1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitSelect function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/CmpInstAnalysis.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/OverflowInstAnalysis.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstrTypes.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/User.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/KnownBits.h" 42 #include "llvm/Transforms/InstCombine/InstCombiner.h" 43 #include <cassert> 44 #include <utility> 45 46 #define DEBUG_TYPE "instcombine" 47 #include "llvm/Transforms/Utils/InstructionWorklist.h" 48 49 using namespace llvm; 50 using namespace PatternMatch; 51 52 53 /// Replace a select operand based on an equality comparison with the identity 54 /// constant of a binop. 55 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 56 const TargetLibraryInfo &TLI, 57 InstCombinerImpl &IC) { 58 // The select condition must be an equality compare with a constant operand. 59 Value *X; 60 Constant *C; 61 CmpInst::Predicate Pred; 62 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 63 return nullptr; 64 65 bool IsEq; 66 if (ICmpInst::isEquality(Pred)) 67 IsEq = Pred == ICmpInst::ICMP_EQ; 68 else if (Pred == FCmpInst::FCMP_OEQ) 69 IsEq = true; 70 else if (Pred == FCmpInst::FCMP_UNE) 71 IsEq = false; 72 else 73 return nullptr; 74 75 // A select operand must be a binop. 76 BinaryOperator *BO; 77 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 78 return nullptr; 79 80 // The compare constant must be the identity constant for that binop. 81 // If this a floating-point compare with 0.0, any zero constant will do. 82 Type *Ty = BO->getType(); 83 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 84 if (IdC != C) { 85 if (!IdC || !CmpInst::isFPPredicate(Pred)) 86 return nullptr; 87 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 88 return nullptr; 89 } 90 91 // Last, match the compare variable operand with a binop operand. 92 Value *Y; 93 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 94 return nullptr; 95 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 96 return nullptr; 97 98 // +0.0 compares equal to -0.0, and so it does not behave as required for this 99 // transform. Bail out if we can not exclude that possibility. 100 if (isa<FPMathOperator>(BO)) 101 if (!BO->hasNoSignedZeros() && 102 !cannotBeNegativeZero(Y, 0, 103 IC.getSimplifyQuery().getWithInstruction(&Sel))) 104 return nullptr; 105 106 // BO = binop Y, X 107 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 108 // => 109 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 110 return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y); 111 } 112 113 /// This folds: 114 /// select (icmp eq (and X, C1)), TC, FC 115 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 116 /// To something like: 117 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 118 /// Or: 119 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 120 /// With some variations depending if FC is larger than TC, or the shift 121 /// isn't needed, or the bit widths don't match. 122 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 123 InstCombiner::BuilderTy &Builder) { 124 const APInt *SelTC, *SelFC; 125 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 126 !match(Sel.getFalseValue(), m_APInt(SelFC))) 127 return nullptr; 128 129 // If this is a vector select, we need a vector compare. 130 Type *SelType = Sel.getType(); 131 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 132 return nullptr; 133 134 Value *V; 135 APInt AndMask; 136 bool CreateAnd = false; 137 ICmpInst::Predicate Pred = Cmp->getPredicate(); 138 if (ICmpInst::isEquality(Pred)) { 139 if (!match(Cmp->getOperand(1), m_Zero())) 140 return nullptr; 141 142 V = Cmp->getOperand(0); 143 const APInt *AndRHS; 144 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 145 return nullptr; 146 147 AndMask = *AndRHS; 148 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 149 Pred, V, AndMask)) { 150 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 151 if (!AndMask.isPowerOf2()) 152 return nullptr; 153 154 CreateAnd = true; 155 } else { 156 return nullptr; 157 } 158 159 // In general, when both constants are non-zero, we would need an offset to 160 // replace the select. This would require more instructions than we started 161 // with. But there's one special-case that we handle here because it can 162 // simplify/reduce the instructions. 163 APInt TC = *SelTC; 164 APInt FC = *SelFC; 165 if (!TC.isZero() && !FC.isZero()) { 166 // If the select constants differ by exactly one bit and that's the same 167 // bit that is masked and checked by the select condition, the select can 168 // be replaced by bitwise logic to set/clear one bit of the constant result. 169 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 170 return nullptr; 171 if (CreateAnd) { 172 // If we have to create an 'and', then we must kill the cmp to not 173 // increase the instruction count. 174 if (!Cmp->hasOneUse()) 175 return nullptr; 176 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 177 } 178 bool ExtraBitInTC = TC.ugt(FC); 179 if (Pred == ICmpInst::ICMP_EQ) { 180 // If the masked bit in V is clear, clear or set the bit in the result: 181 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 182 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 183 Constant *C = ConstantInt::get(SelType, TC); 184 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 185 } 186 if (Pred == ICmpInst::ICMP_NE) { 187 // If the masked bit in V is set, set or clear the bit in the result: 188 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 189 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 190 Constant *C = ConstantInt::get(SelType, FC); 191 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 192 } 193 llvm_unreachable("Only expecting equality predicates"); 194 } 195 196 // Make sure one of the select arms is a power-of-2. 197 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 198 return nullptr; 199 200 // Determine which shift is needed to transform result of the 'and' into the 201 // desired result. 202 const APInt &ValC = !TC.isZero() ? TC : FC; 203 unsigned ValZeros = ValC.logBase2(); 204 unsigned AndZeros = AndMask.logBase2(); 205 bool ShouldNotVal = !TC.isZero(); 206 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 207 208 // If we would need to create an 'and' + 'shift' + 'xor' to replace a 'select' 209 // + 'icmp', then this transformation would result in more instructions and 210 // potentially interfere with other folding. 211 if (CreateAnd && ShouldNotVal && ValZeros != AndZeros) 212 return nullptr; 213 214 // Insert the 'and' instruction on the input to the truncate. 215 if (CreateAnd) 216 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 217 218 // If types don't match, we can still convert the select by introducing a zext 219 // or a trunc of the 'and'. 220 if (ValZeros > AndZeros) { 221 V = Builder.CreateZExtOrTrunc(V, SelType); 222 V = Builder.CreateShl(V, ValZeros - AndZeros); 223 } else if (ValZeros < AndZeros) { 224 V = Builder.CreateLShr(V, AndZeros - ValZeros); 225 V = Builder.CreateZExtOrTrunc(V, SelType); 226 } else { 227 V = Builder.CreateZExtOrTrunc(V, SelType); 228 } 229 230 // Okay, now we know that everything is set up, we just don't know whether we 231 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 232 if (ShouldNotVal) 233 V = Builder.CreateXor(V, ValC); 234 235 return V; 236 } 237 238 /// We want to turn code that looks like this: 239 /// %C = or %A, %B 240 /// %D = select %cond, %C, %A 241 /// into: 242 /// %C = select %cond, %B, 0 243 /// %D = or %A, %C 244 /// 245 /// Assuming that the specified instruction is an operand to the select, return 246 /// a bitmask indicating which operands of this instruction are foldable if they 247 /// equal the other incoming value of the select. 248 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 249 switch (I->getOpcode()) { 250 case Instruction::Add: 251 case Instruction::FAdd: 252 case Instruction::Mul: 253 case Instruction::FMul: 254 case Instruction::And: 255 case Instruction::Or: 256 case Instruction::Xor: 257 return 3; // Can fold through either operand. 258 case Instruction::Sub: // Can only fold on the amount subtracted. 259 case Instruction::FSub: 260 case Instruction::FDiv: // Can only fold on the divisor amount. 261 case Instruction::Shl: // Can only fold on the shift amount. 262 case Instruction::LShr: 263 case Instruction::AShr: 264 return 1; 265 default: 266 return 0; // Cannot fold 267 } 268 } 269 270 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 271 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI, 272 Instruction *FI) { 273 // Don't break up min/max patterns. The hasOneUse checks below prevent that 274 // for most cases, but vector min/max with bitcasts can be transformed. If the 275 // one-use restrictions are eased for other patterns, we still don't want to 276 // obfuscate min/max. 277 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 278 match(&SI, m_SMax(m_Value(), m_Value())) || 279 match(&SI, m_UMin(m_Value(), m_Value())) || 280 match(&SI, m_UMax(m_Value(), m_Value())))) 281 return nullptr; 282 283 // If this is a cast from the same type, merge. 284 Value *Cond = SI.getCondition(); 285 Type *CondTy = Cond->getType(); 286 if (TI->getNumOperands() == 1 && TI->isCast()) { 287 Type *FIOpndTy = FI->getOperand(0)->getType(); 288 if (TI->getOperand(0)->getType() != FIOpndTy) 289 return nullptr; 290 291 // The select condition may be a vector. We may only change the operand 292 // type if the vector width remains the same (and matches the condition). 293 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) { 294 if (!FIOpndTy->isVectorTy() || 295 CondVTy->getElementCount() != 296 cast<VectorType>(FIOpndTy)->getElementCount()) 297 return nullptr; 298 299 // TODO: If the backend knew how to deal with casts better, we could 300 // remove this limitation. For now, there's too much potential to create 301 // worse codegen by promoting the select ahead of size-altering casts 302 // (PR28160). 303 // 304 // Note that ValueTracking's matchSelectPattern() looks through casts 305 // without checking 'hasOneUse' when it matches min/max patterns, so this 306 // transform may end up happening anyway. 307 if (TI->getOpcode() != Instruction::BitCast && 308 (!TI->hasOneUse() || !FI->hasOneUse())) 309 return nullptr; 310 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 311 // TODO: The one-use restrictions for a scalar select could be eased if 312 // the fold of a select in visitLoadInst() was enhanced to match a pattern 313 // that includes a cast. 314 return nullptr; 315 } 316 317 // Fold this by inserting a select from the input values. 318 Value *NewSI = 319 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0), 320 SI.getName() + ".v", &SI); 321 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 322 TI->getType()); 323 } 324 325 Value *OtherOpT, *OtherOpF; 326 bool MatchIsOpZero; 327 auto getCommonOp = [&](Instruction *TI, Instruction *FI, bool Commute, 328 bool Swapped = false) -> Value * { 329 assert(!(Commute && Swapped) && 330 "Commute and Swapped can't set at the same time"); 331 if (!Swapped) { 332 if (TI->getOperand(0) == FI->getOperand(0)) { 333 OtherOpT = TI->getOperand(1); 334 OtherOpF = FI->getOperand(1); 335 MatchIsOpZero = true; 336 return TI->getOperand(0); 337 } else if (TI->getOperand(1) == FI->getOperand(1)) { 338 OtherOpT = TI->getOperand(0); 339 OtherOpF = FI->getOperand(0); 340 MatchIsOpZero = false; 341 return TI->getOperand(1); 342 } 343 } 344 345 if (!Commute && !Swapped) 346 return nullptr; 347 348 // If we are allowing commute or swap of operands, then 349 // allow a cross-operand match. In that case, MatchIsOpZero 350 // means that TI's operand 0 (FI's operand 1) is the common op. 351 if (TI->getOperand(0) == FI->getOperand(1)) { 352 OtherOpT = TI->getOperand(1); 353 OtherOpF = FI->getOperand(0); 354 MatchIsOpZero = true; 355 return TI->getOperand(0); 356 } else if (TI->getOperand(1) == FI->getOperand(0)) { 357 OtherOpT = TI->getOperand(0); 358 OtherOpF = FI->getOperand(1); 359 MatchIsOpZero = false; 360 return TI->getOperand(1); 361 } 362 return nullptr; 363 }; 364 365 if (TI->hasOneUse() || FI->hasOneUse()) { 366 // Cond ? -X : -Y --> -(Cond ? X : Y) 367 Value *X, *Y; 368 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y)))) { 369 // Intersect FMF from the fneg instructions and union those with the 370 // select. 371 FastMathFlags FMF = TI->getFastMathFlags(); 372 FMF &= FI->getFastMathFlags(); 373 FMF |= SI.getFastMathFlags(); 374 Value *NewSel = 375 Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI); 376 if (auto *NewSelI = dyn_cast<Instruction>(NewSel)) 377 NewSelI->setFastMathFlags(FMF); 378 Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel); 379 NewFNeg->setFastMathFlags(FMF); 380 return NewFNeg; 381 } 382 383 // Min/max intrinsic with a common operand can have the common operand 384 // pulled after the select. This is the same transform as below for binops, 385 // but specialized for intrinsic matching and without the restrictive uses 386 // clause. 