we don't have any restrictions on C2, so we can just handle it. 1378 Pred1 = ICmpInst::Predicate::ICMP_SLT; 1379 std::swap(ReplacementLow, ReplacementHigh); 1380 break; 1381 default: 1382 return nullptr; // Unknown predicate. 1383 } 1384 assert(Pred1 == ICmpInst::Predicate::ICMP_SLT && 1385 "Unexpected predicate type."); 1386 1387 // The thresholds of this clamp-like pattern. 1388 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1); 1389 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1); 1390 1391 assert((Pred0 == ICmpInst::Predicate::ICMP_ULT || 1392 Pred0 == ICmpInst::Predicate::ICMP_UGE) && 1393 "Unexpected predicate type."); 1394 if (Pred0 == ICmpInst::Predicate::ICMP_UGE) 1395 std::swap(ThresholdLowIncl, ThresholdHighExcl); 1396 1397 // The fold has a precondition 1: C2 s>= ThresholdLow 1398 auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2, 1399 ThresholdLowIncl); 1400 if (!match(Precond1, m_One())) 1401 return nullptr; 1402 // The fold has a precondition 2: C2 s<= ThresholdHigh 1403 auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2, 1404 ThresholdHighExcl); 1405 if (!match(Precond2, m_One())) 1406 return nullptr; 1407 1408 // If we are matching from a truncated input, we need to sext the 1409 // ReplacementLow and ReplacementHigh values. Only do the transform if they 1410 // are free to extend due to being constants. 1411 if (X->getType() != Sel0.getType()) { 1412 Constant *LowC, *HighC; 1413 if (!match(ReplacementLow, m_ImmConstant(LowC)) || 1414 !match(ReplacementHigh, m_ImmConstant(HighC))) 1415 return nullptr; 1416 ReplacementLow = ConstantExpr::getSExt(LowC, X->getType()); 1417 ReplacementHigh = ConstantExpr::getSExt(HighC, X->getType()); 1418 } 1419 1420 // All good, finally emit the new pattern. 1421 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl); 1422 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl); 1423 Value *MaybeReplacedLow = 1424 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X); 1425 1426 // Create the final select. If we looked through a truncate above, we will 1427 // need to retruncate the result. 1428 Value *MaybeReplacedHigh = Builder.CreateSelect( 1429 ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow); 1430 return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType()); 1431 } 1432 1433 // If we have 1434 // %cmp = icmp [canonical predicate] i32 %x, C0 1435 // %r = select i1 %cmp, i32 %y, i32 C1 1436 // Where C0 != C1 and %x may be different from %y, see if the constant that we 1437 // will have if we flip the strictness of the predicate (i.e. without changing 1438 // the result) is identical to the C1 in select. If it matches we can change 1439 // original comparison to one with swapped predicate, reuse the constant, 1440 // and swap the hands of select. 1441 static Instruction * 1442 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp, 1443 InstCombinerImpl &IC) { 1444 ICmpInst::Predicate Pred; 1445 Value *X; 1446 Constant *C0; 1447 if (!match(&Cmp, m_OneUse(m_ICmp( 1448 Pred, m_Value(X), 1449 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))))) 1450 return nullptr; 1451 1452 // If comparison predicate is non-relational, we won't be able to do anything. 1453 if (ICmpInst::isEquality(Pred)) 1454 return nullptr; 1455 1456 // If comparison predicate is non-canonical, then we certainly won't be able 1457 // to make it canonical; canonicalizeCmpWithConstant() already tried. 1458 if (!InstCombiner::isCanonicalPredicate(Pred)) 1459 return nullptr; 1460 1461 // If the [input] type of comparison and select type are different, lets abort 1462 // for now. We could try to compare constants with trunc/[zs]ext though. 1463 if (C0->getType() != Sel.getType()) 1464 return nullptr; 1465 1466 // ULT with 'add' of a constant is canonical. See foldICmpAddConstant(). 1467 // FIXME: Are there more magic icmp predicate+constant pairs we must avoid? 1468 // Or should we just abandon this transform entirely? 1469 if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant()))) 1470 return nullptr; 1471 1472 1473 Value *SelVal0, *SelVal1; // We do not care which one is from where. 1474 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1))); 1475 // At least one of these values we are selecting between must be a constant 1476 // else we'll never succeed. 1477 if (!match(SelVal0, m_AnyIntegralConstant()) && 1478 !match(SelVal1, m_AnyIntegralConstant())) 1479 return nullptr; 1480 1481 // Does this constant C match any of the `select` values? 1482 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) { 1483 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1); 1484 }; 1485 1486 // If C0 *already* matches true/false value of select, we are done. 1487 if (MatchesSelectValue(C0)) 1488 return nullptr; 1489 1490 // Check the constant we'd have with flipped-strictness predicate. 1491 auto FlippedStrictness = 1492 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0); 1493 if (!FlippedStrictness) 1494 return nullptr; 1495 1496 // If said constant doesn't match either, then there is no hope, 1497 if (!MatchesSelectValue(FlippedStrictness->second)) 1498 return nullptr; 1499 1500 // It matched! Lets insert the new comparison just before select. 1501 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder); 1502 IC.Builder.SetInsertPoint(&Sel); 1503 1504 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped. 1505 Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second, 1506 Cmp.getName() + ".inv"); 1507 IC.replaceOperand(Sel, 0, NewCmp); 1508 Sel.swapValues(); 1509 Sel.swapProfMetadata(); 1510 1511 return &Sel; 1512 } 1513 1514 static Instruction *foldSelectZeroOrOnes(ICmpInst *Cmp, Value *TVal, 1515 Value *FVal, 1516 InstCombiner::BuilderTy &Builder) { 1517 if (!Cmp->hasOneUse()) 1518 return nullptr; 1519 1520 const APInt *CmpC; 1521 if (!match(Cmp->getOperand(1), m_APIntAllowUndef(CmpC))) 1522 return nullptr; 1523 1524 // (X u< 2) ? -X : -1 --> sext (X != 0) 1525 Value *X = Cmp->getOperand(0); 1526 if (Cmp->getPredicate() == ICmpInst::ICMP_ULT && *CmpC == 2 && 1527 match(TVal, m_Neg(m_Specific(X))) && match(FVal, m_AllOnes())) 1528 return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType()); 1529 1530 // (X u> 1) ? -1 : -X --> sext (X != 0) 1531 if (Cmp->getPredicate() == ICmpInst::ICMP_UGT && *CmpC == 1 && 1532 match(FVal, m_Neg(m_Specific(X))) && match(TVal, m_AllOnes())) 1533 return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType()); 1534 1535 return nullptr; 1536 } 1537 1538 static Value *foldSelectInstWithICmpConst(SelectInst &SI, ICmpInst *ICI) { 1539 const APInt *CmpC; 1540 Value *V; 1541 CmpInst::Predicate Pred; 1542 if (!match(ICI, m_ICmp(Pred, m_Value(V), m_APInt(CmpC)))) 1543 return nullptr; 1544 1545 BinaryOperator *BO; 1546 const APInt *C; 1547 CmpInst::Predicate CPred; 1548 if (match(&SI, m_Select(m_Specific(ICI), m_APInt(C), m_BinOp(BO)))) 1549 CPred = ICI->getPredicate(); 1550 else if (match(&SI, m_Select(m_Specific(ICI), m_BinOp(BO), m_APInt(C)))) 1551 CPred = ICI->getInversePredicate(); 1552 else 1553 return nullptr; 1554 1555 const APInt *BinOpC; 1556 if (!match(BO, m_BinOp(m_Specific(V), m_APInt(BinOpC)))) 1557 return nullptr; 1558 1559 ConstantRange R = ConstantRange::makeExactICmpRegion(CPred, *CmpC) 1560 .binaryOp(BO->getOpcode(), *BinOpC); 1561 if (R == *C) { 1562 BO->dropPoisonGeneratingFlags(); 1563 return BO; 1564 } 1565 return nullptr; 1566 } 1567 1568 /// Visit a SelectInst that has an ICmpInst as its first operand. 1569 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI, 1570 ICmpInst *ICI) { 1571 if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI)) 1572 return NewSel; 1573 1574 if (Instruction *NewSPF = canonicalizeSPF(SI, *ICI, *this)) 1575 return NewSPF; 1576 1577 if (Value *V = foldSelectInstWithICmpConst(SI, ICI)) 1578 return replaceInstUsesWith(SI, V); 1579 1580 if (Value *V = canonicalizeClampLike(SI, *ICI, Builder)) 1581 return replaceInstUsesWith(SI, V); 1582 1583 if (Instruction *NewSel = 1584 tryToReuseConstantFromSelectInComparison(SI, *ICI, *this)) 1585 return NewSel; 1586 1587 bool Changed = adjustMinMax(SI, *ICI); 1588 1589 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 1590 return replaceInstUsesWith(SI, V); 1591 1592 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 1593 Value *TrueVal = SI.getTrueValue(); 1594 Value *FalseVal = SI.getFalseValue(); 1595 ICmpInst::Predicate Pred = ICI->getPredicate(); 1596 Value *CmpLHS = ICI->getOperand(0); 1597 Value *CmpRHS = ICI->getOperand(1); 1598 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 1599 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 1600 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 1601 SI.setOperand(1, CmpRHS); 1602 Changed = true; 1603 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 1604 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 1605 SI.setOperand(2, CmpRHS); 1606 Changed = true; 1607 } 1608 } 1609 1610 // Canonicalize a signbit condition to use zero constant by swapping: 1611 // (CmpLHS > -1) ? TV : FV --> (CmpLHS < 0) ? FV : TV 1612 // To avoid conflicts (infinite loops) with other canonicalizations, this is 1613 // not applied with any constant select arm. 1614 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes()) && 1615 !match(TrueVal, m_Constant()) && !match(FalseVal, m_Constant()) && 1616 ICI->hasOneUse()) { 1617 InstCombiner::BuilderTy::InsertPointGuard Guard(Builder); 1618 Builder.SetInsertPoint(&SI); 1619 Value *IsNeg = Builder.CreateIsNeg(CmpLHS, ICI->getName()); 1620 replaceOperand(SI, 0, IsNeg); 1621 SI.swapValues(); 1622 SI.swapProfMetadata(); 1623 return &SI; 1624 } 1625 1626 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 1627 // decomposeBitTestICmp() might help. 1628 { 1629 unsigned BitWidth = 1630 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 1631 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 1632 Value *X; 1633 const APInt *Y, *C; 1634 bool TrueWhenUnset; 1635 bool IsBitTest = false; 1636 if (ICmpInst::isEquality(Pred) && 1637 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 1638 match(CmpRHS, m_Zero())) { 1639 IsBitTest = true; 1640 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 1641 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 1642 X = CmpLHS; 1643 Y = &MinSignedValue; 1644 IsBitTest = true; 1645 TrueWhenUnset = false; 1646 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 1647 X = CmpLHS; 1648 Y = &MinSignedValue; 1649 IsBitTest = true; 1650 TrueWhenUnset = true; 1651 } 1652 if (IsBitTest) { 1653 Value *V = nullptr; 1654 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1655 if (TrueWhenUnset && TrueVal == X && 1656 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1657 V = Builder.CreateAnd(X, ~(*Y)); 1658 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1659 else if (!TrueWhenUnset && FalseVal == X && 1660 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1661 V = Builder.CreateAnd(X, ~(*Y)); 1662 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1663 else if (TrueWhenUnset && FalseVal == X && 1664 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1665 V = Builder.CreateOr(X, *Y); 1666 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1667 else if (!TrueWhenUnset && TrueVal == X && 1668 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1669 V = Builder.CreateOr(X, *Y); 1670 1671 if (V) 1672 return replaceInstUsesWith(SI, V); 1673 } 1674 } 1675 1676 if (Instruction *V = 1677 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1678 return V; 1679 1680 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder)) 1681 return V; 1682 1683 if (Instruction *V = foldSelectZeroOrOnes(ICI, TrueVal, FalseVal, Builder)) 1684 return V; 1685 1686 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 1687 return replaceInstUsesWith(SI, V); 1688 1689 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder)) 1690 return replaceInstUsesWith(SI, V); 1691 1692 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 1693 return replaceInstUsesWith(SI, V); 1694 1695 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1696 return replaceInstUsesWith(SI, V); 1697 1698 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) 1699 return replaceInstUsesWith(SI, V); 1700 1701 return Changed ? &SI : nullptr; 1702 } 1703 1704 /// SI is a select whose condition is a PHI node (but the two may be in 1705 /// different blocks). See if the true/false values (V) are live in all of the 1706 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1707 /// 1708 /// X = phi [ C1, BB1], [C2, BB2] 1709 /// Y = add 1710 /// Z = select X, Y, 0 1711 /// 1712 /// because Y is not live in BB1/BB2. 1713 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1714 const SelectInst &SI) { 1715 // If the value is a non-instruction value like a constant or argument, it 1716 // can always be mapped. 1717 const Instruction *I = dyn_cast<Instruction>(V); 1718 if (!I) return true; 1719 1720 // If V is a PHI node defined in the same block as the condition PHI, we can 1721 // map the arguments. 1722 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1723 1724 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1725 if (VP->getParent() == CondPHI->getParent()) 1726 return true; 1727 1728 // Otherwise, if the PHI and select are defined in the same block and if V is 1729 // defined in a different block, then we can transform it. 1730 if (SI.getParent() == CondPHI->getParent() && 1731 I->getParent() != CondPHI->getParent()) 1732 return true; 1733 1734 // Otherwise we have a 'hard' case and we can't tell without doing more 1735 // detailed dominator based analysis, punt. 1736 return false; 1737 } 1738 1739 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1740 /// SPF2(SPF1(A, B), C) 1741 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner, 1742 SelectPatternFlavor SPF1, Value *A, 1743 Value *B, Instruction &Outer, 1744 SelectPatternFlavor SPF2, 1745 Value *C) { 1746 if (Outer.getType() != Inner->getType()) 1747 return nullptr; 1748 1749 if (C == A || C == B) { 1750 // MAX(MAX(A, B), B) -> MAX(A, B) 1751 // MIN(MIN(a, b), a) -> MIN(a, b) 1752 // TODO: This could be done in instsimplify. 1753 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 1754 return replaceInstUsesWith(Outer, Inner); 1755 } 1756 1757 return nullptr; 1758 } 1759 1760 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1761 /// This is even legal for FP. 1762 static Instruction *foldAddSubSelect(SelectInst &SI, 1763 InstCombiner::BuilderTy &Builder) { 1764 Value *CondVal = SI.getCondition(); 1765 Value *TrueVal = SI.getTrueValue(); 1766 Value *FalseVal = SI.getFalseValue(); 1767 auto *TI = dyn_cast<Instruction>(TrueVal); 1768 auto *FI = dyn_cast<Instruction>(FalseVal); 1769 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1770 return nullptr; 1771 1772 Instruction *AddOp = nullptr, *SubOp = nullptr; 1773 if ((TI->getOpcode() == Instruction::Sub && 1774 FI->getOpcode() == Instruction::Add) || 1775 (TI->getOpcode() == Instruction::FSub && 1776 FI->getOpcode() == Instruction::FAdd)) { 1777 AddOp = FI; 1778 SubOp = TI; 1779 } else if ((FI->getOpcode() == Instruction::Sub && 1780 TI->getOpcode() == Instruction::Add) || 1781 (FI->getOpcode() == Instruction::FSub && 1782 TI->getOpcode() == Instruction::FAdd)) { 1783 AddOp = TI; 1784 SubOp = FI; 1785 } 1786 1787 if (AddOp) { 1788 Value *OtherAddOp = nullptr; 1789 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1790 OtherAddOp = AddOp->getOperand(1); 1791 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1792 OtherAddOp = AddOp->getOperand(0); 1793 } 1794 1795 if (OtherAddOp) { 1796 // So at this point we know we have (Y -> OtherAddOp): 1797 // select C, (add X, Y), (sub X, Z) 1798 Value *NegVal; // Compute -Z 1799 if (SI.getType()->isFPOrFPVectorTy()) { 1800 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1801 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1802 FastMathFlags Flags = AddOp->getFastMathFlags(); 1803 Flags &= SubOp->getFastMathFlags(); 1804 NegInst->setFastMathFlags(Flags); 1805 } 1806 } else { 1807 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1808 } 1809 1810 Value *NewTrueOp = OtherAddOp; 1811 Value *NewFalseOp = NegVal; 1812 if (AddOp != TI) 1813 std::swap(NewTrueOp, NewFalseOp); 1814 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1815 SI.getName() + ".p", &SI); 1816 1817 if (SI.getType()->isFPOrFPVectorTy()) { 1818 Instruction *RI = 1819 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1820 1821 FastMathFlags Flags = AddOp->getFastMathFlags(); 1822 Flags &= SubOp->getFastMathFlags(); 1823 RI->setFastMathFlags(Flags); 1824 return RI; 1825 } else 1826 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1827 } 1828 } 1829 return nullptr; 1830 } 1831 1832 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1833 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1834 /// Along with a number of patterns similar to: 1835 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1836 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1837 static Instruction * 1838 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) { 1839 Value *CondVal = SI.getCondition(); 1840 Value *TrueVal = SI.getTrueValue(); 1841 Value *FalseVal = SI.getFalseValue(); 1842 1843 WithOverflowInst *II; 1844 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) || 1845 !match(FalseVal, m_ExtractValue<0>(m_Specific(II)))) 1846 return nullptr; 1847 1848 Value *X = II->getLHS(); 1849 Value *Y = II->getRHS(); 1850 1851 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) { 1852 Type *Ty = Limit->getType(); 1853 1854 ICmpInst::Predicate Pred; 1855 Value *TrueVal, *FalseVal, *Op; 1856 const APInt *C; 1857 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)), 1858 m_Value(TrueVal), m_Value(FalseVal)))) 1859 return false; 1860 1861 auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); }; 1862 auto IsMinMax = [&](Value *Min, Value *Max) { 1863 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 1864 APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 1865 return match(Min, m_SpecificInt(MinVal)) && 1866 match(Max, m_SpecificInt(MaxVal)); 1867 }; 1868 1869 if (Op != X && Op != Y) 1870 return false; 1871 1872 if (IsAdd) { 1873 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1874 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1875 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1876 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1877 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1878 IsMinMax(TrueVal, FalseVal)) 1879 return true; 1880 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1881 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1882 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1883 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1884 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1885 IsMinMax(FalseVal, TrueVal)) 1886 return true; 1887 } else { 1888 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1889 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1890 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) && 1891 IsMinMax(TrueVal, FalseVal)) 1892 return true; 1893 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1894 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1895 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) && 1896 IsMinMax(FalseVal, TrueVal)) 1897 return true; 1898 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1899 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1900 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1901 IsMinMax(FalseVal, TrueVal)) 1902 return true; 1903 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1904 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1905 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1906 IsMinMax(TrueVal, FalseVal)) 1907 return true; 1908 } 1909 1910 return false; 1911 }; 1912 1913 Intrinsic::ID NewIntrinsicID; 1914 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow && 1915 match(TrueVal, m_AllOnes())) 1916 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1917 NewIntrinsicID = Intrinsic::uadd_sat; 1918 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow && 1919 match(TrueVal, m_Zero())) 1920 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1921 NewIntrinsicID = Intrinsic::usub_sat; 1922 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow && 1923 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true)) 1924 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1925 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1926 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1927 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1928 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1929 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1930 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1931 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1932 NewIntrinsicID = Intrinsic::sadd_sat; 1933 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow && 1934 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false)) 1935 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1936 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1937 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1938 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1939 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1940 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1941 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1942 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1943 NewIntrinsicID = Intrinsic::ssub_sat; 1944 else 1945 return nullptr; 1946 1947 Function *F = 1948 Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType()); 1949 return CallInst::Create(F, {X, Y}); 1950 } 1951 1952 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) { 1953 Constant *C; 1954 if (!match(Sel.getTrueValue(), m_Constant(C)) && 1955 !match(Sel.getFalseValue(), m_Constant(C))) 1956 return nullptr; 1957 1958 Instruction *ExtInst; 1959 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 1960 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 1961 return nullptr; 1962 1963 auto ExtOpcode = ExtInst->getOpcode(); 1964 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 1965 return nullptr; 1966 1967 // If we are extending from a boolean type or if we can create a select that 1968 // has the same size operands as its condition, try to narrow the select. 1969 Value *X = ExtInst->getOperand(0); 1970 Type *SmallType = X->getType(); 1971 Value *Cond = Sel.getCondition(); 1972 auto *Cmp = dyn_cast<CmpInst>(Cond); 1973 if (!SmallType->isIntOrIntVectorTy(1) && 1974 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 1975 return nullptr; 1976 1977 // If the constant is the same after truncation to the smaller type and 1978 // extension to the original type, we can narrow the select. 1979 Type *SelType = Sel.getType(); 1980 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 1981 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 1982 if (ExtC == C && ExtInst->hasOneUse()) { 1983 Value *TruncCVal = cast<Value>(TruncC); 1984 if (ExtInst == Sel.getFalseValue()) 1985 std::swap(X, TruncCVal); 1986 1987 // select Cond, (ext X), C --> ext(select Cond, X, C') 1988 // select Cond, C, (ext X) --> ext(select Cond, C', X) 1989 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 1990 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 1991 } 1992 1993 // If one arm of the select is the extend of the condition, replace that arm 1994 // with the extension of the appropriate known bool value. 1995 if (Cond == X) { 1996 if (ExtInst == Sel.getTrueValue()) { 1997 // select X, (sext X), C --> select X, -1, C 1998 // select X, (zext X), C --> select X, 1, C 1999 Constant *One = ConstantInt::getTrue(SmallType); 2000 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 2001 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 2002 } else { 2003 // select X, C, (sext X) --> select X, C, 0 2004 // select X, C, (zext X) --> select X, C, 0 2005 Constant *Zero = ConstantInt::getNullValue(SelType); 2006 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 2007 } 2008 } 2009 2010 return nullptr; 2011 } 2012 2013 /// Try to transform a vector select with a constant condition vector into a 2014 /// shuffle for easier combining with other shuffles and insert/extract. 2015 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 2016 Value *CondVal = SI.getCondition(); 2017 Constant *CondC; 2018 auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType()); 2019 if (!CondValTy || !match(CondVal, m_Constant(CondC))) 2020 return nullptr; 2021 2022 unsigned NumElts = CondValTy->getNumElements(); 2023 SmallVector<int, 16> Mask; 2024 Mask.reserve(NumElts); 2025 for (unsigned i = 0; i != NumElts; ++i) { 2026 Constant *Elt = CondC->getAggregateElement(i); 2027 if (!Elt) 2028 return nullptr; 2029 2030 if (Elt->isOneValue()) { 2031 // If the select condition element is true, choose from the 1st vector. 2032 Mask.push_back(i); 2033 } else if (Elt->isNullValue()) { 2034 // If the select condition element is false, choose from the 2nd vector. 2035 Mask.push_back(i + NumElts); 2036 } else if (isa<UndefValue>(Elt)) { 2037 // Undef in a select condition (choose one of the operands) does not mean 2038 // the same thing as undef in a shuffle mask (any value is acceptable), so 2039 // give up. 2040 return nullptr; 2041 } else { 2042 // Bail out on a constant expression. 2043 return nullptr; 2044 } 2045 } 2046 2047 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask); 2048 } 2049 2050 /// If we have a select of vectors with a scalar condition, try to convert that 2051 /// to a vector select by splatting the condition. A splat may get folded with 2052 /// other operations in IR and having all operands of a select be vector types 2053 /// is likely better for vector codegen. 2054 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel, 2055 InstCombinerImpl &IC) { 2056 auto *Ty = dyn_cast<VectorType>(Sel.getType()); 2057 if (!Ty) 2058 return nullptr; 2059 2060 // We can replace a single-use extract with constant index. 2061 Value *Cond = Sel.getCondition(); 2062 if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt())))) 2063 return nullptr; 2064 2065 // select (extelt V, Index), T, F --> select (splat V, Index), T, F 2066 // Splatting the extracted condition reduces code (we could directly create a 2067 // splat shuffle of the source vector to eliminate the intermediate step). 