1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitSelect function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/CmpInstAnalysis.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/OverflowInstAnalysis.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstrTypes.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/User.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/KnownBits.h" 42 #include "llvm/Transforms/InstCombine/InstCombiner.h" 43 #include <cassert> 44 #include <utility> 45 46 #define DEBUG_TYPE "instcombine" 47 #include "llvm/Transforms/Utils/InstructionWorklist.h" 48 49 using namespace llvm; 50 using namespace PatternMatch; 51 52 53 /// Replace a select operand based on an equality comparison with the identity 54 /// constant of a binop. 55 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 56 const TargetLibraryInfo &TLI, 57 InstCombinerImpl &IC) { 58 // The select condition must be an equality compare with a constant operand. 59 Value *X; 60 Constant *C; 61 CmpInst::Predicate Pred; 62 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 63 return nullptr; 64 65 bool IsEq; 66 if (ICmpInst::isEquality(Pred)) 67 IsEq = Pred == ICmpInst::ICMP_EQ; 68 else if (Pred == FCmpInst::FCMP_OEQ) 69 IsEq = true; 70 else if (Pred == FCmpInst::FCMP_UNE) 71 IsEq = false; 72 else 73 return nullptr; 74 75 // A select operand must be a binop. 76 BinaryOperator *BO; 77 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 78 return nullptr; 79 80 // The compare constant must be the identity constant for that binop. 81 // If this a floating-point compare with 0.0, any zero constant will do. 82 Type *Ty = BO->getType(); 83 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 84 if (IdC != C) { 85 if (!IdC || !CmpInst::isFPPredicate(Pred)) 86 return nullptr; 87 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 88 return nullptr; 89 } 90 91 // Last, match the compare variable operand with a binop operand. 92 Value *Y; 93 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 94 return nullptr; 95 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 96 return nullptr; 97 98 // +0.0 compares equal to -0.0, and so it does not behave as required for this 99 // transform. Bail out if we can not exclude that possibility. 100 if (isa<FPMathOperator>(BO)) 101 if (!BO->hasNoSignedZeros() && 102 !cannotBeNegativeZero(Y, IC.getDataLayout(), &TLI)) 103 return nullptr; 104 105 // BO = binop Y, X 106 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 107 // => 108 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 109 return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y); 110 } 111 112 /// This folds: 113 /// select (icmp eq (and X, C1)), TC, FC 114 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 115 /// To something like: 116 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 117 /// Or: 118 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 119 /// With some variations depending if FC is larger than TC, or the shift 120 /// isn't needed, or the bit widths don't match. 121 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 122 InstCombiner::BuilderTy &Builder) { 123 const APInt *SelTC, *SelFC; 124 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 125 !match(Sel.getFalseValue(), m_APInt(SelFC))) 126 return nullptr; 127 128 // If this is a vector select, we need a vector compare. 129 Type *SelType = Sel.getType(); 130 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 131 return nullptr; 132 133 Value *V; 134 APInt AndMask; 135 bool CreateAnd = false; 136 ICmpInst::Predicate Pred = Cmp->getPredicate(); 137 if (ICmpInst::isEquality(Pred)) { 138 if (!match(Cmp->getOperand(1), m_Zero())) 139 return nullptr; 140 141 V = Cmp->getOperand(0); 142 const APInt *AndRHS; 143 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 144 return nullptr; 145 146 AndMask = *AndRHS; 147 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 148 Pred, V, AndMask)) { 149 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 150 if (!AndMask.isPowerOf2()) 151 return nullptr; 152 153 CreateAnd = true; 154 } else { 155 return nullptr; 156 } 157 158 // In general, when both constants are non-zero, we would need an offset to 159 // replace the select. This would require more instructions than we started 160 // with. But there's one special-case that we handle here because it can 161 // simplify/reduce the instructions. 162 APInt TC = *SelTC; 163 APInt FC = *SelFC; 164 if (!TC.isZero() && !FC.isZero()) { 165 // If the select constants differ by exactly one bit and that's the same 166 // bit that is masked and checked by the select condition, the select can 167 // be replaced by bitwise logic to set/clear one bit of the constant result. 168 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 169 return nullptr; 170 if (CreateAnd) { 171 // If we have to create an 'and', then we must kill the cmp to not 172 // increase the instruction count. 173 if (!Cmp->hasOneUse()) 174 return nullptr; 175 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 176 } 177 bool ExtraBitInTC = TC.ugt(FC); 178 if (Pred == ICmpInst::ICMP_EQ) { 179 // If the masked bit in V is clear, clear or set the bit in the result: 180 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 181 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 182 Constant *C = ConstantInt::get(SelType, TC); 183 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 184 } 185 if (Pred == ICmpInst::ICMP_NE) { 186 // If the masked bit in V is set, set or clear the bit in the result: 187 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 188 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 189 Constant *C = ConstantInt::get(SelType, FC); 190 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 191 } 192 llvm_unreachable("Only expecting equality predicates"); 193 } 194 195 // Make sure one of the select arms is a power-of-2. 196 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 197 return nullptr; 198 199 // Determine which shift is needed to transform result of the 'and' into the 200 // desired result. 201 const APInt &ValC = !TC.isZero() ? TC : FC; 202 unsigned ValZeros = ValC.logBase2(); 203 unsigned AndZeros = AndMask.logBase2(); 204 205 // Insert the 'and' instruction on the input to the truncate. 206 if (CreateAnd) 207 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 208 209 // If types don't match, we can still convert the select by introducing a zext 210 // or a trunc of the 'and'. 211 if (ValZeros > AndZeros) { 212 V = Builder.CreateZExtOrTrunc(V, SelType); 213 V = Builder.CreateShl(V, ValZeros - AndZeros); 214 } else if (ValZeros < AndZeros) { 215 V = Builder.CreateLShr(V, AndZeros - ValZeros); 216 V = Builder.CreateZExtOrTrunc(V, SelType); 217 } else { 218 V = Builder.CreateZExtOrTrunc(V, SelType); 219 } 220 221 // Okay, now we know that everything is set up, we just don't know whether we 222 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 223 bool ShouldNotVal = !TC.isZero(); 224 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 225 if (ShouldNotVal) 226 V = Builder.CreateXor(V, ValC); 227 228 return V; 229 } 230 231 /// We want to turn code that looks like this: 232 /// %C = or %A, %B 233 /// %D = select %cond, %C, %A 234 /// into: 235 /// %C = select %cond, %B, 0 236 /// %D = or %A, %C 237 /// 238 /// Assuming that the specified instruction is an operand to the select, return 239 /// a bitmask indicating which operands of this instruction are foldable if they 240 /// equal the other incoming value of the select. 241 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 242 switch (I->getOpcode()) { 243 case Instruction::Add: 244 case Instruction::FAdd: 245 case Instruction::Mul: 246 case Instruction::FMul: 247 case Instruction::And: 248 case Instruction::Or: 249 case Instruction::Xor: 250 return 3; // Can fold through either operand. 251 case Instruction::Sub: // Can only fold on the amount subtracted. 252 case Instruction::FSub: 253 case Instruction::FDiv: // Can only fold on the divisor amount. 254 case Instruction::Shl: // Can only fold on the shift amount. 255 case Instruction::LShr: 256 case Instruction::AShr: 257 return 1; 258 default: 259 return 0; // Cannot fold 260 } 261 } 262 263 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 264 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI, 265 Instruction *FI) { 266 // Don't break up min/max patterns. The hasOneUse checks below prevent that 267 // for most cases, but vector min/max with bitcasts can be transformed. If the 268 // one-use restrictions are eased for other patterns, we still don't want to 269 // obfuscate min/max. 270 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 271 match(&SI, m_SMax(m_Value(), m_Value())) || 272 match(&SI, m_UMin(m_Value(), m_Value())) || 273 match(&SI, m_UMax(m_Value(), m_Value())))) 274 return nullptr; 275 276 // If this is a cast from the same type, merge. 277 Value *Cond = SI.getCondition(); 278 Type *CondTy = Cond->getType(); 279 if (TI->getNumOperands() == 1 && TI->isCast()) { 280 Type *FIOpndTy = FI->getOperand(0)->getType(); 281 if (TI->getOperand(0)->getType() != FIOpndTy) 282 return nullptr; 283 284 // The select condition may be a vector. We may only change the operand 285 // type if the vector width remains the same (and matches the condition). 286 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) { 287 if (!FIOpndTy->isVectorTy() || 288 CondVTy->getElementCount() != 289 cast<VectorType>(FIOpndTy)->getElementCount()) 290 return nullptr; 291 292 // TODO: If the backend knew how to deal with casts better, we could 293 // remove this limitation. For now, there's too much potential to create 294 // worse codegen by promoting the select ahead of size-altering casts 295 // (PR28160). 296 // 297 // Note that ValueTracking's matchSelectPattern() looks through casts 298 // without checking 'hasOneUse' when it matches min/max patterns, so this 299 // transform may end up happening anyway. 300 if (TI->getOpcode() != Instruction::BitCast && 301 (!TI->hasOneUse() || !FI->hasOneUse())) 302 return nullptr; 303 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 304 // TODO: The one-use restrictions for a scalar select could be eased if 305 // the fold of a select in visitLoadInst() was enhanced to match a pattern 306 // that includes a cast. 307 return nullptr; 308 } 309 310 // Fold this by inserting a select from the input values. 311 Value *NewSI = 312 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0), 313 SI.getName() + ".v", &SI); 314 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 315 TI->getType()); 316 } 317 318 Value *OtherOpT, *OtherOpF; 319 bool MatchIsOpZero; 320 auto getCommonOp = [&](Instruction *TI, Instruction *FI, bool Commute, 321 bool Swapped = false) -> Value * { 322 assert(!(Commute && Swapped) && 323 "Commute and Swapped can't set at the same time"); 324 if (!Swapped) { 325 if (TI->getOperand(0) == FI->getOperand(0)) { 326 OtherOpT = TI->getOperand(1); 327 OtherOpF = FI->getOperand(1); 328 MatchIsOpZero = true; 329 return TI->getOperand(0); 330 } else if (TI->getOperand(1) == FI->getOperand(1)) { 331 OtherOpT = TI->getOperand(0); 332 OtherOpF = FI->getOperand(0); 333 MatchIsOpZero = false; 334 return TI->getOperand(1); 335 } 336 } 337 338 if (!Commute && !Swapped) 339 return nullptr; 340 341 // If we are allowing commute or swap of operands, then 342 // allow a cross-operand match. In that case, MatchIsOpZero 343 // means that TI's operand 0 (FI's operand 1) is the common op. 344 if (TI->getOperand(0) == FI->getOperand(1)) { 345 OtherOpT = TI->getOperand(1); 346 OtherOpF = FI->getOperand(0); 347 MatchIsOpZero = true; 348 return TI->getOperand(0); 349 } else if (TI->getOperand(1) == FI->getOperand(0)) { 350 OtherOpT = TI->getOperand(0); 351 OtherOpF = FI->getOperand(1); 352 MatchIsOpZero = false; 353 return TI->getOperand(1); 354 } 355 return nullptr; 356 }; 357 358 if (TI->hasOneUse() || FI->hasOneUse()) { 359 // Cond ? -X : -Y --> -(Cond ? X : Y) 360 Value *X, *Y; 361 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y)))) { 362 // Intersect FMF from the fneg instructions and union those with the 363 // select. 364 FastMathFlags FMF = TI->getFastMathFlags(); 365 FMF &= FI->getFastMathFlags(); 366 FMF |= SI.getFastMathFlags(); 367 Value *NewSel = 368 Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI); 369 if (auto *NewSelI = dyn_cast<Instruction>(NewSel)) 370 NewSelI->setFastMathFlags(FMF); 371 Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel); 372 NewFNeg->setFastMathFlags(FMF); 373 return NewFNeg; 374 } 375 376 // Min/max intrinsic with a common operand can have the common operand 377 // pulled after the select. This is the same transform as below for binops, 378 // but specialized for intrinsic matching and without the restrictive uses 379 // clause. 380 auto *TII = dyn_cast<IntrinsicInst>(TI); 381 auto *FII = dyn_cast<IntrinsicInst>(FI); 382 if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID()) { 383 if (match(TII, m_MaxOrMin(m_Value(), m_Value()))) { 384 if (Value *MatchOp = getCommonOp(TI, FI, true)) { 385 Value *NewSel = 386 Builder.CreateSelect(Cond, OtherOpT, OtherOpF, "minmaxop", &SI); 387 return CallInst::Create(TII->getCalledFunction(), {NewSel, MatchOp}); 388 } 389 } 390 391 // select c, (ldexp v, e0), (ldexp v, e1) -> ldexp v, (select c, e0, e1) 392 // select c, (ldexp v0, e), (ldexp v1, e) -> ldexp (select c, v0, v1), e 393 // 394 // select c, (ldexp v0, e0), (ldexp v1, e1) -> 395 // ldexp (select c, v0, v1), (select c, e0, e1) 396 if (TII->getIntrinsicID() == Intrinsic::ldexp) { 397 Value *LdexpVal0 = TII->getArgOperand(0); 398 Value *LdexpExp0 = TII->getArgOperand(1); 399 Value *LdexpVal1 = FII->getArgOperand(0); 400 Value *LdexpExp1 = FII->getArgOperand(1); 401 if (LdexpExp0->getType() == LdexpExp1->getType()) { 402 FPMathOperator *SelectFPOp = cast<FPMathOperator>(&SI); 403 FastMathFlags FMF = cast<FPMathOperator>(TII)->getFastMathFlags(); 404 FMF &= cast<FPMathOperator>(FII)->getFastMathFlags(); 405 FMF |= SelectFPOp->getFastMathFlags(); 406 407 Value *SelectVal = Builder.CreateSelect(Cond, LdexpVal0, LdexpVal1); 408 Value *SelectExp = Builder.CreateSelect(Cond, LdexpExp0, LdexpExp1); 409 410 CallInst *NewLdexp = Builder.CreateIntrinsic( 411 TII->getType(), Intrinsic::ldexp, {SelectVal, SelectExp}); 412 NewLdexp->setFastMathFlags(FMF); 413 return replaceInstUsesWith(SI, NewLdexp); 414 } 415 } 416 } 417 418 // icmp with a common operand also can have the common operand 419 // pulled after the select. 420 ICmpInst::Predicate TPred, FPred; 421 if (match(TI, m_ICmp(TPred, m_Value(), m_Value())) && 422 match(FI, m_ICmp(FPred, m_Value(), m_Value()))) { 423 if (TPred == FPred || TPred == CmpInst::getSwappedPredicate(FPred)) { 424 bool Swapped = TPred != FPred; 425 if (Value *MatchOp = 426 getCommonOp(TI, FI, ICmpInst::isEquality(TPred), Swapped)) { 427 Value *NewSel = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 428 SI.getName() + ".v", &SI); 429 return new ICmpInst( 430 MatchIsOpZero ? TPred : CmpInst::getSwappedPredicate(TPred), 431 MatchOp, NewSel); 432 } 433 } 434 } 435 } 436 437 // Only handle binary operators (including two-operand getelementptr) with 438 // one-use here. As with the cast case above, it may be possible to relax the 439 // one-use constraint, but that needs be examined carefully since it may not 440 // reduce the total number of instructions. 441 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 442 !TI->isSameOperationAs(FI) || 443 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 444 !TI->hasOneUse() || !FI->hasOneUse()) 445 return nullptr; 446 447 // Figure out if the operations have any operands in common. 448 Value *MatchOp = getCommonOp(TI, FI, TI->isCommutative()); 449 if (!MatchOp) 450 return nullptr; 451 452 // If the select condition is a vector, the operands of the original select's 453 // operands also must be vectors. This may not be the case for getelementptr 454 // for example. 455 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() || 456 !OtherOpF->getType()->isVectorTy())) 457 return nullptr; 458 459 // If we are sinking div/rem after a select, we may need to freeze the 460 // condition because div/rem may induce immediate UB with a poison operand. 461 // For example, the following transform is not safe if Cond can ever be poison 462 // because we can replace poison with zero and then we have div-by-zero that 463 // didn't exist in the original code: 464 // Cond ? x/y : x/z --> x / (Cond ? y : z) 465 auto *BO = dyn_cast<BinaryOperator>(TI); 466 if (BO && BO->isIntDivRem() && !isGuaranteedNotToBePoison(Cond)) { 467 // A udiv/urem with a common divisor is safe because UB can only occur with 468 // div-by-zero, and that would be present in the original code. 469 if (BO->getOpcode() == Instruction::SDiv || 470 BO->getOpcode() == Instruction::SRem || MatchIsOpZero) 471 Cond = Builder.CreateFreeze(Cond); 472 } 473 474 // If we reach here, they do have operations in common. 475 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 476 SI.getName() + ".v", &SI); 477 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 478 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 479 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 480 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 481 NewBO->copyIRFlags(TI); 482 NewBO->andIRFlags(FI); 483 return NewBO; 484 } 485 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 486 auto *FGEP = cast<GetElementPtrInst>(FI); 487 Type *ElementType = TGEP->getResultElementType(); 488 return TGEP->isInBounds() && FGEP->isInBounds() 489 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 490 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 491 } 492 llvm_unreachable("Expected BinaryOperator or GEP"); 493 return nullptr; 494 } 495 496 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 497 if (!C1I.isZero() && !C2I.isZero()) // One side must be zero. 498 return false; 499 return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes(); 500 } 501 502 /// Try to fold the select into one of the operands to allow further 503 /// optimization. 