1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitSelect function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CmpInstAnalysis.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/OverflowInstAnalysis.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/KnownBits.h" 41 #include "llvm/Transforms/InstCombine/InstCombiner.h" 42 #include <cassert> 43 #include <utility> 44 45 #define DEBUG_TYPE "instcombine" 46 #include "llvm/Transforms/Utils/InstructionWorklist.h" 47 48 using namespace llvm; 49 using namespace PatternMatch; 50 51 52 static Value *createMinMax(InstCombiner::BuilderTy &Builder, 53 SelectPatternFlavor SPF, Value *A, Value *B) { 54 CmpInst::Predicate Pred = getMinMaxPred(SPF); 55 assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate"); 56 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 57 } 58 59 /// Replace a select operand based on an equality comparison with the identity 60 /// constant of a binop. 61 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 62 const TargetLibraryInfo &TLI, 63 InstCombinerImpl &IC) { 64 // The select condition must be an equality compare with a constant operand. 65 Value *X; 66 Constant *C; 67 CmpInst::Predicate Pred; 68 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 69 return nullptr; 70 71 bool IsEq; 72 if (ICmpInst::isEquality(Pred)) 73 IsEq = Pred == ICmpInst::ICMP_EQ; 74 else if (Pred == FCmpInst::FCMP_OEQ) 75 IsEq = true; 76 else if (Pred == FCmpInst::FCMP_UNE) 77 IsEq = false; 78 else 79 return nullptr; 80 81 // A select operand must be a binop. 82 BinaryOperator *BO; 83 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 84 return nullptr; 85 86 // The compare constant must be the identity constant for that binop. 87 // If this a floating-point compare with 0.0, any zero constant will do. 88 Type *Ty = BO->getType(); 89 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 90 if (IdC != C) { 91 if (!IdC || !CmpInst::isFPPredicate(Pred)) 92 return nullptr; 93 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 94 return nullptr; 95 } 96 97 // Last, match the compare variable operand with a binop operand. 98 Value *Y; 99 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 100 return nullptr; 101 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 102 return nullptr; 103 104 // +0.0 compares equal to -0.0, and so it does not behave as required for this 105 // transform. Bail out if we can not exclude that possibility. 106 if (isa<FPMathOperator>(BO)) 107 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) 108 return nullptr; 109 110 // BO = binop Y, X 111 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 112 // => 113 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 114 return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y); 115 } 116 117 /// This folds: 118 /// select (icmp eq (and X, C1)), TC, FC 119 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 120 /// To something like: 121 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 122 /// Or: 123 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 124 /// With some variations depending if FC is larger than TC, or the shift 125 /// isn't needed, or the bit widths don't match. 126 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 127 InstCombiner::BuilderTy &Builder) { 128 const APInt *SelTC, *SelFC; 129 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 130 !match(Sel.getFalseValue(), m_APInt(SelFC))) 131 return nullptr; 132 133 // If this is a vector select, we need a vector compare. 134 Type *SelType = Sel.getType(); 135 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 136 return nullptr; 137 138 Value *V; 139 APInt AndMask; 140 bool CreateAnd = false; 141 ICmpInst::Predicate Pred = Cmp->getPredicate(); 142 if (ICmpInst::isEquality(Pred)) { 143 if (!match(Cmp->getOperand(1), m_Zero())) 144 return nullptr; 145 146 V = Cmp->getOperand(0); 147 const APInt *AndRHS; 148 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 149 return nullptr; 150 151 AndMask = *AndRHS; 152 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 153 Pred, V, AndMask)) { 154 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 155 if (!AndMask.isPowerOf2()) 156 return nullptr; 157 158 CreateAnd = true; 159 } else { 160 return nullptr; 161 } 162 163 // In general, when both constants are non-zero, we would need an offset to 164 // replace the select. This would require more instructions than we started 165 // with. But there's one special-case that we handle here because it can 166 // simplify/reduce the instructions. 167 APInt TC = *SelTC; 168 APInt FC = *SelFC; 169 if (!TC.isZero() && !FC.isZero()) { 170 // If the select constants differ by exactly one bit and that's the same 171 // bit that is masked and checked by the select condition, the select can 172 // be replaced by bitwise logic to set/clear one bit of the constant result. 173 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 174 return nullptr; 175 if (CreateAnd) { 176 // If we have to create an 'and', then we must kill the cmp to not 177 // increase the instruction count. 178 if (!Cmp->hasOneUse()) 179 return nullptr; 180 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 181 } 182 bool ExtraBitInTC = TC.ugt(FC); 183 if (Pred == ICmpInst::ICMP_EQ) { 184 // If the masked bit in V is clear, clear or set the bit in the result: 185 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 186 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 187 Constant *C = ConstantInt::get(SelType, TC); 188 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 189 } 190 if (Pred == ICmpInst::ICMP_NE) { 191 // If the masked bit in V is set, set or clear the bit in the result: 192 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 193 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 194 Constant *C = ConstantInt::get(SelType, FC); 195 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 196 } 197 llvm_unreachable("Only expecting equality predicates"); 198 } 199 200 // Make sure one of the select arms is a power-of-2. 201 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 202 return nullptr; 203 204 // Determine which shift is needed to transform result of the 'and' into the 205 // desired result. 206 const APInt &ValC = !TC.isZero() ? TC : FC; 207 unsigned ValZeros = ValC.logBase2(); 208 unsigned AndZeros = AndMask.logBase2(); 209 210 // Insert the 'and' instruction on the input to the truncate. 211 if (CreateAnd) 212 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 213 214 // If types don't match, we can still convert the select by introducing a zext 215 // or a trunc of the 'and'. 216 if (ValZeros > AndZeros) { 217 V = Builder.CreateZExtOrTrunc(V, SelType); 218 V = Builder.CreateShl(V, ValZeros - AndZeros); 219 } else if (ValZeros < AndZeros) { 220 V = Builder.CreateLShr(V, AndZeros - ValZeros); 221 V = Builder.CreateZExtOrTrunc(V, SelType); 222 } else { 223 V = Builder.CreateZExtOrTrunc(V, SelType); 224 } 225 226 // Okay, now we know that everything is set up, we just don't know whether we 227 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 228 bool ShouldNotVal = !TC.isZero(); 229 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 230 if (ShouldNotVal) 231 V = Builder.CreateXor(V, ValC); 232 233 return V; 234 } 235 236 /// We want to turn code that looks like this: 237 /// %C = or %A, %B 238 /// %D = select %cond, %C, %A 239 /// into: 240 /// %C = select %cond, %B, 0 241 /// %D = or %A, %C 242 /// 243 /// Assuming that the specified instruction is an operand to the select, return 244 /// a bitmask indicating which operands of this instruction are foldable if they 245 /// equal the other incoming value of the select. 246 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 247 switch (I->getOpcode()) { 248 case Instruction::Add: 249 case Instruction::FAdd: 250 case Instruction::Mul: 251 case Instruction::FMul: 252 case Instruction::And: 253 case Instruction::Or: 254 case Instruction::Xor: 255 return 3; // Can fold through either operand. 256 case Instruction::Sub: // Can only fold on the amount subtracted. 257 case Instruction::FSub: 258 case Instruction::FDiv: // Can only fold on the divisor amount. 259 case Instruction::Shl: // Can only fold on the shift amount. 260 case Instruction::LShr: 261 case Instruction::AShr: 262 return 1; 263 default: 264 return 0; // Cannot fold 265 } 266 } 267 268 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 269 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI, 270 Instruction *FI) { 271 // Don't break up min/max patterns. The hasOneUse checks below prevent that 272 // for most cases, but vector min/max with bitcasts can be transformed. If the 273 // one-use restrictions are eased for other patterns, we still don't want to 274 // obfuscate min/max. 275 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 276 match(&SI, m_SMax(m_Value(), m_Value())) || 277 match(&SI, m_UMin(m_Value(), m_Value())) || 278 match(&SI, m_UMax(m_Value(), m_Value())))) 279 return nullptr; 280 281 // If this is a cast from the same type, merge. 282 Value *Cond = SI.getCondition(); 283 Type *CondTy = Cond->getType(); 284 if (TI->getNumOperands() == 1 && TI->isCast()) { 285 Type *FIOpndTy = FI->getOperand(0)->getType(); 286 if (TI->getOperand(0)->getType() != FIOpndTy) 287 return nullptr; 288 289 // The select condition may be a vector. We may only change the operand 290 // type if the vector width remains the same (and matches the condition). 291 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) { 292 if (!FIOpndTy->isVectorTy() || 293 CondVTy->getElementCount() != 294 cast<VectorType>(FIOpndTy)->getElementCount()) 295 return nullptr; 296 297 // TODO: If the backend knew how to deal with casts better, we could 298 // remove this limitation. For now, there's too much potential to create 299 // worse codegen by promoting the select ahead of size-altering casts 300 // (PR28160). 301 // 302 // Note that ValueTracking's matchSelectPattern() looks through casts 303 // without checking 'hasOneUse' when it matches min/max patterns, so this 304 // transform may end up happening anyway. 305 if (TI->getOpcode() != Instruction::BitCast && 306 (!TI->hasOneUse() || !FI->hasOneUse())) 307 return nullptr; 308 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 309 // TODO: The one-use restrictions for a scalar select could be eased if 310 // the fold of a select in visitLoadInst() was enhanced to match a pattern 311 // that includes a cast. 312 return nullptr; 313 } 314 315 // Fold this by inserting a select from the input values. 316 Value *NewSI = 317 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0), 318 SI.getName() + ".v", &SI); 319 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 320 TI->getType()); 321 } 322 323 // Cond ? -X : -Y --> -(Cond ? X : Y) 324 Value *X, *Y; 325 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) && 326 (TI->hasOneUse() || FI->hasOneUse())) { 327 // Intersect FMF from the fneg instructions and union those with the select. 328 FastMathFlags FMF = TI->getFastMathFlags(); 329 FMF &= FI->getFastMathFlags(); 330 FMF |= SI.getFastMathFlags(); 331 Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI); 332 if (auto *NewSelI = dyn_cast<Instruction>(NewSel)) 333 NewSelI->setFastMathFlags(FMF); 334 Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel); 335 NewFNeg->setFastMathFlags(FMF); 336 return NewFNeg; 337 } 338 339 // Min/max intrinsic with a common operand can have the common operand pulled 340 // after the select. This is the same transform as below for binops, but 341 // specialized for intrinsic matching and without the restrictive uses clause. 342 auto *TII = dyn_cast<IntrinsicInst>(TI); 343 auto *FII = dyn_cast<IntrinsicInst>(FI); 344 if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID() && 345 (TII->hasOneUse() || FII->hasOneUse())) { 346 Value *T0, *T1, *F0, *F1; 347 if (match(TII, m_MaxOrMin(m_Value(T0), m_Value(T1))) && 348 match(FII, m_MaxOrMin(m_Value(F0), m_Value(F1)))) { 349 if (T0 == F0) { 350 Value *NewSel = Builder.CreateSelect(Cond, T1, F1, "minmaxop", &SI); 351 return CallInst::Create(TII->getCalledFunction(), {NewSel, T0}); 352 } 353 if (T0 == F1) { 354 Value *NewSel = Builder.CreateSelect(Cond, T1, F0, "minmaxop", &SI); 355 return CallInst::Create(TII->getCalledFunction(), {NewSel, T0}); 356 } 357 if (T1 == F0) { 358 Value *NewSel = Builder.CreateSelect(Cond, T0, F1, "minmaxop", &SI); 359 return CallInst::Create(TII->getCalledFunction(), {NewSel, T1}); 360 } 361 if (T1 == F1) { 362 Value *NewSel = Builder.CreateSelect(Cond, T0, F0, "minmaxop", &SI); 363 return CallInst::Create(TII->getCalledFunction(), {NewSel, T1}); 364 } 365 } 366 } 367 368 // Only handle binary operators (including two-operand getelementptr) with 369 // one-use here. As with the cast case above, it may be possible to relax the 370 // one-use constraint, but that needs be examined carefully since it may not 371 // reduce the total number of instructions. 372 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 373 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 374 !TI->hasOneUse() || !FI->hasOneUse()) 375 return nullptr; 376 377 // Figure out if the operations have any operands in common. 378 Value *MatchOp, *OtherOpT, *OtherOpF; 379 bool MatchIsOpZero; 380 if (TI->getOperand(0) == FI->getOperand(0)) { 381 MatchOp = TI->getOperand(0); 382 OtherOpT = TI->getOperand(1); 383 OtherOpF = FI->getOperand(1); 384 MatchIsOpZero = true; 385 } else if (TI->getOperand(1) == FI->getOperand(1)) { 386 MatchOp = TI->getOperand(1); 387 OtherOpT = TI->getOperand(0); 388 OtherOpF = FI->getOperand(0); 389 MatchIsOpZero = false; 390 } else if (!TI->isCommutative()) { 391 return nullptr; 392 } else if (TI->getOperand(0) == FI->getOperand(1)) { 393 MatchOp = TI->getOperand(0); 394 OtherOpT = TI->getOperand(1); 395 OtherOpF = FI->getOperand(0); 396 MatchIsOpZero = true; 397 } else if (TI->getOperand(1) == FI->getOperand(0)) { 398 MatchOp = TI->getOperand(1); 399 OtherOpT = TI->getOperand(0); 400 OtherOpF = FI->getOperand(1); 401 MatchIsOpZero = true; 402 } else { 403 return nullptr; 404 } 405 406 // If the select condition is a vector, the operands of the original select's 407 // operands also must be vectors. This may not be the case for getelementptr 408 // for example. 409 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() || 410 !OtherOpF->getType()->isVectorTy())) 411 return nullptr; 412 413 // If we reach here, they do have operations in common. 414 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 415 SI.getName() + ".v", &SI); 416 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 417 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 418 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 419 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 420 NewBO->copyIRFlags(TI); 421 NewBO->andIRFlags(FI); 422 return NewBO; 423 } 424 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 425 auto *FGEP = cast<GetElementPtrInst>(FI); 426 Type *ElementType = TGEP->getResultElementType(); 427 return TGEP->isInBounds() && FGEP->isInBounds() 428 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 429 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 430 } 431 llvm_unreachable("Expected BinaryOperator or GEP"); 432 return nullptr; 433 } 434 435 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 436 if (!C1I.isZero() && !C2I.isZero()) // One side must be zero. 437 return false; 438 return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes(); 439 } 440 441 /// Try to fold the select into one of the operands to allow further 442 /// optimization. 443 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 444 Value *FalseVal) { 445 // See the comment above GetSelectFoldableOperands for a description of the 446 // transformation we are doing here. 447 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 448 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 449 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 450 unsigned OpToFold = 0; 451 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 452 OpToFold = 1; 453 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 454 OpToFold = 2; 455 } 456 457 if (OpToFold) { 458 Constant *C = ConstantExpr::getBinOpIdentity(TVI->getOpcode(), 459 TVI->getType(), true); 460 Value *OOp = TVI->getOperand(2-OpToFold); 461 // Avoid creating select between 2 constants unless it's selecting 462 // between 0, 1 and -1. 