2068 return IC.replaceOperand( 2069 Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond)); 2070 } 2071 2072 /// Reuse bitcasted operands between a compare and select: 2073 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2074 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 2075 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 2076 InstCombiner::BuilderTy &Builder) { 2077 Value *Cond = Sel.getCondition(); 2078 Value *TVal = Sel.getTrueValue(); 2079 Value *FVal = Sel.getFalseValue(); 2080 2081 CmpInst::Predicate Pred; 2082 Value *A, *B; 2083 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 2084 return nullptr; 2085 2086 // The select condition is a compare instruction. If the select's true/false 2087 // values are already the same as the compare operands, there's nothing to do. 2088 if (TVal == A || TVal == B || FVal == A || FVal == B) 2089 return nullptr; 2090 2091 Value *C, *D; 2092 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 2093 return nullptr; 2094 2095 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 2096 Value *TSrc, *FSrc; 2097 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 2098 !match(FVal, m_BitCast(m_Value(FSrc)))) 2099 return nullptr; 2100 2101 // If the select true/false values are *different bitcasts* of the same source 2102 // operands, make the select operands the same as the compare operands and 2103 // cast the result. This is the canonical select form for min/max. 2104 Value *NewSel; 2105 if (TSrc == C && FSrc == D) { 2106 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2107 // bitcast (select (cmp A, B), A, B) 2108 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 2109 } else if (TSrc == D && FSrc == C) { 2110 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 2111 // bitcast (select (cmp A, B), B, A) 2112 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 2113 } else { 2114 return nullptr; 2115 } 2116 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 2117 } 2118 2119 /// Try to eliminate select instructions that test the returned flag of cmpxchg 2120 /// instructions. 2121 /// 2122 /// If a select instruction tests the returned flag of a cmpxchg instruction and 2123 /// selects between the returned value of the cmpxchg instruction its compare 2124 /// operand, the result of the select will always be equal to its false value. 2125 /// For example: 2126 /// 2127 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2128 /// %1 = extractvalue { i64, i1 } %0, 1 2129 /// %2 = extractvalue { i64, i1 } %0, 0 2130 /// %3 = select i1 %1, i64 %compare, i64 %2 2131 /// ret i64 %3 2132 /// 2133 /// The returned value of the cmpxchg instruction (%2) is the original value 2134 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 2135 /// must have been equal to %compare. Thus, the result of the select is always 2136 /// equal to %2, and the code can be simplified to: 2137 /// 2138 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2139 /// %1 = extractvalue { i64, i1 } %0, 0 2140 /// ret i64 %1 2141 /// 2142 static Value *foldSelectCmpXchg(SelectInst &SI) { 2143 // A helper that determines if V is an extractvalue instruction whose 2144 // aggregate operand is a cmpxchg instruction and whose single index is equal 2145 // to I. If such conditions are true, the helper returns the cmpxchg 2146 // instruction; otherwise, a nullptr is returned. 2147 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 2148 auto *Extract = dyn_cast<ExtractValueInst>(V); 2149 if (!Extract) 2150 return nullptr; 2151 if (Extract->getIndices()[0] != I) 2152 return nullptr; 2153 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 2154 }; 2155 2156 // If the select has a single user, and this user is a select instruction that 2157 // we can simplify, skip the cmpxchg simplification for now. 2158 if (SI.hasOneUse()) 2159 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 2160 if (Select->getCondition() == SI.getCondition()) 2161 if (Select->getFalseValue() == SI.getTrueValue() || 2162 Select->getTrueValue() == SI.getFalseValue()) 2163 return nullptr; 2164 2165 // Ensure the select condition is the returned flag of a cmpxchg instruction. 2166 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 2167 if (!CmpXchg) 2168 return nullptr; 2169 2170 // Check the true value case: The true value of the select is the returned 2171 // value of the same cmpxchg used by the condition, and the false value is the 2172 // cmpxchg instruction's compare operand. 2173 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 2174 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) 2175 return SI.getFalseValue(); 2176 2177 // Check the false value case: The false value of the select is the returned 2178 // value of the same cmpxchg used by the condition, and the true value is the 2179 // cmpxchg instruction's compare operand. 2180 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 2181 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) 2182 return SI.getFalseValue(); 2183 2184 return nullptr; 2185 } 2186 2187 /// Try to reduce a funnel/rotate pattern that includes a compare and select 2188 /// into a funnel shift intrinsic. Example: 2189 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 2190 /// --> call llvm.fshl.i32(a, a, b) 2191 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c))) 2192 /// --> call llvm.fshl.i32(a, b, c) 2193 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c))) 2194 /// --> call llvm.fshr.i32(a, b, c) 2195 static Instruction *foldSelectFunnelShift(SelectInst &Sel, 2196 InstCombiner::BuilderTy &Builder) { 2197 // This must be a power-of-2 type for a bitmasking transform to be valid. 2198 unsigned Width = Sel.getType()->getScalarSizeInBits(); 2199 if (!isPowerOf2_32(Width)) 2200 return nullptr; 2201 2202 BinaryOperator *Or0, *Or1; 2203 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 2204 return nullptr; 2205 2206 Value *SV0, *SV1, *SA0, *SA1; 2207 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0), 2208 m_ZExtOrSelf(m_Value(SA0))))) || 2209 !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1), 2210 m_ZExtOrSelf(m_Value(SA1))))) || 2211 Or0->getOpcode() == Or1->getOpcode()) 2212 return nullptr; 2213 2214 // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)). 2215 if (Or0->getOpcode() == BinaryOperator::LShr) { 2216 std::swap(Or0, Or1); 2217 std::swap(SV0, SV1); 2218 std::swap(SA0, SA1); 2219 } 2220 assert(Or0->getOpcode() == BinaryOperator::Shl && 2221 Or1->getOpcode() == BinaryOperator::LShr && 2222 "Illegal or(shift,shift) pair"); 2223 2224 // Check the shift amounts to see if they are an opposite pair. 2225 Value *ShAmt; 2226 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 2227 ShAmt = SA0; 2228 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 2229 ShAmt = SA1; 2230 else 2231 return nullptr; 2232 2233 // We should now have this pattern: 2234 // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1)) 2235 // The false value of the select must be a funnel-shift of the true value: 2236 // IsFShl -> TVal must be SV0 else TVal must be SV1. 2237 bool IsFshl = (ShAmt == SA0); 2238 Value *TVal = Sel.getTrueValue(); 2239 if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1)) 2240 return nullptr; 2241 2242 // Finally, see if the select is filtering out a shift-by-zero. 2243 Value *Cond = Sel.getCondition(); 2244 ICmpInst::Predicate Pred; 2245 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || 2246 Pred != ICmpInst::ICMP_EQ) 2247 return nullptr; 2248 2249 // If this is not a rotate then the select was blocking poison from the 2250 // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it. 2251 if (SV0 != SV1) { 2252 if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1)) 2253 SV1 = Builder.CreateFreeze(SV1); 2254 else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0)) 2255 SV0 = Builder.CreateFreeze(SV0); 2256 } 2257 2258 // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way. 2259 // Convert to funnel shift intrinsic. 2260 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 2261 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); 2262 ShAmt = Builder.CreateZExt(ShAmt, Sel.getType()); 2263 return CallInst::Create(F, { SV0, SV1, ShAmt }); 2264 } 2265 2266 static Instruction *foldSelectToCopysign(SelectInst &Sel, 2267 InstCombiner::BuilderTy &Builder) { 2268 Value *Cond = Sel.getCondition(); 2269 Value *TVal = Sel.getTrueValue(); 2270 Value *FVal = Sel.getFalseValue(); 2271 Type *SelType = Sel.getType(); 2272 2273 // Match select ?, TC, FC where the constants are equal but negated. 2274 // TODO: Generalize to handle a negated variable operand? 2275 const APFloat *TC, *FC; 2276 if (!match(TVal, m_APFloatAllowUndef(TC)) || 2277 !match(FVal, m_APFloatAllowUndef(FC)) || 2278 !abs(*TC).bitwiseIsEqual(abs(*FC))) 2279 return nullptr; 2280 2281 assert(TC != FC && "Expected equal select arms to simplify"); 2282 2283 Value *X; 2284 const APInt *C; 2285 bool IsTrueIfSignSet; 2286 ICmpInst::Predicate Pred; 2287 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) || 2288 !