504 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 505 Value *FalseVal) { 506 // See the comment above getSelectFoldableOperands for a description of the 507 // transformation we are doing here. 508 auto TryFoldSelectIntoOp = [&](SelectInst &SI, Value *TrueVal, 509 Value *FalseVal, 510 bool Swapped) -> Instruction * { 511 auto *TVI = dyn_cast<BinaryOperator>(TrueVal); 512 if (!TVI || !TVI->hasOneUse() || isa<Constant>(FalseVal)) 513 return nullptr; 514 515 unsigned SFO = getSelectFoldableOperands(TVI); 516 unsigned OpToFold = 0; 517 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) 518 OpToFold = 1; 519 else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) 520 OpToFold = 2; 521 522 if (!OpToFold) 523 return nullptr; 524 525 // TODO: We probably ought to revisit cases where the select and FP 526 // instructions have different flags and add tests to ensure the 527 // behaviour is correct. 528 FastMathFlags FMF; 529 if (isa<FPMathOperator>(&SI)) 530 FMF = SI.getFastMathFlags(); 531 Constant *C = ConstantExpr::getBinOpIdentity( 532 TVI->getOpcode(), TVI->getType(), true, FMF.noSignedZeros()); 533 Value *OOp = TVI->getOperand(2 - OpToFold); 534 // Avoid creating select between 2 constants unless it's selecting 535 // between 0, 1 and -1. 536 const APInt *OOpC; 537 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 538 if (!isa<Constant>(OOp) || 539 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) { 540 Value *NewSel = Builder.CreateSelect(SI.getCondition(), Swapped ? C : OOp, 541 Swapped ? OOp : C, "", &SI); 542 if (isa<FPMathOperator>(&SI)) 543 cast<Instruction>(NewSel)->setFastMathFlags(FMF); 544 NewSel->takeName(TVI); 545 BinaryOperator *BO = 546 BinaryOperator::Create(TVI->getOpcode(), FalseVal, NewSel); 547 BO->copyIRFlags(TVI); 548 return BO; 549 } 550 return nullptr; 551 }; 552 553 if (Instruction *R = TryFoldSelectIntoOp(SI, TrueVal, FalseVal, false)) 554 return R; 555 556 if (Instruction *R = TryFoldSelectIntoOp(SI, FalseVal, TrueVal, true)) 557 return R; 558 559 return nullptr; 560 } 561 562 /// We want to turn: 563 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 564 /// into: 565 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 566 /// Note: 567 /// Z may be 0 if lshr is missing. 568 /// Worst-case scenario is that we will replace 5 instructions with 5 different 569 /// instructions, but we got rid of select. 570 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 571 Value *TVal, Value *FVal, 572 InstCombiner::BuilderTy &Builder) { 573 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 574 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 575 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 576 return nullptr; 577 578 // The TrueVal has general form of: and %B, 1 579 Value *B; 580 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 581 return nullptr; 582 583 // Where %B may be optionally shifted: lshr %X, %Z. 584 Value *X, *Z; 585 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 586 587 // The shift must be valid. 588 // TODO: This restricts the fold to constant shift amounts. Is there a way to 589 // handle variable shifts safely? PR47012 590 if (HasShift && 591 !match(Z, m_SpecificInt_ICMP(CmpInst::ICMP_ULT, 592 APInt(SelType->getScalarSizeInBits(), 593 SelType->getScalarSizeInBits())))) 594 return nullptr; 595 596 if (!HasShift) 597 X = B; 598 599 Value *Y; 600 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 601 return nullptr; 602 603 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 604 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 605 Constant *One = ConstantInt::get(SelType, 1); 606 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 607 Value *FullMask = Builder.CreateOr(Y, MaskB); 608 Value *MaskedX = Builder.CreateAnd(X, FullMask); 609 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 610 return new ZExtInst(ICmpNeZero, SelType); 611 } 612 613 /// We want to turn: 614 /// (select (icmp eq (and X, C1), 0), 0, (shl [nsw/nuw] X, C2)); 615 /// iff C1 is a mask and the number of its leading zeros is equal to C2 616 /// into: 617 /// shl X, C2 618 static Value *foldSelectICmpAndZeroShl(const ICmpInst *Cmp, Value *TVal, 619 Value *FVal, 620 InstCombiner::BuilderTy &Builder) { 621 ICmpInst::Predicate Pred; 622 Value *AndVal; 623 if (!match(Cmp, m_ICmp(Pred, m_Value(AndVal), m_Zero()))) 624 return nullptr; 625 626 if (Pred == ICmpInst::ICMP_NE) { 627 Pred = ICmpInst::ICMP_EQ; 628 std::swap(TVal, FVal); 629 } 630 631 Value *X; 632 const APInt *C2, *C1; 633 if (Pred != ICmpInst::ICMP_EQ || 634 !match(AndVal, m_And(m_Value(X), m_APInt(C1))) || 635 !match(TVal, m_Zero()) || !match(FVal, m_Shl(m_Specific(X), m_APInt(C2)))) 636 return nullptr; 637 638 if (!C1->isMask() || 639 C1->countLeadingZeros() != static_cast<unsigned>(C2->getZExtValue())) 640 return nullptr; 641 642 auto *FI = dyn_cast<Instruction>(FVal); 643 if (!FI) 644 return nullptr; 645 646 FI->setHasNoSignedWrap(false); 647 FI->setHasNoUnsignedWrap(false); 648 return FVal; 649 } 650 651 /// We want to turn: 652 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 653 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0 654 /// into: 655 /// ashr (X, Y) 656 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, 657 Value *FalseVal, 658 InstCombiner::BuilderTy &Builder) { 659 ICmpInst::Predicate Pred = IC->getPredicate(); 660 Value *CmpLHS = IC->getOperand(0); 661 Value *CmpRHS = IC->getOperand(1); 662 if (!CmpRHS->getType()->isIntOrIntVectorTy()) 663 return nullptr; 664 665 Value *X, *Y; 666 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits(); 667 if ((Pred != ICmpInst::ICMP_SGT || 668 !match(CmpRHS, 669 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) && 670 (Pred != ICmpInst::ICMP_SLT || 671 !match(CmpRHS, 672 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0))))) 673 return nullptr; 674 675 // Canonicalize so that ashr is in FalseVal. 676 if (Pred == ICmpInst::ICMP_SLT) 677 std::swap(TrueVal, FalseVal); 678 679 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) && 680 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) && 681 match(CmpLHS, m_Specific(X))) { 682 const auto *Ashr = cast<Instruction>(FalseVal); 683 // if lshr is not exact and ashr is, this new ashr must not be exact. 684 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact(); 685 return Builder.CreateAShr(X, Y, IC->getName(), IsExact); 686 } 687 688 return nullptr; 689 } 690 691 /// We want to turn: 692 /// (select (icmp eq (and X, C1), 0), Y, (BinOp Y, C2)) 693 /// into: 694 /// IF C2 u>= C1 695 /// (BinOp Y, (shl (and X, C1), C3)) 696 /// ELSE 697 /// (BinOp Y, (lshr (and X, C1), C3)) 698 /// iff: 699 /// 0 on the RHS is the identity value (i.e add, xor, shl, etc...) 700 /// C1 and C2 are both powers of 2 701 /// where: 702 /// IF C2 u>= C1 703 /// C3 = Log(C2) - Log(C1) 704 /// ELSE 705 /// C3 = Log(C1) - Log(C2) 706 /// 707 /// This transform handles cases where: 708 /// 1. The icmp predicate is inverted 709 /// 2. The select operands are reversed 710 /// 3. The magnitude of C2 and C1 are flipped 711 static Value *foldSelectICmpAndBinOp(const ICmpInst *IC, Value *TrueVal, 712 Value *FalseVal, 713 InstCombiner::BuilderTy &Builder) { 714 // Only handle integer compares. Also, if this is a vector select, we need a 715 // vector compare. 716 if (!TrueVal->getType()->isIntOrIntVectorTy() || 717 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 718 return nullptr; 719 720 Value *CmpLHS = IC->getOperand(0); 721 Value *CmpRHS = IC->getOperand(1); 722 723 unsigned C1Log; 724 bool NeedAnd = false; 725 CmpInst::Predicate Pred = IC->getPredicate(); 726 if (IC->isEquality()) { 727 if (!match(CmpRHS, m_Zero())) 728 return nullptr; 729 730 const APInt *C1; 731 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 732 return nullptr; 733 734 C1Log = C1->logBase2(); 735 } else { 736 APInt C1; 737 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CmpLHS, C1) || 738 !C1.isPowerOf2()) 739 return nullptr; 740 741 C1Log = C1.logBase2(); 742 NeedAnd = true; 743 } 744 745 Value *Y, *V = CmpLHS; 746 BinaryOperator *BinOp; 747 const APInt *C2; 748 bool NeedXor; 749 if (match(FalseVal, m_BinOp(m_Specific(TrueVal), m_Power2(C2)))) { 750 Y = TrueVal; 751 BinOp = cast<BinaryOperator>(FalseVal); 752 NeedXor = Pred == ICmpInst::ICMP_NE; 753 } else if (match(TrueVal, m_BinOp(m_Specific(FalseVal), m_Power2(C2)))) { 754 Y = FalseVal; 755 BinOp = cast<BinaryOperator>(TrueVal); 756 NeedXor = Pred == ICmpInst::ICMP_EQ; 757 } else { 758 return nullptr; 759 } 760 761 // Check that 0 on RHS is identity value for this binop. 762 auto *IdentityC = 763 ConstantExpr::getBinOpIdentity(BinOp->getOpcode(), BinOp->getType(), 764 /*AllowRHSConstant*/ true); 765 if (IdentityC == nullptr || !IdentityC->isNullValue()) 766 return nullptr; 767 768 unsigned C2Log = C2->logBase2(); 769 770 bool NeedShift = C1Log != C2Log; 771 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 772 V->getType()->getScalarSizeInBits(); 773 774 // Make sure we don't create more instructions than we save. 775 if ((NeedShift + NeedXor + NeedZExtTrunc + NeedAnd) > 776 (IC->hasOneUse() + BinOp->hasOneUse())) 777 return nullptr; 778 779 if (NeedAnd) { 780 // Insert the AND instruction on the input to the truncate. 781 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 782 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 783 } 784 785 if (C2Log > C1Log) { 786 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 787 V = Builder.CreateShl(V, C2Log - C1Log); 788 } else if (C1Log > C2Log) { 789 V = Builder.CreateLShr(V, C1Log - C2Log); 790 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 791 } else 792 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 793 794 if (NeedXor) 795 V = Builder.CreateXor(V, *C2); 796 797 return Builder.CreateBinOp(BinOp->getOpcode(), Y, V); 798 } 799 800 /// Canonicalize a set or clear of a masked set of constant bits to 801 /// select-of-constants form. 802 static Instruction *foldSetClearBits(SelectInst &Sel, 803 InstCombiner::BuilderTy &Builder) { 804 Value *Cond = Sel.getCondition(); 805 Value *T = Sel.getTrueValue(); 806 Value *F = Sel.getFalseValue(); 807 Type *Ty = Sel.getType(); 808 Value *X; 809 const APInt *NotC, *C; 810 811 // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C) 812 if (match(T, m_And(m_Value(X), m_APInt(NotC))) && 813 match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 814 Constant *Zero = ConstantInt::getNullValue(Ty); 815 Constant *OrC = ConstantInt::get(Ty, *C); 816 Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel); 817 return BinaryOperator::CreateOr(T, NewSel); 818 } 819 820 // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0) 821 if (match(F, m_And(m_Value(X), m_APInt(NotC))) && 822 match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 823 Constant *Zero = ConstantInt::getNullValue(Ty); 824 Constant *OrC = ConstantInt::get(Ty, *C); 825 Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel); 826 return BinaryOperator::CreateOr(F, NewSel); 827 } 828 829 return nullptr; 830 } 831 832 // select (x == 0), 0, x * y --> freeze(y) * x 833 // select (y == 0), 0, x * y --> freeze(x) * y 834 // select (x == 0), undef, x * y --> freeze(y) * x 835 // select (x == undef), 0, x * y --> freeze(y) * x 836 // Usage of mul instead of 0 will make the result more poisonous, 837 // so the operand that was not checked in the condition should be frozen. 838 // The latter folding is applied only when a constant compared with x is 839 // is a vector consisting of 0 and undefs. If a constant compared with x 840 // is a scalar undefined value or undefined vector then an expression 841 // should be already folded into a constant. 842 static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) { 843 auto *CondVal = SI.getCondition(); 844 auto *TrueVal = SI.getTrueValue(); 845 auto *FalseVal = SI.getFalseValue(); 846 Value *X, *Y; 847 ICmpInst::Predicate Predicate; 848 849 // Assuming that constant compared with zero is not undef (but it may be 850 // a vector with some undef elements). Otherwise (when a constant is undef) 851 // the select expression should be already simplified. 852 if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) || 853 !ICmpInst::isEquality(Predicate)) 854 return nullptr; 855 856 if (Predicate == ICmpInst::ICMP_NE) 857 std::swap(TrueVal, FalseVal); 858 859 // Check that TrueVal is a constant instead of matching it with m_Zero() 860 // to handle the case when it is a scalar undef value or a vector containing 861 // non-zero elements that are masked by undef elements in the compare 862 // constant. 863 auto *TrueValC = dyn_cast<Constant>(TrueVal); 864 if (TrueValC == nullptr || 865 !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) || 866 !isa<Instruction>(FalseVal)) 867 return nullptr; 868 869 auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1)); 870 auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC); 871 // If X is compared with 0 then TrueVal could be either zero or undef. 872 // m_Zero match vectors containing some undef elements, but for scalars 873 // m_Undef should be used explicitly. 874 if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef())) 875 return nullptr; 876 877 auto *FalseValI = cast<Instruction>(FalseVal); 878 auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"), 879 FalseValI->getIterator()); 880 IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY); 881 return IC.replaceInstUsesWith(SI, FalseValI); 882 } 883 884 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). 885 /// There are 8 commuted/swapped variants of this pattern. 886 /// TODO: Also support a - UMIN(a,b) patterns. 887 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 888 const Value *TrueVal, 889 const Value *FalseVal, 890 InstCombiner::BuilderTy &Builder) { 891 ICmpInst::Predicate Pred = ICI->getPredicate(); 892 Value *A = ICI->getOperand(0); 893 Value *B = ICI->getOperand(1); 894 895 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 896 // (a == 0) ? 0 : a - 1 -> (a != 0) ? a - 1 : 0 897 if (match(TrueVal, m_Zero())) { 898 Pred = ICmpInst::getInversePredicate(Pred); 899 std::swap(TrueVal, FalseVal); 900 } 901 902 if (!match(FalseVal, m_Zero())) 903 return nullptr; 904 905 // ugt 0 is canonicalized to ne 0 and requires special handling 906 // (a != 0) ? a + -1 : 0 -> usub.sat(a, 1) 907 if (Pred == ICmpInst::ICMP_NE) { 908 if (match(B, m_Zero()) && match(TrueVal, m_Add(m_Specific(A), m_AllOnes()))) 909 return Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, 910 ConstantInt::get(A->getType(), 1)); 911 return nullptr; 912 } 913 914 if (!ICmpInst::isUnsigned(Pred)) 915 return nullptr; 916 917 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 918 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 919 std::swap(A, B); 920 Pred = ICmpInst::getSwappedPredicate(Pred); 921 } 922 923 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 924 "Unexpected isUnsigned predicate!"); 925 926 // Ensure the sub is of the form: 927 // (a > b) ? a - b : 0 -> usub.sat(a, b) 928 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 929 // Checking for both a-b and a+(-b) as a constant. 930 bool IsNegative = false; 931 const APInt *C; 932 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) || 933 (match(A, m_APInt(C)) && 934 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C))))) 935 IsNegative = true; 936 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) && 937 !(match(B, m_APInt(C)) && 938 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C))))) 939 return nullptr; 940 941 // If we are adding a negate and the sub and icmp are used anywhere else, we 942 // would end up with more instructions. 943 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse()) 944 return nullptr; 945 946 // (a > b) ? a - b : 0 -> usub.sat(a, b) 947 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 948 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); 949 if (IsNegative) 950 Result = Builder.CreateNeg(Result); 951 return Result; 952 } 953 954 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, 955 InstCombiner::BuilderTy &Builder) { 956 if (!Cmp->hasOneUse()) 957 return nullptr; 958 959 // Match unsigned saturated add with constant. 960 Value *Cmp0 = Cmp->getOperand(0); 961 Value *Cmp1 = Cmp->getOperand(1); 962 ICmpInst::Predicate Pred = Cmp->getPredicate(); 963 Value *X; 964 const APInt *C, *CmpC; 965 if (Pred == ICmpInst::ICMP_ULT && 966 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 && 967 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) { 968 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C) 969 return Builder.CreateBinaryIntrinsic( 970 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C)); 971 } 972 973 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 974 // There are 8 commuted variants. 975 // Canonicalize -1 (saturated result) to true value of the select. 976 if (match(FVal, m_AllOnes())) { 977 std::swap(TVal, FVal); 978 Pred = CmpInst::getInversePredicate(Pred); 979 } 980 if (!match(TVal, m_AllOnes())) 981 return nullptr; 982 983 // Canonicalize predicate to less-than or less-or-equal-than. 984 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 985 std::swap(Cmp0, Cmp1); 986 Pred = CmpInst::getSwappedPredicate(Pred); 987 } 988 if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE) 989 return nullptr; 990 991 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 992 // Strictness of the comparison is irrelevant. 993 Value *Y; 994 if (match(Cmp0, m_Not(m_Value(X))) && 995 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { 996 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 997 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) 998 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); 999 } 1000 // The 'not' op may be included in the sum but not the compare. 1001 // Strictness of the comparison is irrelevant. 1002 X = Cmp0; 1003 Y = Cmp1; 1004 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) { 1005 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) 1006 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) 1007 BinaryOperator *BO = cast<BinaryOperator>(FVal); 1008 return Builder.CreateBinaryIntrinsic( 1009 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); 1010 } 1011 // The overflow may be detected via the add wrapping round. 1012 // This is only valid for strict comparison! 1013 if (Pred == ICmpInst::ICMP_ULT && 1014 match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) && 1015 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) { 1016 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y) 1017 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 1018 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y); 1019 } 1020 1021 return nullptr; 1022 } 1023 1024 /// Try to match patterns with select and subtract as absolute difference. 