463 const APInt *OOpC; 464 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 465 if (!isa<Constant>(OOp) || 466 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) { 467 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 468 NewSel->takeName(TVI); 469 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), 470 FalseVal, NewSel); 471 BO->copyIRFlags(TVI); 472 return BO; 473 } 474 } 475 } 476 } 477 } 478 479 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { 480 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { 481 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 482 unsigned OpToFold = 0; 483 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 484 OpToFold = 1; 485 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 486 OpToFold = 2; 487 } 488 489 if (OpToFold) { 490 Constant *C = ConstantExpr::getBinOpIdentity(FVI->getOpcode(), 491 FVI->getType(), true); 492 Value *OOp = FVI->getOperand(2-OpToFold); 493 // Avoid creating select between 2 constants unless it's selecting 494 // between 0, 1 and -1. 495 const APInt *OOpC; 496 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 497 if (!isa<Constant>(OOp) || 498 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) { 499 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 500 NewSel->takeName(FVI); 501 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), 502 TrueVal, NewSel); 503 BO->copyIRFlags(FVI); 504 return BO; 505 } 506 } 507 } 508 } 509 } 510 511 return nullptr; 512 } 513 514 /// We want to turn: 515 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 516 /// into: 517 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 518 /// Note: 519 /// Z may be 0 if lshr is missing. 520 /// Worst-case scenario is that we will replace 5 instructions with 5 different 521 /// instructions, but we got rid of select. 522 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 523 Value *TVal, Value *FVal, 524 InstCombiner::BuilderTy &Builder) { 525 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 526 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 527 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 528 return nullptr; 529 530 // The TrueVal has general form of: and %B, 1 531 Value *B; 532 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 533 return nullptr; 534 535 // Where %B may be optionally shifted: lshr %X, %Z. 536 Value *X, *Z; 537 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 538 if (!HasShift) 539 X = B; 540 541 Value *Y; 542 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 543 return nullptr; 544 545 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 546 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 547 Constant *One = ConstantInt::get(SelType, 1); 548 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 549 Value *FullMask = Builder.CreateOr(Y, MaskB); 550 Value *MaskedX = Builder.CreateAnd(X, FullMask); 551 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 552 return new ZExtInst(ICmpNeZero, SelType); 553 } 554 555 /// We want to turn: 556 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 557 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0 558 /// into: 559 /// ashr (X, Y) 560 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, 561 Value *FalseVal, 562 InstCombiner::BuilderTy &Builder) { 563 ICmpInst::Predicate Pred = IC->getPredicate(); 564 Value *CmpLHS = IC->getOperand(0); 565 Value *CmpRHS = IC->getOperand(1); 566 if (!CmpRHS->getType()->isIntOrIntVectorTy()) 567 return nullptr; 568 569 Value *X, *Y; 570 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits(); 571 if ((Pred != ICmpInst::ICMP_SGT || 572 !match(CmpRHS, 573 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) && 574 (Pred != ICmpInst::ICMP_SLT || 575 !match(CmpRHS, 576 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0))))) 577 return nullptr; 578 579 // Canonicalize so that ashr is in FalseVal. 580 if (Pred == ICmpInst::ICMP_SLT) 581 std::swap(TrueVal, FalseVal); 582 583 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) && 584 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) && 585 match(CmpLHS, m_Specific(X))) { 586 const auto *Ashr = cast<Instruction>(FalseVal); 587 // if lshr is not exact and ashr is, this new ashr must not be exact. 588 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact(); 589 return Builder.CreateAShr(X, Y, IC->getName(), IsExact); 590 } 591 592 return nullptr; 593 } 594 595 /// We want to turn: 596 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 597 /// into: 598 /// (or (shl (and X, C1), C3), Y) 599 /// iff: 600 /// C1 and C2 are both powers of 2 601 /// where: 602 /// C3 = Log(C2) - Log(C1) 603 /// 604 /// This transform handles cases where: 605 /// 1. The icmp predicate is inverted 606 /// 2. The select operands are reversed 607 /// 3. The magnitude of C2 and C1 are flipped 608 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 609 Value *FalseVal, 610 InstCombiner::BuilderTy &Builder) { 611 // Only handle integer compares. Also, if this is a vector select, we need a 612 // vector compare. 613 if (!TrueVal->getType()->isIntOrIntVectorTy() || 614 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 615 return nullptr; 616 617 Value *CmpLHS = IC->getOperand(0); 618 Value *CmpRHS = IC->getOperand(1); 619 620 Value *V; 621 unsigned C1Log; 622 bool IsEqualZero; 623 bool NeedAnd = false; 624 if (IC->isEquality()) { 625 if (!match(CmpRHS, m_Zero())) 626 return nullptr; 627 628 const APInt *C1; 629 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 630 return nullptr; 631 632 V = CmpLHS; 633 C1Log = C1->logBase2(); 634 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 635 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 636 IC->getPredicate() == ICmpInst::ICMP_SGT) { 637 // We also need to recognize (icmp slt (trunc (X)), 0) and 638 // (icmp sgt (trunc (X)), -1). 639 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 640 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 641 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 642 return nullptr; 643 644 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 645 return nullptr; 646 647 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 648 NeedAnd = true; 649 } else { 650 return nullptr; 651 } 652 653 const APInt *C2; 654 bool OrOnTrueVal = false; 655 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 656 if (!OrOnFalseVal) 657 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 658 659 if (!OrOnFalseVal && !OrOnTrueVal) 660 return nullptr; 661 662 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 663 664 unsigned C2Log = C2->logBase2(); 665 666 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 667 bool NeedShift = C1Log != C2Log; 668 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 669 V->getType()->getScalarSizeInBits(); 670 671 // Make sure we don't create more instructions than we save. 672 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 673 if ((NeedShift + NeedXor + NeedZExtTrunc) > 674 (IC->hasOneUse() + Or->hasOneUse())) 675 return nullptr; 676 677 if (NeedAnd) { 678 // Insert the AND instruction on the input to the truncate. 679 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 680 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 681 } 682 683 if (C2Log > C1Log) { 684 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 685 V = Builder.CreateShl(V, C2Log - C1Log); 686 } else if (C1Log > C2Log) { 687 V = Builder.CreateLShr(V, C1Log - C2Log); 688 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 689 } else 690 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 691 692 if (NeedXor) 693 V = Builder.CreateXor(V, *C2); 694 695 return Builder.CreateOr(V, Y); 696 } 697 698 /// Canonicalize a set or clear of a masked set of constant bits to 699 /// select-of-constants form. 700 static Instruction *foldSetClearBits(SelectInst &Sel, 701 InstCombiner::BuilderTy &Builder) { 702 Value *Cond = Sel.getCondition(); 703 Value *T = Sel.getTrueValue(); 704 Value *F = Sel.getFalseValue(); 705 Type *Ty = Sel.getType(); 706 Value *X; 707 const APInt *NotC, *C; 708 709 // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C) 710 if (match(T, m_And(m_Value(X), m_APInt(NotC))) && 711 match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 712 Constant *Zero = ConstantInt::getNullValue(Ty); 713 Constant *OrC = ConstantInt::get(Ty, *C); 714 Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel); 715 return BinaryOperator::CreateOr(T, NewSel); 716 } 717 718 // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0) 719 if (match(F, m_And(m_Value(X), m_APInt(NotC))) && 720 match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 721 Constant *Zero = ConstantInt::getNullValue(Ty); 722 Constant *OrC = ConstantInt::get(Ty, *C); 723 Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel); 724 return BinaryOperator::CreateOr(F, NewSel); 725 } 726 727 return nullptr; 728 } 729 730 // select (x == 0), 0, x * y --> freeze(y) * x 731 // select (y == 0), 0, x * y --> freeze(x) * y 732 // select (x == 0), undef, x * y --> freeze(y) * x 733 // select (x == undef), 0, x * y --> freeze(y) * x 734 // Usage of mul instead of 0 will make the result more poisonous, 735 // so the operand that was not checked in the condition should be frozen. 736 // The latter folding is applied only when a constant compared with x is 737 // is a vector consisting of 0 and undefs. If a constant compared with x 738 // is a scalar undefined value or undefined vector then an expression 739 // should be already folded into a constant. 740 static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) { 741 auto *CondVal = SI.getCondition(); 742 auto *TrueVal = SI.getTrueValue(); 743 auto *FalseVal = SI.getFalseValue(); 744 Value *X, *Y; 745 ICmpInst::Predicate Predicate; 746 747 // Assuming that constant compared with zero is not undef (but it may be 748 // a vector with some undef elements). Otherwise (when a constant is undef) 749 // the select expression should be already simplified. 750 if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) || 751 !ICmpInst::isEquality(Predicate)) 752 return nullptr; 753 754 if (Predicate == ICmpInst::ICMP_NE) 755 std::swap(TrueVal, FalseVal); 756 757 // Check that TrueVal is a constant instead of matching it with m_Zero() 758 // to handle the case when it is a scalar undef value or a vector containing 759 // non-zero elements that are masked by undef elements in the compare 760 // constant. 761 auto *TrueValC = dyn_cast<Constant>(TrueVal); 762 if (TrueValC == nullptr || 763 !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) || 764 !isa<Instruction>(FalseVal)) 765 return nullptr; 766 767 auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1)); 768 auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC); 769 // If X is compared with 0 then TrueVal could be either zero or undef. 770 // m_Zero match vectors containing some undef elements, but for scalars 771 // m_Undef should be used explicitly. 772 if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef())) 773 return nullptr; 774 775 auto *FalseValI = cast<Instruction>(FalseVal); 776 auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"), 777 *FalseValI); 778 IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY); 779 return IC.replaceInstUsesWith(SI, FalseValI); 780 } 781 782 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). 783 /// There are 8 commuted/swapped variants of this pattern. 784 /// TODO: Also support a - UMIN(a,b) patterns. 785 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 786 const Value *TrueVal, 787 const Value *FalseVal, 788 InstCombiner::BuilderTy &Builder) { 789 ICmpInst::Predicate Pred = ICI->getPredicate(); 790 if (!ICmpInst::isUnsigned(Pred)) 791 return nullptr; 792 793 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 794 if (match(TrueVal, m_Zero())) { 795 Pred = ICmpInst::getInversePredicate(Pred); 796 std::swap(TrueVal, FalseVal); 797 } 798 if (!match(FalseVal, m_Zero())) 799 return nullptr; 800 801 Value *A = ICI->getOperand(0); 802 Value *B = ICI->getOperand(1); 803 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 804 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 805 std::swap(A, B); 806 Pred = ICmpInst::getSwappedPredicate(Pred); 807 } 808 809 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 810 "Unexpected isUnsigned predicate!"); 811 812 // Ensure the sub is of the form: 813 // (a > b) ? a - b : 0 -> usub.sat(a, b) 814 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 815 // Checking for both a-b and a+(-b) as a constant. 816 bool IsNegative = false; 817 const APInt *C; 818 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) || 819 (match(A, m_APInt(C)) && 820 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C))))) 821 IsNegative = true; 822 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) && 823 !(match(B, m_APInt(C)) && 824 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C))))) 825 return nullptr; 826 827 // If we are adding a negate and the sub and icmp are used anywhere else, we 828 // would end up with more instructions. 829 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse()) 830 return nullptr; 831 832 // (a > b) ? a - b : 0 -> usub.sat(a, b) 833 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 834 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); 835 if (IsNegative) 836 Result = Builder.CreateNeg(Result); 837 return Result; 838 } 839 840 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, 841 InstCombiner::BuilderTy &Builder) { 842 if (!Cmp->hasOneUse()) 843 return nullptr; 844 845 // Match unsigned saturated add with constant. 846 Value *Cmp0 = Cmp->getOperand(0); 847 Value *Cmp1 = Cmp->getOperand(1); 848 ICmpInst::Predicate Pred = Cmp->getPredicate(); 849 Value *X; 850 const APInt *C, *CmpC; 851 if (Pred == ICmpInst::ICMP_ULT && 852 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 && 853 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) { 854 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C) 855 return Builder.CreateBinaryIntrinsic( 856 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C)); 857 } 858 859 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 860 // There are 8 commuted variants. 861 // Canonicalize -1 (saturated result) to true value of the select. 862 if (match(FVal, m_AllOnes())) { 863 std::swap(TVal, FVal); 864 Pred = CmpInst::getInversePredicate(Pred); 865 } 866 if (!match(TVal, m_AllOnes())) 867 return nullptr; 868 869 // Canonicalize predicate to less-than or less-or-equal-than. 870 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 871 std::swap(Cmp0, Cmp1); 872 Pred = CmpInst::getSwappedPredicate(Pred); 873 } 874 if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE) 875 return nullptr; 876 877 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 878 // Strictness of the comparison is irrelevant. 879 Value *Y; 880 if (match(Cmp0, m_Not(m_Value(X))) && 881 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { 882 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 883 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) 884 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); 885 } 886 // The 'not' op may be included in the sum but not the compare. 887 // Strictness of the comparison is irrelevant. 888 X = Cmp0; 889 Y = Cmp1; 890 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) { 891 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) 892 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) 893 BinaryOperator *BO = cast<BinaryOperator>(FVal); 894 return Builder.CreateBinaryIntrinsic( 895 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); 896 } 897 // The overflow may be detected via the add wrapping round. 898 // This is only valid for strict comparison! 