387 auto *TII = dyn_cast<IntrinsicInst>(TI); 388 auto *FII = dyn_cast<IntrinsicInst>(FI); 389 if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID()) { 390 if (match(TII, m_MaxOrMin(m_Value(), m_Value()))) { 391 if (Value *MatchOp = getCommonOp(TI, FI, true)) { 392 Value *NewSel = 393 Builder.CreateSelect(Cond, OtherOpT, OtherOpF, "minmaxop", &SI); 394 return CallInst::Create(TII->getCalledFunction(), {NewSel, MatchOp}); 395 } 396 } 397 398 // select c, (ldexp v, e0), (ldexp v, e1) -> ldexp v, (select c, e0, e1) 399 // select c, (ldexp v0, e), (ldexp v1, e) -> ldexp (select c, v0, v1), e 400 // 401 // select c, (ldexp v0, e0), (ldexp v1, e1) -> 402 // ldexp (select c, v0, v1), (select c, e0, e1) 403 if (TII->getIntrinsicID() == Intrinsic::ldexp) { 404 Value *LdexpVal0 = TII->getArgOperand(0); 405 Value *LdexpExp0 = TII->getArgOperand(1); 406 Value *LdexpVal1 = FII->getArgOperand(0); 407 Value *LdexpExp1 = FII->getArgOperand(1); 408 if (LdexpExp0->getType() == LdexpExp1->getType()) { 409 FPMathOperator *SelectFPOp = cast<FPMathOperator>(&SI); 410 FastMathFlags FMF = cast<FPMathOperator>(TII)->getFastMathFlags(); 411 FMF &= cast<FPMathOperator>(FII)->getFastMathFlags(); 412 FMF |= SelectFPOp->getFastMathFlags(); 413 414 Value *SelectVal = Builder.CreateSelect(Cond, LdexpVal0, LdexpVal1); 415 Value *SelectExp = Builder.CreateSelect(Cond, LdexpExp0, LdexpExp1); 416 417 CallInst *NewLdexp = Builder.CreateIntrinsic( 418 TII->getType(), Intrinsic::ldexp, {SelectVal, SelectExp}); 419 NewLdexp->setFastMathFlags(FMF); 420 return replaceInstUsesWith(SI, NewLdexp); 421 } 422 } 423 } 424 425 // icmp with a common operand also can have the common operand 426 // pulled after the select. 427 ICmpInst::Predicate TPred, FPred; 428 if (match(TI, m_ICmp(TPred, m_Value(), m_Value())) && 429 match(FI, m_ICmp(FPred, m_Value(), m_Value()))) { 430 if (TPred == FPred || TPred == CmpInst::getSwappedPredicate(FPred)) { 431 bool Swapped = TPred != FPred; 432 if (Value *MatchOp = 433 getCommonOp(TI, FI, ICmpInst::isEquality(TPred), Swapped)) { 434 Value *NewSel = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 435 SI.getName() + ".v", &SI); 436 return new ICmpInst( 437 MatchIsOpZero ? TPred : CmpInst::getSwappedPredicate(TPred), 438 MatchOp, NewSel); 439 } 440 } 441 } 442 } 443 444 // Only handle binary operators (including two-operand getelementptr) with 445 // one-use here. As with the cast case above, it may be possible to relax the 446 // one-use constraint, but that needs be examined carefully since it may not 447 // reduce the total number of instructions. 448 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 449 !TI->isSameOperationAs(FI) || 450 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 451 !TI->hasOneUse() || !FI->hasOneUse()) 452 return nullptr; 453 454 // Figure out if the operations have any operands in common. 455 Value *MatchOp = getCommonOp(TI, FI, TI->isCommutative()); 456 if (!MatchOp) 457 return nullptr; 458 459 // If the select condition is a vector, the operands of the original select's 460 // operands also must be vectors. This may not be the case for getelementptr 461 // for example. 462 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() || 463 !OtherOpF->getType()->isVectorTy())) 464 return nullptr; 465 466 // If we are sinking div/rem after a select, we may need to freeze the 467 // condition because div/rem may induce immediate UB with a poison operand. 468 // For example, the following transform is not safe if Cond can ever be poison 469 // because we can replace poison with zero and then we have div-by-zero that 470 // didn't exist in the original code: 471 // Cond ? x/y : x/z --> x / (Cond ? y : z) 472 auto *BO = dyn_cast<BinaryOperator>(TI); 473 if (BO && BO->isIntDivRem() && !isGuaranteedNotToBePoison(Cond)) { 474 // A udiv/urem with a common divisor is safe because UB can only occur with 475 // div-by-zero, and that would be present in the original code. 476 if (BO->getOpcode() == Instruction::SDiv || 477 BO->getOpcode() == Instruction::SRem || MatchIsOpZero) 478 Cond = Builder.CreateFreeze(Cond); 479 } 480 481 // If we reach here, they do have operations in common. 482 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 483 SI.getName() + ".v", &SI); 484 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 485 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 486 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 487 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 488 NewBO->copyIRFlags(TI); 489 NewBO->andIRFlags(FI); 490 return NewBO; 491 } 492 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 493 auto *FGEP = cast<GetElementPtrInst>(FI); 494 Type *ElementType = TGEP->getSourceElementType(); 495 return GetElementPtrInst::Create( 496 ElementType, Op0, Op1, TGEP->getNoWrapFlags() & FGEP->getNoWrapFlags()); 497 } 498 llvm_unreachable("Expected BinaryOperator or GEP"); 499 return nullptr; 500 } 501 502 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 503 if (!C1I.isZero() && !C2I.isZero()) // One side must be zero. 504 return false; 505 return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes(); 506 } 507 508 /// Try to fold the select into one of the operands to allow further 509 /// optimization. 510 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 511 Value *FalseVal) { 512 // See the comment above getSelectFoldableOperands for a description of the 513 // transformation we are doing here. 514 auto TryFoldSelectIntoOp = [&](SelectInst &SI, Value *TrueVal, 515 Value *FalseVal, 516 bool Swapped) -> Instruction * { 517 auto *TVI = dyn_cast<BinaryOperator>(TrueVal); 518 if (!TVI || !TVI->hasOneUse() || isa<Constant>(FalseVal)) 519 return nullptr; 520 521 unsigned SFO = getSelectFoldableOperands(TVI); 522 unsigned OpToFold = 0; 523 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) 524 OpToFold = 1; 525 else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) 526 OpToFold = 2; 527 528 if (!OpToFold) 529 return nullptr; 530 531 // TODO: We probably ought to revisit cases where the select and FP 532 // instructions have different flags and add tests to ensure the 533 // behaviour is correct. 534 FastMathFlags FMF; 535 if (isa<FPMathOperator>(&SI)) 536 FMF = SI.getFastMathFlags(); 537 Constant *C = ConstantExpr::getBinOpIdentity( 538 TVI->getOpcode(), TVI->getType(), true, FMF.noSignedZeros()); 539 Value *OOp = TVI->getOperand(2 - OpToFold); 540 // Avoid creating select between 2 constants unless it's selecting 541 // between 0, 1 and -1. 542 const APInt *OOpC; 543 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 544 if (isa<Constant>(OOp) && 545 (!OOpIsAPInt || !isSelect01(C->getUniqueInteger(), *OOpC))) 546 return nullptr; 547 548 // If the false value is a NaN then we have that the floating point math 549 // operation in the transformed code may not preserve the exact NaN 550 // bit-pattern -- e.g. `fadd sNaN, 0.0 -> qNaN`. 551 // This makes the transformation incorrect since the original program would 552 // have preserved the exact NaN bit-pattern. 553 // Avoid the folding if the false value might be a NaN. 554 if (isa<FPMathOperator>(&SI) && 555 !computeKnownFPClass(FalseVal, FMF, fcNan, &SI).isKnownNeverNaN()) 556 return nullptr; 557 558 Value *NewSel = Builder.CreateSelect(SI.getCondition(), Swapped ? C : OOp, 559 Swapped ? OOp : C, "", &SI); 560 if (isa<FPMathOperator>(&SI)) 561 cast<Instruction>(NewSel)->setFastMathFlags(FMF); 562 NewSel->takeName(TVI); 563 BinaryOperator *BO = 564 BinaryOperator::Create(TVI->getOpcode(), FalseVal, NewSel); 565 BO->copyIRFlags(TVI); 566 return BO; 567 }; 568 569 if (Instruction *R = TryFoldSelectIntoOp(SI, TrueVal, FalseVal, false)) 570 return R; 571 572 if (Instruction *R = TryFoldSelectIntoOp(SI, FalseVal, TrueVal, true)) 573 return R; 574 575 return nullptr; 576 } 577 578 /// We want to turn: 579 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 580 /// into: 581 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 582 /// Note: 583 /// Z may be 0 if lshr is missing. 584 /// Worst-case scenario is that we will replace 5 instructions with 5 different 585 /// instructions, but we got rid of select. 586 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 587 Value *TVal, Value *FVal, 588 InstCombiner::BuilderTy &Builder) { 589 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 590 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 591 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 592 return nullptr; 593 594 // The TrueVal has general form of: and %B, 1 595 Value *B; 596 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 597 return nullptr; 598 599 // Where %B may be optionally shifted: lshr %X, %Z. 600 Value *X, *Z; 601 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 602 603 // The shift must be valid. 604 // TODO: This restricts the fold to constant shift amounts. Is there a way to 605 // handle variable shifts safely? PR47012 606 if (HasShift && 607 !match(Z, m_SpecificInt_ICMP(CmpInst::ICMP_ULT, 608 APInt(SelType->getScalarSizeInBits(), 609 SelType->getScalarSizeInBits())))) 610 return nullptr; 611 612 if (!HasShift) 613 X = B; 614 615 Value *Y; 616 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 617 return nullptr; 618 619 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 620 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 621 Constant *One = ConstantInt::get(SelType, 1); 622 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 623 Value *FullMask = Builder.CreateOr(Y, MaskB); 624 Value *MaskedX = Builder.CreateAnd(X, FullMask); 625 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 626 return new ZExtInst(ICmpNeZero, SelType); 627 } 628 629 /// We want to turn: 630 /// (select (icmp eq (and X, C1), 0), 0, (shl [nsw/nuw] X, C2)); 631 /// iff C1 is a mask and the number of its leading zeros is equal to C2 632 /// into: 633 /// shl X, C2 634 static Value *foldSelectICmpAndZeroShl(const ICmpInst *Cmp, Value *TVal, 635 Value *FVal, 636 InstCombiner::BuilderTy &Builder) { 637 ICmpInst::Predicate Pred; 638 Value *AndVal; 639 if (!match(Cmp, m_ICmp(Pred, m_Value(AndVal), m_Zero()))) 640 return nullptr; 641 642 if (Pred == ICmpInst::ICMP_NE) { 643 Pred = ICmpInst::ICMP_EQ; 644 std::swap(TVal, FVal); 645 } 646 647 Value *X; 648 const APInt *C2, *C1; 649 if (Pred != ICmpInst::ICMP_EQ || 650 !match(AndVal, m_And(m_Value(X), m_APInt(C1))) || 651 !match(TVal, m_Zero()) || !match(FVal, m_Shl(m_Specific(X), m_APInt(C2)))) 652 return nullptr; 653 654 if (!C1->isMask() || 655 C1->countLeadingZeros() != static_cast<unsigned>(C2->getZExtValue())) 656 return nullptr; 657 658 auto *FI = dyn_cast<Instruction>(FVal); 659 if (!FI) 660 return nullptr; 661 662 FI->setHasNoSignedWrap(false); 663 FI->setHasNoUnsignedWrap(false); 664 return FVal; 665 } 666 667 /// We want to turn: 668 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 669 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0 670 /// into: 671 /// ashr (X, Y) 672 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, 673 Value *FalseVal, 674 InstCombiner::BuilderTy &Builder) { 675 ICmpInst::Predicate Pred = IC->getPredicate(); 676 Value *CmpLHS = IC->getOperand(0); 677 Value *CmpRHS = IC->getOperand(1); 678 if (!CmpRHS->getType()->isIntOrIntVectorTy()) 679 return nullptr; 680 681 Value *X, *Y; 682 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits(); 683 if ((Pred != ICmpInst::ICMP_SGT || 684 !match(CmpRHS, 685 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) && 686 (Pred != ICmpInst::ICMP_SLT || 687 !match(CmpRHS, 688 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0))))) 689 return nullptr; 690 691 // Canonicalize so that ashr is in FalseVal. 692 if (Pred == ICmpInst::ICMP_SLT) 693 std::swap(TrueVal, FalseVal); 694 695 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) && 696 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) && 697 match(CmpLHS, m_Specific(X))) { 698 const auto *Ashr = cast<Instruction>(FalseVal); 699 // if lshr is not exact and ashr is, this new ashr must not be exact. 700 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact(); 701 return Builder.CreateAShr(X, Y, IC->getName(), IsExact); 702 } 703 704 return nullptr; 705 } 706 707 /// We want to turn: 708 /// (select (icmp eq (and X, C1), 0), Y, (BinOp Y, C2)) 709 /// into: 710 /// IF C2 u>= C1 711 /// (BinOp Y, (shl (and X, C1), C3)) 712 /// ELSE 713 /// (BinOp Y, (lshr (and X, C1), C3)) 714 /// iff: 715 /// 0 on the RHS is the identity value (i.e add, xor, shl, etc...) 716 /// C1 and C2 are both powers of 2 717 /// where: 718 /// IF C2 u>= C1 719 /// C3 = Log(C2) - Log(C1) 720 /// ELSE 721 /// C3 = Log(C1) - Log(C2) 722 /// 723 /// This transform handles cases where: 724 /// 1. The icmp predicate is inverted 725 /// 2. The select operands are reversed 726 /// 3. The magnitude of C2 and C1 are flipped 727 static Value *foldSelectICmpAndBinOp(const ICmpInst *IC, Value *TrueVal, 728 Value *FalseVal, 729 InstCombiner::BuilderTy &Builder) { 730 // Only handle integer compares. Also, if this is a vector select, we need a 731 // vector compare. 