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) || 2289 X->getType() != SelType) 2290 return nullptr; 2291 2292 // If needed, negate the value that will be the sign argument of the copysign: 2293 // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X) 2294 // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X) 2295 // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X) 2296 // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X) 2297 // Note: FMF from the select can not be propagated to the new instructions. 2298 if (IsTrueIfSignSet ^ TC->isNegative()) 2299 X = Builder.CreateFNeg(X); 2300 2301 // Canonicalize the magnitude argument as the positive constant since we do 2302 // not care about its sign. 2303 Value *MagArg = ConstantFP::get(SelType, abs(*TC)); 2304 Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign, 2305 Sel.getType()); 2306 return CallInst::Create(F, { MagArg, X }); 2307 } 2308 2309 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) { 2310 auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType()); 2311 if (!VecTy) 2312 return nullptr; 2313 2314 unsigned NumElts = VecTy->getNumElements(); 2315 APInt UndefElts(NumElts, 0); 2316 APInt AllOnesEltMask(APInt::getAllOnes(NumElts)); 2317 if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) { 2318 if (V != &Sel) 2319 return replaceInstUsesWith(Sel, V); 2320 return &Sel; 2321 } 2322 2323 // A select of a "select shuffle" with a common operand can be rearranged 2324 // to select followed by "select shuffle". Because of poison, this only works 2325 // in the case of a shuffle with no undefined mask elements. 2326 Value *Cond = Sel.getCondition(); 2327 Value *TVal = Sel.getTrueValue(); 2328 Value *FVal = Sel.getFalseValue(); 2329 Value *X, *Y; 2330 ArrayRef<int> Mask; 2331 if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2332 !is_contained(Mask, UndefMaskElem) && 2333 cast<ShuffleVectorInst>(TVal)->isSelect()) { 2334 if (X == FVal) { 2335 // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X) 2336 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2337 return new ShuffleVectorInst(X, NewSel, Mask); 2338 } 2339 if (Y == FVal) { 2340 // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y 2341 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2342 return new ShuffleVectorInst(NewSel, Y, Mask); 2343 } 2344 } 2345 if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2346 !is_contained(Mask, UndefMaskElem) && 2347 cast<ShuffleVectorInst>(FVal)->isSelect()) { 2348 if (X == TVal) { 2349 // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y) 2350 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2351 return new ShuffleVectorInst(X, NewSel, Mask); 2352 } 2353 if (Y == TVal) { 2354 // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y 2355 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2356 return new ShuffleVectorInst(NewSel, Y, Mask); 2357 } 2358 } 2359 2360 return nullptr; 2361 } 2362 2363 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB, 2364 const DominatorTree &DT, 2365 InstCombiner::BuilderTy &Builder) { 2366 // Find the block's immediate dominator that ends with a conditional branch 2367 // that matches select's condition (maybe inverted). 2368 auto *IDomNode = DT[BB]->getIDom(); 2369 if (!IDomNode) 2370 return nullptr; 2371 BasicBlock *IDom = IDomNode->getBlock(); 2372 2373 Value *Cond = Sel.getCondition(); 2374 Value *IfTrue, *IfFalse; 2375 BasicBlock *TrueSucc, *FalseSucc; 2376 if (match(IDom->getTerminator(), 2377 m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc), 2378 m_BasicBlock(FalseSucc)))) { 2379 IfTrue = Sel.getTrueValue(); 2380 IfFalse = Sel.getFalseValue(); 2381 } else if (match(IDom->getTerminator(), 2382 m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc), 2383 m_BasicBlock(FalseSucc)))) { 2384 IfTrue = Sel.getFalseValue(); 2385 IfFalse = Sel.getTrueValue(); 2386 } else 2387 return nullptr; 2388 2389 // Make sure the branches are actually different. 2390 if (TrueSucc == FalseSucc) 2391 return nullptr; 2392 2393 // We want to replace select %cond, %a, %b with a phi that takes value %a 2394 // for all incoming edges that are dominated by condition `%cond == true`, 2395 // and value %b for edges dominated by condition `%cond == false`. If %a 2396 // or %b are also phis from the same basic block, we can go further and take 2397 // their incoming values from the corresponding blocks. 2398 BasicBlockEdge TrueEdge(IDom, TrueSucc); 2399 BasicBlockEdge FalseEdge(IDom, FalseSucc); 2400 DenseMap<BasicBlock *, Value *> Inputs; 2401 for (auto *Pred : predecessors(BB)) { 2402 // Check implication. 2403 BasicBlockEdge Incoming(Pred, BB); 2404 if (DT.dominates(TrueEdge, Incoming)) 2405 Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred); 2406 else if (DT.dominates(FalseEdge, Incoming)) 2407 Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred); 2408 else 2409 return nullptr; 2410 // Check availability. 2411 if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred])) 2412 if (!DT.dominates(Insn, Pred->getTerminator())) 2413 return nullptr; 2414 } 2415 2416 Builder.SetInsertPoint(&*BB->begin()); 2417 auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size()); 2418 for (auto *Pred : predecessors(BB)) 2419 PN->addIncoming(Inputs[Pred], Pred); 2420 PN->takeName(&Sel); 2421 return PN; 2422 } 2423 2424 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT, 2425 InstCombiner::BuilderTy &Builder) { 2426 // Try to replace this select with Phi in one of these blocks. 2427 SmallSetVector<BasicBlock *, 4> CandidateBlocks; 2428 CandidateBlocks.insert(Sel.getParent()); 2429 for (Value *V : Sel.operands()) 2430 if (auto *I = dyn_cast<Instruction>(V)) 2431 CandidateBlocks.insert(I->getParent()); 2432 2433 for (BasicBlock *BB : CandidateBlocks) 2434 if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder)) 2435 return PN; 2436 return nullptr; 2437 } 2438 2439 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) { 2440 FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition()); 2441 if (!FI) 2442 return nullptr; 2443 2444 Value *Cond = FI->getOperand(0); 2445 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 2446 2447 // select (freeze(x == y)), x, y --> y 2448 // select (freeze(x != y)), x, y --> x 2449 // The freeze should be only used by this select. Otherwise, remaining uses of 2450 // the freeze can observe a contradictory value. 2451 // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1 2452 // a = select c, x, y ; 2453 // f(a, c) ; f(poison, 1) cannot happen, but if a is folded 2454 // ; to y, this can happen. 2455 CmpInst::Predicate Pred; 2456 if (FI->hasOneUse() && 2457 match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) && 2458 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) { 2459 return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal; 2460 } 2461 2462 return nullptr; 2463 } 2464 2465 Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op, 2466 SelectInst &SI, 2467 bool IsAnd) { 2468 Value *CondVal = SI.getCondition(); 2469 Value *A = SI.getTrueValue(); 2470 Value *B = SI.getFalseValue(); 2471 2472 assert(Op->getType()->isIntOrIntVectorTy(1) && 2473 "Op must be either i1 or vector of i1."); 2474 2475 Optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd); 2476 if (!Res) 2477 return nullptr; 2478 2479 Value *Zero = Constant::getNullValue(A->getType()); 2480 Value *One = Constant::getAllOnesValue(A->getType()); 2481 2482 if (*Res == true) { 2483 if (IsAnd) 2484 // select op, (select cond, A, B), false => select op, A, false 2485 // and op, (select cond, A, B) => select op, A, false 2486 // if op = true implies condval = true. 2487 return SelectInst::Create(Op, A, Zero); 2488 else 2489 // select op, true, (select cond, A, B) => select op, true, A 2490 // or op, (select cond, A, B) => select op, true, A 2491 // if op = false implies condval = true. 2492 return SelectInst::Create(Op, One, A); 2493 } else { 2494 if (IsAnd) 2495 // select op, (select cond, A, B), false => select op, B, false 2496 // and op, (select cond, A, B) => select op, B, false 2497 // if op = true implies condval = false. 2498 return SelectInst::Create(Op, B, Zero); 2499 else 2500 // select op, true, (select cond, A, B) => select op, true, B 2501 // or op, (select cond, A, B) => select op, true, B 2502 // if op = false implies condval = false. 2503 return SelectInst::Create(Op, One, B); 2504 } 2505 } 2506 2507 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 2508 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. 