899 if (Pred == ICmpInst::ICMP_ULT && 900 match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) && 901 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) { 902 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y) 903 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 904 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y); 905 } 906 907 return nullptr; 908 } 909 910 /// Fold the following code sequence: 911 /// \code 912 /// int a = ctlz(x & -x); 913 // x ? 31 - a : a; 914 /// \code 915 /// 916 /// into: 917 /// cttz(x) 918 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal, 919 Value *FalseVal, 920 InstCombiner::BuilderTy &Builder) { 921 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 922 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero())) 923 return nullptr; 924 925 if (ICI->getPredicate() == ICmpInst::ICMP_NE) 926 std::swap(TrueVal, FalseVal); 927 928 if (!match(FalseVal, 929 m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1)))) 930 return nullptr; 931 932 if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>())) 933 return nullptr; 934 935 Value *X = ICI->getOperand(0); 936 auto *II = cast<IntrinsicInst>(TrueVal); 937 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X))))) 938 return nullptr; 939 940 Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz, 941 II->getType()); 942 return CallInst::Create(F, {X, II->getArgOperand(1)}); 943 } 944 945 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 946 /// call to cttz/ctlz with flag 'is_zero_poison' cleared. 947 /// 948 /// For example, we can fold the following code sequence: 949 /// \code 950 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 951 /// %1 = icmp ne i32 %x, 0 952 /// %2 = select i1 %1, i32 %0, i32 32 953 /// \code 954 /// 955 /// into: 956 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 957 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 958 InstCombiner::BuilderTy &Builder) { 959 ICmpInst::Predicate Pred = ICI->getPredicate(); 960 Value *CmpLHS = ICI->getOperand(0); 961 Value *CmpRHS = ICI->getOperand(1); 962 963 // Check if the condition value compares a value for equality against zero. 964 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 965 return nullptr; 966 967 Value *SelectArg = FalseVal; 968 Value *ValueOnZero = TrueVal; 969 if (Pred == ICmpInst::ICMP_NE) 970 std::swap(SelectArg, ValueOnZero); 971 972 // Skip zero extend/truncate. 973 Value *Count = nullptr; 974 if (!match(SelectArg, m_ZExt(m_Value(Count))) && 975 !match(SelectArg, m_Trunc(m_Value(Count)))) 976 Count = SelectArg; 977 978 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 979 // input to the cttz/ctlz is used as LHS for the compare instruction. 980 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) && 981 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) 982 return nullptr; 983 984 IntrinsicInst *II = cast<IntrinsicInst>(Count); 985 986 // Check if the value propagated on zero is a constant number equal to the 987 // sizeof in bits of 'Count'. 988 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 989 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 990 // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from 991 // true to false on this flag, so we can replace it for all users. 992 II->setArgOperand(1, ConstantInt::getFalse(II->getContext())); 993 return SelectArg; 994 } 995 996 // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional 997 // zext/trunc) have one use (ending at the select), the cttz/ctlz result will 998 // not be used if the input is zero. Relax to 'zero is poison' for that case. 999 if (II->hasOneUse() && SelectArg->hasOneUse() && 1000 !match(II->getArgOperand(1), m_One())) 1001 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 1002 1003 return nullptr; 1004 } 1005 1006 /// Return true if we find and adjust an icmp+select pattern where the compare 1007 /// is with a constant that can be incremented or decremented to match the 1008 /// minimum or maximum idiom. 1009 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 1010 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1011 Value *CmpLHS = Cmp.getOperand(0); 1012 Value *CmpRHS = Cmp.getOperand(1); 1013 Value *TrueVal = Sel.getTrueValue(); 1014 Value *FalseVal = Sel.getFalseValue(); 1015 1016 // We may move or edit the compare, so make sure the select is the only user. 1017 const APInt *CmpC; 1018 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 1019 return false; 1020 1021 // These transforms only work for selects of integers or vector selects of 1022 // integer vectors. 1023 Type *SelTy = Sel.getType(); 1024 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 1025 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 1026 return false; 1027 1028 Constant *AdjustedRHS; 1029 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 1030 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 1031 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 1032 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 1033 else 1034 return false; 1035 1036 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 1037 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 1038 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 1039 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 1040 ; // Nothing to do here. Values match without any sign/zero extension. 1041 } 1042 // Types do not match. Instead of calculating this with mixed types, promote 1043 // all to the larger type. This enables scalar evolution to analyze this 1044 // expression. 1045 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 1046 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 1047 1048 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 1049 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 1050 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 1051 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 1052 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 1053 CmpLHS = TrueVal; 1054 AdjustedRHS = SextRHS; 1055 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 1056 SextRHS == TrueVal) { 1057 CmpLHS = FalseVal; 1058 AdjustedRHS = SextRHS; 1059 } else if (Cmp.isUnsigned()) { 1060 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 1061 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 1062 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 1063 // zext + signed compare cannot be changed: 1064 // 0xff <s 0x00, but 0x00ff >s 0x0000 1065 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 1066 CmpLHS = TrueVal; 1067 AdjustedRHS = ZextRHS; 1068 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 1069 ZextRHS == TrueVal) { 1070 CmpLHS = FalseVal; 1071 AdjustedRHS = ZextRHS; 1072 } else { 1073 return false; 1074 } 1075 } else { 1076 return false; 1077 } 1078 } else { 1079 return false; 1080 } 1081 1082 Pred = ICmpInst::getSwappedPredicate(Pred); 1083 CmpRHS = AdjustedRHS; 1084 std::swap(FalseVal, TrueVal); 1085 Cmp.setPredicate(Pred); 1086 Cmp.setOperand(0, CmpLHS); 1087 Cmp.setOperand(1, CmpRHS); 1088 Sel.setOperand(1, TrueVal); 1089 Sel.setOperand(2, FalseVal); 1090 Sel.swapProfMetadata(); 1091 1092 // Move the compare instruction right before the select instruction. Otherwise 1093 // the sext/zext value may be defined after the compare instruction uses it. 1094 Cmp.moveBefore(&Sel); 1095 1096 return true; 1097 } 1098 1099 /// If this is an integer min/max (icmp + select) with a constant operand, 1100 /// create the canonical icmp for the min/max operation and canonicalize the 1101 /// constant to the 'false' operand of the select: 1102 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 1103 /// Note: if C1 != C2, this will change the icmp constant to the existing 1104 /// constant operand of the select. 1105 static Instruction *canonicalizeMinMaxWithConstant(SelectInst &Sel, 1106 ICmpInst &Cmp, 1107 InstCombinerImpl &IC) { 1108 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1109 return nullptr; 1110 1111 // Canonicalize the compare predicate based on whether we have min or max. 1112 Value *LHS, *RHS; 1113 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 1114 if (!SelectPatternResult::isMinOrMax(SPR.Flavor)) 1115 return nullptr; 1116 1117 // Is this already canonical? 1118 ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor); 1119 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && 1120 Cmp.getPredicate() == CanonicalPred) 1121 return nullptr; 1122 1123 // Bail out on unsimplified X-0 operand (due to some worklist management bug), 1124 // as this may cause an infinite combine loop. Let the sub be folded first. 1125 if (match(LHS, m_Sub(m_Value(), m_Zero())) || 1126 match(RHS, m_Sub(m_Value(), m_Zero()))) 1127 return nullptr; 1128 1129 // Create the canonical compare and plug it into the select. 1130 IC.replaceOperand(Sel, 0, IC.Builder.CreateICmp(CanonicalPred, LHS, RHS)); 1131 1132 // If the select operands did not change, we're done. 1133 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) 1134 return &Sel; 1135 1136 // If we are swapping the select operands, swap the metadata too. 1137 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && 1138 "Unexpected results from matchSelectPattern"); 1139 Sel.swapValues(); 1140 Sel.swapProfMetadata(); 1141 return &Sel; 1142 } 1143 1144 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp, 1145 InstCombinerImpl &IC) { 1146 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1147 return nullptr; 1148 1149 Value *LHS, *RHS; 1150 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; 1151 if (SPF != SelectPatternFlavor::SPF_ABS && 1152 SPF != SelectPatternFlavor::SPF_NABS) 1153 return nullptr; 1154 1155 // Note that NSW flag can only be propagated for normal, non-negated abs! 1156 bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS && 1157 match(RHS, m_NSWNeg(m_Specific(LHS))); 1158 Constant *IntMinIsPoisonC = 1159 ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison); 1160 Instruction *Abs = 1161 IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC); 1162 1163 if (SPF == SelectPatternFlavor::SPF_NABS) 1164 return BinaryOperator::CreateNeg(Abs); // Always without NSW flag! 1165 1166 return IC.replaceInstUsesWith(Sel, Abs); 1167 } 1168 1169 /// If we have a select with an equality comparison, then we know the value in 1170 /// one of the arms of the select. See if substituting this value into an arm 1171 /// and simplifying the result yields the same value as the other arm. 1172 /// 1173 /// To make this transform safe, we must drop poison-generating flags 1174 /// (nsw, etc) if we simplified to a binop because the select may be guarding 1175 /// that poison from propagating. If the existing binop already had no 1176 /// poison-generating flags, then this transform can be done by instsimplify. 1177 /// 1178 /// Consider: 1179 /// %cmp = icmp eq i32 %x, 2147483647 1180 /// %add = add nsw i32 %x, 1 1181 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add 1182 /// 1183 /// We can't replace %sel with %add unless we strip away the flags. 1184 /// TODO: Wrapping flags could be preserved in some cases with better analysis. 1185 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel, 1186 ICmpInst &Cmp) { 1187 // Value equivalence substitution requires an all-or-nothing replacement. 1188 // It does not make sense for a vector compare where each lane is chosen 1189 // independently. 1190 if (!Cmp.isEquality() || Cmp.getType()->isVectorTy()) 1191 return nullptr; 1192 1193 // Canonicalize the pattern to ICMP_EQ by swapping the select operands. 1194 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 1195 bool Swapped = false; 1196 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) { 1197 std::swap(TrueVal, FalseVal); 1198 Swapped = true; 1199 } 1200 1201 // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand. 1202 // Make sure Y cannot be undef though, as we might pick different values for 1203 // undef in the icmp and in f(Y). Additionally, take care to avoid replacing 1204 // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite 1205 // replacement cycle. 1206 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1); 1207 if (TrueVal != CmpLHS && 1208 isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) { 1209 if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ, 1210 /* AllowRefinement */ true)) 1211 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1212 1213 // Even if TrueVal does not simplify, we can directly replace a use of 1214 // CmpLHS with CmpRHS, as long as the instruction is not used anywhere 1215 // else and is safe to speculatively execute (we may end up executing it 1216 // with different operands, which should not cause side-effects or trigger 1217 // undefined behavior). Only do this if CmpRHS is a constant, as 1218 // profitability is not clear for other cases. 1219 // FIXME: The replacement could be performed recursively. 1220 if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant())) 1221 if (auto *I = dyn_cast<Instruction>(TrueVal)) 1222 if (I->hasOneUse() && isSafeToSpeculativelyExecute(I)) 1223 for (Use &U : I->operands()) 1224 if (U == CmpLHS) { 1225 replaceUse(U, CmpRHS); 1226 return &Sel; 1227 } 1228 } 1229 if (TrueVal != CmpRHS && 1230 isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT)) 1231 if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ, 1232 /* AllowRefinement */ true)) 1233 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1234 1235 auto *FalseInst = dyn_cast<Instruction>(FalseVal); 1236 if (!FalseInst) 1237 return nullptr; 1238 1239 // InstSimplify already performed this fold if it was possible subject to 1240 // current poison-generating flags. Try the transform again with 1241 // poison-generating flags temporarily dropped. 1242 bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false; 1243 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) { 1244 WasNUW = OBO->hasNoUnsignedWrap(); 1245 WasNSW = OBO->hasNoSignedWrap(); 1246 FalseInst->setHasNoUnsignedWrap(false); 1247 FalseInst->setHasNoSignedWrap(false); 1248 } 1249 if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) { 1250 WasExact = PEO->isExact(); 1251 FalseInst->setIsExact(false); 1252 } 1253 if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) { 1254 WasInBounds = GEP->isInBounds(); 1255 GEP->setIsInBounds(false); 1256 } 1257 1258 // Try each equivalence substitution possibility. 1259 // We have an 'EQ' comparison, so the select's false value will propagate. 1260 // Example: 1261 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1 1262 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ, 1263 /* AllowRefinement */ false) == TrueVal || 1264 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ, 1265 /* AllowRefinement */ false) == TrueVal) { 1266 return replaceInstUsesWith(Sel, FalseVal); 1267 } 1268 1269 // Restore poison-generating flags if the transform did not apply. 1270 if (WasNUW) 1271 FalseInst->setHasNoUnsignedWrap(); 1272 if (WasNSW) 1273 FalseInst->setHasNoSignedWrap(); 1274 if (WasExact) 1275 FalseInst->setIsExact(); 1276 if (WasInBounds) 1277 cast<GetElementPtrInst>(FalseInst)->setIsInBounds(); 1278 1279 return nullptr; 1280 } 1281 1282 // See if this is a pattern like: 1283 // %old_cmp1 = icmp slt i32 %x, C2 1284 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high 1285 // %old_x_offseted = add i32 %x, C1 1286 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0 1287 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement 1288 // This can be rewritten as more canonical pattern: 1289 // %new_cmp1 = icmp slt i32 %x, -C1 1290 // %new_cmp2 = icmp sge i32 %x, C0-C1 1291 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x 1292 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low 1293 // Iff -C1 s<= C2 s<= C0-C1 1294 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result) 1295 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.) 1296 static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0, 1297 InstCombiner::BuilderTy &Builder) { 1298 Value *X = Sel0.getTrueValue(); 1299 Value *Sel1 = Sel0.getFalseValue(); 1300 1301 // First match the condition of the outermost select. 