732 if (!TrueVal->getType()->isIntOrIntVectorTy() || 733 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 734 return nullptr; 735 736 Value *CmpLHS = IC->getOperand(0); 737 Value *CmpRHS = IC->getOperand(1); 738 739 unsigned C1Log; 740 bool NeedAnd = false; 741 CmpInst::Predicate Pred = IC->getPredicate(); 742 if (IC->isEquality()) { 743 if (!match(CmpRHS, m_Zero())) 744 return nullptr; 745 746 const APInt *C1; 747 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 748 return nullptr; 749 750 C1Log = C1->logBase2(); 751 } else { 752 APInt C1; 753 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CmpLHS, C1) || 754 !C1.isPowerOf2()) 755 return nullptr; 756 757 C1Log = C1.logBase2(); 758 NeedAnd = true; 759 } 760 761 Value *Y, *V = CmpLHS; 762 BinaryOperator *BinOp; 763 const APInt *C2; 764 bool NeedXor; 765 if (match(FalseVal, m_BinOp(m_Specific(TrueVal), m_Power2(C2)))) { 766 Y = TrueVal; 767 BinOp = cast<BinaryOperator>(FalseVal); 768 NeedXor = Pred == ICmpInst::ICMP_NE; 769 } else if (match(TrueVal, m_BinOp(m_Specific(FalseVal), m_Power2(C2)))) { 770 Y = FalseVal; 771 BinOp = cast<BinaryOperator>(TrueVal); 772 NeedXor = Pred == ICmpInst::ICMP_EQ; 773 } else { 774 return nullptr; 775 } 776 777 // Check that 0 on RHS is identity value for this binop. 778 auto *IdentityC = 779 ConstantExpr::getBinOpIdentity(BinOp->getOpcode(), BinOp->getType(), 780 /*AllowRHSConstant*/ true); 781 if (IdentityC == nullptr || !IdentityC->isNullValue()) 782 return nullptr; 783 784 unsigned C2Log = C2->logBase2(); 785 786 bool NeedShift = C1Log != C2Log; 787 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 788 V->getType()->getScalarSizeInBits(); 789 790 // Make sure we don't create more instructions than we save. 791 if ((NeedShift + NeedXor + NeedZExtTrunc + NeedAnd) > 792 (IC->hasOneUse() + BinOp->hasOneUse())) 793 return nullptr; 794 795 if (NeedAnd) { 796 // Insert the AND instruction on the input to the truncate. 797 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 798 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 799 } 800 801 if (C2Log > C1Log) { 802 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 803 V = Builder.CreateShl(V, C2Log - C1Log); 804 } else if (C1Log > C2Log) { 805 V = Builder.CreateLShr(V, C1Log - C2Log); 806 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 807 } else 808 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 809 810 if (NeedXor) 811 V = Builder.CreateXor(V, *C2); 812 813 return Builder.CreateBinOp(BinOp->getOpcode(), Y, V); 814 } 815 816 /// Canonicalize a set or clear of a masked set of constant bits to 817 /// select-of-constants form. 818 static Instruction *foldSetClearBits(SelectInst &Sel, 819 InstCombiner::BuilderTy &Builder) { 820 Value *Cond = Sel.getCondition(); 821 Value *T = Sel.getTrueValue(); 822 Value *F = Sel.getFalseValue(); 823 Type *Ty = Sel.getType(); 824 Value *X; 825 const APInt *NotC, *C; 826 827 // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C) 828 if (match(T, m_And(m_Value(X), m_APInt(NotC))) && 829 match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 830 Constant *Zero = ConstantInt::getNullValue(Ty); 831 Constant *OrC = ConstantInt::get(Ty, *C); 832 Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel); 833 return BinaryOperator::CreateOr(T, NewSel); 834 } 835 836 // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0) 837 if (match(F, m_And(m_Value(X), m_APInt(NotC))) && 838 match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 839 Constant *Zero = ConstantInt::getNullValue(Ty); 840 Constant *OrC = ConstantInt::get(Ty, *C); 841 Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel); 842 return BinaryOperator::CreateOr(F, NewSel); 843 } 844 845 return nullptr; 846 } 847 848 // select (x == 0), 0, x * y --> freeze(y) * x 849 // select (y == 0), 0, x * y --> freeze(x) * y 850 // select (x == 0), undef, x * y --> freeze(y) * x 851 // select (x == undef), 0, x * y --> freeze(y) * x 852 // Usage of mul instead of 0 will make the result more poisonous, 853 // so the operand that was not checked in the condition should be frozen. 854 // The latter folding is applied only when a constant compared with x is 855 // is a vector consisting of 0 and undefs. If a constant compared with x 856 // is a scalar undefined value or undefined vector then an expression 857 // should be already folded into a constant. 858 static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) { 859 auto *CondVal = SI.getCondition(); 860 auto *TrueVal = SI.getTrueValue(); 861 auto *FalseVal = SI.getFalseValue(); 862 Value *X, *Y; 863 ICmpInst::Predicate Predicate; 864 865 // Assuming that constant compared with zero is not undef (but it may be 866 // a vector with some undef elements). Otherwise (when a constant is undef) 867 // the select expression should be already simplified. 868 if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) || 869 !ICmpInst::isEquality(Predicate)) 870 return nullptr; 871 872 if (Predicate == ICmpInst::ICMP_NE) 873 std::swap(TrueVal, FalseVal); 874 875 // Check that TrueVal is a constant instead of matching it with m_Zero() 876 // to handle the case when it is a scalar undef value or a vector containing 877 // non-zero elements that are masked by undef elements in the compare 878 // constant. 879 auto *TrueValC = dyn_cast<Constant>(TrueVal); 880 if (TrueValC == nullptr || 881 !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) || 882 !isa<Instruction>(FalseVal)) 883 return nullptr; 884 885 auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1)); 886 auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC); 887 // If X is compared with 0 then TrueVal could be either zero or undef. 888 // m_Zero match vectors containing some undef elements, but for scalars 889 // m_Undef should be used explicitly. 890 if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef())) 891 return nullptr; 892 893 auto *FalseValI = cast<Instruction>(FalseVal); 894 auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"), 895 FalseValI->getIterator()); 896 IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY); 897 return IC.replaceInstUsesWith(SI, FalseValI); 898 } 899 900 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). 901 /// There are 8 commuted/swapped variants of this pattern. 902 /// TODO: Also support a - UMIN(a,b) patterns. 903 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 904 const Value *TrueVal, 905 const Value *FalseVal, 906 InstCombiner::BuilderTy &Builder) { 907 ICmpInst::Predicate Pred = ICI->getPredicate(); 908 Value *A = ICI->getOperand(0); 909 Value *B = ICI->getOperand(1); 910 911 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 912 // (a == 0) ? 0 : a - 1 -> (a != 0) ? a - 1 : 0 913 if (match(TrueVal, m_Zero())) { 914 Pred = ICmpInst::getInversePredicate(Pred); 915 std::swap(TrueVal, FalseVal); 916 } 917 918 if (!match(FalseVal, m_Zero())) 919 return nullptr; 920 921 // ugt 0 is canonicalized to ne 0 and requires special handling 922 // (a != 0) ? a + -1 : 0 -> usub.sat(a, 1) 923 if (Pred == ICmpInst::ICMP_NE) { 924 if (match(B, m_Zero()) && match(TrueVal, m_Add(m_Specific(A), m_AllOnes()))) 925 return Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, 926 ConstantInt::get(A->getType(), 1)); 927 return nullptr; 928 } 929 930 if (!ICmpInst::isUnsigned(Pred)) 931 return nullptr; 932 933 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 934 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 935 std::swap(A, B); 936 Pred = ICmpInst::getSwappedPredicate(Pred); 937 } 938 939 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 940 "Unexpected isUnsigned predicate!"); 941 942 // Ensure the sub is of the form: 943 // (a > b) ? a - b : 0 -> usub.sat(a, b) 944 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 945 // Checking for both a-b and a+(-b) as a constant. 946 bool IsNegative = false; 947 const APInt *C; 948 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) || 949 (match(A, m_APInt(C)) && 950 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C))))) 951 IsNegative = true; 952 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) && 953 !(match(B, m_APInt(C)) && 954 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C))))) 955 return nullptr; 956 957 // If we are adding a negate and the sub and icmp are used anywhere else, we 958 // would end up with more instructions. 959 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse()) 960 return nullptr; 961 962 // (a > b) ? a - b : 0 -> usub.sat(a, b) 963 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 964 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); 965 if (IsNegative) 966 Result = Builder.CreateNeg(Result); 967 return Result; 968 } 969 970 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, 971 InstCombiner::BuilderTy &Builder) { 972 if (!Cmp->hasOneUse()) 973 return nullptr; 974 975 // Match unsigned saturated add with constant. 976 Value *Cmp0 = Cmp->getOperand(0); 977 Value *Cmp1 = Cmp->getOperand(1); 978 ICmpInst::Predicate Pred = Cmp->getPredicate(); 979 Value *X; 980 const APInt *C, *CmpC; 981 if (Pred == ICmpInst::ICMP_ULT && 982 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 && 983 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) { 984 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C) 985 return Builder.CreateBinaryIntrinsic( 986 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C)); 987 } 988 989 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 990 // There are 8 commuted variants. 991 // Canonicalize -1 (saturated result) to true value of the select. 992 if (match(FVal, m_AllOnes())) { 993 std::swap(TVal, FVal); 994 Pred = CmpInst::getInversePredicate(Pred); 995 } 996 if (!match(TVal, m_AllOnes())) 997 return nullptr; 998 999 // Canonicalize predicate to less-than or less-or-equal-than. 1000 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 1001 std::swap(Cmp0, Cmp1); 1002 Pred = CmpInst::getSwappedPredicate(Pred); 1003 } 1004 if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE) 1005 return nullptr; 1006 1007 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 1008 // Strictness of the comparison is irrelevant. 1009 Value *Y; 1010 if (match(Cmp0, m_Not(m_Value(X))) && 1011 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { 1012 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 1013 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) 1014 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); 1015 } 1016 // The 'not' op may be included in the sum but not the compare. 1017 // Strictness of the comparison is irrelevant. 1018 X = Cmp0; 1019 Y = Cmp1; 1020 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) { 1021 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) 1022 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) 1023 BinaryOperator *BO = cast<BinaryOperator>(FVal); 1024 return Builder.CreateBinaryIntrinsic( 1025 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); 1026 } 1027 // The overflow may be detected via the add wrapping round. 1028 // This is only valid for strict comparison! 1029 if (Pred == ICmpInst::ICMP_ULT && 1030 match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) && 1031 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) { 1032 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y) 1033 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 1034 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y); 1035 } 1036 1037 return nullptr; 1038 } 1039 1040 /// Try to match patterns with select and subtract as absolute difference. 1041 static Value *foldAbsDiff(ICmpInst *Cmp, Value *TVal, Value *FVal, 1042 InstCombiner::BuilderTy &Builder) { 1043 auto *TI = dyn_cast<Instruction>(TVal); 1044 auto *FI = dyn_cast<Instruction>(FVal); 1045 if (!TI || !FI) 1046 return nullptr; 1047 1048 // Normalize predicate to gt/lt rather than ge/le. 1049 ICmpInst::Predicate Pred = Cmp->getStrictPredicate(); 1050 Value *A = Cmp->getOperand(0); 1051 Value *B = Cmp->getOperand(1); 1052 1053 // Normalize "A - B" as the true value of the select. 1054 if (match(FI, m_Sub(m_Specific(A), m_Specific(B)))) { 1055 std::swap(FI, TI); 1056 Pred = ICmpInst::getSwappedPredicate(Pred); 1057 } 1058 1059 // With any pair of no-wrap subtracts: 1060 // (A > B) ? (A - B) : (B - A) --> abs(A - B) 1061 if (Pred == CmpInst::ICMP_SGT && 1062 match(TI, m_Sub(m_Specific(A), m_Specific(B))) && 1063 match(FI, m_Sub(m_Specific(B), m_Specific(A))) && 1064 (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap()) && 1065 (FI->hasNoSignedWrap() || FI->hasNoUnsignedWrap())) { 1066 // The remaining subtract is not "nuw" any more. 1067 // If there's one use of the subtract (no other use than the use we are 1068 // about to replace), then we know that the sub is "nsw" in this context 1069 // even if it was only "nuw" before. If there's another use, then we can't 1070 // add "nsw" to the existing instruction because it may not be safe in the 1071 // other user's context. 1072 TI->setHasNoUnsignedWrap(false); 1073 if (!TI->hasNoSignedWrap()) 1074 TI->setHasNoSignedWrap(TI->hasOneUse()); 1075 return Builder.CreateBinaryIntrinsic(Intrinsic::abs, TI, Builder.getTrue()); 1076 } 1077 1078 return nullptr; 1079 } 1080 1081 /// Fold the following code sequence: 1082 /// \code 1083 /// int a = ctlz(x & -x); 1084 // x ? 31 - a : a; 1085 // // or 1086 // x ? 31 - a : 32; 1087 /// \code 1088 /// 1089 /// into: 1090 /// cttz(x) 1091 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal, 1092 Value *FalseVal, 1093 InstCombiner::BuilderTy &Builder) { 1094 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 1095 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero())) 1096 return nullptr; 1097 1098 if (ICI->getPredicate() == ICmpInst::ICMP_NE) 1099 std::swap(TrueVal, FalseVal); 1100 1101 Value *Ctlz; 1102 if (!match(FalseVal, 1103 m_Xor(m_Value(Ctlz), m_SpecificInt(BitWidth - 1)))) 1104 return nullptr; 1105 1106 if (!match(Ctlz, m_Intrinsic<Intrinsic::ctlz>())) 1107 return nullptr; 1108 1109 if (TrueVal != Ctlz && !match(TrueVal, m_SpecificInt(BitWidth))) 1110 return nullptr; 1111 1112 Value *X = ICI->getOperand(0); 1113 auto *II = cast<IntrinsicInst>(Ctlz); 1114 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X))))) 1115 return nullptr; 1116 1117 Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz, 1118 II->getType()); 1119 return CallInst::Create(F, {X, II->getArgOperand(1)}); 1120 } 1121 1122 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 1123 /// call to cttz/ctlz with flag 'is_zero_poison' cleared. 