1025 static Value *foldAbsDiff(ICmpInst *Cmp, Value *TVal, Value *FVal, 1026 InstCombiner::BuilderTy &Builder) { 1027 auto *TI = dyn_cast<Instruction>(TVal); 1028 auto *FI = dyn_cast<Instruction>(FVal); 1029 if (!TI || !FI) 1030 return nullptr; 1031 1032 // Normalize predicate to gt/lt rather than ge/le. 1033 ICmpInst::Predicate Pred = Cmp->getStrictPredicate(); 1034 Value *A = Cmp->getOperand(0); 1035 Value *B = Cmp->getOperand(1); 1036 1037 // Normalize "A - B" as the true value of the select. 1038 if (match(FI, m_Sub(m_Specific(A), m_Specific(B)))) { 1039 std::swap(FI, TI); 1040 Pred = ICmpInst::getSwappedPredicate(Pred); 1041 } 1042 1043 // With any pair of no-wrap subtracts: 1044 // (A > B) ? (A - B) : (B - A) --> abs(A - B) 1045 if (Pred == CmpInst::ICMP_SGT && 1046 match(TI, m_Sub(m_Specific(A), m_Specific(B))) && 1047 match(FI, m_Sub(m_Specific(B), m_Specific(A))) && 1048 (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap()) && 1049 (FI->hasNoSignedWrap() || FI->hasNoUnsignedWrap())) { 1050 // The remaining subtract is not "nuw" any more. 1051 // If there's one use of the subtract (no other use than the use we are 1052 // about to replace), then we know that the sub is "nsw" in this context 1053 // even if it was only "nuw" before. If there's another use, then we can't 1054 // add "nsw" to the existing instruction because it may not be safe in the 1055 // other user's context. 1056 TI->setHasNoUnsignedWrap(false); 1057 if (!TI->hasNoSignedWrap()) 1058 TI->setHasNoSignedWrap(TI->hasOneUse()); 1059 return Builder.CreateBinaryIntrinsic(Intrinsic::abs, TI, Builder.getTrue()); 1060 } 1061 1062 return nullptr; 1063 } 1064 1065 /// Fold the following code sequence: 1066 /// \code 1067 /// int a = ctlz(x & -x); 1068 // x ? 31 - a : a; 1069 // // or 1070 // x ? 31 - a : 32; 1071 /// \code 1072 /// 1073 /// into: 1074 /// cttz(x) 1075 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal, 1076 Value *FalseVal, 1077 InstCombiner::BuilderTy &Builder) { 1078 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 1079 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero())) 1080 return nullptr; 1081 1082 if (ICI->getPredicate() == ICmpInst::ICMP_NE) 1083 std::swap(TrueVal, FalseVal); 1084 1085 Value *Ctlz; 1086 if (!match(FalseVal, 1087 m_Xor(m_Value(Ctlz), m_SpecificInt(BitWidth - 1)))) 1088 return nullptr; 1089 1090 if (!match(Ctlz, m_Intrinsic<Intrinsic::ctlz>())) 1091 return nullptr; 1092 1093 if (TrueVal != Ctlz && !match(TrueVal, m_SpecificInt(BitWidth))) 1094 return nullptr; 1095 1096 Value *X = ICI->getOperand(0); 1097 auto *II = cast<IntrinsicInst>(Ctlz); 1098 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X))))) 1099 return nullptr; 1100 1101 Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz, 1102 II->getType()); 1103 return CallInst::Create(F, {X, II->getArgOperand(1)}); 1104 } 1105 1106 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 1107 /// call to cttz/ctlz with flag 'is_zero_poison' cleared. 1108 /// 1109 /// For example, we can fold the following code sequence: 1110 /// \code 1111 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 1112 /// %1 = icmp ne i32 %x, 0 1113 /// %2 = select i1 %1, i32 %0, i32 32 1114 /// \code 1115 /// 1116 /// into: 1117 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 1118 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 1119 InstCombiner::BuilderTy &Builder) { 1120 ICmpInst::Predicate Pred = ICI->getPredicate(); 1121 Value *CmpLHS = ICI->getOperand(0); 1122 Value *CmpRHS = ICI->getOperand(1); 1123 1124 // Check if the select condition compares a value for equality. 1125 if (!ICI->isEquality()) 1126 return nullptr; 1127 1128 Value *SelectArg = FalseVal; 1129 Value *ValueOnZero = TrueVal; 1130 if (Pred == ICmpInst::ICMP_NE) 1131 std::swap(SelectArg, ValueOnZero); 1132 1133 // Skip zero extend/truncate. 1134 Value *Count = nullptr; 1135 if (!match(SelectArg, m_ZExt(m_Value(Count))) && 1136 !match(SelectArg, m_Trunc(m_Value(Count)))) 1137 Count = SelectArg; 1138 1139 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 1140 // input to the cttz/ctlz is used as LHS for the compare instruction. 1141 Value *X; 1142 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Value(X))) && 1143 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Value(X)))) 1144 return nullptr; 1145 1146 // (X == 0) ? BitWidth : ctz(X) 1147 // (X == -1) ? BitWidth : ctz(~X) 1148 if ((X != CmpLHS || !match(CmpRHS, m_Zero())) && 1149 (!match(X, m_Not(m_Specific(CmpLHS))) || !match(CmpRHS, m_AllOnes()))) 1150 return nullptr; 1151 1152 IntrinsicInst *II = cast<IntrinsicInst>(Count); 1153 1154 // Check if the value propagated on zero is a constant number equal to the 1155 // sizeof in bits of 'Count'. 1156 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 1157 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 1158 // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from 1159 // true to false on this flag, so we can replace it for all users. 1160 II->setArgOperand(1, ConstantInt::getFalse(II->getContext())); 1161 return SelectArg; 1162 } 1163 1164 // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional 1165 // zext/trunc) have one use (ending at the select), the cttz/ctlz result will 1166 // not be used if the input is zero. Relax to 'zero is poison' for that case. 1167 if (II->hasOneUse() && SelectArg->hasOneUse() && 1168 !match(II->getArgOperand(1), m_One())) 1169 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 1170 1171 return nullptr; 1172 } 1173 1174 static Value *canonicalizeSPF(ICmpInst &Cmp, Value *TrueVal, Value *FalseVal, 1175 InstCombinerImpl &IC) { 1176 Value *LHS, *RHS; 1177 // TODO: What to do with pointer min/max patterns? 1178 if (!TrueVal->getType()->isIntOrIntVectorTy()) 1179 return nullptr; 1180 1181 SelectPatternFlavor SPF = 1182 matchDecomposedSelectPattern(&Cmp, TrueVal, FalseVal, LHS, RHS).Flavor; 1183 if (SPF == SelectPatternFlavor::SPF_ABS || 1184 SPF == SelectPatternFlavor::SPF_NABS) { 1185 if (!Cmp.hasOneUse() && !RHS->hasOneUse()) 1186 return nullptr; // TODO: Relax this restriction. 1187 1188 // Note that NSW flag can only be propagated for normal, non-negated abs! 1189 bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS && 1190 match(RHS, m_NSWNeg(m_Specific(LHS))); 1191 Constant *IntMinIsPoisonC = 1192 ConstantInt::get(Type::getInt1Ty(Cmp.getContext()), IntMinIsPoison); 1193 Instruction *Abs = 1194 IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC); 1195 1196 if (SPF == SelectPatternFlavor::SPF_NABS) 1197 return IC.Builder.CreateNeg(Abs); // Always without NSW flag! 1198 return Abs; 1199 } 1200 1201 if (SelectPatternResult::isMinOrMax(SPF)) { 1202 Intrinsic::ID IntrinsicID; 1203 switch (SPF) { 1204 case SelectPatternFlavor::SPF_UMIN: 1205 IntrinsicID = Intrinsic::umin; 1206 break; 1207 case SelectPatternFlavor::SPF_UMAX: 1208 IntrinsicID = Intrinsic::umax; 1209 break; 1210 case SelectPatternFlavor::SPF_SMIN: 1211 IntrinsicID = Intrinsic::smin; 1212 break; 1213 case SelectPatternFlavor::SPF_SMAX: 1214 IntrinsicID = Intrinsic::smax; 1215 break; 1216 default: 1217 llvm_unreachable("Unexpected SPF"); 1218 } 1219 return IC.Builder.CreateBinaryIntrinsic(IntrinsicID, LHS, RHS); 1220 } 1221 1222 return nullptr; 1223 } 1224 1225 bool InstCombinerImpl::replaceInInstruction(Value *V, Value *Old, Value *New, 1226 unsigned Depth) { 1227 // Conservatively limit replacement to two instructions upwards. 1228 if (Depth == 2) 1229 return false; 1230 1231 auto *I = dyn_cast<Instruction>(V); 1232 if (!I || !I->hasOneUse() || !isSafeToSpeculativelyExecute(I)) 1233 return false; 1234 1235 bool Changed = false; 1236 for (Use &U : I->operands()) { 1237 if (U == Old) { 1238 replaceUse(U, New); 1239 Worklist.add(I); 1240 Changed = true; 1241 } else { 1242 Changed |= replaceInInstruction(U, Old, New, Depth + 1); 1243 } 1244 } 1245 return Changed; 1246 } 1247 1248 /// If we have a select with an equality comparison, then we know the value in 1249 /// one of the arms of the select. See if substituting this value into an arm 1250 /// and simplifying the result yields the same value as the other arm. 1251 /// 1252 /// To make this transform safe, we must drop poison-generating flags 1253 /// (nsw, etc) if we simplified to a binop because the select may be guarding 1254 /// that poison from propagating. If the existing binop already had no 1255 /// poison-generating flags, then this transform can be done by instsimplify. 1256 /// 1257 /// Consider: 1258 /// %cmp = icmp eq i32 %x, 2147483647 1259 /// %add = add nsw i32 %x, 1 1260 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add 1261 /// 1262 /// We can't replace %sel with %add unless we strip away the flags. 1263 /// TODO: Wrapping flags could be preserved in some cases with better analysis. 1264 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel, 1265 ICmpInst &Cmp) { 1266 if (!Cmp.isEquality()) 1267 return nullptr; 1268 1269 // Canonicalize the pattern to ICMP_EQ by swapping the select operands. 1270 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 1271 bool Swapped = false; 1272 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) { 1273 std::swap(TrueVal, FalseVal); 1274 Swapped = true; 1275 } 1276 1277 // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand. 1278 // Make sure Y cannot be undef though, as we might pick different values for 1279 // undef in the icmp and in f(Y). Additionally, take care to avoid replacing 1280 // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite 1281 // replacement cycle. 1282 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1); 1283 if (TrueVal != CmpLHS && 1284 isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) { 1285 if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ, 1286 /* AllowRefinement */ true)) 1287 // Require either the replacement or the simplification result to be a 1288 // constant to avoid infinite loops. 1289 // FIXME: Make this check more precise. 1290 if (isa<Constant>(CmpRHS) || isa<Constant>(V)) 1291 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1292 1293 // Even if TrueVal does not simplify, we can directly replace a use of 1294 // CmpLHS with CmpRHS, as long as the instruction is not used anywhere 1295 // else and is safe to speculatively execute (we may end up executing it 1296 // with different operands, which should not cause side-effects or trigger 1297 // undefined behavior). Only do this if CmpRHS is a constant, as 1298 // profitability is not clear for other cases. 1299 // FIXME: Support vectors. 1300 if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant()) && 1301 !Cmp.getType()->isVectorTy()) 1302 if (replaceInInstruction(TrueVal, CmpLHS, CmpRHS)) 1303 return &Sel; 1304 } 1305 if (TrueVal != CmpRHS && 1306 isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT)) 1307 if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ, 1308 /* AllowRefinement */ true)) 1309 if (isa<Constant>(CmpLHS) || isa<Constant>(V)) 1310 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1311 1312 auto *FalseInst = dyn_cast<Instruction>(FalseVal); 1313 if (!FalseInst) 1314 return nullptr; 1315 1316 // InstSimplify already performed this fold if it was possible subject to 1317 // current poison-generating flags. Check whether dropping poison-generating 1318 // flags enables the transform. 1319 1320 // Try each equivalence substitution possibility. 1321 // We have an 'EQ' comparison, so the select's false value will propagate. 1322 // Example: 1323 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1 1324 SmallVector<Instruction *> DropFlags; 1325 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ, 1326 /* AllowRefinement */ false, 1327 &DropFlags) == TrueVal || 1328 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ, 1329 /* AllowRefinement */ false, 1330 &DropFlags) == TrueVal) { 1331 for (Instruction *I : DropFlags) { 1332 I->dropPoisonGeneratingFlagsAndMetadata(); 1333 Worklist.add(I); 1334 } 1335 1336 return replaceInstUsesWith(Sel, FalseVal); 1337 } 1338 1339 return nullptr; 1340 } 1341 1342 // See if this is a pattern like: 1343 // %old_cmp1 = icmp slt i32 %x, C2 1344 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high 1345 // %old_x_offseted = add i32 %x, C1 1346 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0 1347 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement 1348 // This can be rewritten as more canonical pattern: 1349 // %new_cmp1 = icmp slt i32 %x, -C1 1350 // %new_cmp2 = icmp sge i32 %x, C0-C1 1351 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x 1352 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low 1353 // Iff -C1 s<= C2 s<= C0-C1 1354 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result) 1355 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.) 1356 static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0, 1357 InstCombiner::BuilderTy &Builder) { 1358 Value *X = Sel0.getTrueValue(); 1359 Value *Sel1 = Sel0.getFalseValue(); 1360 1361 // First match the condition of the outermost select. 1362 // Said condition must be one-use. 1363 if (!Cmp0.hasOneUse()) 1364 return nullptr; 1365 ICmpInst::Predicate Pred0 = Cmp0.getPredicate(); 1366 Value *Cmp00 = Cmp0.getOperand(0); 1367 Constant *C0; 1368 if (!match(Cmp0.getOperand(1), 1369 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))) 1370 return nullptr; 1371 1372 if (!isa<SelectInst>(Sel1)) { 1373 Pred0 = ICmpInst::getInversePredicate(Pred0); 1374 std::swap(X, Sel1); 1375 } 1376 1377 // Canonicalize Cmp0 into ult or uge. 1378 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1379 switch (Pred0) { 1380 case ICmpInst::Predicate::ICMP_ULT: 1381 case ICmpInst::Predicate::ICMP_UGE: 1382 // Although icmp ult %x, 0 is an unusual thing to try and should generally 1383 // have been simplified, it does not verify with undef inputs so ensure we 1384 // are not in a strange state. 1385 if (!match(C0, m_SpecificInt_ICMP( 1386 ICmpInst::Predicate::ICMP_NE, 1387 APInt::getZero(C0->getType()->getScalarSizeInBits())))) 1388 return nullptr; 1389 break; // Great! 1390 case ICmpInst::Predicate::ICMP_ULE: 1391 case ICmpInst::Predicate::ICMP_UGT: 1392 // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment 1393 // C0, which again means it must not have any all-ones elements. 1394 if (!match(C0, 1395 m_SpecificInt_ICMP( 1396 ICmpInst::Predicate::ICMP_NE, 1397 APInt::getAllOnes(C0->getType()->getScalarSizeInBits())))) 1398 return nullptr; // Can't do, have all-ones element[s]. 1399 Pred0 = ICmpInst::getFlippedStrictnessPredicate(Pred0); 1400 C0 = InstCombiner::AddOne(C0); 1401 break; 1402 default: 1403 return nullptr; // Unknown predicate. 1404 } 1405 1406 // Now that we've canonicalized the ICmp, we know the X we expect; 1407 // the select in other hand should be one-use. 1408 if (!Sel1->hasOneUse()) 1409 return nullptr; 1410 1411 // If the types do not match, look through any truncs to the underlying 1412 // instruction. 1413 if (Cmp00->getType() != X->getType() && X->hasOneUse()) 1414 match(X, m_TruncOrSelf(m_Value(X))); 1415 1416 // We now can finish matching the condition of the outermost select: 1417 // it should either be the X itself, or an addition of some constant to X. 1418 Constant *C1; 1419 if (Cmp00 == X) 1420 C1 = ConstantInt::getNullValue(X->getType()); 1421 else if (!match(Cmp00, 1422 m_Add(m_Specific(X), 1423 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1))))) 1424 return nullptr; 1425 1426 Value *Cmp1; 1427 ICmpInst::Predicate Pred1; 1428 Constant *C2; 1429 Value *ReplacementLow, *ReplacementHigh; 1430 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow), 1431 m_Value(ReplacementHigh))) || 1432 !match(Cmp1, 1433 m_ICmp(Pred1, m_Specific(X), 1434 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2))))) 1435 return nullptr; 1436 1437 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse())) 1438 return nullptr; // Not enough one-use instructions for the fold. 1439 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of 1440 // two comparisons we'll need to build. 1441 1442 // Canonicalize Cmp1 into the form we expect. 1443 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1444 switch (Pred1) { 1445 case ICmpInst::Predicate::ICMP_SLT: 1446 break; 1447 case ICmpInst::Predicate::ICMP_SLE: 1448 // We'd have to increment C2 by one, and for that it must not have signed 1449 // max element, but then it would have been canonicalized to 'slt' before 1450 // we get here. So we can't do anything useful with 'sle'. 1451 return nullptr; 1452 case ICmpInst::Predicate::ICMP_SGT: 1453 // We want to canonicalize it to 'slt', so we'll need to increment C2, 1454 // which again means it must not have any signed max elements. 1455 if (!match(C2, 1456 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1457 APInt::getSignedMaxValue( 1458 C2->getType()->getScalarSizeInBits())))) 1459 return nullptr; // Can't do, have signed max element[s]. 1460 C2 = InstCombiner::AddOne(C2); 1461 [[fallthrough]]; 1462 case ICmpInst::Predicate::ICMP_SGE: 1463 // Also non-canonical, but here we don't need to change C2, 1464 // so we don't have any restrictions on C2, so we can just handle it. 1465 Pred1 = ICmpInst::Predicate::ICMP_SLT; 1466 std::swap(ReplacementLow, ReplacementHigh); 1467 break; 1468 default: 1469 return nullptr; // Unknown predicate. 1470 } 1471 assert(Pred1 == ICmpInst::Predicate::ICMP_SLT && 1472 "Unexpected predicate type."); 1473 1474 // The thresholds of this clamp-like pattern. 1475 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1); 1476 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1); 1477 1478 assert((Pred0 == ICmpInst::Predicate::ICMP_ULT || 1479 Pred0 == ICmpInst::Predicate::ICMP_UGE) && 1480 "Unexpected predicate type."); 1481 if (Pred0 == ICmpInst::Predicate::ICMP_UGE) 1482 std::swap(ThresholdLowIncl, ThresholdHighExcl); 1483 1484 // The fold has a precondition 1: C2 s>= ThresholdLow 1485 auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2, 1486 ThresholdLowIncl); 1487 if (!match(Precond1, m_One())) 1488 return nullptr; 1489 // The fold has a precondition 2: C2 s<= ThresholdHigh 1490 auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2, 1491 ThresholdHighExcl); 1492 if (!match(Precond2, m_One())) 1493 return nullptr; 1494 1495 // If we are matching from a truncated input, we need to sext the 1496 // ReplacementLow and ReplacementHigh values. Only do the transform if they 1497 // are free to extend due to being constants. 