1302 // Said condition must be one-use. 1303 if (!Cmp0.hasOneUse()) 1304 return nullptr; 1305 ICmpInst::Predicate Pred0 = Cmp0.getPredicate(); 1306 Value *Cmp00 = Cmp0.getOperand(0); 1307 Constant *C0; 1308 if (!match(Cmp0.getOperand(1), 1309 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))) 1310 return nullptr; 1311 1312 if (!isa<SelectInst>(Sel1)) { 1313 Pred0 = ICmpInst::getInversePredicate(Pred0); 1314 std::swap(X, Sel1); 1315 } 1316 1317 // Canonicalize Cmp0 into ult or uge. 1318 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1319 switch (Pred0) { 1320 case ICmpInst::Predicate::ICMP_ULT: 1321 case ICmpInst::Predicate::ICMP_UGE: 1322 // Although icmp ult %x, 0 is an unusual thing to try and should generally 1323 // have been simplified, it does not verify with undef inputs so ensure we 1324 // are not in a strange state. 1325 if (!match(C0, m_SpecificInt_ICMP( 1326 ICmpInst::Predicate::ICMP_NE, 1327 APInt::getZero(C0->getType()->getScalarSizeInBits())))) 1328 return nullptr; 1329 break; // Great! 1330 case ICmpInst::Predicate::ICMP_ULE: 1331 case ICmpInst::Predicate::ICMP_UGT: 1332 // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment 1333 // C0, which again means it must not have any all-ones elements. 1334 if (!match(C0, 1335 m_SpecificInt_ICMP( 1336 ICmpInst::Predicate::ICMP_NE, 1337 APInt::getAllOnes(C0->getType()->getScalarSizeInBits())))) 1338 return nullptr; // Can't do, have all-ones element[s]. 1339 C0 = InstCombiner::AddOne(C0); 1340 break; 1341 default: 1342 return nullptr; // Unknown predicate. 1343 } 1344 1345 // Now that we've canonicalized the ICmp, we know the X we expect; 1346 // the select in other hand should be one-use. 1347 if (!Sel1->hasOneUse()) 1348 return nullptr; 1349 1350 // If the types do not match, look through any truncs to the underlying 1351 // instruction. 1352 if (Cmp00->getType() != X->getType() && X->hasOneUse()) 1353 match(X, m_TruncOrSelf(m_Value(X))); 1354 1355 // We now can finish matching the condition of the outermost select: 1356 // it should either be the X itself, or an addition of some constant to X. 1357 Constant *C1; 1358 if (Cmp00 == X) 1359 C1 = ConstantInt::getNullValue(X->getType()); 1360 else if (!match(Cmp00, 1361 m_Add(m_Specific(X), 1362 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1))))) 1363 return nullptr; 1364 1365 Value *Cmp1; 1366 ICmpInst::Predicate Pred1; 1367 Constant *C2; 1368 Value *ReplacementLow, *ReplacementHigh; 1369 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow), 1370 m_Value(ReplacementHigh))) || 1371 !match(Cmp1, 1372 m_ICmp(Pred1, m_Specific(X), 1373 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2))))) 1374 return nullptr; 1375 1376 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse())) 1377 return nullptr; // Not enough one-use instructions for the fold. 1378 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of 1379 // two comparisons we'll need to build. 1380 1381 // Canonicalize Cmp1 into the form we expect. 1382 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1383 switch (Pred1) { 1384 case ICmpInst::Predicate::ICMP_SLT: 1385 break; 1386 case ICmpInst::Predicate::ICMP_SLE: 1387 // We'd have to increment C2 by one, and for that it must not have signed 1388 // max element, but then it would have been canonicalized to 'slt' before 1389 // we get here. So we can't do anything useful with 'sle'. 1390 return nullptr; 1391 case ICmpInst::Predicate::ICMP_SGT: 1392 // We want to canonicalize it to 'slt', so we'll need to increment C2, 1393 // which again means it must not have any signed max elements. 1394 if (!match(C2, 1395 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1396 APInt::getSignedMaxValue( 1397 C2->getType()->getScalarSizeInBits())))) 1398 return nullptr; // Can't do, have signed max element[s]. 1399 C2 = InstCombiner::AddOne(C2); 1400 LLVM_FALLTHROUGH; 1401 case ICmpInst::Predicate::ICMP_SGE: 1402 // Also non-canonical, but here we don't need to change C2, 1403 // so we don't have any restrictions on C2, so we can just handle it. 1404 std::swap(ReplacementLow, ReplacementHigh); 1405 break; 1406 default: 1407 return nullptr; // Unknown predicate. 1408 } 1409 1410 // The thresholds of this clamp-like pattern. 1411 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1); 1412 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1); 1413 if (Pred0 == ICmpInst::Predicate::ICMP_UGE) 1414 std::swap(ThresholdLowIncl, ThresholdHighExcl); 1415 1416 // The fold has a precondition 1: C2 s>= ThresholdLow 1417 auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2, 1418 ThresholdLowIncl); 1419 if (!match(Precond1, m_One())) 1420 return nullptr; 1421 // The fold has a precondition 2: C2 s<= ThresholdHigh 1422 auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2, 1423 ThresholdHighExcl); 1424 if (!match(Precond2, m_One())) 1425 return nullptr; 1426 1427 // If we are matching from a truncated input, we need to sext the 1428 // ReplacementLow and ReplacementHigh values. Only do the transform if they 1429 // are free to extend due to being constants. 1430 if (X->getType() != Sel0.getType()) { 1431 Constant *LowC, *HighC; 1432 if (!match(ReplacementLow, m_ImmConstant(LowC)) || 1433 !match(ReplacementHigh, m_ImmConstant(HighC))) 1434 return nullptr; 1435 ReplacementLow = ConstantExpr::getSExt(LowC, X->getType()); 1436 ReplacementHigh = ConstantExpr::getSExt(HighC, X->getType()); 1437 } 1438 1439 // All good, finally emit the new pattern. 1440 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl); 1441 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl); 1442 Value *MaybeReplacedLow = 1443 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X); 1444 1445 // Create the final select. If we looked through a truncate above, we will 1446 // need to retruncate the result. 1447 Value *MaybeReplacedHigh = Builder.CreateSelect( 1448 ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow); 1449 return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType()); 1450 } 1451 1452 // If we have 1453 // %cmp = icmp [canonical predicate] i32 %x, C0 1454 // %r = select i1 %cmp, i32 %y, i32 C1 1455 // Where C0 != C1 and %x may be different from %y, see if the constant that we 1456 // will have if we flip the strictness of the predicate (i.e. without changing 1457 // the result) is identical to the C1 in select. If it matches we can change 1458 // original comparison to one with swapped predicate, reuse the constant, 1459 // and swap the hands of select. 1460 static Instruction * 1461 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp, 1462 InstCombinerImpl &IC) { 1463 ICmpInst::Predicate Pred; 1464 Value *X; 1465 Constant *C0; 1466 if (!match(&Cmp, m_OneUse(m_ICmp( 1467 Pred, m_Value(X), 1468 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))))) 1469 return nullptr; 1470 1471 // If comparison predicate is non-relational, we won't be able to do anything. 1472 if (ICmpInst::isEquality(Pred)) 1473 return nullptr; 1474 1475 // If comparison predicate is non-canonical, then we certainly won't be able 1476 // to make it canonical; canonicalizeCmpWithConstant() already tried. 1477 if (!InstCombiner::isCanonicalPredicate(Pred)) 1478 return nullptr; 1479 1480 // If the [input] type of comparison and select type are different, lets abort 1481 // for now. We could try to compare constants with trunc/[zs]ext though. 1482 if (C0->getType() != Sel.getType()) 1483 return nullptr; 1484 1485 // ULT with 'add' of a constant is canonical. See foldICmpAddConstant(). 1486 // FIXME: Are there more magic icmp predicate+constant pairs we must avoid? 1487 // Or should we just abandon this transform entirely? 1488 if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant()))) 1489 return nullptr; 1490 1491 1492 Value *SelVal0, *SelVal1; // We do not care which one is from where. 1493 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1))); 1494 // At least one of these values we are selecting between must be a constant 1495 // else we'll never succeed. 1496 if (!match(SelVal0, m_AnyIntegralConstant()) && 1497 !match(SelVal1, m_AnyIntegralConstant())) 1498 return nullptr; 1499 1500 // Does this constant C match any of the `select` values? 1501 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) { 1502 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1); 1503 }; 1504 1505 // If C0 *already* matches true/false value of select, we are done. 1506 if (MatchesSelectValue(C0)) 1507 return nullptr; 1508 1509 // Check the constant we'd have with flipped-strictness predicate. 1510 auto FlippedStrictness = 1511 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0); 1512 if (!FlippedStrictness) 1513 return nullptr; 1514 1515 // If said constant doesn't match either, then there is no hope, 1516 if (!MatchesSelectValue(FlippedStrictness->second)) 1517 return nullptr; 1518 1519 // It matched! Lets insert the new comparison just before select. 1520 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder); 1521 IC.Builder.SetInsertPoint(&Sel); 1522 1523 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped. 1524 Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second, 1525 Cmp.getName() + ".inv"); 1526 IC.replaceOperand(Sel, 0, NewCmp); 1527 Sel.swapValues(); 1528 Sel.swapProfMetadata(); 1529 1530 return &Sel; 1531 } 1532 1533 /// Visit a SelectInst that has an ICmpInst as its first operand. 1534 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI, 1535 ICmpInst *ICI) { 1536 if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI)) 1537 return NewSel; 1538 1539 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *this)) 1540 return NewSel; 1541 1542 if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, *this)) 1543 return NewAbs; 1544 1545 if (Value *V = canonicalizeClampLike(SI, *ICI, Builder)) 1546 return replaceInstUsesWith(SI, V); 1547 1548 if (Instruction *NewSel = 1549 tryToReuseConstantFromSelectInComparison(SI, *ICI, *this)) 1550 return NewSel; 1551 1552 bool Changed = adjustMinMax(SI, *ICI); 1553 1554 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 1555 return replaceInstUsesWith(SI, V); 1556 1557 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 1558 Value *TrueVal = SI.getTrueValue(); 1559 Value *FalseVal = SI.getFalseValue(); 1560 ICmpInst::Predicate Pred = ICI->getPredicate(); 1561 Value *CmpLHS = ICI->getOperand(0); 1562 Value *CmpRHS = ICI->getOperand(1); 1563 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 1564 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 1565 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 1566 SI.setOperand(1, CmpRHS); 1567 Changed = true; 1568 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 1569 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 1570 SI.setOperand(2, CmpRHS); 1571 Changed = true; 1572 } 1573 } 1574 1575 // Canonicalize a signbit condition to use zero constant by swapping: 1576 // (CmpLHS > -1) ? TV : FV --> (CmpLHS < 0) ? FV : TV 1577 // To avoid conflicts (infinite loops) with other canonicalizations, this is 1578 // not applied with any constant select arm. 1579 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes()) && 1580 !match(TrueVal, m_Constant()) && !match(FalseVal, m_Constant()) && 1581 ICI->hasOneUse()) { 1582 InstCombiner::BuilderTy::InsertPointGuard Guard(Builder); 1583 Builder.SetInsertPoint(&SI); 1584 Value *IsNeg = Builder.CreateICmpSLT( 1585 CmpLHS, ConstantInt::getNullValue(CmpLHS->getType()), ICI->getName()); 1586 replaceOperand(SI, 0, IsNeg); 1587 SI.swapValues(); 1588 SI.swapProfMetadata(); 1589 return &SI; 1590 } 1591 1592 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 1593 // decomposeBitTestICmp() might help. 1594 { 1595 unsigned BitWidth = 1596 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 1597 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 1598 Value *X; 1599 const APInt *Y, *C; 1600 bool TrueWhenUnset; 1601 bool IsBitTest = false; 1602 if (ICmpInst::isEquality(Pred) && 1603 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 1604 match(CmpRHS, m_Zero())) { 1605 IsBitTest = true; 1606 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 1607 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 1608 X = CmpLHS; 1609 Y = &MinSignedValue; 1610 IsBitTest = true; 1611 TrueWhenUnset = false; 1612 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 1613 X = CmpLHS; 1614 Y = &MinSignedValue; 1615 IsBitTest = true; 1616 TrueWhenUnset = true; 1617 } 1618 if (IsBitTest) { 1619 Value *V = nullptr; 1620 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1621 if (TrueWhenUnset && TrueVal == X && 1622 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1623 V = Builder.CreateAnd(X, ~(*Y)); 1624 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1625 else if (!TrueWhenUnset && FalseVal == X && 1626 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1627 V = Builder.CreateAnd(X, ~(*Y)); 1628 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1629 else if (TrueWhenUnset && FalseVal == X && 1630 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1631 V = Builder.CreateOr(X, *Y); 1632 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1633 else if (!TrueWhenUnset && TrueVal == X && 1634 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1635 V = Builder.CreateOr(X, *Y); 1636 1637 if (V) 1638 return replaceInstUsesWith(SI, V); 1639 } 1640 } 1641 1642 if (Instruction *V = 1643 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1644 return V; 1645 1646 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder)) 1647 return V; 1648 1649 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 1650 return replaceInstUsesWith(SI, V); 1651 1652 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder)) 1653 return replaceInstUsesWith(SI, V); 1654 1655 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 1656 return replaceInstUsesWith(SI, V); 1657 1658 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1659 return replaceInstUsesWith(SI, V); 1660 1661 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) 1662 return replaceInstUsesWith(SI, V); 1663 1664 return Changed ? &SI : nullptr; 1665 } 1666 1667 /// SI is a select whose condition is a PHI node (but the two may be in 1668 /// different blocks). See if the true/false values (V) are live in all of the 1669 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1670 /// 1671 /// X = phi [ C1, BB1], [C2, BB2] 1672 /// Y = add 1673 /// Z = select X, Y, 0 1674 /// 1675 /// because Y is not live in BB1/BB2. 1676 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1677 const SelectInst &SI) { 1678 // If the value is a non-instruction value like a constant or argument, it 1679 // can always be mapped. 1680 const Instruction *I = dyn_cast<Instruction>(V); 1681 if (!I) return true; 1682 1683 // If V is a PHI node defined in the same block as the condition PHI, we can 1684 // map the arguments. 1685 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1686 1687 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1688 if (VP->getParent() == CondPHI->getParent()) 1689 return true; 1690 1691 // Otherwise, if the PHI and select are defined in the same block and if V is 1692 // defined in a different block, then we can transform it. 1693 if (SI.getParent() == CondPHI->getParent() && 1694 I->getParent() != CondPHI->getParent()) 1695 return true; 1696 1697 // Otherwise we have a 'hard' case and we can't tell without doing more 1698 // detailed dominator based analysis, punt. 1699 return false; 1700 } 1701 1702 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1703 /// SPF2(SPF1(A, B), C) 1704 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner, 1705 SelectPatternFlavor SPF1, Value *A, 1706 Value *B, Instruction &Outer, 1707 SelectPatternFlavor SPF2, 1708 Value *C) { 1709 if (Outer.getType() != Inner->getType()) 1710 return nullptr; 1711 1712 if (C == A || C == B) { 1713 // MAX(MAX(A, B), B) -> MAX(A, B) 1714 // MIN(MIN(a, b), a) -> MIN(a, b) 1715 // TODO: This could be done in instsimplify. 1716 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 1717 return replaceInstUsesWith(Outer, Inner); 1718 1719 // MAX(MIN(a, b), a) -> a 1720 // MIN(MAX(a, b), a) -> a 1721 // TODO: This could be done in instsimplify. 