1124 /// 1125 /// For example, we can fold the following code sequence: 1126 /// \code 1127 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 1128 /// %1 = icmp ne i32 %x, 0 1129 /// %2 = select i1 %1, i32 %0, i32 32 1130 /// \code 1131 /// 1132 /// into: 1133 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 1134 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 1135 InstCombinerImpl &IC) { 1136 ICmpInst::Predicate Pred = ICI->getPredicate(); 1137 Value *CmpLHS = ICI->getOperand(0); 1138 Value *CmpRHS = ICI->getOperand(1); 1139 1140 // Check if the select condition compares a value for equality. 1141 if (!ICI->isEquality()) 1142 return nullptr; 1143 1144 Value *SelectArg = FalseVal; 1145 Value *ValueOnZero = TrueVal; 1146 if (Pred == ICmpInst::ICMP_NE) 1147 std::swap(SelectArg, ValueOnZero); 1148 1149 // Skip zero extend/truncate. 1150 Value *Count = nullptr; 1151 if (!match(SelectArg, m_ZExt(m_Value(Count))) && 1152 !match(SelectArg, m_Trunc(m_Value(Count)))) 1153 Count = SelectArg; 1154 1155 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 1156 // input to the cttz/ctlz is used as LHS for the compare instruction. 1157 Value *X; 1158 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Value(X))) && 1159 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Value(X)))) 1160 return nullptr; 1161 1162 // (X == 0) ? BitWidth : ctz(X) 1163 // (X == -1) ? BitWidth : ctz(~X) 1164 if ((X != CmpLHS || !match(CmpRHS, m_Zero())) && 1165 (!match(X, m_Not(m_Specific(CmpLHS))) || !match(CmpRHS, m_AllOnes()))) 1166 return nullptr; 1167 1168 IntrinsicInst *II = cast<IntrinsicInst>(Count); 1169 1170 // Check if the value propagated on zero is a constant number equal to the 1171 // sizeof in bits of 'Count'. 1172 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 1173 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 1174 // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from 1175 // true to false on this flag, so we can replace it for all users. 1176 II->setArgOperand(1, ConstantInt::getFalse(II->getContext())); 1177 // A range annotation on the intrinsic may no longer be valid. 1178 II->dropPoisonGeneratingAnnotations(); 1179 IC.addToWorklist(II); 1180 return SelectArg; 1181 } 1182 1183 // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional 1184 // zext/trunc) have one use (ending at the select), the cttz/ctlz result will 1185 // not be used if the input is zero. Relax to 'zero is poison' for that case. 1186 if (II->hasOneUse() && SelectArg->hasOneUse() && 1187 !match(II->getArgOperand(1), m_One())) 1188 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 1189 1190 return nullptr; 1191 } 1192 1193 static Value *canonicalizeSPF(ICmpInst &Cmp, Value *TrueVal, Value *FalseVal, 1194 InstCombinerImpl &IC) { 1195 Value *LHS, *RHS; 1196 // TODO: What to do with pointer min/max patterns? 1197 if (!TrueVal->getType()->isIntOrIntVectorTy()) 1198 return nullptr; 1199 1200 SelectPatternFlavor SPF = 1201 matchDecomposedSelectPattern(&Cmp, TrueVal, FalseVal, LHS, RHS).Flavor; 1202 if (SPF == SelectPatternFlavor::SPF_ABS || 1203 SPF == SelectPatternFlavor::SPF_NABS) { 1204 if (!Cmp.hasOneUse() && !RHS->hasOneUse()) 1205 return nullptr; // TODO: Relax this restriction. 1206 1207 // Note that NSW flag can only be propagated for normal, non-negated abs! 1208 bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS && 1209 match(RHS, m_NSWNeg(m_Specific(LHS))); 1210 Constant *IntMinIsPoisonC = 1211 ConstantInt::get(Type::getInt1Ty(Cmp.getContext()), IntMinIsPoison); 1212 Value *Abs = 1213 IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC); 1214 1215 if (SPF == SelectPatternFlavor::SPF_NABS) 1216 return IC.Builder.CreateNeg(Abs); // Always without NSW flag! 1217 return Abs; 1218 } 1219 1220 if (SelectPatternResult::isMinOrMax(SPF)) { 1221 Intrinsic::ID IntrinsicID; 1222 switch (SPF) { 1223 case SelectPatternFlavor::SPF_UMIN: 1224 IntrinsicID = Intrinsic::umin; 1225 break; 1226 case SelectPatternFlavor::SPF_UMAX: 1227 IntrinsicID = Intrinsic::umax; 1228 break; 1229 case SelectPatternFlavor::SPF_SMIN: 1230 IntrinsicID = Intrinsic::smin; 1231 break; 1232 case SelectPatternFlavor::SPF_SMAX: 1233 IntrinsicID = Intrinsic::smax; 1234 break; 1235 default: 1236 llvm_unreachable("Unexpected SPF"); 1237 } 1238 return IC.Builder.CreateBinaryIntrinsic(IntrinsicID, LHS, RHS); 1239 } 1240 1241 return nullptr; 1242 } 1243 1244 bool InstCombinerImpl::replaceInInstruction(Value *V, Value *Old, Value *New, 1245 unsigned Depth) { 1246 // Conservatively limit replacement to two instructions upwards. 1247 if (Depth == 2) 1248 return false; 1249 1250 assert(!isa<Constant>(Old) && "Only replace non-constant values"); 1251 1252 auto *I = dyn_cast<Instruction>(V); 1253 if (!I || !I->hasOneUse() || 1254 !isSafeToSpeculativelyExecuteWithVariableReplaced(I)) 1255 return false; 1256 1257 bool Changed = false; 1258 for (Use &U : I->operands()) { 1259 if (U == Old) { 1260 replaceUse(U, New); 1261 Worklist.add(I); 1262 Changed = true; 1263 } else { 1264 Changed |= replaceInInstruction(U, Old, New, Depth + 1); 1265 } 1266 } 1267 return Changed; 1268 } 1269 1270 /// If we have a select with an equality comparison, then we know the value in 1271 /// one of the arms of the select. See if substituting this value into an arm 1272 /// and simplifying the result yields the same value as the other arm. 1273 /// 1274 /// To make this transform safe, we must drop poison-generating flags 1275 /// (nsw, etc) if we simplified to a binop because the select may be guarding 1276 /// that poison from propagating. If the existing binop already had no 1277 /// poison-generating flags, then this transform can be done by instsimplify. 1278 /// 1279 /// Consider: 1280 /// %cmp = icmp eq i32 %x, 2147483647 1281 /// %add = add nsw i32 %x, 1 1282 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add 1283 /// 1284 /// We can't replace %sel with %add unless we strip away the flags. 1285 /// TODO: Wrapping flags could be preserved in some cases with better analysis. 1286 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel, 1287 ICmpInst &Cmp) { 1288 if (!Cmp.isEquality()) 1289 return nullptr; 1290 1291 // Canonicalize the pattern to ICMP_EQ by swapping the select operands. 1292 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 1293 bool Swapped = false; 1294 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) { 1295 std::swap(TrueVal, FalseVal); 1296 Swapped = true; 1297 } 1298 1299 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1); 1300 auto ReplaceOldOpWithNewOp = [&](Value *OldOp, 1301 Value *NewOp) -> Instruction * { 1302 // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand. 1303 // Take care to avoid replacing X == Y ? X : Z with X == Y ? Y : Z, as that 1304 // would lead to an infinite replacement cycle. 1305 // If we will be able to evaluate f(Y) to a constant, we can allow undef, 1306 // otherwise Y cannot be undef as we might pick different values for undef 1307 // in the icmp and in f(Y). 1308 if (TrueVal == OldOp) 1309 return nullptr; 1310 1311 if (Value *V = simplifyWithOpReplaced(TrueVal, OldOp, NewOp, SQ, 1312 /* AllowRefinement=*/true)) { 1313 // Need some guarantees about the new simplified op to ensure we don't inf 1314 // loop. 1315 // If we simplify to a constant, replace if we aren't creating new undef. 1316 if (match(V, m_ImmConstant()) && 1317 isGuaranteedNotToBeUndef(V, SQ.AC, &Sel, &DT)) 1318 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1319 1320 // If NewOp is a constant and OldOp is not replace iff NewOp doesn't 1321 // contain and undef elements. 1322 if (match(NewOp, m_ImmConstant()) || NewOp == V) { 1323 if (isGuaranteedNotToBeUndef(NewOp, SQ.AC, &Sel, &DT)) 1324 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1325 return nullptr; 1326 } 1327 } 1328 1329 // Even if TrueVal does not simplify, we can directly replace a use of 1330 // CmpLHS with CmpRHS, as long as the instruction is not used anywhere 1331 // else and is safe to speculatively execute (we may end up executing it 1332 // with different operands, which should not cause side-effects or trigger 1333 // undefined behavior). Only do this if CmpRHS is a constant, as 1334 // profitability is not clear for other cases. 1335 // FIXME: Support vectors. 1336 if (OldOp == CmpLHS && match(NewOp, m_ImmConstant()) && 1337 !match(OldOp, m_Constant()) && !Cmp.getType()->isVectorTy() && 1338 isGuaranteedNotToBeUndef(NewOp, SQ.AC, &Sel, &DT)) 1339 if (replaceInInstruction(TrueVal, OldOp, NewOp)) 1340 return &Sel; 1341 return nullptr; 1342 }; 1343 1344 if (Instruction *R = ReplaceOldOpWithNewOp(CmpLHS, CmpRHS)) 1345 return R; 1346 if (Instruction *R = ReplaceOldOpWithNewOp(CmpRHS, CmpLHS)) 1347 return R; 1348 1349 auto *FalseInst = dyn_cast<Instruction>(FalseVal); 1350 if (!FalseInst) 1351 return nullptr; 1352 1353 // InstSimplify already performed this fold if it was possible subject to 1354 // current poison-generating flags. Check whether dropping poison-generating 1355 // flags enables the transform. 1356 1357 // Try each equivalence substitution possibility. 1358 // We have an 'EQ' comparison, so the select's false value will propagate. 1359 // Example: 1360 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1 1361 SmallVector<Instruction *> DropFlags; 1362 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ, 1363 /* AllowRefinement */ false, 1364 &DropFlags) == TrueVal || 1365 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ, 1366 /* AllowRefinement */ false, 1367 &DropFlags) == TrueVal) { 1368 for (Instruction *I : DropFlags) { 1369 I->dropPoisonGeneratingAnnotations(); 1370 Worklist.add(I); 1371 } 1372 1373 return replaceInstUsesWith(Sel, FalseVal); 1374 } 1375 1376 return nullptr; 1377 } 1378 1379 // See if this is a pattern like: 1380 // %old_cmp1 = icmp slt i32 %x, C2 1381 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high 1382 // %old_x_offseted = add i32 %x, C1 1383 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0 1384 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement 1385 // This can be rewritten as more canonical pattern: 1386 // %new_cmp1 = icmp slt i32 %x, -C1 1387 // %new_cmp2 = icmp sge i32 %x, C0-C1 1388 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x 1389 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low 1390 // Iff -C1 s<= C2 s<= C0-C1 1391 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result) 1392 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.) 1393 static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0, 1394 InstCombiner::BuilderTy &Builder, 1395 InstCombiner &IC) { 1396 Value *X = Sel0.getTrueValue(); 1397 Value *Sel1 = Sel0.getFalseValue(); 1398 1399 // First match the condition of the outermost select. 1400 // Said condition must be one-use. 1401 if (!Cmp0.hasOneUse()) 1402 return nullptr; 1403 ICmpInst::Predicate Pred0 = Cmp0.getPredicate(); 1404 Value *Cmp00 = Cmp0.getOperand(0); 1405 Constant *C0; 1406 if (!match(Cmp0.getOperand(1), 1407 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))) 1408 return nullptr; 1409 1410 if (!isa<SelectInst>(Sel1)) { 1411 Pred0 = ICmpInst::getInversePredicate(Pred0); 1412 std::swap(X, Sel1); 1413 } 1414 1415 // Canonicalize Cmp0 into ult or uge. 1416 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1417 switch (Pred0) { 1418 case ICmpInst::Predicate::ICMP_ULT: 1419 case ICmpInst::Predicate::ICMP_UGE: 1420 // Although icmp ult %x, 0 is an unusual thing to try and should generally 1421 // have been simplified, it does not verify with undef inputs so ensure we 1422 // are not in a strange state. 1423 if (!match(C0, m_SpecificInt_ICMP( 1424 ICmpInst::Predicate::ICMP_NE, 1425 APInt::getZero(C0->getType()->getScalarSizeInBits())))) 1426 return nullptr; 1427 break; // Great! 1428 case ICmpInst::Predicate::ICMP_ULE: 1429 case ICmpInst::Predicate::ICMP_UGT: 1430 // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment 1431 // C0, which again means it must not have any all-ones elements. 1432 if (!match(C0, 1433 m_SpecificInt_ICMP( 1434 ICmpInst::Predicate::ICMP_NE, 1435 APInt::getAllOnes(C0->getType()->getScalarSizeInBits())))) 1436 return nullptr; // Can't do, have all-ones element[s]. 1437 Pred0 = ICmpInst::getFlippedStrictnessPredicate(Pred0); 1438 C0 = InstCombiner::AddOne(C0); 1439 break; 1440 default: 1441 return nullptr; // Unknown predicate. 1442 } 1443 1444 // Now that we've canonicalized the ICmp, we know the X we expect; 1445 // the select in other hand should be one-use. 1446 if (!Sel1->hasOneUse()) 1447 return nullptr; 1448 1449 // If the types do not match, look through any truncs to the underlying 1450 // instruction. 