1498 if (X->getType() != Sel0.getType()) { 1499 Constant *LowC, *HighC; 1500 if (!match(ReplacementLow, m_ImmConstant(LowC)) || 1501 !match(ReplacementHigh, m_ImmConstant(HighC))) 1502 return nullptr; 1503 const DataLayout &DL = Sel0.getModule()->getDataLayout(); 1504 ReplacementLow = 1505 ConstantFoldCastOperand(Instruction::SExt, LowC, X->getType(), DL); 1506 ReplacementHigh = 1507 ConstantFoldCastOperand(Instruction::SExt, HighC, X->getType(), DL); 1508 assert(ReplacementLow && ReplacementHigh && 1509 "Constant folding of ImmConstant cannot fail"); 1510 } 1511 1512 // All good, finally emit the new pattern. 1513 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl); 1514 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl); 1515 Value *MaybeReplacedLow = 1516 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X); 1517 1518 // Create the final select. If we looked through a truncate above, we will 1519 // need to retruncate the result. 1520 Value *MaybeReplacedHigh = Builder.CreateSelect( 1521 ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow); 1522 return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType()); 1523 } 1524 1525 // If we have 1526 // %cmp = icmp [canonical predicate] i32 %x, C0 1527 // %r = select i1 %cmp, i32 %y, i32 C1 1528 // Where C0 != C1 and %x may be different from %y, see if the constant that we 1529 // will have if we flip the strictness of the predicate (i.e. without changing 1530 // the result) is identical to the C1 in select. If it matches we can change 1531 // original comparison to one with swapped predicate, reuse the constant, 1532 // and swap the hands of select. 1533 static Instruction * 1534 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp, 1535 InstCombinerImpl &IC) { 1536 ICmpInst::Predicate Pred; 1537 Value *X; 1538 Constant *C0; 1539 if (!match(&Cmp, m_OneUse(m_ICmp( 1540 Pred, m_Value(X), 1541 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))))) 1542 return nullptr; 1543 1544 // If comparison predicate is non-relational, we won't be able to do anything. 1545 if (ICmpInst::isEquality(Pred)) 1546 return nullptr; 1547 1548 // If comparison predicate is non-canonical, then we certainly won't be able 1549 // to make it canonical; canonicalizeCmpWithConstant() already tried. 1550 if (!InstCombiner::isCanonicalPredicate(Pred)) 1551 return nullptr; 1552 1553 // If the [input] type of comparison and select type are different, lets abort 1554 // for now. We could try to compare constants with trunc/[zs]ext though. 1555 if (C0->getType() != Sel.getType()) 1556 return nullptr; 1557 1558 // ULT with 'add' of a constant is canonical. See foldICmpAddConstant(). 1559 // FIXME: Are there more magic icmp predicate+constant pairs we must avoid? 1560 // Or should we just abandon this transform entirely? 1561 if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant()))) 1562 return nullptr; 1563 1564 1565 Value *SelVal0, *SelVal1; // We do not care which one is from where. 1566 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1))); 1567 // At least one of these values we are selecting between must be a constant 1568 // else we'll never succeed. 1569 if (!match(SelVal0, m_AnyIntegralConstant()) && 1570 !match(SelVal1, m_AnyIntegralConstant())) 1571 return nullptr; 1572 1573 // Does this constant C match any of the `select` values? 1574 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) { 1575 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1); 1576 }; 1577 1578 // If C0 *already* matches true/false value of select, we are done. 1579 if (MatchesSelectValue(C0)) 1580 return nullptr; 1581 1582 // Check the constant we'd have with flipped-strictness predicate. 1583 auto FlippedStrictness = 1584 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0); 1585 if (!FlippedStrictness) 1586 return nullptr; 1587 1588 // If said constant doesn't match either, then there is no hope, 1589 if (!MatchesSelectValue(FlippedStrictness->second)) 1590 return nullptr; 1591 1592 // It matched! Lets insert the new comparison just before select. 1593 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder); 1594 IC.Builder.SetInsertPoint(&Sel); 1595 1596 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped. 1597 Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second, 1598 Cmp.getName() + ".inv"); 1599 IC.replaceOperand(Sel, 0, NewCmp); 1600 Sel.swapValues(); 1601 Sel.swapProfMetadata(); 1602 1603 return &Sel; 1604 } 1605 1606 static Instruction *foldSelectZeroOrOnes(ICmpInst *Cmp, Value *TVal, 1607 Value *FVal, 1608 InstCombiner::BuilderTy &Builder) { 1609 if (!Cmp->hasOneUse()) 1610 return nullptr; 1611 1612 const APInt *CmpC; 1613 if (!match(Cmp->getOperand(1), m_APIntAllowUndef(CmpC))) 1614 return nullptr; 1615 1616 // (X u< 2) ? -X : -1 --> sext (X != 0) 1617 Value *X = Cmp->getOperand(0); 1618 if (Cmp->getPredicate() == ICmpInst::ICMP_ULT && *CmpC == 2 && 1619 match(TVal, m_Neg(m_Specific(X))) && match(FVal, m_AllOnes())) 1620 return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType()); 1621 1622 // (X u> 1) ? -1 : -X --> sext (X != 0) 1623 if (Cmp->getPredicate() == ICmpInst::ICMP_UGT && *CmpC == 1 && 1624 match(FVal, m_Neg(m_Specific(X))) && match(TVal, m_AllOnes())) 1625 return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType()); 1626 1627 return nullptr; 1628 } 1629 1630 static Value *foldSelectInstWithICmpConst(SelectInst &SI, ICmpInst *ICI, 1631 InstCombiner::BuilderTy &Builder) { 1632 const APInt *CmpC; 1633 Value *V; 1634 CmpInst::Predicate Pred; 1635 if (!match(ICI, m_ICmp(Pred, m_Value(V), m_APInt(CmpC)))) 1636 return nullptr; 1637 1638 // Match clamp away from min/max value as a max/min operation. 1639 Value *TVal = SI.getTrueValue(); 1640 Value *FVal = SI.getFalseValue(); 1641 if (Pred == ICmpInst::ICMP_EQ && V == FVal) { 1642 // (V == UMIN) ? UMIN+1 : V --> umax(V, UMIN+1) 1643 if (CmpC->isMinValue() && match(TVal, m_SpecificInt(*CmpC + 1))) 1644 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, V, TVal); 1645 // (V == UMAX) ? UMAX-1 : V --> umin(V, UMAX-1) 1646 if (CmpC->isMaxValue() && match(TVal, m_SpecificInt(*CmpC - 1))) 1647 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, V, TVal); 1648 // (V == SMIN) ? SMIN+1 : V --> smax(V, SMIN+1) 1649 if (CmpC->isMinSignedValue() && match(TVal, m_SpecificInt(*CmpC + 1))) 1650 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, V, TVal); 1651 // (V == SMAX) ? SMAX-1 : V --> smin(V, SMAX-1) 1652 if (CmpC->isMaxSignedValue() && match(TVal, m_SpecificInt(*CmpC - 1))) 1653 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, V, TVal); 1654 } 1655 1656 BinaryOperator *BO; 1657 const APInt *C; 1658 CmpInst::Predicate CPred; 1659 if (match(&SI, m_Select(m_Specific(ICI), m_APInt(C), m_BinOp(BO)))) 1660 CPred = ICI->getPredicate(); 1661 else if (match(&SI, m_Select(m_Specific(ICI), m_BinOp(BO), m_APInt(C)))) 1662 CPred = ICI->getInversePredicate(); 1663 else 1664 return nullptr; 1665 1666 const APInt *BinOpC; 1667 if (!match(BO, m_BinOp(m_Specific(V), m_APInt(BinOpC)))) 1668 return nullptr; 1669 1670 ConstantRange R = ConstantRange::makeExactICmpRegion(CPred, *CmpC) 1671 .binaryOp(BO->getOpcode(), *BinOpC); 1672 if (R == *C) { 1673 BO->dropPoisonGeneratingFlags(); 1674 return BO; 1675 } 1676 return nullptr; 1677 } 1678 1679 /// Visit a SelectInst that has an ICmpInst as its first operand. 1680 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI, 1681 ICmpInst *ICI) { 1682 if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI)) 1683 return NewSel; 1684 1685 if (Value *V = 1686 canonicalizeSPF(*ICI, SI.getTrueValue(), SI.getFalseValue(), *this)) 1687 return replaceInstUsesWith(SI, V); 1688 1689 if (Value *V = foldSelectInstWithICmpConst(SI, ICI, Builder)) 1690 return replaceInstUsesWith(SI, V); 1691 1692 if (Value *V = canonicalizeClampLike(SI, *ICI, Builder)) 1693 return replaceInstUsesWith(SI, V); 1694 1695 if (Instruction *NewSel = 1696 tryToReuseConstantFromSelectInComparison(SI, *ICI, *this)) 1697 return NewSel; 1698 1699 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 1700 return replaceInstUsesWith(SI, V); 1701 1702 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 1703 bool Changed = false; 1704 Value *TrueVal = SI.getTrueValue(); 1705 Value *FalseVal = SI.getFalseValue(); 1706 ICmpInst::Predicate Pred = ICI->getPredicate(); 1707 Value *CmpLHS = ICI->getOperand(0); 1708 Value *CmpRHS = ICI->getOperand(1); 1709 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS) && !isa<Constant>(CmpLHS)) { 1710 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 1711 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 1712 replaceOperand(SI, 1, CmpRHS); 1713 Changed = true; 1714 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 1715 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 1716 replaceOperand(SI, 2, CmpRHS); 1717 Changed = true; 1718 } 1719 } 1720 1721 // Canonicalize a signbit condition to use zero constant by swapping: 1722 // (CmpLHS > -1) ? TV : FV --> (CmpLHS < 0) ? FV : TV 1723 // To avoid conflicts (infinite loops) with other canonicalizations, this is 1724 // not applied with any constant select arm. 1725 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes()) && 1726 !match(TrueVal, m_Constant()) && !match(FalseVal, m_Constant()) && 1727 ICI->hasOneUse()) { 1728 InstCombiner::BuilderTy::InsertPointGuard Guard(Builder); 1729 Builder.SetInsertPoint(&SI); 1730 Value *IsNeg = Builder.CreateIsNeg(CmpLHS, ICI->getName()); 1731 replaceOperand(SI, 0, IsNeg); 1732 SI.swapValues(); 1733 SI.swapProfMetadata(); 1734 return &SI; 1735 } 1736 1737 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 1738 // decomposeBitTestICmp() might help. 1739 if (TrueVal->getType()->isIntOrIntVectorTy()) { 1740 unsigned BitWidth = 1741 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 1742 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 1743 Value *X; 1744 const APInt *Y, *C; 1745 bool TrueWhenUnset; 1746 bool IsBitTest = false; 1747 if (ICmpInst::isEquality(Pred) && 1748 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 1749 match(CmpRHS, m_Zero())) { 1750 IsBitTest = true; 1751 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 1752 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 1753 X = CmpLHS; 1754 Y = &MinSignedValue; 1755 IsBitTest = true; 1756 TrueWhenUnset = false; 1757 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 1758 X = CmpLHS; 1759 Y = &MinSignedValue; 1760 IsBitTest = true; 1761 TrueWhenUnset = true; 1762 } 1763 if (IsBitTest) { 1764 Value *V = nullptr; 1765 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1766 if (TrueWhenUnset && TrueVal == X && 1767 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1768 V = Builder.CreateAnd(X, ~(*Y)); 1769 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1770 else if (!TrueWhenUnset && FalseVal == X && 1771 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1772 V = Builder.CreateAnd(X, ~(*Y)); 1773 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1774 else if (TrueWhenUnset && FalseVal == X && 1775 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1776 V = Builder.CreateOr(X, *Y); 1777 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1778 else if (!TrueWhenUnset && TrueVal == X && 1779 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1780 V = Builder.CreateOr(X, *Y); 1781 1782 if (V) 1783 return replaceInstUsesWith(SI, V); 1784 } 1785 } 1786 1787 if (Instruction *V = 1788 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1789 return V; 1790 1791 if (Value *V = foldSelectICmpAndZeroShl(ICI, TrueVal, FalseVal, Builder)) 1792 return replaceInstUsesWith(SI, V); 1793 1794 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder)) 1795 return V; 1796 1797 if (Instruction *V = foldSelectZeroOrOnes(ICI, TrueVal, FalseVal, Builder)) 1798 return V; 1799 1800 if (Value *V = foldSelectICmpAndBinOp(ICI, TrueVal, FalseVal, Builder)) 1801 return replaceInstUsesWith(SI, V); 1802 1803 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder)) 1804 return replaceInstUsesWith(SI, V); 1805 1806 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 1807 return replaceInstUsesWith(SI, V); 1808 1809 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1810 return replaceInstUsesWith(SI, V); 1811 1812 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) 1813 return replaceInstUsesWith(SI, V); 1814 1815 if (Value *V = foldAbsDiff(ICI, TrueVal, FalseVal, Builder)) 1816 return replaceInstUsesWith(SI, V); 1817 1818 return Changed ? &SI : nullptr; 1819 } 1820 1821 /// SI is a select whose condition is a PHI node (but the two may be in 1822 /// different blocks). See if the true/false values (V) are live in all of the 1823 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1824 /// 1825 /// X = phi [ C1, BB1], [C2, BB2] 1826 /// Y = add 1827 /// Z = select X, Y, 0 1828 /// 1829 /// because Y is not live in BB1/BB2. 1830 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1831 const SelectInst &SI) { 1832 // If the value is a non-instruction value like a constant or argument, it 1833 // can always be mapped. 1834 const Instruction *I = dyn_cast<Instruction>(V); 1835 if (!I) return true; 1836 1837 // If V is a PHI node defined in the same block as the condition PHI, we can 1838 // map the arguments. 1839 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1840 1841 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1842 if (VP->getParent() == CondPHI->getParent()) 1843 return true; 1844 1845 // Otherwise, if the PHI and select are defined in the same block and if V is 1846 // defined in a different block, then we can transform it. 1847 if (SI.getParent() == CondPHI->getParent() && 1848 I->getParent() != CondPHI->getParent()) 1849 return true; 1850 1851 // Otherwise we have a 'hard' case and we can't tell without doing more 1852 // detailed dominator based analysis, punt. 1853 return false; 1854 } 1855 1856 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1857 /// SPF2(SPF1(A, B), C) 1858 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner, 1859 SelectPatternFlavor SPF1, Value *A, 1860 Value *B, Instruction &Outer, 1861 SelectPatternFlavor SPF2, 1862 Value *C) { 1863 if (Outer.getType() != Inner->getType()) 1864 return nullptr; 1865 1866 if (C == A || C == B) { 1867 // MAX(MAX(A, B), B) -> MAX(A, B) 1868 // MIN(MIN(a, b), a) -> MIN(a, b) 1869 // TODO: This could be done in instsimplify. 1870 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 1871 return replaceInstUsesWith(Outer, Inner); 1872 } 1873 1874 return nullptr; 1875 } 1876 1877 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1878 /// This is even legal for FP. 1879 static Instruction *foldAddSubSelect(SelectInst &SI, 1880 InstCombiner::BuilderTy &Builder) { 1881 Value *CondVal = SI.getCondition(); 1882 Value *TrueVal = SI.getTrueValue(); 1883 Value *FalseVal = SI.getFalseValue(); 1884 auto *TI = dyn_cast<Instruction>(TrueVal); 1885 auto *FI = dyn_cast<Instruction>(FalseVal); 1886 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1887 return nullptr; 1888 1889 Instruction *AddOp = nullptr, *SubOp = nullptr; 1890 if ((TI->getOpcode() == Instruction::Sub && 1891 FI->getOpcode() == Instruction::Add) || 1892 (TI->getOpcode() == Instruction::FSub && 1893 FI->getOpcode() == Instruction::FAdd)) { 1894 AddOp = FI; 1895 SubOp = TI; 1896 } else if ((FI->getOpcode() == Instruction::Sub && 1897 TI->getOpcode() == Instruction::Add) || 1898 (FI->getOpcode() == Instruction::FSub && 1899 TI->getOpcode() == Instruction::FAdd)) { 1900 AddOp = TI; 1901 SubOp = FI; 1902 } 1903 1904 if (AddOp) { 1905 Value *OtherAddOp = nullptr; 1906 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1907 OtherAddOp = AddOp->getOperand(1); 1908 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1909 OtherAddOp = AddOp->getOperand(0); 1910 } 1911 1912 if (OtherAddOp) { 1913 // So at this point we know we have (Y -> OtherAddOp): 1914 // select C, (add X, Y), (sub X, Z) 1915 Value *NegVal; // Compute -Z 1916 if (SI.getType()->isFPOrFPVectorTy()) { 1917 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1918 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1919 FastMathFlags Flags = AddOp->getFastMathFlags(); 1920 Flags &= SubOp->getFastMathFlags(); 1921 NegInst->setFastMathFlags(Flags); 1922 } 1923 } else { 1924 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1925 } 1926 1927 Value *NewTrueOp = OtherAddOp; 1928 Value *NewFalseOp = NegVal; 1929 if (AddOp != TI) 1930 std::swap(NewTrueOp, NewFalseOp); 1931 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1932 SI.getName() + ".p", &SI); 1933 1934 if (SI.getType()->isFPOrFPVectorTy()) { 1935 Instruction *RI = 1936 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1937 1938 FastMathFlags Flags = AddOp->getFastMathFlags(); 1939 Flags &= SubOp->getFastMathFlags(); 1940 RI->setFastMathFlags(Flags); 1941 return RI; 1942 } else 1943 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1944 } 1945 } 1946 return nullptr; 1947 } 1948 1949 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1950 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1951 /// Along with a number of patterns similar to: 1952 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1953 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1954 static Instruction * 1955 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) { 1956 Value *CondVal = SI.getCondition(); 1957 Value *TrueVal = SI.getTrueValue(); 1958 Value *FalseVal = SI.getFalseValue(); 1959 1960 WithOverflowInst *II; 1961 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) || 1962 !match(FalseVal, m_ExtractValue<0>(m_Specific(II)))) 1963 return nullptr; 1964 1965 Value *X = II->getLHS(); 1966 Value *Y = II->getRHS(); 1967 1968 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) { 1969 Type *Ty = Limit->getType(); 1970 1971 ICmpInst::Predicate Pred; 1972 Value *TrueVal, *FalseVal, *Op; 1973 const APInt *C; 1974 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)), 1975 m_Value(TrueVal), m_Value(FalseVal)))) 1976 return false; 1977 1978 auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); }; 1979 auto IsMinMax = [&](Value *Min, Value *Max) { 1980 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 1981 APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 1982 return match(Min, m_SpecificInt(MinVal)) && 1983 match(Max, m_SpecificInt(MaxVal)); 1984 }; 1985 1986 if (Op != X && Op != Y) 1987 return false; 1988 1989 if (IsAdd) { 1990 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1991 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1992 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1993 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1994 