1722 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 1723 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 1724 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 1725 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 1726 return replaceInstUsesWith(Outer, C); 1727 } 1728 1729 if (SPF1 == SPF2) { 1730 const APInt *CB, *CC; 1731 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 1732 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 1733 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 1734 // TODO: This could be done in instsimplify. 1735 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 1736 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 1737 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 1738 (SPF1 == SPF_SMAX && CB->sge(*CC))) 1739 return replaceInstUsesWith(Outer, Inner); 1740 1741 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 1742 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 1743 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 1744 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 1745 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 1746 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 1747 Outer.replaceUsesOfWith(Inner, A); 1748 return &Outer; 1749 } 1750 } 1751 } 1752 1753 // max(max(A, B), min(A, B)) --> max(A, B) 1754 // min(min(A, B), max(A, B)) --> min(A, B) 1755 // TODO: This could be done in instsimplify. 1756 if (SPF1 == SPF2 && 1757 ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) || 1758 (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) || 1759 (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) || 1760 (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B)))))) 1761 return replaceInstUsesWith(Outer, Inner); 1762 1763 // ABS(ABS(X)) -> ABS(X) 1764 // NABS(NABS(X)) -> NABS(X) 1765 // TODO: This could be done in instsimplify. 1766 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 1767 return replaceInstUsesWith(Outer, Inner); 1768 } 1769 1770 // ABS(NABS(X)) -> ABS(X) 1771 // NABS(ABS(X)) -> NABS(X) 1772 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 1773 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 1774 SelectInst *SI = cast<SelectInst>(Inner); 1775 Value *NewSI = 1776 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 1777 SI->getTrueValue(), SI->getName(), SI); 1778 return replaceInstUsesWith(Outer, NewSI); 1779 } 1780 1781 auto IsFreeOrProfitableToInvert = 1782 [&](Value *V, Value *&NotV, bool &ElidesXor) { 1783 if (match(V, m_Not(m_Value(NotV)))) { 1784 // If V has at most 2 uses then we can get rid of the xor operation 1785 // entirely. 1786 ElidesXor |= !V->hasNUsesOrMore(3); 1787 return true; 1788 } 1789 1790 if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) { 1791 NotV = nullptr; 1792 return true; 1793 } 1794 1795 return false; 1796 }; 1797 1798 Value *NotA, *NotB, *NotC; 1799 bool ElidesXor = false; 1800 1801 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 1802 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 1803 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 1804 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 1805 // 1806 // This transform is performance neutral if we can elide at least one xor from 1807 // the set of three operands, since we'll be tacking on an xor at the very 1808 // end. 1809 if (SelectPatternResult::isMinOrMax(SPF1) && 1810 SelectPatternResult::isMinOrMax(SPF2) && 1811 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 1812 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 1813 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 1814 if (!NotA) 1815 NotA = Builder.CreateNot(A); 1816 if (!NotB) 1817 NotB = Builder.CreateNot(B); 1818 if (!NotC) 1819 NotC = Builder.CreateNot(C); 1820 1821 Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA, 1822 NotB); 1823 Value *NewOuter = Builder.CreateNot( 1824 createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC)); 1825 return replaceInstUsesWith(Outer, NewOuter); 1826 } 1827 1828 return nullptr; 1829 } 1830 1831 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1832 /// This is even legal for FP. 1833 static Instruction *foldAddSubSelect(SelectInst &SI, 1834 InstCombiner::BuilderTy &Builder) { 1835 Value *CondVal = SI.getCondition(); 1836 Value *TrueVal = SI.getTrueValue(); 1837 Value *FalseVal = SI.getFalseValue(); 1838 auto *TI = dyn_cast<Instruction>(TrueVal); 1839 auto *FI = dyn_cast<Instruction>(FalseVal); 1840 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1841 return nullptr; 1842 1843 Instruction *AddOp = nullptr, *SubOp = nullptr; 1844 if ((TI->getOpcode() == Instruction::Sub && 1845 FI->getOpcode() == Instruction::Add) || 1846 (TI->getOpcode() == Instruction::FSub && 1847 FI->getOpcode() == Instruction::FAdd)) { 1848 AddOp = FI; 1849 SubOp = TI; 1850 } else if ((FI->getOpcode() == Instruction::Sub && 1851 TI->getOpcode() == Instruction::Add) || 1852 (FI->getOpcode() == Instruction::FSub && 1853 TI->getOpcode() == Instruction::FAdd)) { 1854 AddOp = TI; 1855 SubOp = FI; 1856 } 1857 1858 if (AddOp) { 1859 Value *OtherAddOp = nullptr; 1860 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1861 OtherAddOp = AddOp->getOperand(1); 1862 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1863 OtherAddOp = AddOp->getOperand(0); 1864 } 1865 1866 if (OtherAddOp) { 1867 // So at this point we know we have (Y -> OtherAddOp): 1868 // select C, (add X, Y), (sub X, Z) 1869 Value *NegVal; // Compute -Z 1870 if (SI.getType()->isFPOrFPVectorTy()) { 1871 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1872 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1873 FastMathFlags Flags = AddOp->getFastMathFlags(); 1874 Flags &= SubOp->getFastMathFlags(); 1875 NegInst->setFastMathFlags(Flags); 1876 } 1877 } else { 1878 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1879 } 1880 1881 Value *NewTrueOp = OtherAddOp; 1882 Value *NewFalseOp = NegVal; 1883 if (AddOp != TI) 1884 std::swap(NewTrueOp, NewFalseOp); 1885 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1886 SI.getName() + ".p", &SI); 1887 1888 if (SI.getType()->isFPOrFPVectorTy()) { 1889 Instruction *RI = 1890 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1891 1892 FastMathFlags Flags = AddOp->getFastMathFlags(); 1893 Flags &= SubOp->getFastMathFlags(); 1894 RI->setFastMathFlags(Flags); 1895 return RI; 1896 } else 1897 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1898 } 1899 } 1900 return nullptr; 1901 } 1902 1903 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1904 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1905 /// Along with a number of patterns similar to: 1906 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1907 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1908 static Instruction * 1909 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) { 1910 Value *CondVal = SI.getCondition(); 1911 Value *TrueVal = SI.getTrueValue(); 1912 Value *FalseVal = SI.getFalseValue(); 1913 1914 WithOverflowInst *II; 1915 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) || 1916 !match(FalseVal, m_ExtractValue<0>(m_Specific(II)))) 1917 return nullptr; 1918 1919 Value *X = II->getLHS(); 1920 Value *Y = II->getRHS(); 1921 1922 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) { 1923 Type *Ty = Limit->getType(); 1924 1925 ICmpInst::Predicate Pred; 1926 Value *TrueVal, *FalseVal, *Op; 1927 const APInt *C; 1928 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)), 1929 m_Value(TrueVal), m_Value(FalseVal)))) 1930 return false; 1931 1932 auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); }; 1933 auto IsMinMax = [&](Value *Min, Value *Max) { 1934 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 1935 APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 1936 return match(Min, m_SpecificInt(MinVal)) && 1937 match(Max, m_SpecificInt(MaxVal)); 1938 }; 1939 1940 if (Op != X && Op != Y) 1941 return false; 1942 1943 if (IsAdd) { 1944 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1945 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1946 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1947 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1948 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1949 IsMinMax(TrueVal, FalseVal)) 1950 return true; 1951 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1952 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1953 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1954 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1955 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1956 IsMinMax(FalseVal, TrueVal)) 1957 return true; 1958 } else { 1959 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1960 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1961 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) && 1962 IsMinMax(TrueVal, FalseVal)) 1963 return true; 1964 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1965 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1966 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) && 1967 IsMinMax(FalseVal, TrueVal)) 1968 return true; 1969 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1970 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1971 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1972 IsMinMax(FalseVal, TrueVal)) 1973 return true; 1974 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1975 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1976 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1977 IsMinMax(TrueVal, FalseVal)) 1978 return true; 1979 } 1980 1981 return false; 1982 }; 1983 1984 Intrinsic::ID NewIntrinsicID; 1985 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow && 1986 match(TrueVal, m_AllOnes())) 1987 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1988 NewIntrinsicID = Intrinsic::uadd_sat; 1989 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow && 1990 match(TrueVal, m_Zero())) 1991 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1992 NewIntrinsicID = Intrinsic::usub_sat; 1993 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow && 1994 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true)) 1995 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1996 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1997 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1998 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1999 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2000 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2001 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2002 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2003 NewIntrinsicID = Intrinsic::sadd_sat; 2004 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow && 2005 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false)) 2006 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2007 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2008 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2009 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2010 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2011 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2012 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2013 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2014 NewIntrinsicID = Intrinsic::ssub_sat; 2015 else 2016 return nullptr; 2017 2018 Function *F = 2019 Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType()); 2020 return CallInst::Create(F, {X, Y}); 2021 } 2022 2023 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) { 2024 Constant *C; 2025 if (!match(Sel.getTrueValue(), m_Constant(C)) && 2026 !match(Sel.getFalseValue(), m_Constant(C))) 2027 return nullptr; 2028 2029 Instruction *ExtInst; 2030 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 2031 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 2032 return nullptr; 2033 2034 auto ExtOpcode = ExtInst->getOpcode(); 2035 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 2036 return nullptr; 2037 2038 // If we are extending from a boolean type or if we can create a select that 2039 // has the same size operands as its condition, try to narrow the select. 2040 Value *X = ExtInst->getOperand(0); 2041 Type *SmallType = X->getType(); 2042 Value *Cond = Sel.getCondition(); 2043 auto *Cmp = dyn_cast<CmpInst>(Cond); 2044 if (!SmallType->isIntOrIntVectorTy(1) && 2045 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 2046 return nullptr; 2047 2048 // If the constant is the same after truncation to the smaller type and 2049 // extension to the original type, we can narrow the select. 2050 Type *SelType = Sel.getType(); 2051 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 2052 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 2053 if (ExtC == C && ExtInst->hasOneUse()) { 2054 Value *TruncCVal = cast<Value>(TruncC); 2055 if (ExtInst == Sel.getFalseValue()) 2056 std::swap(X, TruncCVal); 2057 2058 // select Cond, (ext X), C --> ext(select Cond, X, C') 2059 // select Cond, C, (ext X) --> ext(select Cond, C', X) 2060 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 2061 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 2062 } 2063 2064 // If one arm of the select is the extend of the condition, replace that arm 2065 // with the extension of the appropriate known bool value. 2066 if (Cond == X) { 2067 if (ExtInst == Sel.getTrueValue()) { 2068 // select X, (sext X), C --> select X, -1, C 2069 // select X, (zext X), C --> select X, 1, C 2070 Constant *One = ConstantInt::getTrue(SmallType); 2071 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 2072 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 2073 } else { 2074 // select X, C, (sext X) --> select X, C, 0 2075 // select X, C, (zext X) --> select X, C, 0 2076 Constant *Zero = ConstantInt::getNullValue(SelType); 2077 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 2078 } 2079 } 2080 2081 return nullptr; 2082 } 2083 2084 /// Try to transform a vector select with a constant condition vector into a 2085 /// shuffle for easier combining with other shuffles and insert/extract. 2086 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 2087 Value *CondVal = SI.getCondition(); 2088 Constant *CondC; 2089 auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType()); 2090 if (!CondValTy || !match(CondVal, m_Constant(CondC))) 2091 return nullptr; 2092 2093 unsigned NumElts = CondValTy->getNumElements(); 2094 SmallVector<int, 16> Mask; 2095 Mask.reserve(NumElts); 2096 for (unsigned i = 0; i != NumElts; ++i) { 2097 Constant *Elt = CondC->getAggregateElement(i); 2098 if (!Elt) 2099 return nullptr; 2100 2101 if (Elt->isOneValue()) { 2102 // If the select condition element is true, choose from the 1st vector. 2103 Mask.push_back(i); 2104 } else if (Elt->isNullValue()) { 2105 // If the select condition element is false, choose from the 2nd vector. 2106 Mask.push_back(i + NumElts); 2107 } else if (isa<UndefValue>(Elt)) { 2108 // Undef in a select condition (choose one of the operands) does not mean 2109 // the same thing as undef in a shuffle mask (any value is acceptable), so 2110 // give up. 2111 return nullptr; 2112 } else { 2113 // Bail out on a constant expression. 2114 return nullptr; 2115 } 2116 } 2117 2118 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask); 2119 } 2120 2121 /// If we have a select of vectors with a scalar condition, try to convert that 2122 /// to a vector select by splatting the condition. A splat may get folded with 2123 /// other operations in IR and having all operands of a select be vector types 2124 /// is likely better for vector codegen. 2125 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel, 2126 InstCombinerImpl &IC) { 2127 auto *Ty = dyn_cast<VectorType>(Sel.getType()); 2128 if (!Ty) 2129 return nullptr; 2130 2131 // We can replace a single-use extract with constant index. 2132 Value *Cond = Sel.getCondition(); 2133 if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt())))) 2134 return nullptr; 2135 2136 // select (extelt V, Index), T, F --> select (splat V, Index), T, F 2137 // Splatting the extracted condition reduces code (we could directly create a 2138 // splat shuffle of the source vector to eliminate the intermediate step). 