1451 if (Cmp00->getType() != X->getType() && X->hasOneUse()) 1452 match(X, m_TruncOrSelf(m_Value(X))); 1453 1454 // We now can finish matching the condition of the outermost select: 1455 // it should either be the X itself, or an addition of some constant to X. 1456 Constant *C1; 1457 if (Cmp00 == X) 1458 C1 = ConstantInt::getNullValue(X->getType()); 1459 else if (!match(Cmp00, 1460 m_Add(m_Specific(X), 1461 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1))))) 1462 return nullptr; 1463 1464 Value *Cmp1; 1465 ICmpInst::Predicate Pred1; 1466 Constant *C2; 1467 Value *ReplacementLow, *ReplacementHigh; 1468 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow), 1469 m_Value(ReplacementHigh))) || 1470 !match(Cmp1, 1471 m_ICmp(Pred1, m_Specific(X), 1472 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2))))) 1473 return nullptr; 1474 1475 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse())) 1476 return nullptr; // Not enough one-use instructions for the fold. 1477 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of 1478 // two comparisons we'll need to build. 1479 1480 // Canonicalize Cmp1 into the form we expect. 1481 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1482 switch (Pred1) { 1483 case ICmpInst::Predicate::ICMP_SLT: 1484 break; 1485 case ICmpInst::Predicate::ICMP_SLE: 1486 // We'd have to increment C2 by one, and for that it must not have signed 1487 // max element, but then it would have been canonicalized to 'slt' before 1488 // we get here. So we can't do anything useful with 'sle'. 1489 return nullptr; 1490 case ICmpInst::Predicate::ICMP_SGT: 1491 // We want to canonicalize it to 'slt', so we'll need to increment C2, 1492 // which again means it must not have any signed max elements. 1493 if (!match(C2, 1494 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1495 APInt::getSignedMaxValue( 1496 C2->getType()->getScalarSizeInBits())))) 1497 return nullptr; // Can't do, have signed max element[s]. 1498 C2 = InstCombiner::AddOne(C2); 1499 [[fallthrough]]; 1500 case ICmpInst::Predicate::ICMP_SGE: 1501 // Also non-canonical, but here we don't need to change C2, 1502 // so we don't have any restrictions on C2, so we can just handle it. 1503 Pred1 = ICmpInst::Predicate::ICMP_SLT; 1504 std::swap(ReplacementLow, ReplacementHigh); 1505 break; 1506 default: 1507 return nullptr; // Unknown predicate. 1508 } 1509 assert(Pred1 == ICmpInst::Predicate::ICMP_SLT && 1510 "Unexpected predicate type."); 1511 1512 // The thresholds of this clamp-like pattern. 1513 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1); 1514 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1); 1515 1516 assert((Pred0 == ICmpInst::Predicate::ICMP_ULT || 1517 Pred0 == ICmpInst::Predicate::ICMP_UGE) && 1518 "Unexpected predicate type."); 1519 if (Pred0 == ICmpInst::Predicate::ICMP_UGE) 1520 std::swap(ThresholdLowIncl, ThresholdHighExcl); 1521 1522 // The fold has a precondition 1: C2 s>= ThresholdLow 1523 auto *Precond1 = ConstantFoldCompareInstOperands( 1524 ICmpInst::Predicate::ICMP_SGE, C2, ThresholdLowIncl, IC.getDataLayout()); 1525 if (!Precond1 || !match(Precond1, m_One())) 1526 return nullptr; 1527 // The fold has a precondition 2: C2 s<= ThresholdHigh 1528 auto *Precond2 = ConstantFoldCompareInstOperands( 1529 ICmpInst::Predicate::ICMP_SLE, C2, ThresholdHighExcl, IC.getDataLayout()); 1530 if (!Precond2 || !match(Precond2, m_One())) 1531 return nullptr; 1532 1533 // If we are matching from a truncated input, we need to sext the 1534 // ReplacementLow and ReplacementHigh values. Only do the transform if they 1535 // are free to extend due to being constants. 1536 if (X->getType() != Sel0.getType()) { 1537 Constant *LowC, *HighC; 1538 if (!match(ReplacementLow, m_ImmConstant(LowC)) || 1539 !match(ReplacementHigh, m_ImmConstant(HighC))) 1540 return nullptr; 1541 const DataLayout &DL = Sel0.getDataLayout(); 1542 ReplacementLow = 1543 ConstantFoldCastOperand(Instruction::SExt, LowC, X->getType(), DL); 1544 ReplacementHigh = 1545 ConstantFoldCastOperand(Instruction::SExt, HighC, X->getType(), DL); 1546 assert(ReplacementLow && ReplacementHigh && 1547 "Constant folding of ImmConstant cannot fail"); 1548 } 1549 1550 // All good, finally emit the new pattern. 1551 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl); 1552 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl); 1553 Value *MaybeReplacedLow = 1554 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X); 1555 1556 // Create the final select. If we looked through a truncate above, we will 1557 // need to retruncate the result. 1558 Value *MaybeReplacedHigh = Builder.CreateSelect( 1559 ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow); 1560 return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType()); 1561 } 1562 1563 // If we have 1564 // %cmp = icmp [canonical predicate] i32 %x, C0 1565 // %r = select i1 %cmp, i32 %y, i32 C1 1566 // Where C0 != C1 and %x may be different from %y, see if the constant that we 1567 // will have if we flip the strictness of the predicate (i.e. without changing 1568 // the result) is identical to the C1 in select. If it matches we can change 1569 // original comparison to one with swapped predicate, reuse the constant, 1570 // and swap the hands of select. 1571 static Instruction * 1572 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp, 1573 InstCombinerImpl &IC) { 1574 ICmpInst::Predicate Pred; 1575 Value *X; 1576 Constant *C0; 1577 if (!match(&Cmp, m_OneUse(m_ICmp( 1578 Pred, m_Value(X), 1579 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))))) 1580 return nullptr; 1581 1582 // If comparison predicate is non-relational, we won't be able to do anything. 1583 if (ICmpInst::isEquality(Pred)) 1584 return nullptr; 1585 1586 // If comparison predicate is non-canonical, then we certainly won't be able 1587 // to make it canonical; canonicalizeCmpWithConstant() already tried. 1588 if (!InstCombiner::isCanonicalPredicate(Pred)) 1589 return nullptr; 1590 1591 // If the [input] type of comparison and select type are different, lets abort 1592 // for now. We could try to compare constants with trunc/[zs]ext though. 1593 if (C0->getType() != Sel.getType()) 1594 return nullptr; 1595 1596 // ULT with 'add' of a constant is canonical. See foldICmpAddConstant(). 1597 // FIXME: Are there more magic icmp predicate+constant pairs we must avoid? 1598 // Or should we just abandon this transform entirely? 1599 if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant()))) 1600 return nullptr; 1601 1602 1603 Value *SelVal0, *SelVal1; // We do not care which one is from where. 1604 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1))); 1605 // At least one of these values we are selecting between must be a constant 1606 // else we'll never succeed. 1607 if (!match(SelVal0, m_AnyIntegralConstant()) && 1608 !match(SelVal1, m_AnyIntegralConstant())) 1609 return nullptr; 1610 1611 // Does this constant C match any of the `select` values? 1612 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) { 1613 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1); 1614 }; 1615 1616 // If C0 *already* matches true/false value of select, we are done. 1617 if (MatchesSelectValue(C0)) 1618 return nullptr; 1619 1620 // Check the constant we'd have with flipped-strictness predicate. 1621 auto FlippedStrictness = 1622 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0); 1623 if (!FlippedStrictness) 1624 return nullptr; 1625 1626 // If said constant doesn't match either, then there is no hope, 1627 if (!MatchesSelectValue(FlippedStrictness->second)) 1628 return nullptr; 1629 1630 // It matched! Lets insert the new comparison just before select. 1631 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder); 1632 IC.Builder.SetInsertPoint(&Sel); 1633 1634 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped. 1635 Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second, 1636 Cmp.getName() + ".inv"); 1637 IC.replaceOperand(Sel, 0, NewCmp); 1638 Sel.swapValues(); 1639 Sel.swapProfMetadata(); 1640 1641 return &Sel; 1642 } 1643 1644 static Instruction *foldSelectZeroOrOnes(ICmpInst *Cmp, Value *TVal, 1645 Value *FVal, 1646 InstCombiner::BuilderTy &Builder) { 1647 if (!Cmp->hasOneUse()) 1648 return nullptr; 1649 1650 const APInt *CmpC; 1651 if (!match(Cmp->getOperand(1), m_APIntAllowPoison(CmpC))) 1652 return nullptr; 1653 1654 // (X u< 2) ? -X : -1 --> sext (X != 0) 1655 Value *X = Cmp->getOperand(0); 1656 if (Cmp->getPredicate() == ICmpInst::ICMP_ULT && *CmpC == 2 && 1657 match(TVal, m_Neg(m_Specific(X))) && match(FVal, m_AllOnes())) 1658 return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType()); 1659 1660 // (X u> 1) ? -1 : -X --> sext (X != 0) 1661 if (Cmp->getPredicate() == ICmpInst::ICMP_UGT && *CmpC == 1 && 1662 match(FVal, m_Neg(m_Specific(X))) && match(TVal, m_AllOnes())) 1663 return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType()); 1664 1665 return nullptr; 1666 } 1667 1668 static Value *foldSelectInstWithICmpConst(SelectInst &SI, ICmpInst *ICI, 1669 InstCombiner::BuilderTy &Builder) { 1670 const APInt *CmpC; 1671 Value *V; 1672 CmpInst::Predicate Pred; 1673 if (!match(ICI, m_ICmp(Pred, m_Value(V), m_APInt(CmpC)))) 1674 return nullptr; 1675 1676 // Match clamp away from min/max value as a max/min operation. 1677 Value *TVal = SI.getTrueValue(); 1678 Value *FVal = SI.getFalseValue(); 1679 if (Pred == ICmpInst::ICMP_EQ && V == FVal) { 1680 // (V == UMIN) ? UMIN+1 : V --> umax(V, UMIN+1) 1681 if (CmpC->isMinValue() && match(TVal, m_SpecificInt(*CmpC + 1))) 1682 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, V, TVal); 1683 // (V == UMAX) ? UMAX-1 : V --> umin(V, UMAX-1) 1684 if (CmpC->isMaxValue() && match(TVal, m_SpecificInt(*CmpC - 1))) 1685 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, V, TVal); 1686 // (V == SMIN) ? SMIN+1 : V --> smax(V, SMIN+1) 1687 if (CmpC->isMinSignedValue() && match(TVal, m_SpecificInt(*CmpC + 1))) 1688 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, V, TVal); 1689 // (V == SMAX) ? SMAX-1 : V --> smin(V, SMAX-1) 1690 if (CmpC->isMaxSignedValue() && match(TVal, m_SpecificInt(*CmpC - 1))) 1691 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, V, TVal); 1692 } 1693 1694 BinaryOperator *BO; 1695 const APInt *C; 1696 CmpInst::Predicate CPred; 1697 if (match(&SI, m_Select(m_Specific(ICI), m_APInt(C), m_BinOp(BO)))) 1698 CPred = ICI->getPredicate(); 1699 else if (match(&SI, m_Select(m_Specific(ICI), m_BinOp(BO), m_APInt(C)))) 1700 CPred = ICI->getInversePredicate(); 1701 else 1702 return nullptr; 1703 1704 const APInt *BinOpC; 1705 if (!match(BO, m_BinOp(m_Specific(V), m_APInt(BinOpC)))) 1706 return nullptr; 1707 1708 ConstantRange R = ConstantRange::makeExactICmpRegion(CPred, *CmpC) 1709 .binaryOp(BO->getOpcode(), *BinOpC); 1710 if (R == *C) { 1711 BO->dropPoisonGeneratingFlags(); 1712 return BO; 1713 } 1714 return nullptr; 1715 } 1716 1717 static Instruction *foldSelectICmpEq(SelectInst &SI, ICmpInst *ICI, 1718 InstCombinerImpl &IC) { 1719 ICmpInst::Predicate Pred = ICI->getPredicate(); 1720 if (!ICmpInst::isEquality(Pred)) 1721 return nullptr; 1722 1723 Value *TrueVal = SI.getTrueValue(); 1724 Value *FalseVal = SI.getFalseValue(); 1725 Value *CmpLHS = ICI->getOperand(0); 1726 Value *CmpRHS = ICI->getOperand(1); 1727 1728 if (Pred == ICmpInst::ICMP_NE) 1729 std::swap(TrueVal, FalseVal); 1730 1731 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 1732 // specific handling for Bitwise operation. 1733 // x&y -> (x|y) ^ (x^y) or (x|y) & ~(x^y) 1734 // x|y -> (x&y) | (x^y) or (x&y) ^ (x^y) 1735 // x^y -> (x|y) ^ (x&y) or (x|y) & ~(x&y) 1736 Value *X, *Y; 1737 if (!match(CmpLHS, m_BitwiseLogic(m_Value(X), m_Value(Y))) || 1738 !match(TrueVal, m_c_BitwiseLogic(m_Specific(X), m_Specific(Y)))) 1739 return nullptr; 1740 1741 const unsigned AndOps = Instruction::And, OrOps = Instruction::Or, 1742 XorOps = Instruction::Xor, NoOps = 0; 1743 enum NotMask { None = 0, NotInner, NotRHS }; 1744 1745 auto matchFalseVal = [&](unsigned OuterOpc, unsigned InnerOpc, 1746 unsigned NotMask) { 1747 auto matchInner = m_c_BinOp(InnerOpc, m_Specific(X), m_Specific(Y)); 1748 if (OuterOpc == NoOps) 1749 return match(CmpRHS, m_Zero()) && match(FalseVal, matchInner); 1750 1751 if (NotMask == NotInner) { 1752 return match(FalseVal, m_c_BinOp(OuterOpc, m_NotForbidPoison(matchInner), 1753 m_Specific(CmpRHS))); 1754 } else if (NotMask == NotRHS) { 1755 return match(FalseVal, m_c_BinOp(OuterOpc, matchInner, 1756 m_NotForbidPoison(m_Specific(CmpRHS)))); 1757 } else { 1758 return match(FalseVal, 1759 m_c_BinOp(OuterOpc, matchInner, m_Specific(CmpRHS))); 1760 } 1761 }; 1762 1763 // (X&Y)==C ? X|Y : X^Y -> (X^Y)|C : X^Y or (X^Y)^ C : X^Y 1764 // (X&Y)==C ? X^Y : X|Y -> (X|Y)^C : X|Y or (X|Y)&~C : X|Y 1765 if (match(CmpLHS, m_And(m_Value(X), m_Value(Y)))) { 1766 if (match(TrueVal, m_c_Or(m_Specific(X), m_Specific(Y)))) { 1767 // (X&Y)==C ? X|Y : (X^Y)|C -> (X^Y)|C : (X^Y)|C -> (X^Y)|C 1768 // (X&Y)==C ? X|Y : (X^Y)^C -> (X^Y)^C : (X^Y)^C -> (X^Y)^C 1769 if (matchFalseVal(OrOps, XorOps, None) || 1770 matchFalseVal(XorOps, XorOps, None)) 1771 return IC.replaceInstUsesWith(SI, FalseVal); 1772 } else if (match(TrueVal, m_c_Xor(m_Specific(X), m_Specific(Y)))) { 1773 // (X&Y)==C ? X^Y : (X|Y)^ C -> (X|Y)^ C : (X|Y)^ C -> (X|Y)^ C 1774 // (X&Y)==C ? X^Y : (X|Y)&~C -> (X|Y)&~C : (X|Y)&~C -> (X|Y)&~C 1775 if (matchFalseVal(XorOps, OrOps, None) || 1776 matchFalseVal(AndOps, OrOps, NotRHS)) 1777 return IC.replaceInstUsesWith(SI, FalseVal); 1778 } 1779 } 1780 1781 // (X|Y)==C ? X&Y : X^Y -> (X^Y)^C : X^Y or ~(X^Y)&C : X^Y 1782 // (X|Y)==C ? X^Y : X&Y -> (X&Y)^C : X&Y or ~(X&Y)&C : X&Y 1783 if (match(CmpLHS, m_Or(m_Value(X), m_Value(Y)))) { 1784 if (match(TrueVal, m_c_And(m_Specific(X), m_Specific(Y)))) { 1785 // (X|Y)==C ? X&Y: (X^Y)^C -> (X^Y)^C: (X^Y)^C -> (X^Y)^C 1786 // (X|Y)==C ? X&Y:~(X^Y)&C ->~(X^Y)&C:~(X^Y)&C -> ~(X^Y)&C 1787 if (matchFalseVal(XorOps, XorOps, None) || 1788 matchFalseVal(AndOps, XorOps, NotInner)) 1789 return IC.replaceInstUsesWith(SI, FalseVal); 1790 } else if (match(TrueVal, m_c_Xor(m_Specific(X), m_Specific(Y)))) { 1791 // (X|Y)==C ? X^Y : (X&Y)^C -> (X&Y)^C : (X&Y)^C -> (X&Y)^C 1792 // (X|Y)==C ? X^Y :~(X&Y)&C -> ~(X&Y)&C :~(X&Y)&C -> ~(X&Y)&C 1793 if (matchFalseVal(XorOps, AndOps, None) || 1794 matchFalseVal(AndOps, AndOps, NotInner)) 1795 return IC.replaceInstUsesWith(SI, FalseVal); 1796 } 1797 } 1798 1799 // (X^Y)==C ? X&Y : X|Y -> (X|Y)^C : X|Y or (X|Y)&~C : X|Y 1800 // (X^Y)==C ? X|Y : X&Y -> (X&Y)|C : X&Y or (X&Y)^ C : X&Y 1801 if (match(CmpLHS, m_Xor(m_Value(X), m_Value(Y)))) { 1802 if ((match(TrueVal, m_c_And(m_Specific(X), m_Specific(Y))))) { 1803 // (X^Y)==C ? X&Y : (X|Y)^C -> (X|Y)^C 1804 // (X^Y)==C ? X&Y : (X|Y)&~C -> (X|Y)&~C 1805 if (matchFalseVal(XorOps, OrOps, None) || 1806 matchFalseVal(AndOps, OrOps, NotRHS)) 1807 return IC.replaceInstUsesWith(SI, FalseVal); 1808 } else if (match(TrueVal, m_c_Or(m_Specific(X), m_Specific(Y)))) { 1809 // (X^Y)==C ? (X|Y) : (X&Y)|C -> (X&Y)|C 1810 // (X^Y)==C ? (X|Y) : (X&Y)^C -> (X&Y)^C 1811 if (matchFalseVal(OrOps, AndOps, None) || 1812 matchFalseVal(XorOps, AndOps, None)) 1813 return IC.replaceInstUsesWith(SI, FalseVal); 1814 } 1815 } 1816 1817 return nullptr; 1818 } 1819 1820 /// Visit a SelectInst that has an ICmpInst as its first operand. 