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1995 IsMinMax(TrueVal, FalseVal)) 1996 return true; 1997 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1998 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1999 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2000 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2001 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 2002 IsMinMax(FalseVal, TrueVal)) 2003 return true; 2004 } else { 2005 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2006 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2007 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) && 2008 IsMinMax(TrueVal, FalseVal)) 2009 return true; 2010 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2011 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2012 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) && 2013 IsMinMax(FalseVal, TrueVal)) 2014 return true; 2015 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2016 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2017 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 2018 IsMinMax(FalseVal, TrueVal)) 2019 return true; 2020 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2021 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2022 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 2023 IsMinMax(TrueVal, FalseVal)) 2024 return true; 2025 } 2026 2027 return false; 2028 }; 2029 2030 Intrinsic::ID NewIntrinsicID; 2031 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow && 2032 match(TrueVal, m_AllOnes())) 2033 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 2034 NewIntrinsicID = Intrinsic::uadd_sat; 2035 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow && 2036 match(TrueVal, m_Zero())) 2037 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y 2038 NewIntrinsicID = Intrinsic::usub_sat; 2039 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow && 2040 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true)) 2041 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2042 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2043 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2044 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2045 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2046 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2047 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2048 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2049 NewIntrinsicID = Intrinsic::sadd_sat; 2050 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow && 2051 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false)) 2052 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2053 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2054 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2055 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2056 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2057 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2058 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2059 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2060 NewIntrinsicID = Intrinsic::ssub_sat; 2061 else 2062 return nullptr; 2063 2064 Function *F = 2065 Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType()); 2066 return CallInst::Create(F, {X, Y}); 2067 } 2068 2069 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) { 2070 Constant *C; 2071 if (!match(Sel.getTrueValue(), m_Constant(C)) && 2072 !match(Sel.getFalseValue(), m_Constant(C))) 2073 return nullptr; 2074 2075 Instruction *ExtInst; 2076 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 2077 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 2078 return nullptr; 2079 2080 auto ExtOpcode = ExtInst->getOpcode(); 2081 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 2082 return nullptr; 2083 2084 // If we are extending from a boolean type or if we can create a select that 2085 // has the same size operands as its condition, try to narrow the select. 2086 Value *X = ExtInst->getOperand(0); 2087 Type *SmallType = X->getType(); 2088 Value *Cond = Sel.getCondition(); 2089 auto *Cmp = dyn_cast<CmpInst>(Cond); 2090 if (!SmallType->isIntOrIntVectorTy(1) && 2091 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 2092 return nullptr; 2093 2094 // If the constant is the same after truncation to the smaller type and 2095 // extension to the original type, we can narrow the select. 2096 Type *SelType = Sel.getType(); 2097 Constant *TruncC = getLosslessTrunc(C, SmallType, ExtOpcode); 2098 if (TruncC && ExtInst->hasOneUse()) { 2099 Value *TruncCVal = cast<Value>(TruncC); 2100 if (ExtInst == Sel.getFalseValue()) 2101 std::swap(X, TruncCVal); 2102 2103 // select Cond, (ext X), C --> ext(select Cond, X, C') 2104 // select Cond, C, (ext X) --> ext(select Cond, C', X) 2105 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 2106 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 2107 } 2108 2109 return nullptr; 2110 } 2111 2112 /// Try to transform a vector select with a constant condition vector into a 2113 /// shuffle for easier combining with other shuffles and insert/extract. 2114 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 2115 Value *CondVal = SI.getCondition(); 2116 Constant *CondC; 2117 auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType()); 2118 if (!CondValTy || !match(CondVal, m_Constant(CondC))) 2119 return nullptr; 2120 2121 unsigned NumElts = CondValTy->getNumElements(); 2122 SmallVector<int, 16> Mask; 2123 Mask.reserve(NumElts); 2124 for (unsigned i = 0; i != NumElts; ++i) { 2125 Constant *Elt = CondC->getAggregateElement(i); 2126 if (!Elt) 2127 return nullptr; 2128 2129 if (Elt->isOneValue()) { 2130 // If the select condition element is true, choose from the 1st vector. 2131 Mask.push_back(i); 2132 } else if (Elt->isNullValue()) { 2133 // If the select condition element is false, choose from the 2nd vector. 2134 Mask.push_back(i + NumElts); 2135 } else if (isa<UndefValue>(Elt)) { 2136 // Undef in a select condition (choose one of the operands) does not mean 2137 // the same thing as undef in a shuffle mask (any value is acceptable), so 2138 // give up. 2139 return nullptr; 2140 } else { 2141 // Bail out on a constant expression. 2142 return nullptr; 2143 } 2144 } 2145 2146 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask); 2147 } 2148 2149 /// If we have a select of vectors with a scalar condition, try to convert that 2150 /// to a vector select by splatting the condition. A splat may get folded with 2151 /// other operations in IR and having all operands of a select be vector types 2152 /// is likely better for vector codegen. 2153 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel, 2154 InstCombinerImpl &IC) { 2155 auto *Ty = dyn_cast<VectorType>(Sel.getType()); 2156 if (!Ty) 2157 return nullptr; 2158 2159 // We can replace a single-use extract with constant index. 2160 Value *Cond = Sel.getCondition(); 2161 if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt())))) 2162 return nullptr; 2163 2164 // select (extelt V, Index), T, F --> select (splat V, Index), T, F 2165 // Splatting the extracted condition reduces code (we could directly create a 2166 // splat shuffle of the source vector to eliminate the intermediate step). 2167 return IC.replaceOperand( 2168 Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond)); 2169 } 2170 2171 /// Reuse bitcasted operands between a compare and select: 2172 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2173 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 2174 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 2175 InstCombiner::BuilderTy &Builder) { 2176 Value *Cond = Sel.getCondition(); 2177 Value *TVal = Sel.getTrueValue(); 2178 Value *FVal = Sel.getFalseValue(); 2179 2180 CmpInst::Predicate Pred; 2181 Value *A, *B; 2182 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 2183 return nullptr; 2184 2185 // The select condition is a compare instruction. If the select's true/false 2186 // values are already the same as the compare operands, there's nothing to do. 2187 if (TVal == A || TVal == B || FVal == A || FVal == B) 2188 return nullptr; 2189 2190 Value *C, *D; 2191 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 2192 return nullptr; 2193 2194 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 2195 Value *TSrc, *FSrc; 2196 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 2197 !match(FVal, m_BitCast(m_Value(FSrc)))) 2198 return nullptr; 2199 2200 // If the select true/false values are *different bitcasts* of the same source 2201 // operands, make the select operands the same as the compare operands and 2202 // cast the result. This is the canonical select form for min/max. 2203 Value *NewSel; 2204 if (TSrc == C && FSrc == D) { 2205 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2206 // bitcast (select (cmp A, B), A, B) 2207 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 2208 } else if (TSrc == D && FSrc == C) { 2209 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 2210 // bitcast (select (cmp A, B), B, A) 2211 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 2212 } else { 2213 return nullptr; 2214 } 2215 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 2216 } 2217 2218 /// Try to eliminate select instructions that test the returned flag of cmpxchg 2219 /// instructions. 2220 /// 2221 /// If a select instruction tests the returned flag of a cmpxchg instruction and 2222 /// selects between the returned value of the cmpxchg instruction its compare 2223 /// operand, the result of the select will always be equal to its false value. 2224 /// For example: 2225 /// 2226 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2227 /// %1 = extractvalue { i64, i1 } %0, 1 2228 /// %2 = extractvalue { i64, i1 } %0, 0 2229 /// %3 = select i1 %1, i64 %compare, i64 %2 2230 /// ret i64 %3 2231 /// 2232 /// The returned value of the cmpxchg instruction (%2) is the original value 2233 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 2234 /// must have been equal to %compare. Thus, the result of the select is always 2235 /// equal to %2, and the code can be simplified to: 2236 /// 2237 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2238 /// %1 = extractvalue { i64, i1 } %0, 0 2239 /// ret i64 %1 2240 /// 2241 static Value *foldSelectCmpXchg(SelectInst &SI) { 2242 // A helper that determines if V is an extractvalue instruction whose 2243 // aggregate operand is a cmpxchg instruction and whose single index is equal 2244 // to I. If such conditions are true, the helper returns the cmpxchg 2245 // instruction; otherwise, a nullptr is returned. 2246 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 2247 auto *Extract = dyn_cast<ExtractValueInst>(V); 2248 if (!Extract) 2249 return nullptr; 2250 if (Extract->getIndices()[0] != I) 2251 return nullptr; 2252 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 2253 }; 2254 2255 // If the select has a single user, and this user is a select instruction that 2256 // we can simplify, skip the cmpxchg simplification for now. 2257 if (SI.hasOneUse()) 2258 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 2259 if (Select->getCondition() == SI.getCondition()) 2260 if (Select->getFalseValue() == SI.getTrueValue() || 2261 Select->getTrueValue() == SI.getFalseValue()) 2262 return nullptr; 2263 2264 // Ensure the select condition is the returned flag of a cmpxchg instruction. 2265 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 2266 if (!CmpXchg) 2267 return nullptr; 2268 2269 // Check the true value case: The true value of the select is the returned 2270 // value of the same cmpxchg used by the condition, and the false value is the 2271 // cmpxchg instruction's compare operand. 2272 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 2273 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) 2274 return SI.getFalseValue(); 2275 2276 // Check the false value case: The false value of the select is the returned 2277 // value of the same cmpxchg used by the condition, and the true value is the 2278 // cmpxchg instruction's compare operand. 2279 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 2280 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) 2281 return SI.getFalseValue(); 2282 2283 return nullptr; 2284 } 2285 2286 /// Try to reduce a funnel/rotate pattern that includes a compare and select 2287 /// into a funnel shift intrinsic. Example: 2288 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 2289 /// --> call llvm.fshl.i32(a, a, b) 2290 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c))) 2291 /// --> call llvm.fshl.i32(a, b, c) 2292 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c))) 2293 /// --> call llvm.fshr.i32(a, b, c) 2294 static Instruction *foldSelectFunnelShift(SelectInst &Sel, 2295 InstCombiner::BuilderTy &Builder) { 2296 // This must be a power-of-2 type for a bitmasking transform to be valid. 2297 unsigned Width = Sel.getType()->getScalarSizeInBits(); 2298 if (!isPowerOf2_32(Width)) 2299 return nullptr; 2300 2301 BinaryOperator *Or0, *Or1; 2302 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 2303 return nullptr; 2304 2305 Value *SV0, *SV1, *SA0, *SA1; 2306 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0), 2307 m_ZExtOrSelf(m_Value(SA0))))) || 2308 !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1), 2309 m_ZExtOrSelf(m_Value(SA1))))) || 2310 Or0->getOpcode() == Or1->getOpcode()) 2311 return nullptr; 2312 2313 // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)). 2314 if (Or0->getOpcode() == BinaryOperator::LShr) { 2315 std::swap(Or0, Or1); 2316 std::swap(SV0, SV1); 2317 std::swap(SA0, SA1); 2318 } 2319 assert(Or0->getOpcode() == BinaryOperator::Shl && 2320 Or1->getOpcode() == BinaryOperator::LShr && 2321 "Illegal or(shift,shift) pair"); 2322 2323 // Check the shift amounts to see if they are an opposite pair. 2324 Value *ShAmt; 2325 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 2326 ShAmt = SA0; 2327 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 2328 ShAmt = SA1; 2329 else 2330 return nullptr; 2331 2332 // We should now have this pattern: 2333 // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1)) 2334 // The false value of the select must be a funnel-shift of the true value: 2335 // IsFShl -> TVal must be SV0 else TVal must be SV1. 2336 bool IsFshl = (ShAmt == SA0); 2337 Value *TVal = Sel.getTrueValue(); 2338 if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1)) 2339 return nullptr; 2340 2341 // Finally, see if the select is filtering out a shift-by-zero. 2342 Value *Cond = Sel.getCondition(); 2343 ICmpInst::Predicate Pred; 2344 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || 2345 Pred != ICmpInst::ICMP_EQ) 2346 return nullptr; 2347 2348 // If this is not a rotate then the select was blocking poison from the 2349 // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it. 2350 if (SV0 != SV1) { 2351 if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1)) 2352 SV1 = Builder.CreateFreeze(SV1); 2353 else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0)) 2354 SV0 = Builder.CreateFreeze(SV0); 2355 } 2356 2357 // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way. 2358 // Convert to funnel shift intrinsic. 2359 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 2360 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); 2361 ShAmt = Builder.CreateZExt(ShAmt, Sel.getType()); 2362 return CallInst::Create(F, { SV0, SV1, ShAmt }); 2363 } 2364 2365 static Instruction *foldSelectToCopysign(SelectInst &Sel, 2366 InstCombiner::BuilderTy &Builder) { 2367 Value *Cond = Sel.getCondition(); 2368 Value *TVal = Sel.getTrueValue(); 2369 Value *FVal = Sel.getFalseValue(); 2370 Type *SelType = Sel.getType(); 2371 2372 if (ICmpInst::makeCmpResultType(TVal->getType()) != Cond->getType()) 2373 return nullptr; 2374 2375 // Match select ?, TC, FC where the constants are equal but negated. 2376 // TODO: Generalize to handle a negated variable operand? 2377 const APFloat *TC, *FC; 2378 if (!match(TVal, m_APFloatAllowUndef(TC)) || 2379 !match(FVal, m_APFloatAllowUndef(FC)) || 2380 !abs(*TC).bitwiseIsEqual(abs(*FC))) 2381 return nullptr; 2382 2383 assert(TC != FC && "Expected equal select arms to simplify"); 2384 2385 Value *X; 2386 const APInt *C; 2387 bool IsTrueIfSignSet; 2388 ICmpInst::Predicate Pred; 2389 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) || 2390 !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) || 2391 X->getType() != SelType) 2392 return nullptr; 2393 2394 // If needed, negate the value that will be the sign argument of the copysign: 2395 // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X) 2396 // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X) 2397 // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X) 2398 // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X) 2399 // Note: FMF from the select can not be propagated to the new instructions. 2400 if (IsTrueIfSignSet ^ TC->isNegative()) 2401 X = Builder.CreateFNeg(X); 2402 2403 // Canonicalize the magnitude argument as the positive constant since we do 2404 // not care about its sign. 2405 Value *MagArg = ConstantFP::get(SelType, abs(*TC)); 2406 Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign, 2407 Sel.getType()); 2408 return CallInst::Create(F, { MagArg, X }); 2409 } 2410 2411 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) { 2412 if (!isa<VectorType>(Sel.getType())) 2413 return nullptr; 2414 2415 Value *Cond = Sel.getCondition(); 2416 Value *TVal = Sel.getTrueValue(); 2417 Value *FVal = Sel.getFalseValue(); 2418 Value *C, *X, *Y; 2419 2420 if (match(Cond, m_VecReverse(m_Value(C)))) { 2421 auto createSelReverse = [&](Value *C, Value *X, Value *Y) { 2422 Value *V = Builder.CreateSelect(C, X, Y, Sel.getName(), &Sel); 2423 if (auto *I = dyn_cast<Instruction>(V)) 2424 I->copyIRFlags(&Sel); 2425 Module *M = Sel.getModule(); 2426 Function *F = Intrinsic::getDeclaration( 2427 M, Intrinsic::experimental_vector_reverse, V->getType()); 2428 return CallInst::Create(F, V); 2429 }; 2430 2431 if (match(TVal, m_VecReverse(m_Value(X)))) { 2432 // select rev(C), rev(X), rev(Y) --> rev(select C, X, Y) 2433 if (match(FVal, m_VecReverse(m_Value(Y))) && 2434 (Cond->hasOneUse() || TVal->hasOneUse() || FVal->hasOneUse())) 2435 return createSelReverse(C, X, Y); 2436 2437 // select rev(C), rev(X), FValSplat --> rev(select C, X, FValSplat) 2438 if ((Cond->hasOneUse() || TVal->hasOneUse()) && isSplatValue(FVal)) 2439 return createSelReverse(C, X, FVal); 2440 } 2441 // select rev(C), TValSplat, rev(Y) --> rev(select C, TValSplat, Y) 2442 else if (isSplatValue(TVal) && match(FVal, m_VecReverse(m_Value(Y))) && 2443 (Cond->hasOneUse() || FVal->hasOneUse())) 2444 return createSelReverse(C, TVal, Y); 2445 } 2446 2447 auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType()); 2448 if (!VecTy) 2449 return nullptr; 2450 2451 unsigned NumElts = VecTy->getNumElements(); 2452 APInt PoisonElts(NumElts, 0); 2453 APInt AllOnesEltMask(APInt::getAllOnes(NumElts)); 2454 if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, PoisonElts)) { 2455 if (V != &Sel) 2456 return replaceInstUsesWith(Sel, V); 2457 return &Sel; 2458 } 2459 2460 // A select of a "select shuffle" with a common operand can be rearranged 2461 // to select followed by "select shuffle". Because of poison, this only works 2462 // in the case of a shuffle with no undefined mask elements. 