2139 return IC.replaceOperand( 2140 Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond)); 2141 } 2142 2143 /// Reuse bitcasted operands between a compare and select: 2144 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2145 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 2146 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 2147 InstCombiner::BuilderTy &Builder) { 2148 Value *Cond = Sel.getCondition(); 2149 Value *TVal = Sel.getTrueValue(); 2150 Value *FVal = Sel.getFalseValue(); 2151 2152 CmpInst::Predicate Pred; 2153 Value *A, *B; 2154 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 2155 return nullptr; 2156 2157 // The select condition is a compare instruction. If the select's true/false 2158 // values are already the same as the compare operands, there's nothing to do. 2159 if (TVal == A || TVal == B || FVal == A || FVal == B) 2160 return nullptr; 2161 2162 Value *C, *D; 2163 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 2164 return nullptr; 2165 2166 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 2167 Value *TSrc, *FSrc; 2168 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 2169 !match(FVal, m_BitCast(m_Value(FSrc)))) 2170 return nullptr; 2171 2172 // If the select true/false values are *different bitcasts* of the same source 2173 // operands, make the select operands the same as the compare operands and 2174 // cast the result. This is the canonical select form for min/max. 2175 Value *NewSel; 2176 if (TSrc == C && FSrc == D) { 2177 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2178 // bitcast (select (cmp A, B), A, B) 2179 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 2180 } else if (TSrc == D && FSrc == C) { 2181 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 2182 // bitcast (select (cmp A, B), B, A) 2183 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 2184 } else { 2185 return nullptr; 2186 } 2187 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 2188 } 2189 2190 /// Try to eliminate select instructions that test the returned flag of cmpxchg 2191 /// instructions. 2192 /// 2193 /// If a select instruction tests the returned flag of a cmpxchg instruction and 2194 /// selects between the returned value of the cmpxchg instruction its compare 2195 /// operand, the result of the select will always be equal to its false value. 2196 /// For example: 2197 /// 2198 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2199 /// %1 = extractvalue { i64, i1 } %0, 1 2200 /// %2 = extractvalue { i64, i1 } %0, 0 2201 /// %3 = select i1 %1, i64 %compare, i64 %2 2202 /// ret i64 %3 2203 /// 2204 /// The returned value of the cmpxchg instruction (%2) is the original value 2205 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 2206 /// must have been equal to %compare. Thus, the result of the select is always 2207 /// equal to %2, and the code can be simplified to: 2208 /// 2209 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2210 /// %1 = extractvalue { i64, i1 } %0, 0 2211 /// ret i64 %1 2212 /// 2213 static Value *foldSelectCmpXchg(SelectInst &SI) { 2214 // A helper that determines if V is an extractvalue instruction whose 2215 // aggregate operand is a cmpxchg instruction and whose single index is equal 2216 // to I. If such conditions are true, the helper returns the cmpxchg 2217 // instruction; otherwise, a nullptr is returned. 2218 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 2219 auto *Extract = dyn_cast<ExtractValueInst>(V); 2220 if (!Extract) 2221 return nullptr; 2222 if (Extract->getIndices()[0] != I) 2223 return nullptr; 2224 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 2225 }; 2226 2227 // If the select has a single user, and this user is a select instruction that 2228 // we can simplify, skip the cmpxchg simplification for now. 2229 if (SI.hasOneUse()) 2230 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 2231 if (Select->getCondition() == SI.getCondition()) 2232 if (Select->getFalseValue() == SI.getTrueValue() || 2233 Select->getTrueValue() == SI.getFalseValue()) 2234 return nullptr; 2235 2236 // Ensure the select condition is the returned flag of a cmpxchg instruction. 2237 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 2238 if (!CmpXchg) 2239 return nullptr; 2240 2241 // Check the true value case: The true value of the select is the returned 2242 // value of the same cmpxchg used by the condition, and the false value is the 2243 // cmpxchg instruction's compare operand. 2244 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 2245 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) 2246 return SI.getFalseValue(); 2247 2248 // Check the false value case: The false value of the select is the returned 2249 // value of the same cmpxchg used by the condition, and the true value is the 2250 // cmpxchg instruction's compare operand. 2251 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 2252 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) 2253 return SI.getFalseValue(); 2254 2255 return nullptr; 2256 } 2257 2258 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X, 2259 Value *Y, 2260 InstCombiner::BuilderTy &Builder) { 2261 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern"); 2262 bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN || 2263 SPF == SelectPatternFlavor::SPF_UMAX; 2264 // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change 2265 // the constant value check to an assert. 2266 Value *A; 2267 const APInt *C1, *C2; 2268 if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) && 2269 match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) { 2270 // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1 2271 // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1 2272 Value *NewMinMax = createMinMax(Builder, SPF, A, 2273 ConstantInt::get(X->getType(), *C2 - *C1)); 2274 return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax, 2275 ConstantInt::get(X->getType(), *C1)); 2276 } 2277 2278 if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) && 2279 match(Y, m_APInt(C2)) && X->hasNUses(2)) { 2280 bool Overflow; 2281 APInt Diff = C2->ssub_ov(*C1, Overflow); 2282 if (!Overflow) { 2283 // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1 2284 // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1 2285 Value *NewMinMax = createMinMax(Builder, SPF, A, 2286 ConstantInt::get(X->getType(), Diff)); 2287 return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax, 2288 ConstantInt::get(X->getType(), *C1)); 2289 } 2290 } 2291 2292 return nullptr; 2293 } 2294 2295 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value. 2296 Instruction *InstCombinerImpl::matchSAddSubSat(Instruction &MinMax1) { 2297 Type *Ty = MinMax1.getType(); 2298 2299 // We are looking for a tree of: 2300 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B)))) 2301 // Where the min and max could be reversed 2302 Instruction *MinMax2; 2303 BinaryOperator *AddSub; 2304 const APInt *MinValue, *MaxValue; 2305 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) { 2306 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue)))) 2307 return nullptr; 2308 } else if (match(&MinMax1, 2309 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) { 2310 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue)))) 2311 return nullptr; 2312 } else 2313 return nullptr; 2314 2315 // Check that the constants clamp a saturate, and that the new type would be 2316 // sensible to convert to. 2317 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1) 2318 return nullptr; 2319 // In what bitwidth can this be treated as saturating arithmetics? 2320 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1; 2321 // FIXME: This isn't quite right for vectors, but using the scalar type is a 2322 // good first approximation for what should be done there. 2323 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth)) 2324 return nullptr; 2325 2326 // Also make sure that the number of uses is as expected. The 3 is for the 2327 // the two items of the compare and the select, or 2 from a min/max. 2328 unsigned ExpUses = isa<IntrinsicInst>(MinMax1) ? 2 : 3; 2329 if (MinMax2->hasNUsesOrMore(ExpUses) || AddSub->hasNUsesOrMore(ExpUses)) 2330 return nullptr; 2331 2332 // Create the new type (which can be a vector type) 2333 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth); 2334 2335 Intrinsic::ID IntrinsicID; 2336 if (AddSub->getOpcode() == Instruction::Add) 2337 IntrinsicID = Intrinsic::sadd_sat; 2338 else if (AddSub->getOpcode() == Instruction::Sub) 2339 IntrinsicID = Intrinsic::ssub_sat; 2340 else 2341 return nullptr; 2342 2343 // The two operands of the add/sub must be nsw-truncatable to the NewTy. This 2344 // is usually achieved via a sext from a smaller type. 2345 if (ComputeMaxSignificantBits(AddSub->getOperand(0), 0, AddSub) > 2346 NewBitWidth || 2347 ComputeMaxSignificantBits(AddSub->getOperand(1), 0, AddSub) > NewBitWidth) 2348 return nullptr; 2349 2350 // Finally create and return the sat intrinsic, truncated to the new type 2351 Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy); 2352 Value *AT = Builder.CreateTrunc(AddSub->getOperand(0), NewTy); 2353 Value *BT = Builder.CreateTrunc(AddSub->getOperand(1), NewTy); 2354 Value *Sat = Builder.CreateCall(F, {AT, BT}); 2355 return CastInst::Create(Instruction::SExt, Sat, Ty); 2356 } 2357 2358 /// Reduce a sequence of min/max with a common operand. 2359 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS, 2360 Value *RHS, 2361 InstCombiner::BuilderTy &Builder) { 2362 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"); 2363 // TODO: Allow FP min/max with nnan/nsz. 2364 if (!LHS->getType()->isIntOrIntVectorTy()) 2365 return nullptr; 2366 2367 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 2368 Value *A, *B, *C, *D; 2369 SelectPatternResult L = matchSelectPattern(LHS, A, B); 2370 SelectPatternResult R = matchSelectPattern(RHS, C, D); 2371 if (SPF != L.Flavor || L.Flavor != R.Flavor) 2372 return nullptr; 2373 2374 // Look for a common operand. The use checks are different than usual because 2375 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by 2376 // the select. 2377 Value *MinMaxOp = nullptr; 2378 Value *ThirdOp = nullptr; 2379 if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) { 2380 // If the LHS is only used in this chain and the RHS is used outside of it, 2381 // reuse the RHS min/max because that will eliminate the LHS. 2382 if (D == A || C == A) { 2383 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 2384 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 2385 MinMaxOp = RHS; 2386 ThirdOp = B; 2387 } else if (D == B || C == B) { 2388 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 2389 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 2390 MinMaxOp = RHS; 2391 ThirdOp = A; 2392 } 2393 } else if (!RHS->hasNUsesOrMore(3)) { 2394 // Reuse the LHS. This will eliminate the RHS. 2395 if (D == A || D == B) { 2396 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 2397 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 2398 MinMaxOp = LHS; 2399 ThirdOp = C; 2400 } else if (C == A || C == B) { 2401 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 2402 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 2403 MinMaxOp = LHS; 2404 ThirdOp = D; 2405 } 2406 } 2407 if (!MinMaxOp || !ThirdOp) 2408 return nullptr; 2409 2410 CmpInst::Predicate P = getMinMaxPred(SPF); 2411 Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp); 2412 return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp); 2413 } 2414 2415 /// Try to reduce a funnel/rotate pattern that includes a compare and select 2416 /// into a funnel shift intrinsic. Example: 2417 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 2418 /// --> call llvm.fshl.i32(a, a, b) 2419 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c))) 2420 /// --> call llvm.fshl.i32(a, b, c) 2421 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c))) 2422 /// --> call llvm.fshr.i32(a, b, c) 2423 static Instruction *foldSelectFunnelShift(SelectInst &Sel, 2424 InstCombiner::BuilderTy &Builder) { 2425 // This must be a power-of-2 type for a bitmasking transform to be valid. 2426 unsigned Width = Sel.getType()->getScalarSizeInBits(); 2427 if (!isPowerOf2_32(Width)) 2428 return nullptr; 2429 2430 BinaryOperator *Or0, *Or1; 2431 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 2432 return nullptr; 2433 2434 Value *SV0, *SV1, *SA0, *SA1; 2435 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0), 2436 m_ZExtOrSelf(m_Value(SA0))))) || 2437 !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1), 2438 m_ZExtOrSelf(m_Value(SA1))))) || 2439 Or0->getOpcode() == Or1->getOpcode()) 2440 return nullptr; 2441 2442 // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)). 2443 if (Or0->getOpcode() == BinaryOperator::LShr) { 2444 std::swap(Or0, Or1); 2445 std::swap(SV0, SV1); 2446 std::swap(SA0, SA1); 2447 } 2448 assert(Or0->getOpcode() == BinaryOperator::Shl && 2449 Or1->getOpcode() == BinaryOperator::LShr && 2450 "Illegal or(shift,shift) pair"); 2451 2452 // Check the shift amounts to see if they are an opposite pair. 2453 Value *ShAmt; 2454 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 2455 ShAmt = SA0; 2456 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 2457 ShAmt = SA1; 2458 else 2459 return nullptr; 2460 2461 // We should now have this pattern: 2462 // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1)) 2463 // The false value of the select must be a funnel-shift of the true value: 2464 // IsFShl -> TVal must be SV0 else TVal must be SV1. 2465 bool IsFshl = (ShAmt == SA0); 2466 Value *TVal = Sel.getTrueValue(); 2467 if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1)) 2468 return nullptr; 2469 2470 // Finally, see if the select is filtering out a shift-by-zero. 2471 Value *Cond = Sel.getCondition(); 2472 ICmpInst::Predicate Pred; 2473 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || 2474 Pred != ICmpInst::ICMP_EQ) 2475 return nullptr; 2476 2477 // If this is not a rotate then the select was blocking poison from the 2478 // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it. 2479 if (SV0 != SV1) { 2480 if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1)) 2481 SV1 = Builder.CreateFreeze(SV1); 2482 else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0)) 2483 SV0 = Builder.CreateFreeze(SV0); 2484 } 2485 2486 // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way. 2487 // Convert to funnel shift intrinsic. 2488 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 2489 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); 2490 ShAmt = Builder.CreateZExt(ShAmt, Sel.getType()); 2491 return CallInst::Create(F, { SV0, SV1, ShAmt }); 2492 } 2493 2494 static Instruction *foldSelectToCopysign(SelectInst &Sel, 2495 InstCombiner::BuilderTy &Builder) { 2496 Value *Cond = Sel.getCondition(); 2497 Value *TVal = Sel.getTrueValue(); 2498 Value *FVal = Sel.getFalseValue(); 2499 Type *SelType = Sel.getType(); 2500 2501 // Match select ?, TC, FC where the constants are equal but negated. 2502 // TODO: Generalize to handle a negated variable operand? 2503 const APFloat *TC, *FC; 2504 if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) || 2505 !abs(*TC).bitwiseIsEqual(abs(*FC))) 2506 return nullptr; 2507 2508 assert(TC != FC && "Expected equal select arms to simplify"); 2509 2510 Value *X; 2511 const APInt *C; 2512 bool IsTrueIfSignSet; 2513 ICmpInst::Predicate Pred; 2514 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) || 2515 !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) || 2516 X->getType() != SelType) 2517 return nullptr; 2518 2519 // If needed, negate the value that will be the sign argument of the copysign: 2520 // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X) 2521 // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X) 2522 // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X) 2523 // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X) 2524 if (IsTrueIfSignSet ^ TC->isNegative()) 2525 X = Builder.CreateFNegFMF(X, &Sel); 2526 2527 // Canonicalize the magnitude argument as the positive constant since we do 2528 // not care about its sign. 2529 Value *MagArg = TC->isNegative() ? FVal : TVal; 2530 Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign, 2531 Sel.getType()); 2532 Instruction *CopySign = CallInst::Create(F, { MagArg, X }); 2533 CopySign->setFastMathFlags(Sel.getFastMathFlags()); 2534 return CopySign; 2535 } 2536 2537 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) { 2538 auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType()); 2539 if (!VecTy) 2540 return nullptr; 2541 2542 unsigned NumElts = VecTy->getNumElements(); 2543 APInt UndefElts(NumElts, 0); 2544 APInt AllOnesEltMask(APInt::getAllOnes(NumElts)); 2545 if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) { 2546 if (V != &Sel) 2547 return replaceInstUsesWith(Sel, V); 2548 return &Sel; 2549 } 2550 2551 // A select of a "select shuffle" with a common operand can be rearranged 2552 // to select followed by "select shuffle". Because of poison, this only works 2553 // in the case of a shuffle with no undefined mask elements. 