1821 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI, 1822 ICmpInst *ICI) { 1823 if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI)) 1824 return NewSel; 1825 1826 if (Value *V = 1827 canonicalizeSPF(*ICI, SI.getTrueValue(), SI.getFalseValue(), *this)) 1828 return replaceInstUsesWith(SI, V); 1829 1830 if (Value *V = foldSelectInstWithICmpConst(SI, ICI, Builder)) 1831 return replaceInstUsesWith(SI, V); 1832 1833 if (Value *V = canonicalizeClampLike(SI, *ICI, Builder, *this)) 1834 return replaceInstUsesWith(SI, V); 1835 1836 if (Instruction *NewSel = 1837 tryToReuseConstantFromSelectInComparison(SI, *ICI, *this)) 1838 return NewSel; 1839 1840 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 1841 return replaceInstUsesWith(SI, V); 1842 1843 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 1844 bool Changed = false; 1845 Value *TrueVal = SI.getTrueValue(); 1846 Value *FalseVal = SI.getFalseValue(); 1847 ICmpInst::Predicate Pred = ICI->getPredicate(); 1848 Value *CmpLHS = ICI->getOperand(0); 1849 Value *CmpRHS = ICI->getOperand(1); 1850 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS) && !isa<Constant>(CmpLHS)) { 1851 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 1852 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 1853 replaceOperand(SI, 1, CmpRHS); 1854 Changed = true; 1855 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 1856 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 1857 replaceOperand(SI, 2, CmpRHS); 1858 Changed = true; 1859 } 1860 } 1861 1862 if (Instruction *NewSel = foldSelectICmpEq(SI, ICI, *this)) 1863 return NewSel; 1864 1865 // Canonicalize a signbit condition to use zero constant by swapping: 1866 // (CmpLHS > -1) ? TV : FV --> (CmpLHS < 0) ? FV : TV 1867 // To avoid conflicts (infinite loops) with other canonicalizations, this is 1868 // not applied with any constant select arm. 1869 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes()) && 1870 !match(TrueVal, m_Constant()) && !match(FalseVal, m_Constant()) && 1871 ICI->hasOneUse()) { 1872 InstCombiner::BuilderTy::InsertPointGuard Guard(Builder); 1873 Builder.SetInsertPoint(&SI); 1874 Value *IsNeg = Builder.CreateIsNeg(CmpLHS, ICI->getName()); 1875 replaceOperand(SI, 0, IsNeg); 1876 SI.swapValues(); 1877 SI.swapProfMetadata(); 1878 return &SI; 1879 } 1880 1881 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 1882 // decomposeBitTestICmp() might help. 1883 if (TrueVal->getType()->isIntOrIntVectorTy()) { 1884 unsigned BitWidth = 1885 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 1886 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 1887 Value *X; 1888 const APInt *Y, *C; 1889 bool TrueWhenUnset; 1890 bool IsBitTest = false; 1891 if (ICmpInst::isEquality(Pred) && 1892 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 1893 match(CmpRHS, m_Zero())) { 1894 IsBitTest = true; 1895 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 1896 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 1897 X = CmpLHS; 1898 Y = &MinSignedValue; 1899 IsBitTest = true; 1900 TrueWhenUnset = false; 1901 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 1902 X = CmpLHS; 1903 Y = &MinSignedValue; 1904 IsBitTest = true; 1905 TrueWhenUnset = true; 1906 } 1907 if (IsBitTest) { 1908 Value *V = nullptr; 1909 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1910 if (TrueWhenUnset && TrueVal == X && 1911 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1912 V = Builder.CreateAnd(X, ~(*Y)); 1913 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1914 else if (!TrueWhenUnset && FalseVal == X && 1915 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1916 V = Builder.CreateAnd(X, ~(*Y)); 1917 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1918 else if (TrueWhenUnset && FalseVal == X && 1919 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1920 V = Builder.CreateOr(X, *Y); 1921 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1922 else if (!TrueWhenUnset && TrueVal == X && 1923 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1924 V = Builder.CreateOr(X, *Y); 1925 1926 if (V) 1927 return replaceInstUsesWith(SI, V); 1928 } 1929 } 1930 1931 if (Instruction *V = 1932 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1933 return V; 1934 1935 if (Value *V = foldSelectICmpAndZeroShl(ICI, TrueVal, FalseVal, Builder)) 1936 return replaceInstUsesWith(SI, V); 1937 1938 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder)) 1939 return V; 1940 1941 if (Instruction *V = foldSelectZeroOrOnes(ICI, TrueVal, FalseVal, Builder)) 1942 return V; 1943 1944 if (Value *V = foldSelectICmpAndBinOp(ICI, TrueVal, FalseVal, Builder)) 1945 return replaceInstUsesWith(SI, V); 1946 1947 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder)) 1948 return replaceInstUsesWith(SI, V); 1949 1950 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, *this)) 1951 return replaceInstUsesWith(SI, V); 1952 1953 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1954 return replaceInstUsesWith(SI, V); 1955 1956 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) 1957 return replaceInstUsesWith(SI, V); 1958 1959 if (Value *V = foldAbsDiff(ICI, TrueVal, FalseVal, Builder)) 1960 return replaceInstUsesWith(SI, V); 1961 1962 return Changed ? &SI : nullptr; 1963 } 1964 1965 /// SI is a select whose condition is a PHI node (but the two may be in 1966 /// different blocks). See if the true/false values (V) are live in all of the 1967 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1968 /// 1969 /// X = phi [ C1, BB1], [C2, BB2] 1970 /// Y = add 1971 /// Z = select X, Y, 0 1972 /// 1973 /// because Y is not live in BB1/BB2. 1974 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1975 const SelectInst &SI) { 1976 // If the value is a non-instruction value like a constant or argument, it 1977 // can always be mapped. 1978 const Instruction *I = dyn_cast<Instruction>(V); 1979 if (!I) return true; 1980 1981 // If V is a PHI node defined in the same block as the condition PHI, we can 1982 // map the arguments. 1983 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1984 1985 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1986 if (VP->getParent() == CondPHI->getParent()) 1987 return true; 1988 1989 // Otherwise, if the PHI and select are defined in the same block and if V is 1990 // defined in a different block, then we can transform it. 1991 if (SI.getParent() == CondPHI->getParent() && 1992 I->getParent() != CondPHI->getParent()) 1993 return true; 1994 1995 // Otherwise we have a 'hard' case and we can't tell without doing more 1996 // detailed dominator based analysis, punt. 1997 return false; 1998 } 1999 2000 /// We have an SPF (e.g. a min or max) of an SPF of the form: 2001 /// SPF2(SPF1(A, B), C) 2002 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner, 2003 SelectPatternFlavor SPF1, Value *A, 2004 Value *B, Instruction &Outer, 2005 SelectPatternFlavor SPF2, 2006 Value *C) { 2007 if (Outer.getType() != Inner->getType()) 2008 return nullptr; 2009 2010 if (C == A || C == B) { 2011 // MAX(MAX(A, B), B) -> MAX(A, B) 2012 // MIN(MIN(a, b), a) -> MIN(a, b) 2013 // TODO: This could be done in instsimplify. 2014 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 2015 return replaceInstUsesWith(Outer, Inner); 2016 } 2017 2018 return nullptr; 2019 } 2020 2021 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 2022 /// This is even legal for FP. 2023 static Instruction *foldAddSubSelect(SelectInst &SI, 2024 InstCombiner::BuilderTy &Builder) { 2025 Value *CondVal = SI.getCondition(); 2026 Value *TrueVal = SI.getTrueValue(); 2027 Value *FalseVal = SI.getFalseValue(); 2028 auto *TI = dyn_cast<Instruction>(TrueVal); 2029 auto *FI = dyn_cast<Instruction>(FalseVal); 2030 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 2031 return nullptr; 2032 2033 Instruction *AddOp = nullptr, *SubOp = nullptr; 2034 if ((TI->getOpcode() == Instruction::Sub && 2035 FI->getOpcode() == Instruction::Add) || 2036 (TI->getOpcode() == Instruction::FSub && 2037 FI->getOpcode() == Instruction::FAdd)) { 2038 AddOp = FI; 2039 SubOp = TI; 2040 } else if ((FI->getOpcode() == Instruction::Sub && 2041 TI->getOpcode() == Instruction::Add) || 2042 (FI->getOpcode() == Instruction::FSub && 2043 TI->getOpcode() == Instruction::FAdd)) { 2044 AddOp = TI; 2045 SubOp = FI; 2046 } 2047 2048 if (AddOp) { 2049 Value *OtherAddOp = nullptr; 2050 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 2051 OtherAddOp = AddOp->getOperand(1); 2052 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 2053 OtherAddOp = AddOp->getOperand(0); 2054 } 2055 2056 if (OtherAddOp) { 2057 // So at this point we know we have (Y -> OtherAddOp): 2058 // select C, (add X, Y), (sub X, Z) 2059 Value *NegVal; // Compute -Z 2060 if (SI.getType()->isFPOrFPVectorTy()) { 2061 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 2062 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 2063 FastMathFlags Flags = AddOp->getFastMathFlags(); 2064 Flags &= SubOp->getFastMathFlags(); 2065 NegInst->setFastMathFlags(Flags); 2066 } 2067 } else { 2068 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 2069 } 2070 2071 Value *NewTrueOp = OtherAddOp; 2072 Value *NewFalseOp = NegVal; 2073 if (AddOp != TI) 2074 std::swap(NewTrueOp, NewFalseOp); 2075 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 2076 SI.getName() + ".p", &SI); 2077 2078 if (SI.getType()->isFPOrFPVectorTy()) { 2079 Instruction *RI = 2080 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 2081 2082 FastMathFlags Flags = AddOp->getFastMathFlags(); 2083 Flags &= SubOp->getFastMathFlags(); 2084 RI->setFastMathFlags(Flags); 2085 return RI; 2086 } else 2087 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 2088 } 2089 } 2090 return nullptr; 2091 } 2092 2093 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 2094 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y 2095 /// Along with a number of patterns similar to: 2096 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2097 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2098 static Instruction * 2099 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) { 2100 Value *CondVal = SI.getCondition(); 2101 Value *TrueVal = SI.getTrueValue(); 2102 Value *FalseVal = SI.getFalseValue(); 2103 2104 WithOverflowInst *II; 2105 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) || 2106 !match(FalseVal, m_ExtractValue<0>(m_Specific(II)))) 2107 return nullptr; 2108 2109 Value *X = II->getLHS(); 2110 Value *Y = II->getRHS(); 2111 2112 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) { 2113 Type *Ty = Limit->getType(); 2114 2115 ICmpInst::Predicate Pred; 2116 Value *TrueVal, *FalseVal, *Op; 2117 const APInt *C; 2118 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)), 2119 m_Value(TrueVal), m_Value(FalseVal)))) 2120 return false; 2121 2122 auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); }; 2123 auto IsMinMax = [&](Value *Min, Value *Max) { 2124 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 2125 APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 2126 return match(Min, m_SpecificInt(MinVal)) && 2127 match(Max, m_SpecificInt(MaxVal)); 2128 }; 2129 2130 if (Op != X && Op != Y) 2131 return false; 2132 2133 if (IsAdd) { 2134 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2135 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2136 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2137 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2138 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 2139 IsMinMax(TrueVal, FalseVal)) 2140 return true; 2141 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2142 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2143 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2144 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2145 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 