2509 static Instruction *foldSelectWithFCmpToFabs(SelectInst &SI, 2510 InstCombinerImpl &IC) { 2511 Value *CondVal = SI.getCondition(); 2512 2513 for (bool Swap : {false, true}) { 2514 Value *TrueVal = SI.getTrueValue(); 2515 Value *X = SI.getFalseValue(); 2516 CmpInst::Predicate Pred; 2517 2518 if (Swap) 2519 std::swap(TrueVal, X); 2520 2521 if (!match(CondVal, m_FCmp(Pred, m_Specific(X), m_AnyZeroFP()))) 2522 continue; 2523 2524 // fold (X <= +/-0.0) ? (0.0 - X) : X to fabs(X), when 'Swap' is false 2525 // fold (X > +/-0.0) ? X : (0.0 - X) to fabs(X), when 'Swap' is true 2526 if (match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) { 2527 if (!Swap && (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) { 2528 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); 2529 return IC.replaceInstUsesWith(SI, Fabs); 2530 } 2531 if (Swap && (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) { 2532 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); 2533 return IC.replaceInstUsesWith(SI, Fabs); 2534 } 2535 } 2536 2537 // With nsz, when 'Swap' is false: 2538 // fold (X < +/-0.0) ? -X : X or (X <= +/-0.0) ? -X : X to fabs(X) 2539 // fold (X > +/-0.0) ? -X : X or (X >= +/-0.0) ? -X : X to -fabs(x) 2540 // when 'Swap' is true: 2541 // fold (X > +/-0.0) ? X : -X or (X >= +/-0.0) ? X : -X to fabs(X) 2542 // fold (X < +/-0.0) ? X : -X or (X <= +/-0.0) ? X : -X to -fabs(X) 2543 if (!match(TrueVal, m_FNeg(m_Specific(X))) || !SI.hasNoSignedZeros()) 2544 return nullptr; 2545 2546 if (Swap) 2547 Pred = FCmpInst::getSwappedPredicate(Pred); 2548 2549 bool IsLTOrLE = Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE || 2550 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE; 2551 bool IsGTOrGE = Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE || 2552 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE; 2553 2554 if (IsLTOrLE) { 2555 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); 2556 return IC.replaceInstUsesWith(SI, Fabs); 2557 } 2558 if (IsGTOrGE) { 2559 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); 2560 Instruction *NewFNeg = UnaryOperator::CreateFNeg(Fabs); 2561 NewFNeg->setFastMathFlags(SI.getFastMathFlags()); 2562 return NewFNeg; 2563 } 2564 } 2565 2566 return nullptr; 2567 } 2568 2569 // Match the following IR pattern: 2570 // %x.lowbits = and i8 %x, %lowbitmask 2571 // %x.lowbits.are.zero = icmp eq i8 %x.lowbits, 0 2572 // %x.biased = add i8 %x, %bias 2573 // %x.biased.highbits = and i8 %x.biased, %highbitmask 2574 // %x.roundedup = select i1 %x.lowbits.are.zero, i8 %x, i8 %x.biased.highbits 2575 // Define: 2576 // %alignment = add i8 %lowbitmask, 1 2577 // Iff 1. an %alignment is a power-of-two (aka, %lowbitmask is a low bit mask) 2578 // and 2. %bias is equal to either %lowbitmask or %alignment, 2579 // and 3. %highbitmask is equal to ~%lowbitmask (aka, to -%alignment) 2580 // then this pattern can be transformed into: 2581 // %x.offset = add i8 %x, %lowbitmask 2582 // %x.roundedup = and i8 %x.offset, %highbitmask 2583 static Value * 2584 foldRoundUpIntegerWithPow2Alignment(SelectInst &SI, 2585 InstCombiner::BuilderTy &Builder) { 2586 Value *Cond = SI.getCondition(); 2587 Value *X = SI.getTrueValue(); 2588 Value *XBiasedHighBits = SI.getFalseValue(); 2589 2590 ICmpInst::Predicate Pred; 2591 Value *XLowBits; 2592 if (!match(Cond, m_ICmp(Pred, m_Value(XLowBits), m_ZeroInt())) || 2593 !ICmpInst::isEquality(Pred)) 2594 return nullptr; 2595 2596 if (Pred == ICmpInst::Predicate::ICMP_NE) 2597 std::swap(X, XBiasedHighBits); 2598 2599 // FIXME: we could support non non-splats here. 2600 2601 const APInt *LowBitMaskCst; 2602 if (!match(XLowBits, m_And(m_Specific(X), m_APIntAllowUndef(LowBitMaskCst)))) 2603 return nullptr; 2604 2605 const APInt *BiasCst, *HighBitMaskCst; 2606 if (!match(XBiasedHighBits, 2607 m_And(m_Add(m_Specific(X), m_APIntAllowUndef(BiasCst)), 2608 m_APIntAllowUndef(HighBitMaskCst)))) 2609 return nullptr; 2610 2611 if (!LowBitMaskCst->isMask()) 2612 return nullptr; 2613 2614 APInt InvertedLowBitMaskCst = ~*LowBitMaskCst; 2615 if (InvertedLowBitMaskCst != *HighBitMaskCst) 2616 return nullptr; 2617 2618 APInt AlignmentCst = *LowBitMaskCst + 1; 2619 2620 if (*BiasCst != AlignmentCst && *BiasCst != *LowBitMaskCst) 2621 return nullptr; 2622 2623 if (!XBiasedHighBits->hasOneUse()) { 2624 if (*BiasCst == *LowBitMaskCst) 2625 return XBiasedHighBits; 2626 return nullptr; 2627 } 2628 2629 // FIXME: could we preserve undef's here? 2630 Type *Ty = X->getType(); 2631 Value *XOffset = Builder.CreateAdd(X, ConstantInt::get(Ty, *LowBitMaskCst), 2632 X->getName() + ".biased"); 2633 Value *R = Builder.CreateAnd(XOffset, ConstantInt::get(Ty, *HighBitMaskCst)); 2634 R->takeName(&SI); 2635 return R; 2636 } 2637 2638 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) { 2639 Value *CondVal = SI.getCondition(); 2640 Value *TrueVal = SI.getTrueValue(); 2641 Value *FalseVal = SI.getFalseValue(); 2642 Type *SelType = SI.getType(); 2643 2644 if (Value *V = simplifySelectInst(CondVal, TrueVal, FalseVal, 2645 SQ.getWithInstruction(&SI))) 2646 return replaceInstUsesWith(SI, V); 2647 2648 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 2649 return I; 2650 2651 if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this)) 2652 return I; 2653 2654 // Avoid potential infinite loops by checking for non-constant condition. 2655 // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()? 2656 // Scalar select must have simplified? 2657 if (SelType->isIntOrIntVectorTy(1) && !isa<Constant>(CondVal) && 2658 TrueVal->getType() == CondVal->getType()) { 2659 // Folding select to and/or i1 isn't poison safe in general. impliesPoison 2660 // checks whether folding it does not convert a well-defined value into 2661 // poison. 2662 if (match(TrueVal, m_One())) { 2663 if (impliesPoison(FalseVal, CondVal)) { 2664 // Change: A = select B, true, C --> A = or B, C 2665 return BinaryOperator::CreateOr(CondVal, FalseVal); 2666 } 2667 2668 if (auto *LHS = dyn_cast<FCmpInst>(CondVal)) 2669 if (auto *RHS = dyn_cast<FCmpInst>(FalseVal)) 2670 if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ false, 2671 /*IsSelectLogical*/ true)) 2672 return replaceInstUsesWith(SI, V); 2673 } 2674 if (match(FalseVal, m_Zero())) { 2675 if (impliesPoison(TrueVal, CondVal)) { 2676 // Change: A = select B, C, false --> A = and B, C 2677 return BinaryOperator::CreateAnd(CondVal, TrueVal); 2678 } 2679 2680 if (auto *LHS = dyn_cast<FCmpInst>(CondVal)) 2681 if (auto *RHS = dyn_cast<FCmpInst>(TrueVal)) 2682 if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ true, 2683 /*IsSelectLogical*/ true)) 2684 return replaceInstUsesWith(SI, V); 2685 } 2686 2687 auto *One = ConstantInt::getTrue(SelType); 2688 auto *Zero = ConstantInt::getFalse(SelType); 2689 2690 // We match the "full" 0 or 1 constant here to avoid a potential infinite 2691 // loop with vectors that may have undefined/poison elements. 2692 // select a, false, b -> select !a, b, false 2693 if (match(TrueVal, m_Specific(Zero))) { 2694 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2695 return SelectInst::Create(NotCond, FalseVal, Zero); 2696 } 2697 // select a, b, true -> select !a, true, b 2698 if (match(FalseVal, m_Specific(One))) { 2699 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2700 return SelectInst::Create(NotCond, One, TrueVal); 2701 } 2702 2703 // select a, a, b -> select a, true, b 2704 if (CondVal == TrueVal) 2705 return replaceOperand(SI, 1, One); 2706 // select a, b, a -> select a, b, false 2707 if (CondVal == FalseVal) 2708 return replaceOperand(SI, 2, Zero); 2709 2710 // select a, !a, b -> select !a, b, false 2711 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 2712 return SelectInst::Create(TrueVal, FalseVal, Zero); 2713 // select a, b, !a -> select !a, true, b 2714 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 2715 return SelectInst::Create(FalseVal, One, TrueVal); 2716 2717 Value *A, *B; 2718 2719 // DeMorgan in select form: !a && !b --> !(a || b) 2720 // select !a, !b, false --> not (select a, true, b) 2721 if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) && 2722 (CondVal->hasOneUse() || TrueVal->hasOneUse()) && 2723 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr())) 2724 return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B)); 2725 2726 // DeMorgan in select form: !a || !b --> !