2554 Value *Cond = Sel.getCondition(); 2555 Value *TVal = Sel.getTrueValue(); 2556 Value *FVal = Sel.getFalseValue(); 2557 Value *X, *Y; 2558 ArrayRef<int> Mask; 2559 if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2560 !is_contained(Mask, UndefMaskElem) && 2561 cast<ShuffleVectorInst>(TVal)->isSelect()) { 2562 if (X == FVal) { 2563 // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X) 2564 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2565 return new ShuffleVectorInst(X, NewSel, Mask); 2566 } 2567 if (Y == FVal) { 2568 // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y 2569 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2570 return new ShuffleVectorInst(NewSel, Y, Mask); 2571 } 2572 } 2573 if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2574 !is_contained(Mask, UndefMaskElem) && 2575 cast<ShuffleVectorInst>(FVal)->isSelect()) { 2576 if (X == TVal) { 2577 // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y) 2578 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2579 return new ShuffleVectorInst(X, NewSel, Mask); 2580 } 2581 if (Y == TVal) { 2582 // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y 2583 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2584 return new ShuffleVectorInst(NewSel, Y, Mask); 2585 } 2586 } 2587 2588 return nullptr; 2589 } 2590 2591 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB, 2592 const DominatorTree &DT, 2593 InstCombiner::BuilderTy &Builder) { 2594 // Find the block's immediate dominator that ends with a conditional branch 2595 // that matches select's condition (maybe inverted). 2596 auto *IDomNode = DT[BB]->getIDom(); 2597 if (!IDomNode) 2598 return nullptr; 2599 BasicBlock *IDom = IDomNode->getBlock(); 2600 2601 Value *Cond = Sel.getCondition(); 2602 Value *IfTrue, *IfFalse; 2603 BasicBlock *TrueSucc, *FalseSucc; 2604 if (match(IDom->getTerminator(), 2605 m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc), 2606 m_BasicBlock(FalseSucc)))) { 2607 IfTrue = Sel.getTrueValue(); 2608 IfFalse = Sel.getFalseValue(); 2609 } else if (match(IDom->getTerminator(), 2610 m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc), 2611 m_BasicBlock(FalseSucc)))) { 2612 IfTrue = Sel.getFalseValue(); 2613 IfFalse = Sel.getTrueValue(); 2614 } else 2615 return nullptr; 2616 2617 // Make sure the branches are actually different. 2618 if (TrueSucc == FalseSucc) 2619 return nullptr; 2620 2621 // We want to replace select %cond, %a, %b with a phi that takes value %a 2622 // for all incoming edges that are dominated by condition `%cond == true`, 2623 // and value %b for edges dominated by condition `%cond == false`. If %a 2624 // or %b are also phis from the same basic block, we can go further and take 2625 // their incoming values from the corresponding blocks. 2626 BasicBlockEdge TrueEdge(IDom, TrueSucc); 2627 BasicBlockEdge FalseEdge(IDom, FalseSucc); 2628 DenseMap<BasicBlock *, Value *> Inputs; 2629 for (auto *Pred : predecessors(BB)) { 2630 // Check implication. 2631 BasicBlockEdge Incoming(Pred, BB); 2632 if (DT.dominates(TrueEdge, Incoming)) 2633 Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred); 2634 else if (DT.dominates(FalseEdge, Incoming)) 2635 Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred); 2636 else 2637 return nullptr; 2638 // Check availability. 2639 if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred])) 2640 if (!DT.dominates(Insn, Pred->getTerminator())) 2641 return nullptr; 2642 } 2643 2644 Builder.SetInsertPoint(&*BB->begin()); 2645 auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size()); 2646 for (auto *Pred : predecessors(BB)) 2647 PN->addIncoming(Inputs[Pred], Pred); 2648 PN->takeName(&Sel); 2649 return PN; 2650 } 2651 2652 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT, 2653 InstCombiner::BuilderTy &Builder) { 2654 // Try to replace this select with Phi in one of these blocks. 2655 SmallSetVector<BasicBlock *, 4> CandidateBlocks; 2656 CandidateBlocks.insert(Sel.getParent()); 2657 for (Value *V : Sel.operands()) 2658 if (auto *I = dyn_cast<Instruction>(V)) 2659 CandidateBlocks.insert(I->getParent()); 2660 2661 for (BasicBlock *BB : CandidateBlocks) 2662 if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder)) 2663 return PN; 2664 return nullptr; 2665 } 2666 2667 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) { 2668 FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition()); 2669 if (!FI) 2670 return nullptr; 2671 2672 Value *Cond = FI->getOperand(0); 2673 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 2674 2675 // select (freeze(x == y)), x, y --> y 2676 // select (freeze(x != y)), x, y --> x 2677 // The freeze should be only used by this select. Otherwise, remaining uses of 2678 // the freeze can observe a contradictory value. 2679 // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1 2680 // a = select c, x, y ; 2681 // f(a, c) ; f(poison, 1) cannot happen, but if a is folded 2682 // ; to y, this can happen. 2683 CmpInst::Predicate Pred; 2684 if (FI->hasOneUse() && 2685 match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) && 2686 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) { 2687 return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal; 2688 } 2689 2690 return nullptr; 2691 } 2692 2693 Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op, 2694 SelectInst &SI, 2695 bool IsAnd) { 2696 Value *CondVal = SI.getCondition(); 2697 Value *A = SI.getTrueValue(); 2698 Value *B = SI.getFalseValue(); 2699 2700 assert(Op->getType()->isIntOrIntVectorTy(1) && 2701 "Op must be either i1 or vector of i1."); 2702 2703 Optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd); 2704 if (!Res) 2705 return nullptr; 2706 2707 Value *Zero = Constant::getNullValue(A->getType()); 2708 Value *One = Constant::getAllOnesValue(A->getType()); 2709 2710 if (*Res == true) { 2711 if (IsAnd) 2712 // select op, (select cond, A, B), false => select op, A, false 2713 // and op, (select cond, A, B) => select op, A, false 2714 // if op = true implies condval = true. 2715 return SelectInst::Create(Op, A, Zero); 2716 else 2717 // select op, true, (select cond, A, B) => select op, true, A 2718 // or op, (select cond, A, B) => select op, true, A 2719 // if op = false implies condval = true. 2720 return SelectInst::Create(Op, One, A); 2721 } else { 2722 if (IsAnd) 2723 // select op, (select cond, A, B), false => select op, B, false 2724 // and op, (select cond, A, B) => select op, B, false 2725 // if op = true implies condval = false. 2726 return SelectInst::Create(Op, B, Zero); 2727 else 2728 // select op, true, (select cond, A, B) => select op, true, B 2729 // or op, (select cond, A, B) => select op, true, B 2730 // if op = false implies condval = false. 2731 return SelectInst::Create(Op, One, B); 2732 } 2733 } 2734 2735 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) { 2736 Value *CondVal = SI.getCondition(); 2737 Value *TrueVal = SI.getTrueValue(); 2738 Value *FalseVal = SI.getFalseValue(); 2739 Type *SelType = SI.getType(); 2740 2741 // FIXME: Remove this workaround when freeze related patches are done. 2742 // For select with undef operand which feeds into an equality comparison, 2743 // don't simplify it so loop unswitch can know the equality comparison 2744 // may have an undef operand. This is a workaround for PR31652 caused by 2745 // descrepancy about branch on undef between LoopUnswitch and GVN. 2746 if (match(TrueVal, m_Undef()) || match(FalseVal, m_Undef())) { 2747 if (llvm::any_of(SI.users(), [&](User *U) { 2748 ICmpInst *CI = dyn_cast<ICmpInst>(U); 2749 if (CI && CI->isEquality()) 2750 return true; 2751 return false; 2752 })) { 2753 return nullptr; 2754 } 2755 } 2756 2757 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 2758 SQ.getWithInstruction(&SI))) 2759 return replaceInstUsesWith(SI, V); 2760 2761 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 2762 return I; 2763 2764 if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this)) 2765 return I; 2766 2767 CmpInst::Predicate Pred; 2768 2769 // Avoid potential infinite loops by checking for non-constant condition. 2770 // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()? 2771 // Scalar select must have simplified? 2772 if (SelType->isIntOrIntVectorTy(1) && !isa<Constant>(CondVal) && 2773 TrueVal->getType() == CondVal->getType()) { 2774 // Folding select to and/or i1 isn't poison safe in general. impliesPoison 2775 // checks whether folding it does not convert a well-defined value into 2776 // poison. 2777 if (match(TrueVal, m_One()) && impliesPoison(FalseVal, CondVal)) { 2778 // Change: A = select B, true, C --> A = or B, C 2779 return BinaryOperator::CreateOr(CondVal, FalseVal); 2780 } 2781 if (match(FalseVal, m_Zero()) && impliesPoison(TrueVal, CondVal)) { 2782 // Change: A = select B, C, false --> A = and B, C 2783 return BinaryOperator::CreateAnd(CondVal, TrueVal); 2784 } 2785 2786 auto *One = ConstantInt::getTrue(SelType); 2787 auto *Zero = ConstantInt::getFalse(SelType); 2788 2789 // We match the "full" 0 or 1 constant here to avoid a potential infinite 2790 // loop with vectors that may have undefined/poison elements. 2791 // select a, false, b -> select !a, b, false 2792 if (match(TrueVal, m_Specific(Zero))) { 2793 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2794 return SelectInst::Create(NotCond, FalseVal, Zero); 2795 } 2796 // select a, b, true -> select !a, true, b 2797 if (match(FalseVal, m_Specific(One))) { 2798 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2799 return SelectInst::Create(NotCond, One, TrueVal); 2800 } 2801 2802 // select a, a, b -> select a, true, b 2803 if (CondVal == TrueVal) 2804 return replaceOperand(SI, 1, One); 2805 // select a, b, a -> select a, b, false 2806 if (CondVal == FalseVal) 2807 return replaceOperand(SI, 2, Zero); 2808 2809 // select a, !a, b -> select !a, b, false 2810 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 2811 return SelectInst::Create(TrueVal, FalseVal, Zero); 2812 // select a, b, !a -> select !a, true, b 2813 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 2814 return SelectInst::Create(FalseVal, One, TrueVal); 2815 2816 Value *A, *B; 2817 2818 // DeMorgan in select form: !a && !b --> !(a || b) 2819 // select !a, !b, false --> not (select a, true, b) 2820 if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) && 2821 (CondVal->hasOneUse() || TrueVal->hasOneUse()) && 2822 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr())) 2823 return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B)); 2824 2825 // DeMorgan in select form: !a || !b --> !(a && b) 2826 // select !a, true, !b --> not (select a, b, false) 2827 if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) && 2828 (CondVal->hasOneUse() || FalseVal->hasOneUse()) && 2829 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr())) 2830 return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero)); 2831 2832 // select (select a, true, b), true, b -> select a, true, b 2833 if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2834 match(TrueVal, m_One()) && match(FalseVal, m_Specific(B))) 2835 return replaceOperand(SI, 0, A); 2836 // select (select a, b, false), b, false -> select a, b, false 2837 if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) && 2838 match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero())) 2839 return replaceOperand(SI, 0, A); 2840 2841 if (!SelType->isVectorTy()) { 2842 if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal, One, SQ, 2843 /* AllowRefinement */ true)) 2844 return replaceOperand(SI, 1, S); 2845 if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal, Zero, SQ, 2846 /* AllowRefinement */ true)) 2847 return replaceOperand(SI, 2, S); 2848 } 2849 2850 if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) { 2851 Use *Y = nullptr; 2852 bool IsAnd = match(FalseVal, m_Zero()) ? true : false; 2853 Value *Op1 = IsAnd ? TrueVal : FalseVal; 2854 if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) { 2855 auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr"); 2856 InsertNewInstBefore(FI, *cast<Instruction>(Y->getUser())); 2857 replaceUse(*Y, FI); 2858 return replaceInstUsesWith(SI, Op1); 2859 } 2860 2861 if (auto *Op1SI = dyn_cast<SelectInst>(Op1)) 2862 if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI, 2863 /* IsAnd */ IsAnd)) 2864 return I; 2865 2866 if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal)) { 2867 if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1)) { 2868 if (auto *V = foldAndOrOfICmpsOfAndWithPow2(ICmp0, ICmp1, &SI, IsAnd, 2869 /* IsLogical */ true)) 2870 return replaceInstUsesWith(SI, V); 2871 2872 if (auto *V = foldEqOfParts(ICmp0, ICmp1, IsAnd)) 2873 return replaceInstUsesWith(SI, V); 2874 } 2875 } 2876 } 2877 2878 // select (select a, true, b), c, false -> select a, c, false 2879 // select c, (select a, true, b), false -> select c, a, false 2880 // if c implies that b is false. 2881 if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2882 match(FalseVal, m_Zero())) { 2883 Optional<bool> Res = isImpliedCondition(TrueVal, B, DL); 2884 if (Res && *Res == false) 2885 return replaceOperand(SI, 0, A); 2886 } 2887 if (match(TrueVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2888 match(FalseVal, m_Zero())) { 2889 Optional<bool> Res = isImpliedCondition(CondVal, B, DL); 2890 if (Res && *Res == false) 2891 return replaceOperand(SI, 1, A); 2892 } 2893 // select c, true, (select a, b, false) -> select c, true, a 2894 // select (select a, b, false), true, c -> select a, true, c 2895 // if c = false implies that b = true 2896 if (match(TrueVal, m_One()) && 2897 match(FalseVal, m_Select(m_Value(A), m_Value(B), m_Zero()))) { 2898 Optional<bool> Res = isImpliedCondition(CondVal, B, DL, false); 2899 if (Res && *Res == true) 2900 return replaceOperand(SI, 2, A); 2901 } 2902 if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) && 2903 match(TrueVal, m_One())) { 2904 Optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false); 2905 if (Res && *Res == true) 2906 return replaceOperand(SI, 0, A); 2907 } 2908 2909 // sel (sel c, a, false), true, (sel !c, b, false) -> sel c, a, b 2910 // sel (sel !c, a, false), true, (sel c, b, false) -> sel c, b, a 2911 Value *C1, *C2; 2912 if (match(CondVal, m_Select(m_Value(C1), m_Value(A), m_Zero())) && 2913 match(TrueVal, m_One()) && 2914 match(FalseVal, m_Select(m_Value(C2), m_Value(B), m_Zero()))) { 2915 if (match(C2, m_Not(m_Specific(C1)))) // first case 2916 return SelectInst::Create(C1, A, B); 2917 else if (match(C1, m_Not(m_Specific(C2)))) // second case 2918 return SelectInst::Create(C2, B, A); 2919 } 2920 } 2921 2922 // Selecting between two integer or vector splat integer constants? 2923 // 2924 // Note that we don't handle a scalar select of vectors: 2925 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 2926 // because that may need 3 instructions to splat the condition value: 2927 // extend, insertelement, shufflevector. 2928 // 2929 // Do not handle i1 TrueVal and FalseVal otherwise would result in 2930 // zext/sext i1 to i1. 