2146 IsMinMax(FalseVal, TrueVal)) 2147 return true; 2148 } else { 2149 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2150 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2151 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) && 2152 IsMinMax(TrueVal, FalseVal)) 2153 return true; 2154 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2155 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2156 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) && 2157 IsMinMax(FalseVal, TrueVal)) 2158 return true; 2159 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2160 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2161 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 2162 IsMinMax(FalseVal, TrueVal)) 2163 return true; 2164 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2165 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2166 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 2167 IsMinMax(TrueVal, FalseVal)) 2168 return true; 2169 } 2170 2171 return false; 2172 }; 2173 2174 Intrinsic::ID NewIntrinsicID; 2175 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow && 2176 match(TrueVal, m_AllOnes())) 2177 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 2178 NewIntrinsicID = Intrinsic::uadd_sat; 2179 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow && 2180 match(TrueVal, m_Zero())) 2181 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y 2182 NewIntrinsicID = Intrinsic::usub_sat; 2183 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow && 2184 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true)) 2185 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2186 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2187 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2188 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2189 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2190 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2191 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2192 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2193 NewIntrinsicID = Intrinsic::sadd_sat; 2194 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow && 2195 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false)) 2196 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2197 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2198 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2199 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2200 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2201 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2202 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2203 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2204 NewIntrinsicID = Intrinsic::ssub_sat; 2205 else 2206 return nullptr; 2207 2208 Function *F = 2209 Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType()); 2210 return CallInst::Create(F, {X, Y}); 2211 } 2212 2213 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) { 2214 Constant *C; 2215 if (!match(Sel.getTrueValue(), m_Constant(C)) && 2216 !match(Sel.getFalseValue(), m_Constant(C))) 2217 return nullptr; 2218 2219 Instruction *ExtInst; 2220 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 2221 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 2222 return nullptr; 2223 2224 auto ExtOpcode = ExtInst->getOpcode(); 2225 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 2226 return nullptr; 2227 2228 // If we are extending from a boolean type or if we can create a select that 2229 // has the same size operands as its condition, try to narrow the select. 2230 Value *X = ExtInst->getOperand(0); 2231 Type *SmallType = X->getType(); 2232 Value *Cond = Sel.getCondition(); 2233 auto *Cmp = dyn_cast<CmpInst>(Cond); 2234 if (!SmallType->isIntOrIntVectorTy(1) && 2235 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 2236 return nullptr; 2237 2238 // If the constant is the same after truncation to the smaller type and 2239 // extension to the original type, we can narrow the select. 2240 Type *SelType = Sel.getType(); 2241 Constant *TruncC = getLosslessTrunc(C, SmallType, ExtOpcode); 2242 if (TruncC && ExtInst->hasOneUse()) { 2243 Value *TruncCVal = cast<Value>(TruncC); 2244 if (ExtInst == Sel.getFalseValue()) 2245 std::swap(X, TruncCVal); 2246 2247 // select Cond, (ext X), C --> ext(select Cond, X, C') 2248 // select Cond, C, (ext X) --> ext(select Cond, C', X) 2249 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 2250 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 2251 } 2252 2253 return nullptr; 2254 } 2255 2256 /// Try to transform a vector select with a constant condition vector into a 2257 /// shuffle for easier combining with other shuffles and insert/extract. 2258 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 2259 Value *CondVal = SI.getCondition(); 2260 Constant *CondC; 2261 auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType()); 2262 if (!CondValTy || !match(CondVal, m_Constant(CondC))) 2263 return nullptr; 2264 2265 unsigned NumElts = CondValTy->getNumElements(); 2266 SmallVector<int, 16> Mask; 2267 Mask.reserve(NumElts); 2268 for (unsigned i = 0; i != NumElts; ++i) { 2269 Constant *Elt = CondC->getAggregateElement(i); 2270 if (!Elt) 2271 return nullptr; 2272 2273 if (Elt->isOneValue()) { 2274 // If the select condition element is true, choose from the 1st vector. 2275 Mask.push_back(i); 2276 } else if (Elt->isNullValue()) { 2277 // If the select condition element is false, choose from the 2nd vector. 2278 Mask.push_back(i + NumElts); 2279 } else if (isa<UndefValue>(Elt)) { 2280 // Undef in a select condition (choose one of the operands) does not mean 2281 // the same thing as undef in a shuffle mask (any value is acceptable), so 2282 // give up. 2283 return nullptr; 2284 } else { 2285 // Bail out on a constant expression. 2286 return nullptr; 2287 } 2288 } 2289 2290 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask); 2291 } 2292 2293 /// If we have a select of vectors with a scalar condition, try to convert that 2294 /// to a vector select by splatting the condition. A splat may get folded with 2295 /// other operations in IR and having all operands of a select be vector types 2296 /// is likely better for vector codegen. 2297 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel, 2298 InstCombinerImpl &IC) { 2299 auto *Ty = dyn_cast<VectorType>(Sel.getType()); 2300 if (!Ty) 2301 return nullptr; 2302 2303 // We can replace a single-use extract with constant index. 2304 Value *Cond = Sel.getCondition(); 2305 if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt())))) 2306 return nullptr; 2307 2308 // select (extelt V, Index), T, F --> select (splat V, Index), T, F 2309 // Splatting the extracted condition reduces code (we could directly create a 2310 // splat shuffle of the source vector to eliminate the intermediate step). 2311 return IC.replaceOperand( 2312 Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond)); 2313 } 2314 2315 /// Reuse bitcasted operands between a compare and select: 2316 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2317 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 2318 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 2319 InstCombiner::BuilderTy &Builder) { 2320 Value *Cond = Sel.getCondition(); 2321 Value *TVal = Sel.getTrueValue(); 2322 Value *FVal = Sel.getFalseValue(); 2323 2324 CmpInst::Predicate Pred; 2325 Value *A, *B; 2326 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 2327 return nullptr; 2328 2329 // The select condition is a compare instruction. If the select's true/false 2330 // values are already the same as the compare operands, there's nothing to do. 2331 if (TVal == A || TVal == B || FVal == A || FVal == B) 2332 return nullptr; 2333 2334 Value *C, *D; 2335 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 2336 return nullptr; 2337 2338 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 2339 Value *TSrc, *FSrc; 2340 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 2341 !match(FVal, m_BitCast(m_Value(FSrc)))) 2342 return nullptr; 2343 2344 // If the select true/false values are *different bitcasts* of the same source 2345 // operands, make the select operands the same as the compare operands and 2346 // cast the result. This is the canonical select form for min/max. 2347 Value *NewSel; 2348 if (TSrc == C && FSrc == D) { 2349 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2350 // bitcast (select (cmp A, B), A, B) 2351 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 2352 } else if (TSrc == D && FSrc == C) { 2353 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 2354 // bitcast (select (cmp A, B), B, A) 2355 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 2356 } else { 2357 return nullptr; 2358 } 2359 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 2360 } 2361 2362 /// Try to eliminate select instructions that test the returned flag of cmpxchg 2363 /// instructions. 2364 /// 2365 /// If a select instruction tests the returned flag of a cmpxchg instruction and 2366 /// selects between the returned value of the cmpxchg instruction its compare 2367 /// operand, the result of the select will always be equal to its false value. 2368 /// For example: 2369 /// 2370 /// %cmpxchg = cmpxchg ptr %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2371 /// %val = extractvalue { i64, i1 } %cmpxchg, 0 2372 /// %success = extractvalue { i64, i1 } %cmpxchg, 1 2373 /// %sel = select i1 %success, i64 %compare, i64 %val 2374 /// ret i64 %sel 2375 /// 2376 /// The returned value of the cmpxchg instruction (%val) is the original value 2377 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %val 2378 /// must have been equal to %compare. Thus, the result of the select is always 2379 /// equal to %val, and the code can be simplified to: 2380 /// 2381 /// %cmpxchg = cmpxchg ptr %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2382 /// %val = extractvalue { i64, i1 } %cmpxchg, 0 2383 /// ret i64 %val 2384 /// 2385 static Value *foldSelectCmpXchg(SelectInst &SI) { 2386 // A helper that determines if V is an extractvalue instruction whose 2387 // aggregate operand is a cmpxchg instruction and whose single index is equal 2388 // to I. If such conditions are true, the helper returns the cmpxchg 2389 // instruction; otherwise, a nullptr is returned. 2390 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 2391 auto *Extract = dyn_cast<ExtractValueInst>(V); 2392 if (!Extract) 2393 return nullptr; 2394 if (Extract->getIndices()[0] != I) 2395 return nullptr; 2396 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 2397 }; 2398 2399 // If the select has a single user, and this user is a select instruction that 2400 // we can simplify, skip the cmpxchg simplification for now. 2401 if (SI.hasOneUse()) 2402 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 2403 if (Select->getCondition() == SI.getCondition()) 2404 if (Select->getFalseValue() == SI.getTrueValue() || 2405 Select->getTrueValue() == SI.getFalseValue()) 2406 return nullptr; 2407 2408 // Ensure the select condition is the returned flag of a cmpxchg instruction. 2409 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 2410 if (!CmpXchg) 2411 return nullptr; 2412 2413 // Check the true value case: The true value of the select is the returned 2414 // value of the same cmpxchg used by the condition, and the false value is the 2415 // cmpxchg instruction's compare operand. 2416 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 2417 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) 2418 return SI.getFalseValue(); 2419 2420 // Check the false value case: The false value of the select is the returned 2421 // value of the same cmpxchg used by the condition, and the true value is the 2422 // cmpxchg instruction's compare operand. 2423 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 2424 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) 2425 return SI.getFalseValue(); 2426 2427 return nullptr; 2428 } 2429 2430 /// Try to reduce a funnel/rotate pattern that includes a compare and select 2431 /// into a funnel shift intrinsic. Example: 2432 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 2433 /// --> call llvm.fshl.i32(a, a, b) 2434 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c))) 2435 /// --> call llvm.fshl.i32(a, b, c) 2436 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c))) 2437 /// --> call llvm.fshr.i32(a, b, c) 2438 static Instruction *foldSelectFunnelShift(SelectInst &Sel, 2439 InstCombiner::BuilderTy &Builder) { 2440 // This must be a power-of-2 type for a bitmasking transform to be valid. 2441 unsigned Width = Sel.getType()->getScalarSizeInBits(); 2442 if (!isPowerOf2_32(Width)) 2443 return nullptr; 2444 2445 BinaryOperator *Or0, *Or1; 2446 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 2447 return nullptr; 2448 2449 Value *SV0, *SV1, *SA0, *SA1; 2450 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0), 2451 m_ZExtOrSelf(m_Value(SA0))))) || 2452 !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1), 2453 m_ZExtOrSelf(m_Value(SA1))))) || 2454 Or0->getOpcode() == Or1->getOpcode()) 2455 return nullptr; 2456 2457 // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)). 