(a && b) 2727 // select !a, true, !b --> not (select a, b, false) 2728 if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) && 2729 (CondVal->hasOneUse() || FalseVal->hasOneUse()) && 2730 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr())) 2731 return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero)); 2732 2733 // select (select a, true, b), true, b -> select a, true, b 2734 if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2735 match(TrueVal, m_One()) && match(FalseVal, m_Specific(B))) 2736 return replaceOperand(SI, 0, A); 2737 // select (select a, b, false), b, false -> select a, b, false 2738 if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) && 2739 match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero())) 2740 return replaceOperand(SI, 0, A); 2741 2742 Value *C; 2743 // select (~a | c), a, b -> and a, (or c, freeze(b)) 2744 if (match(CondVal, m_c_Or(m_Not(m_Specific(TrueVal)), m_Value(C))) && 2745 CondVal->hasOneUse()) { 2746 FalseVal = Builder.CreateFreeze(FalseVal); 2747 return BinaryOperator::CreateAnd(TrueVal, Builder.CreateOr(C, FalseVal)); 2748 } 2749 // select (~c & b), a, b -> and b, (or freeze(a), c) 2750 if (match(CondVal, m_c_And(m_Not(m_Value(C)), m_Specific(FalseVal))) && 2751 CondVal->hasOneUse()) { 2752 TrueVal = Builder.CreateFreeze(TrueVal); 2753 return BinaryOperator::CreateAnd(FalseVal, Builder.CreateOr(C, TrueVal)); 2754 } 2755 2756 if (!SelType->isVectorTy()) { 2757 if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal, One, SQ, 2758 /* AllowRefinement */ true)) 2759 return replaceOperand(SI, 1, S); 2760 if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal, Zero, SQ, 2761 /* AllowRefinement */ true)) 2762 return replaceOperand(SI, 2, S); 2763 } 2764 2765 if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) { 2766 Use *Y = nullptr; 2767 bool IsAnd = match(FalseVal, m_Zero()) ? true : false; 2768 Value *Op1 = IsAnd ? TrueVal : FalseVal; 2769 if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) { 2770 auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr"); 2771 InsertNewInstBefore(FI, *cast<Instruction>(Y->getUser())); 2772 replaceUse(*Y, FI); 2773 return replaceInstUsesWith(SI, Op1); 2774 } 2775 2776 if (auto *Op1SI = dyn_cast<SelectInst>(Op1)) 2777 if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI, 2778 /* IsAnd */ IsAnd)) 2779 return I; 2780 2781 if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal)) 2782 if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1)) 2783 if (auto *V = foldAndOrOfICmps(ICmp0, ICmp1, SI, IsAnd, 2784 /* IsLogical */ true)) 2785 return replaceInstUsesWith(SI, V); 2786 } 2787 2788 // select (select a, true, b), c, false -> select a, c, false 2789 // select c, (select a, true, b), false -> select c, a, false 2790 // if c implies that b is false. 2791 if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2792 match(FalseVal, m_Zero())) { 2793 Optional<bool> Res = isImpliedCondition(TrueVal, B, DL); 2794 if (Res && *Res == false) 2795 return replaceOperand(SI, 0, A); 2796 } 2797 if (match(TrueVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2798 match(FalseVal, m_Zero())) { 2799 Optional<bool> Res = isImpliedCondition(CondVal, B, DL); 2800 if (Res && *Res == false) 2801 return replaceOperand(SI, 1, A); 2802 } 2803 // select c, true, (select a, b, false) -> select c, true, a 2804 // select (select a, b, false), true, c -> select a, true, c 2805 // if c = false implies that b = true 2806 if (match(TrueVal, m_One()) && 2807 match(FalseVal, m_Select(m_Value(A), m_Value(B), m_Zero()))) { 2808 Optional<bool> Res = isImpliedCondition(CondVal, B, DL, false); 2809 if (Res && *Res == true) 2810 return replaceOperand(SI, 2, A); 2811 } 2812 if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) && 2813 match(TrueVal, m_One())) { 2814 Optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false); 2815 if (Res && *Res == true) 2816 return replaceOperand(SI, 0, A); 2817 } 2818 2819 // sel (sel c, a, false), true, (sel !c, b, false) -> sel c, a, b 2820 // sel (sel !c, a, false), true, (sel c, b, false) -> sel c, b, a 2821 Value *C1, *C2; 2822 if (match(CondVal, m_Select(m_Value(C1), m_Value(A), m_Zero())) && 2823 match(TrueVal, m_One()) && 2824 match(FalseVal, m_Select(m_Value(C2), m_Value(B), m_Zero()))) { 2825 if (match(C2, m_Not(m_Specific(C1)))) // first case 2826 return SelectInst::Create(C1, A, B); 2827 else if (match(C1, m_Not(m_Specific(C2)))) // second case 2828 return SelectInst::Create(C2, B, A); 2829 } 2830 } 2831 2832 // Selecting between two integer or vector splat integer constants? 2833 // 2834 // Note that we don't handle a scalar select of vectors: 2835 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 2836 // because that may need 3 instructions to splat the condition value: 2837 // extend, insertelement, shufflevector. 2838 // 2839 // Do not handle i1 TrueVal and FalseVal otherwise would result in 2840 // zext/sext i1 to i1. 2841 if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) && 2842 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 2843 // select C, 1, 0 -> zext C to int 2844 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 2845 return new ZExtInst(CondVal, SelType); 2846 2847 // select C, -1, 0 -> sext C to int 2848 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 2849 return new SExtInst(CondVal, SelType); 2850 2851 // select C, 0, 1 -> zext !C to int 2852 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 2853 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2854 return new ZExtInst(NotCond, SelType); 2855 } 2856 2857 // select C, 0, -1 -> sext !C to int 2858 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 2859 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2860 return new SExtInst(NotCond, SelType); 2861 } 2862 } 2863 2864 if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) { 2865 Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1); 2866 // Are we selecting a value based on a comparison of the two values? 2867 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) || 2868 (Cmp0 == FalseVal && Cmp1 == TrueVal)) { 2869 // Canonicalize to use ordered comparisons by swapping the select 2870 // operands. 2871 // 2872 // e.g. 2873 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 2874 if (FCmp->hasOneUse() && FCmpInst::isUnordered(FCmp->getPredicate())) { 2875 FCmpInst::Predicate InvPred = FCmp->getInversePredicate(); 2876 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2877 // FIXME: The FMF should propagate from the select, not the fcmp. 2878 Builder.setFastMathFlags(FCmp->getFastMathFlags()); 2879 Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1, 2880 FCmp->getName() + ".inv"); 2881 Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal); 2882 return replaceInstUsesWith(SI, NewSel); 2883 } 2884 2885 // NOTE: if we wanted to, this is where to detect MIN/MAX 2886 } 2887 } 2888 2889 // Fold selecting to fabs. 2890 if (Instruction *Fabs = foldSelectWithFCmpToFabs(SI, *this)) 2891 return Fabs; 2892 2893 // See if we are selecting two values based on a comparison of the two values. 2894 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 2895 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 2896 return Result; 2897 2898 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 2899 return Add; 2900 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder)) 2901 return Add; 2902 if (Instruction *Or = foldSetClearBits(SI, Builder)) 2903 return Or; 2904 if (Instruction *Mul = foldSelectZeroOrMul(SI, *this)) 2905 return Mul; 2906 2907 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 2908 auto *TI = dyn_cast<Instruction>(TrueVal); 2909 auto *FI = dyn_cast<Instruction>(FalseVal); 2910 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 2911 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 2912 return IV; 2913 2914 if (Instruction *I = foldSelectExtConst(SI)) 2915 return I; 2916 2917 // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0)) 2918 // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx)) 2919 auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base, 2920 bool Swap) -> GetElementPtrInst * { 2921 Value *Ptr = Gep->getPointerOperand(); 2922 if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base || 2923 !Gep->hasOneUse()) 2924 return nullptr; 2925 Value *Idx = Gep->getOperand(1); 2926 if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType())) 2927 return nullptr; 2928 Type *ElementType = Gep->getResultElementType(); 2929 Value *NewT = Idx; 2930 Value *NewF = Constant::getNullValue(Idx->getType()); 2931 if (Swap) 2932 std::swap(NewT, NewF); 2933 Value *NewSI = 2934 Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI); 2935 return GetElementPtrInst::Create(ElementType, Ptr, {NewSI}); 2936 }; 2937 if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal)) 2938 if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false)) 2939 return NewGep; 2940 if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal)) 2941 if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true)) 2942 return NewGep; 2943 2944 // See if we can fold the select into one of our operands. 2945 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 2946 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 2947 return FoldI; 2948 2949 Value *LHS, *RHS; 2950 Instruction::CastOps CastOp; 2951 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 2952 auto SPF = SPR.Flavor; 2953 if (SPF) { 2954 Value *LHS2, *RHS2; 2955 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 2956 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 2957 RHS2, SI, SPF, RHS)) 2958 return R; 2959 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 2960 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 2961 RHS2, SI, SPF, LHS)) 2962 return R; 2963 } 2964 2965 if (SelectPatternResult::isMinOrMax(SPF)) { 2966 // Canonicalize so that 2967 // - type casts are outside select patterns. 