2463 ArrayRef<int> Mask; 2464 if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2465 !is_contained(Mask, PoisonMaskElem) && 2466 cast<ShuffleVectorInst>(TVal)->isSelect()) { 2467 if (X == FVal) { 2468 // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X) 2469 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2470 return new ShuffleVectorInst(X, NewSel, Mask); 2471 } 2472 if (Y == FVal) { 2473 // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y 2474 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2475 return new ShuffleVectorInst(NewSel, Y, Mask); 2476 } 2477 } 2478 if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2479 !is_contained(Mask, PoisonMaskElem) && 2480 cast<ShuffleVectorInst>(FVal)->isSelect()) { 2481 if (X == TVal) { 2482 // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y) 2483 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2484 return new ShuffleVectorInst(X, NewSel, Mask); 2485 } 2486 if (Y == TVal) { 2487 // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y 2488 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2489 return new ShuffleVectorInst(NewSel, Y, Mask); 2490 } 2491 } 2492 2493 return nullptr; 2494 } 2495 2496 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB, 2497 const DominatorTree &DT, 2498 InstCombiner::BuilderTy &Builder) { 2499 // Find the block's immediate dominator that ends with a conditional branch 2500 // that matches select's condition (maybe inverted). 2501 auto *IDomNode = DT[BB]->getIDom(); 2502 if (!IDomNode) 2503 return nullptr; 2504 BasicBlock *IDom = IDomNode->getBlock(); 2505 2506 Value *Cond = Sel.getCondition(); 2507 Value *IfTrue, *IfFalse; 2508 BasicBlock *TrueSucc, *FalseSucc; 2509 if (match(IDom->getTerminator(), 2510 m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc), 2511 m_BasicBlock(FalseSucc)))) { 2512 IfTrue = Sel.getTrueValue(); 2513 IfFalse = Sel.getFalseValue(); 2514 } else if (match(IDom->getTerminator(), 2515 m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc), 2516 m_BasicBlock(FalseSucc)))) { 2517 IfTrue = Sel.getFalseValue(); 2518 IfFalse = Sel.getTrueValue(); 2519 } else 2520 return nullptr; 2521 2522 // Make sure the branches are actually different. 2523 if (TrueSucc == FalseSucc) 2524 return nullptr; 2525 2526 // We want to replace select %cond, %a, %b with a phi that takes value %a 2527 // for all incoming edges that are dominated by condition `%cond == true`, 2528 // and value %b for edges dominated by condition `%cond == false`. If %a 2529 // or %b are also phis from the same basic block, we can go further and take 2530 // their incoming values from the corresponding blocks. 2531 BasicBlockEdge TrueEdge(IDom, TrueSucc); 2532 BasicBlockEdge FalseEdge(IDom, FalseSucc); 2533 DenseMap<BasicBlock *, Value *> Inputs; 2534 for (auto *Pred : predecessors(BB)) { 2535 // Check implication. 2536 BasicBlockEdge Incoming(Pred, BB); 2537 if (DT.dominates(TrueEdge, Incoming)) 2538 Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred); 2539 else if (DT.dominates(FalseEdge, Incoming)) 2540 Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred); 2541 else 2542 return nullptr; 2543 // Check availability. 2544 if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred])) 2545 if (!DT.dominates(Insn, Pred->getTerminator())) 2546 return nullptr; 2547 } 2548 2549 Builder.SetInsertPoint(BB, BB->begin()); 2550 auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size()); 2551 for (auto *Pred : predecessors(BB)) 2552 PN->addIncoming(Inputs[Pred], Pred); 2553 PN->takeName(&Sel); 2554 return PN; 2555 } 2556 2557 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT, 2558 InstCombiner::BuilderTy &Builder) { 2559 // Try to replace this select with Phi in one of these blocks. 2560 SmallSetVector<BasicBlock *, 4> CandidateBlocks; 2561 CandidateBlocks.insert(Sel.getParent()); 2562 for (Value *V : Sel.operands()) 2563 if (auto *I = dyn_cast<Instruction>(V)) 2564 CandidateBlocks.insert(I->getParent()); 2565 2566 for (BasicBlock *BB : CandidateBlocks) 2567 if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder)) 2568 return PN; 2569 return nullptr; 2570 } 2571 2572 /// Tries to reduce a pattern that arises when calculating the remainder of the 2573 /// Euclidean division. When the divisor is a power of two and is guaranteed not 2574 /// to be negative, a signed remainder can be folded with a bitwise and. 2575 /// 2576 /// (x % n) < 0 ? (x % n) + n : (x % n) 2577 /// -> x & (n - 1) 2578 static Instruction *foldSelectWithSRem(SelectInst &SI, InstCombinerImpl &IC, 2579 IRBuilderBase &Builder) { 2580 Value *CondVal = SI.getCondition(); 2581 Value *TrueVal = SI.getTrueValue(); 2582 Value *FalseVal = SI.getFalseValue(); 2583 2584 ICmpInst::Predicate Pred; 2585 Value *Op, *RemRes, *Remainder; 2586 const APInt *C; 2587 bool TrueIfSigned = false; 2588 2589 if (!(match(CondVal, m_ICmp(Pred, m_Value(RemRes), m_APInt(C))) && 2590 IC.isSignBitCheck(Pred, *C, TrueIfSigned))) 2591 return nullptr; 2592 2593 // If the sign bit is not set, we have a SGE/SGT comparison, and the operands 2594 // of the select are inverted. 2595 if (!TrueIfSigned) 2596 std::swap(TrueVal, FalseVal); 2597 2598 auto FoldToBitwiseAnd = [&](Value *Remainder) -> Instruction * { 2599 Value *Add = Builder.CreateAdd( 2600 Remainder, Constant::getAllOnesValue(RemRes->getType())); 2601 return BinaryOperator::CreateAnd(Op, Add); 2602 }; 2603 2604 // Match the general case: 2605 // %rem = srem i32 %x, %n 2606 // %cnd = icmp slt i32 %rem, 0 2607 // %add = add i32 %rem, %n 2608 // %sel = select i1 %cnd, i32 %add, i32 %rem 2609 if (match(TrueVal, m_Add(m_Specific(RemRes), m_Value(Remainder))) && 2610 match(RemRes, m_SRem(m_Value(Op), m_Specific(Remainder))) && 2611 IC.isKnownToBeAPowerOfTwo(Remainder, /*OrZero*/ true) && 2612 FalseVal == RemRes) 2613 return FoldToBitwiseAnd(Remainder); 2614 2615 // Match the case where the one arm has been replaced by constant 1: 2616 // %rem = srem i32 %n, 2 2617 // %cnd = icmp slt i32 %rem, 0 2618 // %sel = select i1 %cnd, i32 1, i32 %rem 2619 if (match(TrueVal, m_One()) && 2620 match(RemRes, m_SRem(m_Value(Op), m_SpecificInt(2))) && 2621 FalseVal == RemRes) 2622 return FoldToBitwiseAnd(ConstantInt::get(RemRes->getType(), 2)); 2623 2624 return nullptr; 2625 } 2626 2627 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) { 2628 FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition()); 2629 if (!FI) 2630 return nullptr; 2631 2632 Value *Cond = FI->getOperand(0); 2633 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 2634 2635 // select (freeze(x == y)), x, y --> y 2636 // select (freeze(x != y)), x, y --> x 2637 // The freeze should be only used by this select. Otherwise, remaining uses of 2638 // the freeze can observe a contradictory value. 2639 // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1 2640 // a = select c, x, y ; 2641 // f(a, c) ; f(poison, 1) cannot happen, but if a is folded 2642 // ; to y, this can happen. 2643 CmpInst::Predicate Pred; 2644 if (FI->hasOneUse() && 2645 match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) && 2646 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) { 2647 return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal; 2648 } 2649 2650 return nullptr; 2651 } 2652 2653 Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op, 2654 SelectInst &SI, 2655 bool IsAnd) { 2656 Value *CondVal = SI.getCondition(); 2657 Value *A = SI.getTrueValue(); 2658 Value *B = SI.getFalseValue(); 2659 2660 assert(Op->getType()->isIntOrIntVectorTy(1) && 2661 "Op must be either i1 or vector of i1."); 2662 2663 std::optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd); 2664 if (!Res) 2665 return nullptr; 2666 2667 Value *Zero = Constant::getNullValue(A->getType()); 2668 Value *One = Constant::getAllOnesValue(A->getType()); 2669 2670 if (*Res == true) { 2671 if (IsAnd) 2672 // select op, (select cond, A, B), false => select op, A, false 2673 // and op, (select cond, A, B) => select op, A, false 2674 // if op = true implies condval = true. 2675 return SelectInst::Create(Op, A, Zero); 2676 else 2677 // select op, true, (select cond, A, B) => select op, true, A 2678 // or op, (select cond, A, B) => select op, true, A 2679 // if op = false implies condval = true. 2680 return SelectInst::Create(Op, One, A); 2681 } else { 2682 if (IsAnd) 2683 // select op, (select cond, A, B), false => select op, B, false 2684 // and op, (select cond, A, B) => select op, B, false 2685 // if op = true implies condval = false. 2686 return SelectInst::Create(Op, B, Zero); 2687 else 2688 // select op, true, (select cond, A, B) => select op, true, B 2689 // or op, (select cond, A, B) => select op, true, B 2690 // if op = false implies condval = false. 2691 return SelectInst::Create(Op, One, B); 2692 } 2693 } 2694 2695 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 2696 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. 2697 static Instruction *foldSelectWithFCmpToFabs(SelectInst &SI, 2698 InstCombinerImpl &IC) { 2699 Value *CondVal = SI.getCondition(); 2700 2701 bool ChangedFMF = false; 2702 for (bool Swap : {false, true}) { 2703 Value *TrueVal = SI.getTrueValue(); 2704 Value *X = SI.getFalseValue(); 2705 CmpInst::Predicate Pred; 2706 2707 if (Swap) 2708 std::swap(TrueVal, X); 2709 2710 if (!match(CondVal, m_FCmp(Pred, m_Specific(X), m_AnyZeroFP()))) 2711 continue; 2712 2713 // fold (X <= +/-0.0) ? (0.0 - X) : X to fabs(X), when 'Swap' is false 2714 // fold (X > +/-0.0) ? X : (0.0 - X) to fabs(X), when 'Swap' is true 2715 if (match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) { 2716 if (!Swap && (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) { 2717 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); 2718 return IC.replaceInstUsesWith(SI, Fabs); 2719 } 2720 if (Swap && (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) { 2721 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); 2722 return IC.replaceInstUsesWith(SI, Fabs); 2723 } 2724 } 2725 2726 if (!match(TrueVal, m_FNeg(m_Specific(X)))) 2727 return nullptr; 2728 2729 // Forward-propagate nnan and ninf from the fneg to the select. 2730 // If all inputs are not those values, then the select is not either. 2731 // Note: nsz is defined differently, so it may not be correct to propagate. 2732 FastMathFlags FMF = cast<FPMathOperator>(TrueVal)->getFastMathFlags(); 2733 if (FMF.noNaNs() && !SI.hasNoNaNs()) { 2734 SI.setHasNoNaNs(true); 2735 ChangedFMF = true; 2736 } 2737 if (FMF.noInfs() && !SI.hasNoInfs()) { 2738 SI.setHasNoInfs(true); 2739 ChangedFMF = true; 2740 } 2741 2742 // With nsz, when 'Swap' is false: 2743 // fold (X < +/-0.0) ? -X : X or (X <= +/-0.0) ? -X : X to fabs(X) 2744 // fold (X > +/-0.0) ? -X : X or (X >= +/-0.0) ? -X : X to -fabs(x) 2745 // when 'Swap' is true: 2746 // fold (X > +/-0.0) ? X : -X or (X >= +/-0.0) ? X : -X to fabs(X) 2747 // fold (X < +/-0.0) ? X : -X or (X <= +/-0.0) ? X : -X to -fabs(X) 2748 // 2749 // Note: We require "nnan" for this fold because fcmp ignores the signbit 2750 // of NAN, but IEEE-754 specifies the signbit of NAN values with 2751 // fneg/fabs operations. 2752 if (!SI.hasNoSignedZeros() || !SI.hasNoNaNs()) 2753 return nullptr; 2754 2755 if (Swap) 2756 Pred = FCmpInst::getSwappedPredicate(Pred); 2757 2758 bool IsLTOrLE = Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE || 2759 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE; 2760 bool IsGTOrGE = Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE || 2761 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE; 2762 2763 if (IsLTOrLE) { 2764 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); 2765 return IC.replaceInstUsesWith(SI, Fabs); 2766 } 2767 if (IsGTOrGE) { 2768 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); 2769 Instruction *NewFNeg = UnaryOperator::CreateFNeg(Fabs); 2770 NewFNeg->setFastMathFlags(SI.getFastMathFlags()); 2771 return NewFNeg; 2772 } 2773 } 2774 2775 return ChangedFMF ? &SI : nullptr; 2776 } 2777 2778 // Match the following IR pattern: 2779 // %x.lowbits = and i8 %x, %lowbitmask 2780 // %x.lowbits.are.zero = icmp eq i8 %x.lowbits, 0 2781 // %x.biased = add i8 %x, %bias 2782 // %x.biased.highbits = and i8 %x.biased, %highbitmask 2783 // %x.roundedup = select i1 %x.lowbits.are.zero, i8 %x, i8 %x.biased.highbits 2784 // Define: 2785 // %alignment = add i8 %lowbitmask, 1 2786 // Iff 1. an %alignment is a power-of-two (aka, %lowbitmask is a low bit mask) 2787 // and 2. %bias is equal to either %lowbitmask or %alignment, 2788 // and 3. %highbitmask is equal to ~%lowbitmask (aka, to -%alignment) 2789 // then this pattern can be transformed into: 2790 // %x.offset = add i8 %x, %lowbitmask 2791 // %x.roundedup = and i8 %x.offset, %highbitmask 2792 static Value * 2793 foldRoundUpIntegerWithPow2Alignment(SelectInst &SI, 2794 InstCombiner::BuilderTy &Builder) { 2795 Value *Cond = SI.getCondition(); 2796 Value *X = SI.getTrueValue(); 2797 Value *XBiasedHighBits = SI.getFalseValue(); 2798 2799 ICmpInst::Predicate Pred; 2800 Value *XLowBits; 2801 if (!match(Cond, m_ICmp(Pred, m_Value(XLowBits), m_ZeroInt())) || 2802 !ICmpInst::isEquality(Pred)) 2803 return nullptr; 2804 2805 if (Pred == ICmpInst::Predicate::ICMP_NE) 2806 std::swap(X, XBiasedHighBits); 2807 2808 // FIXME: we could support non non-splats here. 2809 2810 const APInt *LowBitMaskCst; 2811 if (!match(XLowBits, m_And(m_Specific(X), m_APIntAllowUndef(LowBitMaskCst)))) 2812 return nullptr; 2813 2814 // Match even if the AND and ADD are swapped. 2815 const APInt *BiasCst, *HighBitMaskCst; 2816 if (!match(XBiasedHighBits, 2817 m_And(m_Add(m_Specific(X), m_APIntAllowUndef(BiasCst)), 2818 m_APIntAllowUndef(HighBitMaskCst))) && 2819 !match(XBiasedHighBits, 2820 m_Add(m_And(m_Specific(X), m_APIntAllowUndef(HighBitMaskCst)), 2821 m_APIntAllowUndef(BiasCst)))) 2822 return nullptr; 2823 2824 if (!LowBitMaskCst->isMask()) 2825 return nullptr; 2826 2827 APInt InvertedLowBitMaskCst = ~*LowBitMaskCst; 2828 if (InvertedLowBitMaskCst != *HighBitMaskCst) 2829 return nullptr; 2830 2831 APInt AlignmentCst = *LowBitMaskCst + 1; 2832 2833 if (*BiasCst != AlignmentCst && *BiasCst != *LowBitMaskCst) 2834 return nullptr; 2835 2836 if (!XBiasedHighBits->hasOneUse()) { 2837 if (*BiasCst == *LowBitMaskCst) 2838 return XBiasedHighBits; 2839 return nullptr; 2840 } 2841 2842 // FIXME: could we preserve undef's here? 2843 Type *Ty = X->getType(); 2844 Value *XOffset = Builder.CreateAdd(X, ConstantInt::get(Ty, *LowBitMaskCst), 2845 X->getName() + ".biased"); 2846 Value *R = Builder.CreateAnd(XOffset, ConstantInt::get(Ty, *HighBitMaskCst)); 2847 R->takeName(&SI); 2848 return R; 2849 } 2850 2851 namespace { 2852 struct DecomposedSelect { 2853 Value *Cond = nullptr; 2854 Value *TrueVal = nullptr; 2855 Value *FalseVal = nullptr; 2856 }; 2857 } // namespace 2858 2859 /// Look for patterns like 2860 /// %outer.cond = select i1 %inner.cond, i1 %alt.cond, i1 false 2861 /// %inner.sel = select i1 %inner.cond, i8 %inner.sel.t, i8 %inner.sel.f 2862 /// %outer.sel = select i1 %outer.cond, i8 %outer.sel.t, i8 %inner.sel 2863 /// and rewrite it as 2864 /// %inner.sel = select i1 %cond.alternative, i8 %sel.outer.t, i8 %sel.inner.t 2865 /// %sel.outer = select i1 %cond.inner, i8 %inner.sel, i8 %sel.inner.f 2866 static Instruction *foldNestedSelects(SelectInst &OuterSelVal, 2867 InstCombiner::BuilderTy &Builder) { 2868 // We must start with a `select`. 2869 DecomposedSelect OuterSel; 2870 match(&OuterSelVal, 2871 m_Select(m_Value(OuterSel.Cond), m_Value(OuterSel.TrueVal), 2872 m_Value(OuterSel.FalseVal))); 2873 2874 // Canonicalize inversion of the outermost `select`'s condition. 2875 if (match(OuterSel.Cond, m_Not(m_Value(OuterSel.Cond)))) 2876 std::swap(OuterSel.TrueVal, OuterSel.FalseVal); 2877 2878 // The condition of the outermost select must be an `and`/`or`. 2879 if (!match(OuterSel.Cond, m_c_LogicalOp(m_Value(), m_Value()))) 2880 return nullptr; 2881 2882 // Depending on the logical op, inner select might be in different hand. 2883 bool IsAndVariant = match(OuterSel.Cond, m_LogicalAnd()); 2884 Value *InnerSelVal = IsAndVariant ? OuterSel.FalseVal : OuterSel.TrueVal; 2885 2886 // Profitability check - avoid increasing instruction count. 2887 if (none_of(ArrayRef<Value *>({OuterSelVal.getCondition(), InnerSelVal}), 2888 [](Value *V) { return V->hasOneUse(); })) 2889 return nullptr; 2890 2891 // The appropriate hand of the outermost `select` must be a select itself. 2892 DecomposedSelect InnerSel; 2893 if (!match(InnerSelVal, 2894 m_Select(m_Value(InnerSel.Cond), m_Value(InnerSel.TrueVal), 2895 m_Value(InnerSel.FalseVal)))) 2896 return nullptr; 2897 2898 // Canonicalize inversion of the innermost `select`'s condition. 2899 if (match(InnerSel.Cond, m_Not(m_Value(InnerSel.Cond)))) 2900 std::swap(InnerSel.TrueVal, InnerSel.FalseVal); 2901 2902 Value *AltCond = nullptr; 2903 auto matchOuterCond = [OuterSel, IsAndVariant, &AltCond](auto m_InnerCond) { 2904 // An unsimplified select condition can match both LogicalAnd and LogicalOr 2905 // (select true, true, false). Since below we assume that LogicalAnd implies 2906 // InnerSel match the FVal and vice versa for LogicalOr, we can't match the 2907 // alternative pattern here. 2908 return IsAndVariant ? match(OuterSel.Cond, 2909 m_c_LogicalAnd(m_InnerCond, m_Value(AltCond))) 2910 : match(OuterSel.Cond, 2911 m_c_LogicalOr(m_InnerCond, m_Value(AltCond))); 2912 }; 2913 2914 // Finally, match the condition that was driving the outermost `select`, 2915 // it should be a logical operation between the condition that was driving 2916 // the innermost `select` (after accounting for the possible inversions 2917 // of the condition), and some other condition. 