2931 if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) && 2932 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 2933 // select C, 1, 0 -> zext C to int 2934 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 2935 return new ZExtInst(CondVal, SelType); 2936 2937 // select C, -1, 0 -> sext C to int 2938 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 2939 return new SExtInst(CondVal, SelType); 2940 2941 // select C, 0, 1 -> zext !C to int 2942 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 2943 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2944 return new ZExtInst(NotCond, SelType); 2945 } 2946 2947 // select C, 0, -1 -> sext !C to int 2948 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 2949 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2950 return new SExtInst(NotCond, SelType); 2951 } 2952 } 2953 2954 if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) { 2955 Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1); 2956 // Are we selecting a value based on a comparison of the two values? 2957 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) || 2958 (Cmp0 == FalseVal && Cmp1 == TrueVal)) { 2959 // Canonicalize to use ordered comparisons by swapping the select 2960 // operands. 2961 // 2962 // e.g. 2963 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 2964 if (FCmp->hasOneUse() && FCmpInst::isUnordered(FCmp->getPredicate())) { 2965 FCmpInst::Predicate InvPred = FCmp->getInversePredicate(); 2966 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2967 // FIXME: The FMF should propagate from the select, not the fcmp. 2968 Builder.setFastMathFlags(FCmp->getFastMathFlags()); 2969 Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1, 2970 FCmp->getName() + ".inv"); 2971 Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal); 2972 return replaceInstUsesWith(SI, NewSel); 2973 } 2974 2975 // NOTE: if we wanted to, this is where to detect MIN/MAX 2976 } 2977 } 2978 2979 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 2980 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. 2981 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X) 2982 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2983 match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) && 2984 (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) { 2985 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI); 2986 return replaceInstUsesWith(SI, Fabs); 2987 } 2988 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X) 2989 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2990 match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) && 2991 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) { 2992 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI); 2993 return replaceInstUsesWith(SI, Fabs); 2994 } 2995 // With nnan and nsz: 2996 // (X < +/-0.0) ? -X : X --> fabs(X) 2997 // (X <= +/-0.0) ? -X : X --> fabs(X) 2998 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2999 match(TrueVal, m_FNeg(m_Specific(FalseVal))) && SI.hasNoSignedZeros() && 3000 (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE || 3001 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) { 3002 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI); 3003 return replaceInstUsesWith(SI, Fabs); 3004 } 3005 // With nnan and nsz: 3006 // (X > +/-0.0) ? X : -X --> fabs(X) 3007 // (X >= +/-0.0) ? X : -X --> fabs(X) 3008 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 3009 match(FalseVal, m_FNeg(m_Specific(TrueVal))) && SI.hasNoSignedZeros() && 3010 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE || 3011 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) { 3012 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI); 3013 return replaceInstUsesWith(SI, Fabs); 3014 } 3015 3016 // See if we are selecting two values based on a comparison of the two values. 3017 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 3018 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 3019 return Result; 3020 3021 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 3022 return Add; 3023 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder)) 3024 return Add; 3025 if (Instruction *Or = foldSetClearBits(SI, Builder)) 3026 return Or; 3027 if (Instruction *Mul = foldSelectZeroOrMul(SI, *this)) 3028 return Mul; 3029 3030 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 3031 auto *TI = dyn_cast<Instruction>(TrueVal); 3032 auto *FI = dyn_cast<Instruction>(FalseVal); 3033 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 3034 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 3035 return IV; 3036 3037 if (Instruction *I = foldSelectExtConst(SI)) 3038 return I; 3039 3040 // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0)) 3041 // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx)) 3042 auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base, 3043 bool Swap) -> GetElementPtrInst * { 3044 Value *Ptr = Gep->getPointerOperand(); 3045 if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base || 3046 !Gep->hasOneUse()) 3047 return nullptr; 3048 Value *Idx = Gep->getOperand(1); 3049 if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType())) 3050 return nullptr; 3051 Type *ElementType = Gep->getResultElementType(); 3052 Value *NewT = Idx; 3053 Value *NewF = Constant::getNullValue(Idx->getType()); 3054 if (Swap) 3055 std::swap(NewT, NewF); 3056 Value *NewSI = 3057 Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI); 3058 return GetElementPtrInst::Create(ElementType, Ptr, {NewSI}); 3059 }; 3060 if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal)) 3061 if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false)) 3062 return NewGep; 3063 if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal)) 3064 if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true)) 3065 return NewGep; 3066 3067 // See if we can fold the select into one of our operands. 3068 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 3069 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 3070 return FoldI; 3071 3072 Value *LHS, *RHS; 3073 Instruction::CastOps CastOp; 3074 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 3075 auto SPF = SPR.Flavor; 3076 if (SPF) { 3077 Value *LHS2, *RHS2; 3078 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 3079 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 3080 RHS2, SI, SPF, RHS)) 3081 return R; 3082 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 3083 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 3084 RHS2, SI, SPF, LHS)) 3085 return R; 3086 // TODO. 3087 // ABS(-X) -> ABS(X) 3088 } 3089 3090 if (SelectPatternResult::isMinOrMax(SPF)) { 3091 // Canonicalize so that 3092 // - type casts are outside select patterns. 3093 // - float clamp is transformed to min/max pattern 3094 3095 bool IsCastNeeded = LHS->getType() != SelType; 3096 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 3097 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 3098 if (IsCastNeeded || 3099 (LHS->getType()->isFPOrFPVectorTy() && 3100 ((CmpLHS != LHS && CmpLHS != RHS) || 3101 (CmpRHS != LHS && CmpRHS != RHS)))) { 3102 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered); 3103 3104 Value *Cmp; 3105 if (CmpInst::isIntPredicate(MinMaxPred)) { 3106 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS); 3107 } else { 3108 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 3109 auto FMF = 3110 cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 3111 Builder.setFastMathFlags(FMF); 3112 Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS); 3113 } 3114 3115 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 3116 if (!IsCastNeeded) 3117 return replaceInstUsesWith(SI, NewSI); 3118 3119 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 3120 return replaceInstUsesWith(SI, NewCast); 3121 } 3122 3123 // MAX(~a, ~b) -> ~MIN(a, b) 3124 // MAX(~a, C) -> ~MIN(a, ~C) 3125 // MIN(~a, ~b) -> ~MAX(a, b) 3126 // MIN(~a, C) -> ~MAX(a, ~C) 3127 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { 3128 Value *A; 3129 if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) && 3130 !isFreeToInvert(A, A->hasOneUse()) && 3131 // Passing false to only consider m_Not and constants. 3132 isFreeToInvert(Y, false)) { 3133 Value *B = Builder.CreateNot(Y); 3134 Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF), 3135 A, B); 3136 // Copy the profile metadata. 3137 if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) { 3138 cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD); 3139 // Swap the metadata if the operands are swapped. 3140 if (X == SI.getFalseValue() && Y == SI.getTrueValue()) 3141 cast<SelectInst>(NewMinMax)->swapProfMetadata(); 3142 } 3143 3144 return BinaryOperator::CreateNot(NewMinMax); 3145 } 3146 3147 return nullptr; 3148 }; 3149 3150 if (Instruction *I = moveNotAfterMinMax(LHS, RHS)) 3151 return I; 3152 if (Instruction *I = moveNotAfterMinMax(RHS, LHS)) 3153 return I; 3154 3155 if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder)) 3156 return I; 3157 3158 if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder)) 3159 return I; 3160 if (Instruction *I = matchSAddSubSat(SI)) 3161 return I; 3162 } 3163 } 3164 3165 // Canonicalize select of FP values where NaN and -0.0 are not valid as 3166 // minnum/maxnum intrinsics. 3167 if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) { 3168 Value *X, *Y; 3169 if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y)))) 3170 return replaceInstUsesWith( 3171 SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI)); 3172 3173 if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y)))) 3174 return replaceInstUsesWith( 3175 SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI)); 3176 } 3177 3178 // See if we can fold the select into a phi node if the condition is a select. 3179 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 3180 // The true/false values have to be live in the PHI predecessor's blocks. 3181 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 3182 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 3183 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 3184 return NV; 3185 3186 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 3187 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 3188 // select(C, select(C, a, b), c) -> select(C, a, c) 3189 if (TrueSI->getCondition() == CondVal) { 3190 if (SI.getTrueValue() == TrueSI->getTrueValue()) 3191 return nullptr; 3192 return replaceOperand(SI, 1, TrueSI->getTrueValue()); 3193 } 3194 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 3195 // We choose this as normal form to enable folding on the And and 3196 // shortening paths for the values (this helps getUnderlyingObjects() for 3197 // example). 3198 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 3199 Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition()); 3200 replaceOperand(SI, 0, And); 3201 replaceOperand(SI, 1, TrueSI->getTrueValue()); 3202 return &SI; 3203 } 3204 } 3205 } 3206 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 3207 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 3208 // select(C, a, select(C, b, c)) -> select(C, a, c) 3209 if (FalseSI->getCondition() == CondVal) { 3210 if (SI.getFalseValue() == FalseSI->getFalseValue()) 3211 return nullptr; 3212 return replaceOperand(SI, 2, FalseSI->getFalseValue()); 3213 } 3214 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 3215 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 3216 Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition()); 3217 replaceOperand(SI, 0, Or); 3218 replaceOperand(SI, 2, FalseSI->getFalseValue()); 3219 return &SI; 3220 } 3221 } 3222 } 3223 3224 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { 3225 // The select might be preventing a division by 0. 3226 switch (BO->getOpcode()) { 3227 default: 3228 return true; 3229 case Instruction::SRem: 3230 case Instruction::URem: 3231 case Instruction::SDiv: 3232 case Instruction::UDiv: 3233 return false; 3234 } 3235 }; 3236 3237 // Try to simplify a binop sandwiched between 2 selects with the same 3238 // condition. 3239 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 3240 BinaryOperator *TrueBO; 3241 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && 3242 canMergeSelectThroughBinop(TrueBO)) { 3243 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 3244 if (TrueBOSI->getCondition() == CondVal) { 3245 replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue()); 3246 Worklist.push(TrueBO); 3247 return &SI; 3248 } 3249 } 3250 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 3251 if (TrueBOSI->getCondition() == CondVal) { 3252 replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue()); 3253 Worklist.push(TrueBO); 3254 return &SI; 3255 } 3256 } 3257 } 3258 3259 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 3260 BinaryOperator *FalseBO; 3261 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && 3262 canMergeSelectThroughBinop(FalseBO)) { 3263 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 3264 if (FalseBOSI->getCondition() == CondVal) { 3265 replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue()); 3266 Worklist.push(FalseBO); 3267 return &SI; 3268 } 3269 } 3270 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 3271 if (FalseBOSI->getCondition() == CondVal) { 3272 replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue()); 3273 Worklist.push(FalseBO); 3274 return &SI; 3275 } 3276 } 3277 } 3278 3279 Value *NotCond; 3280 if (match(CondVal, m_Not(m_Value(NotCond))) && 3281 !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) { 3282 replaceOperand(SI, 0, NotCond); 3283 SI.swapValues(); 3284 SI.swapProfMetadata(); 3285 return &SI; 3286 } 3287 3288 if (Instruction *I = foldVectorSelect(SI)) 3289 return I; 3290 3291 // If we can compute the condition, there's no need for a select. 3292 // Like the above fold, we are attempting to reduce compile-time cost by 3293 // putting this fold here with limitations rather than in InstSimplify. 3294 // The motivation for this call into value tracking is to take advantage of 3295 // the assumption cache, so make sure that is populated. 3296 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 3297 KnownBits Known(1); 3298 computeKnownBits(CondVal, Known, 0, &SI); 3299 if (Known.One.isOne()) 3300 return replaceInstUsesWith(SI, TrueVal); 3301 if (Known.Zero.isOne()) 3302 return replaceInstUsesWith(SI, FalseVal); 3303 } 3304 3305 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 3306 return BitCastSel; 3307 3308 // Simplify selects that test the returned flag of cmpxchg instructions. 3309 if (Value *V = foldSelectCmpXchg(SI)) 3310 return replaceInstUsesWith(SI, V); 3311 3312 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this)) 3313 return Select; 3314 3315 if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder)) 3316 return Funnel; 3317 3318 if (Instruction *Copysign = foldSelectToCopysign(SI, Builder)) 3319 return Copysign; 3320 3321 if (Instruction *PN = foldSelectToPhi(SI, DT, Builder)) 3322 return replaceInstUsesWith(SI, PN); 3323 3324 if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder)) 3325 return replaceInstUsesWith(SI, Fr); 3326 3327 // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0) 3328 // Load inst is intentionally not checked for hasOneUse() 3329 if (match(FalseVal, m_Zero()) && 3330 match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal), 3331 m_CombineOr(m_Undef(), m_Zero())))) { 3332 auto *MaskedLoad = cast<IntrinsicInst>(TrueVal); 3333 if (isa<UndefValue>(MaskedLoad->getArgOperand(3))) 3334 MaskedLoad->setArgOperand(3, FalseVal /* Zero */); 3335 return replaceInstUsesWith(SI, MaskedLoad); 3336 } 3337 3338 Value *Mask; 3339 if (match(TrueVal, m_Zero()) && 3340 match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask), 3341 m_CombineOr(m_Undef(), m_Zero()))) && 3342 (CondVal->getType() == Mask->getType())) { 3343 // We can remove the select by ensuring the load zeros all lanes the 3344 // select would have. We determine this by proving there is no overlap 3345 // between the load and select masks. 3346 // (i.e (load_mask & select_mask) == 0 == no overlap) 3347 bool CanMergeSelectIntoLoad = false; 3348 if (Value *V = SimplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI))) 3349 CanMergeSelectIntoLoad = match(V, m_Zero()); 3350 3351 if (CanMergeSelectIntoLoad) { 3352 auto *MaskedLoad = cast<IntrinsicInst>(FalseVal); 3353 if (isa<UndefValue>(MaskedLoad->getArgOperand(3))) 3354 MaskedLoad->setArgOperand(3, TrueVal /* Zero */); 3355 return replaceInstUsesWith(SI, MaskedLoad); 3356 } 3357 } 3358 3359 return nullptr; 3360 } 3361