2968 // - float clamp is transformed to min/max pattern 2969 2970 bool IsCastNeeded = LHS->getType() != SelType; 2971 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 2972 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 2973 if (IsCastNeeded || 2974 (LHS->getType()->isFPOrFPVectorTy() && 2975 ((CmpLHS != LHS && CmpLHS != RHS) || 2976 (CmpRHS != LHS && CmpRHS != RHS)))) { 2977 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered); 2978 2979 Value *Cmp; 2980 if (CmpInst::isIntPredicate(MinMaxPred)) { 2981 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS); 2982 } else { 2983 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2984 auto FMF = 2985 cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 2986 Builder.setFastMathFlags(FMF); 2987 Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS); 2988 } 2989 2990 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 2991 if (!IsCastNeeded) 2992 return replaceInstUsesWith(SI, NewSI); 2993 2994 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 2995 return replaceInstUsesWith(SI, NewCast); 2996 } 2997 } 2998 } 2999 3000 // Canonicalize select of FP values where NaN and -0.0 are not valid as 3001 // minnum/maxnum intrinsics. 3002 if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) { 3003 Value *X, *Y; 3004 if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y)))) 3005 return replaceInstUsesWith( 3006 SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI)); 3007 3008 if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y)))) 3009 return replaceInstUsesWith( 3010 SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI)); 3011 } 3012 3013 // See if we can fold the select into a phi node if the condition is a select. 3014 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 3015 // The true/false values have to be live in the PHI predecessor's blocks. 3016 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 3017 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 3018 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 3019 return NV; 3020 3021 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 3022 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 3023 // select(C, select(C, a, b), c) -> select(C, a, c) 3024 if (TrueSI->getCondition() == CondVal) { 3025 if (SI.getTrueValue() == TrueSI->getTrueValue()) 3026 return nullptr; 3027 return replaceOperand(SI, 1, TrueSI->getTrueValue()); 3028 } 3029 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 3030 // We choose this as normal form to enable folding on the And and 3031 // shortening paths for the values (this helps getUnderlyingObjects() for 3032 // example). 3033 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 3034 Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition()); 3035 replaceOperand(SI, 0, And); 3036 replaceOperand(SI, 1, TrueSI->getTrueValue()); 3037 return &SI; 3038 } 3039 } 3040 } 3041 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 3042 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 3043 // select(C, a, select(C, b, c)) -> select(C, a, c) 3044 if (FalseSI->getCondition() == CondVal) { 3045 if (SI.getFalseValue() == FalseSI->getFalseValue()) 3046 return nullptr; 3047 return replaceOperand(SI, 2, FalseSI->getFalseValue()); 3048 } 3049 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 3050 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 3051 Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition()); 3052 replaceOperand(SI, 0, Or); 3053 replaceOperand(SI, 2, FalseSI->getFalseValue()); 3054 return &SI; 3055 } 3056 } 3057 } 3058 3059 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { 3060 // The select might be preventing a division by 0. 3061 switch (BO->getOpcode()) { 3062 default: 3063 return true; 3064 case Instruction::SRem: 3065 case Instruction::URem: 3066 case Instruction::SDiv: 3067 case Instruction::UDiv: 3068 return false; 3069 } 3070 }; 3071 3072 // Try to simplify a binop sandwiched between 2 selects with the same 3073 // condition. 3074 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 3075 BinaryOperator *TrueBO; 3076 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && 3077 canMergeSelectThroughBinop(TrueBO)) { 3078 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 3079 if (TrueBOSI->getCondition() == CondVal) { 3080 replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue()); 3081 Worklist.push(TrueBO); 3082 return &SI; 3083 } 3084 } 3085 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 3086 if (TrueBOSI->getCondition() == CondVal) { 3087 replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue()); 3088 Worklist.push(TrueBO); 3089 return &SI; 3090 } 3091 } 3092 } 3093 3094 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 3095 BinaryOperator *FalseBO; 3096 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && 3097 canMergeSelectThroughBinop(FalseBO)) { 3098 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 3099 if (FalseBOSI->getCondition() == CondVal) { 3100 replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue()); 3101 Worklist.push(FalseBO); 3102 return &SI; 3103 } 3104 } 3105 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 3106 if (FalseBOSI->getCondition() == CondVal) { 3107 replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue()); 3108 Worklist.push(FalseBO); 3109 return &SI; 3110 } 3111 } 3112 } 3113 3114 Value *NotCond; 3115 if (match(CondVal, m_Not(m_Value(NotCond))) && 3116 !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) { 3117 replaceOperand(SI, 0, NotCond); 3118 SI.swapValues(); 3119 SI.swapProfMetadata(); 3120 return &SI; 3121 } 3122 3123 if (Instruction *I = foldVectorSelect(SI)) 3124 return I; 3125 3126 // If we can compute the condition, there's no need for a select. 3127 // Like the above fold, we are attempting to reduce compile-time cost by 3128 // putting this fold here with limitations rather than in InstSimplify. 3129 // The motivation for this call into value tracking is to take advantage of 3130 // the assumption cache, so make sure that is populated. 3131 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 3132 KnownBits Known(1); 3133 computeKnownBits(CondVal, Known, 0, &SI); 3134 if (Known.One.isOne()) 3135 return replaceInstUsesWith(SI, TrueVal); 3136 if (Known.Zero.isOne()) 3137 return replaceInstUsesWith(SI, FalseVal); 3138 } 3139 3140 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 3141 return BitCastSel; 3142 3143 // Simplify selects that test the returned flag of cmpxchg instructions. 3144 if (Value *V = foldSelectCmpXchg(SI)) 3145 return replaceInstUsesWith(SI, V); 3146 3147 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this)) 3148 return Select; 3149 3150 if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder)) 3151 return Funnel; 3152 3153 if (Instruction *Copysign = foldSelectToCopysign(SI, Builder)) 3154 return Copysign; 3155 3156 if (Instruction *PN = foldSelectToPhi(SI, DT, Builder)) 3157 return replaceInstUsesWith(SI, PN); 3158 3159 if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder)) 3160 return replaceInstUsesWith(SI, Fr); 3161 3162 if (Value *V = foldRoundUpIntegerWithPow2Alignment(SI, Builder)) 3163 return replaceInstUsesWith(SI, V); 3164 3165 // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0) 3166 // Load inst is intentionally not checked for hasOneUse() 3167 if (match(FalseVal, m_Zero()) && 3168 (match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal), 3169 m_CombineOr(m_Undef(), m_Zero()))) || 3170 match(TrueVal, m_MaskedGather(m_Value(), m_Value(), m_Specific(CondVal), 3171 m_CombineOr(m_Undef(), m_Zero()))))) { 3172 auto *MaskedInst = cast<IntrinsicInst>(TrueVal); 3173 if (isa<UndefValue>(MaskedInst->getArgOperand(3))) 3174 MaskedInst->setArgOperand(3, FalseVal /* Zero */); 3175 return replaceInstUsesWith(SI, MaskedInst); 3176 } 3177 3178 Value *Mask; 3179 if (match(TrueVal, m_Zero()) && 3180 (match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask), 3181 m_CombineOr(m_Undef(), m_Zero()))) || 3182 match(FalseVal, m_MaskedGather(m_Value(), m_Value(), m_Value(Mask), 3183 m_CombineOr(m_Undef(), m_Zero())))) && 3184 (CondVal->getType() == Mask->getType())) { 3185 // We can remove the select by ensuring the load zeros all lanes the 3186 // select would have. We determine this by proving there is no overlap 3187 // between the load and select masks. 3188 // (i.e (load_mask & select_mask) == 0 == no overlap) 3189 bool CanMergeSelectIntoLoad = false; 3190 if (Value *V = simplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI))) 3191 CanMergeSelectIntoLoad = match(V, m_Zero()); 3192 3193 if (CanMergeSelectIntoLoad) { 3194 auto *MaskedInst = cast<IntrinsicInst>(FalseVal); 3195 if (isa<UndefValue>(MaskedInst->getArgOperand(3))) 3196 MaskedInst->setArgOperand(3, TrueVal /* Zero */); 3197 return replaceInstUsesWith(SI, MaskedInst); 3198 } 3199 } 3200 3201 return nullptr; 3202 } 3203