2918 if (matchOuterCond(m_Specific(InnerSel.Cond))) { 2919 // Done! 2920 } else if (Value * NotInnerCond; matchOuterCond(m_CombineAnd( 2921 m_Not(m_Specific(InnerSel.Cond)), m_Value(NotInnerCond)))) { 2922 // Done! 2923 std::swap(InnerSel.TrueVal, InnerSel.FalseVal); 2924 InnerSel.Cond = NotInnerCond; 2925 } else // Not the pattern we were looking for. 2926 return nullptr; 2927 2928 Value *SelInner = Builder.CreateSelect( 2929 AltCond, IsAndVariant ? OuterSel.TrueVal : InnerSel.FalseVal, 2930 IsAndVariant ? InnerSel.TrueVal : OuterSel.FalseVal); 2931 SelInner->takeName(InnerSelVal); 2932 return SelectInst::Create(InnerSel.Cond, 2933 IsAndVariant ? SelInner : InnerSel.TrueVal, 2934 !IsAndVariant ? SelInner : InnerSel.FalseVal); 2935 } 2936 2937 Instruction *InstCombinerImpl::foldSelectOfBools(SelectInst &SI) { 2938 Value *CondVal = SI.getCondition(); 2939 Value *TrueVal = SI.getTrueValue(); 2940 Value *FalseVal = SI.getFalseValue(); 2941 Type *SelType = SI.getType(); 2942 2943 // Avoid potential infinite loops by checking for non-constant condition. 2944 // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()? 2945 // Scalar select must have simplified? 2946 if (!SelType->isIntOrIntVectorTy(1) || isa<Constant>(CondVal) || 2947 TrueVal->getType() != CondVal->getType()) 2948 return nullptr; 2949 2950 auto *One = ConstantInt::getTrue(SelType); 2951 auto *Zero = ConstantInt::getFalse(SelType); 2952 Value *A, *B, *C, *D; 2953 2954 // Folding select to and/or i1 isn't poison safe in general. impliesPoison 2955 // checks whether folding it does not convert a well-defined value into 2956 // poison. 2957 if (match(TrueVal, m_One())) { 2958 if (impliesPoison(FalseVal, CondVal)) { 2959 // Change: A = select B, true, C --> A = or B, C 2960 return BinaryOperator::CreateOr(CondVal, FalseVal); 2961 } 2962 2963 if (auto *LHS = dyn_cast<FCmpInst>(CondVal)) 2964 if (auto *RHS = dyn_cast<FCmpInst>(FalseVal)) 2965 if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ false, 2966 /*IsSelectLogical*/ true)) 2967 return replaceInstUsesWith(SI, V); 2968 2969 // (A && B) || (C && B) --> (A || C) && B 2970 if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) && 2971 match(FalseVal, m_LogicalAnd(m_Value(C), m_Value(D))) && 2972 (CondVal->hasOneUse() || FalseVal->hasOneUse())) { 2973 bool CondLogicAnd = isa<SelectInst>(CondVal); 2974 bool FalseLogicAnd = isa<SelectInst>(FalseVal); 2975 auto AndFactorization = [&](Value *Common, Value *InnerCond, 2976 Value *InnerVal, 2977 bool SelFirst = false) -> Instruction * { 2978 Value *InnerSel = Builder.CreateSelect(InnerCond, One, InnerVal); 2979 if (SelFirst) 2980 std::swap(Common, InnerSel); 2981 if (FalseLogicAnd || (CondLogicAnd && Common == A)) 2982 return SelectInst::Create(Common, InnerSel, Zero); 2983 else 2984 return BinaryOperator::CreateAnd(Common, InnerSel); 2985 }; 2986 2987 if (A == C) 2988 return AndFactorization(A, B, D); 2989 if (A == D) 2990 return AndFactorization(A, B, C); 2991 if (B == C) 2992 return AndFactorization(B, A, D); 2993 if (B == D) 2994 return AndFactorization(B, A, C, CondLogicAnd && FalseLogicAnd); 2995 } 2996 } 2997 2998 if (match(FalseVal, m_Zero())) { 2999 if (impliesPoison(TrueVal, CondVal)) { 3000 // Change: A = select B, C, false --> A = and B, C 3001 return BinaryOperator::CreateAnd(CondVal, TrueVal); 3002 } 3003 3004 if (auto *LHS = dyn_cast<FCmpInst>(CondVal)) 3005 if (auto *RHS = dyn_cast<FCmpInst>(TrueVal)) 3006 if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ true, 3007 /*IsSelectLogical*/ true)) 3008 return replaceInstUsesWith(SI, V); 3009 3010 // (A || B) && (C || B) --> (A && C) || B 3011 if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) && 3012 match(TrueVal, m_LogicalOr(m_Value(C), m_Value(D))) && 3013 (CondVal->hasOneUse() || TrueVal->hasOneUse())) { 3014 bool CondLogicOr = isa<SelectInst>(CondVal); 3015 bool TrueLogicOr = isa<SelectInst>(TrueVal); 3016 auto OrFactorization = [&](Value *Common, Value *InnerCond, 3017 Value *InnerVal, 3018 bool SelFirst = false) -> Instruction * { 3019 Value *InnerSel = Builder.CreateSelect(InnerCond, InnerVal, Zero); 3020 if (SelFirst) 3021 std::swap(Common, InnerSel); 3022 if (TrueLogicOr || (CondLogicOr && Common == A)) 3023 return SelectInst::Create(Common, One, InnerSel); 3024 else 3025 return BinaryOperator::CreateOr(Common, InnerSel); 3026 }; 3027 3028 if (A == C) 3029 return OrFactorization(A, B, D); 3030 if (A == D) 3031 return OrFactorization(A, B, C); 3032 if (B == C) 3033 return OrFactorization(B, A, D); 3034 if (B == D) 3035 return OrFactorization(B, A, C, CondLogicOr && TrueLogicOr); 3036 } 3037 } 3038 3039 // We match the "full" 0 or 1 constant here to avoid a potential infinite 3040 // loop with vectors that may have undefined/poison elements. 3041 // select a, false, b -> select !a, b, false 3042 if (match(TrueVal, m_Specific(Zero))) { 3043 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 3044 return SelectInst::Create(NotCond, FalseVal, Zero); 3045 } 3046 // select a, b, true -> select !a, true, b 3047 if (match(FalseVal, m_Specific(One))) { 3048 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 3049 return SelectInst::Create(NotCond, One, TrueVal); 3050 } 3051 3052 // DeMorgan in select form: !a && !b --> !(a || b) 3053 // select !a, !b, false --> not (select a, true, b) 3054 if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) && 3055 (CondVal->hasOneUse() || TrueVal->hasOneUse()) && 3056 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr())) 3057 return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B)); 3058 3059 // DeMorgan in select form: !a || !b --> !(a && b) 3060 // select !a, true, !b --> not (select a, b, false) 3061 if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) && 3062 (CondVal->hasOneUse() || FalseVal->hasOneUse()) && 3063 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr())) 3064 return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero)); 3065 3066 // select (select a, true, b), true, b -> select a, true, b 3067 if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 3068 match(TrueVal, m_One()) && match(FalseVal, m_Specific(B))) 3069 return replaceOperand(SI, 0, A); 3070 // select (select a, b, false), b, false -> select a, b, false 3071 if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) && 3072 match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero())) 3073 return replaceOperand(SI, 0, A); 3074 3075 // ~(A & B) & (A | B) --> A ^ B 3076 if (match(&SI, m_c_LogicalAnd(m_Not(m_LogicalAnd(m_Value(A), m_Value(B))), 3077 m_c_LogicalOr(m_Deferred(A), m_Deferred(B))))) 3078 return BinaryOperator::CreateXor(A, B); 3079 3080 // select (~a | c), a, b -> select a, (select c, true, b), false 3081 if (match(CondVal, 3082 m_OneUse(m_c_Or(m_Not(m_Specific(TrueVal)), m_Value(C))))) { 3083 Value *OrV = Builder.CreateSelect(C, One, FalseVal); 3084 return SelectInst::Create(TrueVal, OrV, Zero); 3085 } 3086 // select (c & b), a, b -> select b, (select ~c, true, a), false 3087 if (match(CondVal, m_OneUse(m_c_And(m_Value(C), m_Specific(FalseVal))))) { 3088 if (Value *NotC = getFreelyInverted(C, C->hasOneUse(), &Builder)) { 3089 Value *OrV = Builder.CreateSelect(NotC, One, TrueVal); 3090 return SelectInst::Create(FalseVal, OrV, Zero); 3091 } 3092 } 3093 // select (a | c), a, b -> select a, true, (select ~c, b, false) 3094 if (match(CondVal, m_OneUse(m_c_Or(m_Specific(TrueVal), m_Value(C))))) { 3095 if (Value *NotC = getFreelyInverted(C, C->hasOneUse(), &Builder)) { 3096 Value *AndV = Builder.CreateSelect(NotC, FalseVal, Zero); 3097 return SelectInst::Create(TrueVal, One, AndV); 3098 } 3099 } 3100 // select (c & ~b), a, b -> select b, true, (select c, a, false) 3101 if (match(CondVal, 3102 m_OneUse(m_c_And(m_Value(C), m_Not(m_Specific(FalseVal)))))) { 3103 Value *AndV = Builder.CreateSelect(C, TrueVal, Zero); 3104 return SelectInst::Create(FalseVal, One, AndV); 3105 } 3106 3107 if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) { 3108 Use *Y = nullptr; 3109 bool IsAnd = match(FalseVal, m_Zero()) ? true : false; 3110 Value *Op1 = IsAnd ? TrueVal : FalseVal; 3111 if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) { 3112 auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr"); 3113 InsertNewInstBefore(FI, cast<Instruction>(Y->getUser())->getIterator()); 3114 replaceUse(*Y, FI); 3115 return replaceInstUsesWith(SI, Op1); 3116 } 3117 3118 if (auto *Op1SI = dyn_cast<SelectInst>(Op1)) 3119 if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI, 3120 /* IsAnd */ IsAnd)) 3121 return I; 3122 3123 if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal)) 3124 if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1)) 3125 if (auto *V = foldAndOrOfICmps(ICmp0, ICmp1, SI, IsAnd, 3126 /* IsLogical */ true)) 3127 return replaceInstUsesWith(SI, V); 3128 } 3129 3130 // select (a || b), c, false -> select a, c, false 3131 // select c, (a || b), false -> select c, a, false 3132 // if c implies that b is false. 3133 if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) && 3134 match(FalseVal, m_Zero())) { 3135 std::optional<bool> Res = isImpliedCondition(TrueVal, B, DL); 3136 if (Res && *Res == false) 3137 return replaceOperand(SI, 0, A); 3138 } 3139 if (match(TrueVal, m_LogicalOr(m_Value(A), m_Value(B))) && 3140 match(FalseVal, m_Zero())) { 3141 std::optional<bool> Res = isImpliedCondition(CondVal, B, DL); 3142 if (Res && *Res == false) 3143 return replaceOperand(SI, 1, A); 3144 } 3145 // select c, true, (a && b) -> select c, true, a 3146 // select (a && b), true, c -> select a, true, c 3147 // if c = false implies that b = true 3148 if (match(TrueVal, m_One()) && 3149 match(FalseVal, m_LogicalAnd(m_Value(A), m_Value(B)))) { 3150 std::optional<bool> Res = isImpliedCondition(CondVal, B, DL, false); 3151 if (Res && *Res == true) 3152 return replaceOperand(SI, 2, A); 3153 } 3154 if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) && 3155 match(TrueVal, m_One())) { 3156 std::optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false); 3157 if (Res && *Res == true) 3158 return replaceOperand(SI, 0, A); 3159 } 3160 3161 if (match(TrueVal, m_One())) { 3162 Value *C; 3163 3164 // (C && A) || (!C && B) --> sel C, A, B 3165 // (A && C) || (!C && B) --> sel C, A, B 3166 // (C && A) || (B && !C) --> sel C, A, B 3167 // (A && C) || (B && !C) --> sel C, A, B (may require freeze) 3168 if (match(FalseVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(B))) && 3169 match(CondVal, m_c_LogicalAnd(m_Specific(C), m_Value(A)))) { 3170 auto *SelCond = dyn_cast<SelectInst>(CondVal); 3171 auto *SelFVal = dyn_cast<SelectInst>(FalseVal); 3172 bool MayNeedFreeze = SelCond && SelFVal && 3173 match(SelFVal->getTrueValue(), 3174 m_Not(m_Specific(SelCond->getTrueValue()))); 3175 if (MayNeedFreeze) 3176 C = Builder.CreateFreeze(C); 3177 return SelectInst::Create(C, A, B); 3178 } 3179 3180 // (!C && A) || (C && B) --> sel C, B, A 3181 // (A && !C) || (C && B) --> sel C, B, A 3182 // (!C && A) || (B && C) --> sel C, B, A 3183 // (A && !C) || (B && C) --> sel C, B, A (may require freeze) 3184 if (match(CondVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(A))) && 3185 match(FalseVal, m_c_LogicalAnd(m_Specific(C), m_Value(B)))) { 3186 auto *SelCond = dyn_cast<SelectInst>(CondVal); 3187 auto *SelFVal = dyn_cast<SelectInst>(FalseVal); 3188 bool MayNeedFreeze = SelCond && SelFVal && 3189 match(SelCond->getTrueValue(), 3190 m_Not(m_Specific(SelFVal->getTrueValue()))); 3191 if (MayNeedFreeze) 3192 C = Builder.CreateFreeze(C); 3193 return SelectInst::Create(C, B, A); 3194 } 3195 } 3196 3197 return nullptr; 3198 } 3199 3200 // Return true if we can safely remove the select instruction for std::bit_ceil 3201 // pattern. 3202 static bool isSafeToRemoveBitCeilSelect(ICmpInst::Predicate Pred, Value *Cond0, 3203 const APInt *Cond1, Value *CtlzOp, 3204 unsigned BitWidth) { 3205 // The challenge in recognizing std::bit_ceil(X) is that the operand is used 3206 // for the CTLZ proper and select condition, each possibly with some 3207 // operation like add and sub. 3208 // 3209 // Our aim is to make sure that -ctlz & (BitWidth - 1) == 0 even when the 3210 // select instruction would select 1, which allows us to get rid of the select 3211 // instruction. 3212 // 3213 // To see if we can do so, we do some symbolic execution with ConstantRange. 3214 // Specifically, we compute the range of values that Cond0 could take when 3215 // Cond == false. Then we successively transform the range until we obtain 3216 // the range of values that CtlzOp could take. 3217 // 3218 // Conceptually, we follow the def-use chain backward from Cond0 while 3219 // transforming the range for Cond0 until we meet the common ancestor of Cond0 3220 // and CtlzOp. Then we follow the def-use chain forward until we obtain the 3221 // range for CtlzOp. That said, we only follow at most one ancestor from 3222 // Cond0. Likewise, we only follow at most one ancestor from CtrlOp. 3223 3224 ConstantRange CR = ConstantRange::makeExactICmpRegion( 3225 CmpInst::getInversePredicate(Pred), *Cond1); 3226 3227 // Match the operation that's used to compute CtlzOp from CommonAncestor. If 3228 // CtlzOp == CommonAncestor, return true as no operation is needed. If a 3229 // match is found, execute the operation on CR, update CR, and return true. 3230 // Otherwise, return false. 3231 auto MatchForward = [&](Value *CommonAncestor) { 3232 const APInt *C = nullptr; 3233 if (CtlzOp == CommonAncestor) 3234 return true; 3235 if (match(CtlzOp, m_Add(m_Specific(CommonAncestor), m_APInt(C)))) { 3236 CR = CR.add(*C); 3237 return true; 3238 } 3239 if (match(CtlzOp, m_Sub(m_APInt(C), m_Specific(CommonAncestor)))) { 3240 CR = ConstantRange(*C).sub(CR); 3241 return true; 3242 } 3243 if (match(CtlzOp, m_Not(m_Specific(CommonAncestor)))) { 3244 CR = CR.binaryNot(); 3245 return true; 3246 } 3247 return false; 3248 }; 3249 3250 const APInt *C = nullptr; 3251 Value *CommonAncestor; 3252 if (MatchForward(Cond0)) { 3253 // Cond0 is either CtlzOp or CtlzOp's parent. CR has been updated. 3254 } else if (match(Cond0, m_Add(m_Value(CommonAncestor), m_APInt(C)))) { 3255 CR = CR.sub(*C); 3256 if (!MatchForward(CommonAncestor)) 3257 return false; 3258 // Cond0's parent is either CtlzOp or CtlzOp's parent. CR has been updated. 3259 } else { 3260 return false; 3261 } 3262 3263 // Return true if all the values in the range are either 0 or negative (if 3264 // treated as signed). We do so by evaluating: 3265 // 3266 // CR - 1 u>= (1 << BitWidth) - 1. 3267 APInt IntMax = APInt::getSignMask(BitWidth) - 1; 3268 CR = CR.sub(APInt(BitWidth, 1)); 3269 return CR.icmp(ICmpInst::ICMP_UGE, IntMax); 3270 } 3271 3272 // Transform the std::bit_ceil(X) pattern like: 3273 // 3274 // %dec = add i32 %x, -1 3275 // %ctlz = tail call i32 @llvm.ctlz.i32(i32 %dec, i1 false) 3276 // %sub = sub i32 32, %ctlz 3277 // %shl = shl i32 1, %sub 3278 // %ugt = icmp ugt i32 %x, 1 3279 // %sel = select i1 %ugt, i32 %shl, i32 1 3280 // 3281 // into: 3282 // 3283 // %dec = add i32 %x, -1 3284 // %ctlz = tail call i32 @llvm.ctlz.i32(i32 %dec, i1 false) 3285 // %neg = sub i32 0, %ctlz 3286 // %masked = and i32 %ctlz, 31 3287 // %shl = shl i32 1, %sub 3288 // 3289 // Note that the select is optimized away while the shift count is masked with 3290 // 31. We handle some variations of the input operand like std::bit_ceil(X + 3291 // 1). 3292 static Instruction *foldBitCeil(SelectInst &SI, IRBuilderBase &Builder) { 3293 Type *SelType = SI.getType(); 3294 unsigned BitWidth = SelType->getScalarSizeInBits(); 3295 3296 Value *FalseVal = SI.getFalseValue(); 3297 Value *TrueVal = SI.getTrueValue(); 3298 ICmpInst::Predicate Pred; 3299 const APInt *Cond1; 3300 Value *Cond0, *Ctlz, *CtlzOp; 3301 if (!match(SI.getCondition(), m_ICmp(Pred, m_Value(Cond0), m_APInt(Cond1)))) 3302 return nullptr; 3303 3304 if (match(TrueVal, m_One())) { 3305 std::swap(FalseVal, TrueVal); 3306 Pred = CmpInst::getInversePredicate(Pred); 3307 } 3308 3309 if (!match(FalseVal, m_One()) || 3310 !match(TrueVal, 3311 m_OneUse(m_Shl(m_One(), m_OneUse(m_Sub(m_SpecificInt(BitWidth), 3312 m_Value(Ctlz)))))) || 3313 !match(Ctlz, m_Intrinsic<Intrinsic::ctlz>(m_Value(CtlzOp), m_Zero())) || 3314 !isSafeToRemoveBitCeilSelect(Pred, Cond0, Cond1, CtlzOp, BitWidth)) 3315 return nullptr; 3316 3317 // Build 1 << (-CTLZ & (BitWidth-1)). The negation likely corresponds to a 3318 // single hardware instruction as opposed to BitWidth - CTLZ, where BitWidth 3319 // is an integer constant. Masking with BitWidth-1 comes free on some 3320 // hardware as part of the shift instruction. 3321 Value *Neg = Builder.CreateNeg(Ctlz); 3322 Value *Masked = 3323 Builder.CreateAnd(Neg, ConstantInt::get(SelType, BitWidth - 1)); 3324 return BinaryOperator::Create(Instruction::Shl, ConstantInt::get(SelType, 1), 3325 Masked); 3326 } 3327 3328 bool InstCombinerImpl::fmulByZeroIsZero(Value *MulVal, FastMathFlags FMF, 3329 const Instruction *CtxI) const { 3330 KnownFPClass Known = computeKnownFPClass(MulVal, FMF, fcNegative, CtxI); 3331 3332 return Known.isKnownNeverNaN() && Known.isKnownNeverInfinity() && 3333 (FMF.noSignedZeros() || Known.signBitIsZeroOrNaN()); 3334 } 3335 3336 static bool matchFMulByZeroIfResultEqZero(InstCombinerImpl &IC, Value *Cmp0, 3337 Value *Cmp1, Value *TrueVal, 3338 Value *FalseVal, Instruction &CtxI, 3339 bool SelectIsNSZ) { 3340 Value *MulRHS; 3341 if (match(Cmp1, m_PosZeroFP()) && 3342 match(TrueVal, m_c_FMul(m_Specific(Cmp0), m_Value(MulRHS)))) { 3343 FastMathFlags FMF = cast<FPMathOperator>(TrueVal)->getFastMathFlags(); 3344 // nsz must be on the select, it must be ignored on the multiply. We 3345 // need nnan and ninf on the multiply for the other value. 3346 FMF.setNoSignedZeros(SelectIsNSZ); 3347 return IC.fmulByZeroIsZero(MulRHS, FMF, &CtxI); 3348 } 3349 3350 return false; 3351 } 3352 3353 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) { 3354 Value *CondVal = SI.getCondition(); 3355 Value *TrueVal = SI.getTrueValue(); 3356 Value *FalseVal = SI.getFalseValue(); 3357 Type *SelType = SI.getType(); 3358 3359 if (Value *V = simplifySelectInst(CondVal, TrueVal, FalseVal, 3360 SQ.getWithInstruction(&SI))) 3361 return replaceInstUsesWith(SI, V); 3362 3363 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 3364 return I; 3365 3366 if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this)) 3367 return I; 3368 3369 // If the type of select is not an integer type or if the condition and 3370 // the selection type are not both scalar nor both vector types, there is no 3371 // point in attempting to match these patterns. 3372 Type *CondType = CondVal->getType(); 3373 if (!isa<Constant>(CondVal) && SelType->isIntOrIntVectorTy() && 3374 CondType->isVectorTy() == SelType->isVectorTy()) { 3375 if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal, 3376 ConstantInt::getTrue(CondType), SQ, 3377 /* AllowRefinement */ true)) 3378 return replaceOperand(SI, 1, S); 3379 3380 if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal, 3381 ConstantInt::getFalse(CondType), SQ, 3382 /* AllowRefinement */ true)) 3383 return replaceOperand(SI, 2, S); 3384 } 3385 3386 if (Instruction *R = foldSelectOfBools(SI)) 3387 return R; 3388 3389 // Selecting between two integer or vector splat integer constants? 3390 // 3391 // Note that we don't handle a scalar select of vectors: 3392 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 3393 // because that may need 3 instructions to splat the condition value: 3394 // extend, insertelement, shufflevector. 3395 // 3396 // Do not handle i1 TrueVal and FalseVal otherwise would result in 3397 // zext/sext i1 to i1. 3398 if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) && 3399 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 3400 // select C, 1, 0 -> zext C to int 3401 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 3402 return new ZExtInst(CondVal, SelType); 3403 3404 // select C, -1, 0 -> sext C to int 3405 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 3406 return new SExtInst(CondVal, SelType); 3407 3408 // select C, 0, 1 -> zext !C to int 3409 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 3410 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 3411 return new ZExtInst(NotCond, SelType); 3412 } 3413 3414 // select C, 0, -1 -> sext !C to int 3415 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 3416 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 3417 return new SExtInst(NotCond, SelType); 3418 } 3419 } 3420 3421 auto *SIFPOp = dyn_cast<FPMathOperator>(&SI); 3422 3423 if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) { 3424 FCmpInst::Predicate Pred = FCmp->getPredicate(); 3425 Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1); 3426 // Are we selecting a value based on a comparison of the two values? 3427 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) || 3428 (Cmp0 == FalseVal && Cmp1 == TrueVal)) { 3429 // Canonicalize to use ordered comparisons by swapping the select 3430 // operands. 3431 // 3432 // e.g. 3433 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 3434 if (FCmp->hasOneUse() && FCmpInst::isUnordered(Pred)) { 3435 FCmpInst::Predicate InvPred = FCmp->getInversePredicate(); 3436 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 3437 // FIXME: The FMF should propagate from the select, not the fcmp. 3438 Builder.setFastMathFlags(FCmp->getFastMathFlags()); 3439 Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1, 3440 FCmp->getName() + ".inv"); 3441 Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal); 3442 return replaceInstUsesWith(SI, NewSel); 3443 } 3444 } 3445 3446 if (SIFPOp) { 3447 // Fold out scale-if-equals-zero pattern. 3448 // 3449 // This pattern appears in code with denormal range checks after it's 3450 // assumed denormals are treated as zero. This drops a canonicalization. 3451 3452 // TODO: Could relax the signed zero logic. We just need to know the sign 3453 // of the result matches (fmul x, y has the same sign as x). 3454 // 3455 // TODO: Handle always-canonicalizing variant that selects some value or 1 3456 // scaling factor in the fmul visitor. 3457 3458 // TODO: Handle ldexp too 3459 3460 Value *MatchCmp0 = nullptr; 3461 Value *MatchCmp1 = nullptr; 3462 3463 // (select (fcmp [ou]eq x, 0.0), (fmul x, K), x => x 3464 // (select (fcmp [ou]ne x, 0.0), x, (fmul x, K) => x 3465 if (Pred == CmpInst::FCMP_OEQ || Pred == CmpInst::FCMP_UEQ) { 3466 MatchCmp0 = FalseVal; 3467 MatchCmp1 = TrueVal; 3468 } else if (Pred == CmpInst::FCMP_ONE || Pred == CmpInst::FCMP_UNE) { 3469 MatchCmp0 = TrueVal; 3470 MatchCmp1 = FalseVal; 3471 } 3472 3473 if (Cmp0 == MatchCmp0 && 3474 matchFMulByZeroIfResultEqZero(*this, Cmp0, Cmp1, MatchCmp1, MatchCmp0, 3475 SI, SIFPOp->hasNoSignedZeros())) 3476 return replaceInstUsesWith(SI, Cmp0); 3477 } 3478 } 3479 3480 if (SIFPOp) { 3481 // TODO: Try to forward-propagate FMF from select arms to the select. 3482 3483 // Canonicalize select of FP values where NaN and -0.0 are not valid as 3484 // minnum/maxnum intrinsics. 3485 if (SIFPOp->hasNoNaNs() && SIFPOp->hasNoSignedZeros()) { 3486 Value *X, *Y; 3487 if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y)))) 3488 return replaceInstUsesWith( 3489 SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI)); 3490 3491 if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y)))) 3492 return replaceInstUsesWith( 3493 SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI)); 3494 } 3495 } 3496 3497 // Fold selecting to fabs. 3498 if (Instruction *Fabs = foldSelectWithFCmpToFabs(SI, *this)) 3499 return Fabs; 3500 3501 // See if we are selecting two values based on a comparison of the two values. 3502 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 3503 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 3504 return Result; 3505 3506 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 3507 return Add; 3508 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder)) 3509 return Add; 3510 if (Instruction *Or = foldSetClearBits(SI, Builder)) 3511 return Or; 3512 if (Instruction *Mul = foldSelectZeroOrMul(SI, *this)) 3513 return Mul; 3514 3515 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 3516 auto *TI = dyn_cast<Instruction>(TrueVal); 3517 auto *FI = dyn_cast<Instruction>(FalseVal); 3518 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 3519 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 3520 return IV; 3521 3522 if (Instruction *I = foldSelectExtConst(SI)) 3523 return I; 3524 3525 if (Instruction *I = foldSelectWithSRem(SI, *this, Builder)) 3526 return I; 3527 3528 // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0)) 3529 // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx)) 3530 auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base, 3531 bool Swap) -> GetElementPtrInst * { 3532 Value *Ptr = Gep->getPointerOperand(); 3533 if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base || 3534 !Gep->hasOneUse()) 3535 return nullptr; 3536 Value *Idx = Gep->getOperand(1); 3537 if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType())) 3538 return nullptr; 3539 Type *ElementType = Gep->getResultElementType(); 3540 Value *NewT = Idx; 3541 Value *NewF = Constant::getNullValue(Idx->getType()); 3542 if (Swap) 3543 std::swap(NewT, NewF); 3544 Value *NewSI = 3545 Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI); 3546 if (Gep->isInBounds()) 3547 return GetElementPtrInst::CreateInBounds(ElementType, Ptr, {NewSI}); 3548 return GetElementPtrInst::Create(ElementType, Ptr, {NewSI}); 3549 }; 3550 if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal)) 3551 if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false)) 3552 return NewGep; 3553 if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal)) 3554 if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true)) 3555 return NewGep; 3556 3557 // See if we can fold the select into one of our operands. 3558 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 3559 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 3560 return FoldI; 3561 3562 Value *LHS, *RHS; 3563 Instruction::CastOps CastOp; 3564 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 3565 auto SPF = SPR.Flavor; 3566 if (SPF) { 3567 Value *LHS2, *RHS2; 3568 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 3569 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 3570 RHS2, SI, SPF, RHS)) 3571 return R; 3572 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 3573 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 3574 RHS2, SI, SPF, LHS)) 3575 return R; 3576 } 3577 3578 if (SelectPatternResult::isMinOrMax(SPF)) { 3579 // Canonicalize so that 3580 // - type casts are outside select patterns. 3581 // - float clamp is transformed to min/max pattern 3582 3583 bool IsCastNeeded = LHS->getType() != SelType; 3584 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 3585 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 3586 if (IsCastNeeded || 3587 (LHS->getType()->isFPOrFPVectorTy() && 3588 ((CmpLHS != LHS && CmpLHS != RHS) || 3589 (CmpRHS != LHS && CmpRHS != RHS)))) { 3590 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered); 3591 3592 Value *Cmp; 3593 if (CmpInst::isIntPredicate(MinMaxPred)) { 3594 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS); 3595 } else { 3596 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 3597 auto FMF = 3598 cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 3599 Builder.setFastMathFlags(FMF); 3600 Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS); 3601 } 3602 3603 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 3604 if (!IsCastNeeded) 3605 return replaceInstUsesWith(SI, NewSI); 3606 3607 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 3608 return replaceInstUsesWith(SI, NewCast); 3609 } 3610 } 3611 } 3612 3613 // See if we can fold the select into a phi node if the condition is a select. 3614 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 3615 // The true/false values have to be live in the PHI predecessor's blocks. 3616 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 3617 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 3618 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 3619 return NV; 3620 3621 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 3622 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 3623 // select(C, select(C, a, b), c) -> select(C, a, c) 3624 if (TrueSI->getCondition() == CondVal) { 3625 if (SI.getTrueValue() == TrueSI->getTrueValue()) 3626 return nullptr; 3627 return replaceOperand(SI, 1, TrueSI->getTrueValue()); 3628 } 3629 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 3630 // We choose this as normal form to enable folding on the And and 3631 // shortening paths for the values (this helps getUnderlyingObjects() for 3632 // example). 3633 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 3634 Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition()); 3635 replaceOperand(SI, 0, And); 3636 replaceOperand(SI, 1, TrueSI->getTrueValue()); 3637 return &SI; 3638 } 3639 } 3640 } 3641 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 3642 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 3643 // select(C, a, select(C, b, c)) -> select(C, a, c) 3644 if (FalseSI->getCondition() == CondVal) { 3645 if (SI.getFalseValue() == FalseSI->getFalseValue()) 3646 return nullptr; 3647 return replaceOperand(SI, 2, FalseSI->getFalseValue()); 3648 } 3649 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 3650 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 3651 Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition()); 3652 replaceOperand(SI, 0, Or); 3653 replaceOperand(SI, 2, FalseSI->getFalseValue()); 3654 return &SI; 3655 } 3656 } 3657 } 3658 3659 // Try to simplify a binop sandwiched between 2 selects with the same 3660 // condition. This is not valid for div/rem because the select might be 3661 // preventing a division-by-zero. 3662 // TODO: A div/rem restriction is conservative; use something like 3663 // isSafeToSpeculativelyExecute(). 3664 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 3665 BinaryOperator *TrueBO; 3666 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && !TrueBO->isIntDivRem()) { 3667 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 3668 if (TrueBOSI->getCondition() == CondVal) { 3669 replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue()); 3670 Worklist.push(TrueBO); 3671 return &SI; 3672 } 3673 } 3674 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 3675 if (TrueBOSI->getCondition() == CondVal) { 3676 replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue()); 3677 Worklist.push(TrueBO); 3678 return &SI; 3679 } 3680 } 3681 } 3682 3683 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 3684 BinaryOperator *FalseBO; 3685 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && !FalseBO->isIntDivRem()) { 3686 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 3687 if (FalseBOSI->getCondition() == CondVal) { 3688 replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue()); 3689 Worklist.push(FalseBO); 3690 return &SI; 3691 } 3692 } 3693 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 3694 if (FalseBOSI->getCondition() == CondVal) { 3695 replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue()); 3696 Worklist.push(FalseBO); 3697 return &SI; 3698 } 3699 } 3700 } 3701 3702 Value *NotCond; 3703 if (match(CondVal, m_Not(m_Value(NotCond))) && 3704 !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) { 3705 replaceOperand(SI, 0, NotCond); 3706 SI.swapValues(); 3707 SI.swapProfMetadata(); 3708 return &SI; 3709 } 3710 3711 if (Instruction *I = foldVectorSelect(SI)) 3712 return I; 3713 3714 // If we can compute the condition, there's no need for a select. 3715 // Like the above fold, we are attempting to reduce compile-time cost by 3716 // putting this fold here with limitations rather than in InstSimplify. 3717 // The motivation for this call into value tracking is to take advantage of 3718 // the assumption cache, so make sure that is populated. 3719 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 3720 KnownBits Known(1); 3721 computeKnownBits(CondVal, Known, 0, &SI); 3722 if (Known.One.isOne()) 3723 return replaceInstUsesWith(SI, TrueVal); 3724 if (Known.Zero.isOne()) 3725 return replaceInstUsesWith(SI, FalseVal); 3726 } 3727 3728 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 3729 return BitCastSel; 3730 3731 // Simplify selects that test the returned flag of cmpxchg instructions. 3732 if (Value *V = foldSelectCmpXchg(SI)) 3733 return replaceInstUsesWith(SI, V); 3734 3735 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this)) 3736 return Select; 3737 3738 if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder)) 3739 return Funnel; 3740 3741 if (Instruction *Copysign = foldSelectToCopysign(SI, Builder)) 3742 return Copysign; 3743 3744 if (Instruction *PN = foldSelectToPhi(SI, DT, Builder)) 3745 return replaceInstUsesWith(SI, PN); 3746 3747 if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder)) 3748 return replaceInstUsesWith(SI, Fr); 3749 3750 if (Value *V = foldRoundUpIntegerWithPow2Alignment(SI, Builder)) 3751 return replaceInstUsesWith(SI, V); 3752 3753 // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0) 3754 // Load inst is intentionally not checked for hasOneUse() 3755 if (match(FalseVal, m_Zero()) && 3756 (match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal), 3757 m_CombineOr(m_Undef(), m_Zero()))) || 3758 match(TrueVal, m_MaskedGather(m_Value(), m_Value(), m_Specific(CondVal), 3759 m_CombineOr(m_Undef(), m_Zero()))))) { 3760 auto *MaskedInst = cast<IntrinsicInst>(TrueVal); 3761 if (isa<UndefValue>(MaskedInst->getArgOperand(3))) 3762 MaskedInst->setArgOperand(3, FalseVal /* Zero */); 3763 return replaceInstUsesWith(SI, MaskedInst); 3764 } 3765 3766 Value *Mask; 3767 if (match(TrueVal, m_Zero()) && 3768 (match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask), 3769 m_CombineOr(m_Undef(), m_Zero()))) || 3770 match(FalseVal, m_MaskedGather(m_Value(), m_Value(), m_Value(Mask), 3771 m_CombineOr(m_Undef(), m_Zero())))) && 3772 (CondVal->getType() == Mask->getType())) { 3773 // We can remove the select by ensuring the load zeros all lanes the 3774 // select would have. We determine this by proving there is no overlap 3775 // between the load and select masks. 3776 // (i.e (load_mask & select_mask) == 0 == no overlap) 3777 bool CanMergeSelectIntoLoad = false; 3778 if (Value *V = simplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI))) 3779 CanMergeSelectIntoLoad = match(V, m_Zero()); 3780 3781 if (CanMergeSelectIntoLoad) { 3782 auto *MaskedInst = cast<IntrinsicInst>(FalseVal); 3783 if (isa<UndefValue>(MaskedInst->getArgOperand(3))) 3784 MaskedInst->setArgOperand(3, TrueVal /* Zero */); 3785 return replaceInstUsesWith(SI, MaskedInst); 3786 } 3787 } 3788 3789 if (Instruction *I = foldNestedSelects(SI, Builder)) 3790 return I; 3791 3792 // Match logical variants of the pattern, 3793 // and transform them iff that gets rid of inversions. 3794 // (~x) | y --> ~(x & (~y)) 3795 // (~x) & y --> ~(x | (~y)) 3796 if (sinkNotIntoOtherHandOfLogicalOp(SI)) 3797 return &SI; 3798 3799 if (Instruction *I = foldBitCeil(SI, Builder)) 3800 return I; 3801 3802 // Fold: 3803 // (select A && B, T, F) -> (select A, (select B, T, F), F) 3804 // (select A || B, T, F) -> (select A, T, (select B, T, F)) 3805 // if (select B, T, F) is foldable. 3806 // TODO: preserve FMF flags 3807 auto FoldSelectWithAndOrCond = [&](bool IsAnd, Value *A, 3808 Value *B) -> Instruction * { 3809 if (Value *V = simplifySelectInst(B, TrueVal, FalseVal, 3810 SQ.getWithInstruction(&SI))) 3811 return SelectInst::Create(A, IsAnd ? V : TrueVal, IsAnd ? FalseVal : V); 3812 3813 // Is (select B, T, F) a SPF? 3814 if (CondVal->hasOneUse() && SelType->isIntOrIntVectorTy()) { 3815 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(B)) 3816 if (Value *V = canonicalizeSPF(*Cmp, TrueVal, FalseVal, *this)) 3817 return SelectInst::Create(A, IsAnd ? V : TrueVal, 3818 IsAnd ? FalseVal : V); 3819 } 3820 3821 return nullptr; 3822 }; 3823 3824 Value *LHS, *RHS; 3825 if (match(CondVal, m_And(m_Value(LHS), m_Value(RHS)))) { 3826 if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, LHS, RHS)) 3827 return I; 3828 if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, RHS, LHS)) 3829 return I; 3830 } else if (match(CondVal, m_Or(m_Value(LHS), m_Value(RHS)))) { 3831 if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, LHS, RHS)) 3832 return I; 3833 if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, RHS, LHS)) 3834 return I; 3835 } else { 3836 // We cannot swap the operands of logical and/or. 3837 // TODO: Can we swap the operands by inserting a freeze? 3838 if (match(CondVal, m_LogicalAnd(m_Value(LHS), m_Value(RHS)))) { 3839 if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, LHS, RHS)) 3840 return I; 3841 } else if (match(CondVal, m_LogicalOr(m_Value(LHS), m_Value(RHS)))) { 3842 if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, LHS, RHS)) 3843 return I; 3844 } 3845 } 3846 3847 return nullptr; 3848 } 3849