2458 if (Or0->getOpcode() == BinaryOperator::LShr) { 2459 std::swap(Or0, Or1); 2460 std::swap(SV0, SV1); 2461 std::swap(SA0, SA1); 2462 } 2463 assert(Or0->getOpcode() == BinaryOperator::Shl && 2464 Or1->getOpcode() == BinaryOperator::LShr && 2465 "Illegal or(shift,shift) pair"); 2466 2467 // Check the shift amounts to see if they are an opposite pair. 2468 Value *ShAmt; 2469 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 2470 ShAmt = SA0; 2471 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 2472 ShAmt = SA1; 2473 else 2474 return nullptr; 2475 2476 // We should now have this pattern: 2477 // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1)) 2478 // The false value of the select must be a funnel-shift of the true value: 2479 // IsFShl -> TVal must be SV0 else TVal must be SV1. 2480 bool IsFshl = (ShAmt == SA0); 2481 Value *TVal = Sel.getTrueValue(); 2482 if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1)) 2483 return nullptr; 2484 2485 // Finally, see if the select is filtering out a shift-by-zero. 2486 Value *Cond = Sel.getCondition(); 2487 ICmpInst::Predicate Pred; 2488 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || 2489 Pred != ICmpInst::ICMP_EQ) 2490 return nullptr; 2491 2492 // If this is not a rotate then the select was blocking poison from the 2493 // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it. 2494 if (SV0 != SV1) { 2495 if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1)) 2496 SV1 = Builder.CreateFreeze(SV1); 2497 else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0)) 2498 SV0 = Builder.CreateFreeze(SV0); 2499 } 2500 2501 // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way. 2502 // Convert to funnel shift intrinsic. 2503 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 2504 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); 2505 ShAmt = Builder.CreateZExt(ShAmt, Sel.getType()); 2506 return CallInst::Create(F, { SV0, SV1, ShAmt }); 2507 } 2508 2509 static Instruction *foldSelectToCopysign(SelectInst &Sel, 2510 InstCombiner::BuilderTy &Builder) { 2511 Value *Cond = Sel.getCondition(); 2512 Value *TVal = Sel.getTrueValue(); 2513 Value *FVal = Sel.getFalseValue(); 2514 Type *SelType = Sel.getType(); 2515 2516 // Match select ?, TC, FC where the constants are equal but negated. 2517 // TODO: Generalize to handle a negated variable operand? 2518 const APFloat *TC, *FC; 2519 if (!match(TVal, m_APFloatAllowPoison(TC)) || 2520 !match(FVal, m_APFloatAllowPoison(FC)) || 2521 !abs(*TC).bitwiseIsEqual(abs(*FC))) 2522 return nullptr; 2523 2524 assert(TC != FC && "Expected equal select arms to simplify"); 2525 2526 Value *X; 2527 const APInt *C; 2528 bool IsTrueIfSignSet; 2529 ICmpInst::Predicate Pred; 2530 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_ElementWiseBitCast(m_Value(X)), 2531 m_APInt(C)))) || 2532 !isSignBitCheck(Pred, *C, IsTrueIfSignSet) || X->getType() != SelType) 2533 return nullptr; 2534 2535 // If needed, negate the value that will be the sign argument of the copysign: 2536 // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X) 2537 // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X) 2538 // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X) 2539 // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X) 2540 // Note: FMF from the select can not be propagated to the new instructions. 2541 if (IsTrueIfSignSet ^ TC->isNegative()) 2542 X = Builder.CreateFNeg(X); 2543 2544 // Canonicalize the magnitude argument as the positive constant since we do 2545 // not care about its sign. 2546 Value *MagArg = ConstantFP::get(SelType, abs(*TC)); 2547 Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign, 2548 Sel.getType()); 2549 return CallInst::Create(F, { MagArg, X }); 2550 } 2551 2552 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) { 2553 if (!isa<VectorType>(Sel.getType())) 2554 return nullptr; 2555 2556 Value *Cond = Sel.getCondition(); 2557 Value *TVal = Sel.getTrueValue(); 2558 Value *FVal = Sel.getFalseValue(); 2559 Value *C, *X, *Y; 2560 2561 if (match(Cond, m_VecReverse(m_Value(C)))) { 2562 auto createSelReverse = [&](Value *C, Value *X, Value *Y) { 2563 Value *V = Builder.CreateSelect(C, X, Y, Sel.getName(), &Sel); 2564 if (auto *I = dyn_cast<Instruction>(V)) 2565 I->copyIRFlags(&Sel); 2566 Module *M = Sel.getModule(); 2567 Function *F = 2568 Intrinsic::getDeclaration(M, Intrinsic::vector_reverse, V->getType()); 2569 return CallInst::Create(F, V); 2570 }; 2571 2572 if (match(TVal, m_VecReverse(m_Value(X)))) { 2573 // select rev(C), rev(X), rev(Y) --> rev(select C, X, Y) 2574 if (match(FVal, m_VecReverse(m_Value(Y))) && 2575 (Cond->hasOneUse() || TVal->hasOneUse() || FVal->hasOneUse())) 2576 return createSelReverse(C, X, Y); 2577 2578 // select rev(C), rev(X), FValSplat --> rev(select C, X, FValSplat) 2579 if ((Cond->hasOneUse() || TVal->hasOneUse()) && isSplatValue(FVal)) 2580 return createSelReverse(C, X, FVal); 2581 } 2582 // select rev(C), TValSplat, rev(Y) --> rev(select C, TValSplat, Y) 2583 else if (isSplatValue(TVal) && match(FVal, m_VecReverse(m_Value(Y))) && 2584 (Cond->hasOneUse() || FVal->hasOneUse())) 2585 return createSelReverse(C, TVal, Y); 2586 } 2587 2588 auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType()); 2589 if (!VecTy) 2590 return nullptr; 2591 2592 unsigned NumElts = VecTy->getNumElements(); 2593 APInt PoisonElts(NumElts, 0); 2594 APInt AllOnesEltMask(APInt::getAllOnes(NumElts)); 2595 if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, PoisonElts)) { 2596 if (V != &Sel) 2597 return replaceInstUsesWith(Sel, V); 2598 return &Sel; 2599 } 2600 2601 // A select of a "select shuffle" with a common operand can be rearranged 2602 // to select followed by "select shuffle". Because of poison, this only works 2603 // in the case of a shuffle with no undefined mask elements. 2604 ArrayRef<int> Mask; 2605 if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2606 !is_contained(Mask, PoisonMaskElem) && 2607 cast<ShuffleVectorInst>(TVal)->isSelect()) { 2608 if (X == FVal) { 2609 // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X) 2610 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2611 return new ShuffleVectorInst(X, NewSel, Mask); 2612 } 2613 if (Y == FVal) { 2614 // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y 2615 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2616 return new ShuffleVectorInst(NewSel, Y, Mask); 2617 } 2618 } 2619 if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2620 !is_contained(Mask, PoisonMaskElem) && 2621 cast<ShuffleVectorInst>(FVal)->isSelect()) { 2622 if (X == TVal) { 2623 // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y) 2624 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2625 return new ShuffleVectorInst(X, NewSel, Mask); 2626 } 2627 if (Y == TVal) { 2628 // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y 2629 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2630 return new ShuffleVectorInst(NewSel, Y, Mask); 2631 } 2632 } 2633 2634 return nullptr; 2635 } 2636 2637 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB, 2638 const DominatorTree &DT, 2639 InstCombiner::BuilderTy &Builder) { 2640 // Find the block's immediate dominator that ends with a conditional branch 2641 // that matches select's condition (maybe inverted). 2642 auto *IDomNode = DT[BB]->getIDom(); 2643 if (!IDomNode) 2644 return nullptr; 2645 BasicBlock *IDom = IDomNode->getBlock(); 2646 2647 Value *Cond = Sel.getCondition(); 2648 Value *IfTrue, *IfFalse; 2649 BasicBlock *TrueSucc, *FalseSucc; 2650 if (match(IDom->getTerminator(), 2651 m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc), 2652 m_BasicBlock(FalseSucc)))) { 2653 IfTrue = Sel.getTrueValue(); 2654 IfFalse = Sel.getFalseValue(); 2655 } else if (match(IDom->getTerminator(), 2656 m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc), 2657 m_BasicBlock(FalseSucc)))) { 2658 IfTrue = Sel.getFalseValue(); 2659 IfFalse = Sel.getTrueValue(); 2660 } else 2661 return nullptr; 2662 2663 // Make sure the branches are actually different. 2664 if (TrueSucc == FalseSucc) 2665 return nullptr; 2666 2667 // We want to replace select %cond, %a, %b with a phi that takes value %a 2668 // for all incoming edges that are dominated by condition `%cond == true`, 2669 // and value %b for edges dominated by condition `%cond == false`. If %a 2670 // or %b are also phis from the same basic block, we can go further and take 2671 // their incoming values from the corresponding blocks. 2672 BasicBlockEdge TrueEdge(IDom, TrueSucc); 2673 BasicBlockEdge FalseEdge(IDom, FalseSucc); 2674 DenseMap<BasicBlock *, Value *> Inputs; 2675 for (auto *Pred : predecessors(BB)) { 2676 // Check implication. 2677 BasicBlockEdge Incoming(Pred, BB); 2678 if (DT.dominates(TrueEdge, Incoming)) 2679 Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred); 2680 else if (DT.dominates(FalseEdge, Incoming)) 2681 Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred); 2682 else 2683 return nullptr; 2684 // Check availability. 2685 if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred])) 2686 if (!DT.dominates(Insn, Pred->getTerminator())) 2687 return nullptr; 2688 } 2689 2690 Builder.SetInsertPoint(BB, BB->begin()); 2691 auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size()); 2692 for (auto *Pred : predecessors(BB)) 2693 PN->addIncoming(Inputs[Pred], Pred); 2694 PN->takeName(&Sel); 2695 return PN; 2696 } 2697 2698 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT, 2699 InstCombiner::BuilderTy &Builder) { 2700 // Try to replace this select with Phi in one of these blocks. 2701 SmallSetVector<BasicBlock *, 4> CandidateBlocks; 2702 CandidateBlocks.insert(Sel.getParent()); 2703 for (Value *V : Sel.operands()) 2704 if (auto *I = dyn_cast<Instruction>(V)) 2705 CandidateBlocks.insert(I->getParent()); 2706 2707 for (BasicBlock *BB : CandidateBlocks) 2708 if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder)) 2709 return PN; 2710 return nullptr; 2711 } 2712 2713 /// Tries to reduce a pattern that arises when calculating the remainder of the 2714 /// Euclidean division. When the divisor is a power of two and is guaranteed not 2715 /// to be negative, a signed remainder can be folded with a bitwise and. 2716 /// 2717 /// (x % n) < 0 ? (x % n) + n : (x % n) 2718 /// -> x & (n - 1) 2719 static Instruction *foldSelectWithSRem(SelectInst &SI, InstCombinerImpl &IC, 2720 IRBuilderBase &Builder) { 2721 Value *CondVal = SI.getCondition(); 2722 Value *TrueVal = SI.getTrueValue(); 2723 Value *FalseVal = SI.getFalseValue(); 2724 2725 ICmpInst::Predicate Pred; 2726 Value *Op, *RemRes, *Remainder; 2727 const APInt *C; 2728 bool TrueIfSigned = false; 2729 2730 if (!(match(CondVal, m_ICmp(Pred, m_Value(RemRes), m_APInt(C))) && 2731 isSignBitCheck(Pred, *C, TrueIfSigned))) 2732 return nullptr; 2733 2734 // If the sign bit is not set, we have a SGE/SGT comparison, and the operands 2735 // of the select are inverted. 2736 if (!TrueIfSigned) 2737 std::swap(TrueVal, FalseVal); 2738 2739 auto FoldToBitwiseAnd = [&](Value *Remainder) -> Instruction * { 2740 Value *Add = Builder.CreateAdd( 2741 Remainder, Constant::getAllOnesValue(RemRes->getType())); 2742 return BinaryOperator::CreateAnd(Op, Add); 2743 }; 2744 2745 // Match the general case: 2746 // %rem = srem i32 %x, %n 2747 // %cnd = icmp slt i32 %rem, 0 2748 // %add = add i32 %rem, %n 2749 // %sel = select i1 %cnd, i32 %add, i32 %rem 2750 if (match(TrueVal, m_Add(m_Specific(RemRes), m_Value(Remainder))) && 2751 match(RemRes, m_SRem(m_Value(Op), m_Specific(Remainder))) && 2752 IC.isKnownToBeAPowerOfTwo(Remainder, /*OrZero*/ true) && 2753 FalseVal == RemRes) 2754 return FoldToBitwiseAnd(Remainder); 2755 2756 // Match the case where the one arm has been replaced by constant 1: 2757 // %rem = srem i32 %n, 2 2758 // %cnd = icmp slt i32 %rem, 0 2759 // %sel = select i1 %cnd, i32 1, i32 %rem 2760 if (match(TrueVal, m_One()) && 2761 match(RemRes, m_SRem(m_Value(Op), m_SpecificInt(2))) && 2762 FalseVal == RemRes) 2763 return FoldToBitwiseAnd(ConstantInt::get(RemRes->getType(), 2)); 2764 2765 return nullptr; 2766 } 2767 2768 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) { 2769 FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition()); 2770 if (!FI) 2771 return nullptr; 2772 2773 Value *Cond = FI->getOperand(0); 2774 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 2775 2776 // select (freeze(x == y)), x, y --> y 2777 // select (freeze(x != y)), x, y --> x 2778 // The freeze should be only used by this select. Otherwise, remaining uses of 2779 // the freeze can observe a contradictory value. 2780 // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1 2781 // a = select c, x, y ; 2782 // f(a, c) ; f(poison, 1) cannot happen, but if a is folded 2783 // ; to y, this can happen. 2784 CmpInst::Predicate Pred; 2785 if (FI->hasOneUse() && 2786 match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) && 2787 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) { 2788 return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal; 2789 } 2790 2791 return nullptr; 2792 } 2793 2794 /// Given that \p CondVal is known to be \p CondIsTrue, try to simplify \p SI. 2795 static Value *simplifyNestedSelectsUsingImpliedCond(SelectInst &SI, 2796 Value *CondVal, 2797 bool CondIsTrue, 2798 const DataLayout &DL) { 2799 Value *InnerCondVal = SI.getCondition(); 2800 Value *InnerTrueVal = SI.getTrueValue(); 2801 Value *InnerFalseVal = SI.getFalseValue(); 2802 assert(CondVal->getType() == InnerCondVal->getType() && 2803 "The type of inner condition must match with the outer."); 2804 if (auto Implied = isImpliedCondition(CondVal, InnerCondVal, DL, CondIsTrue)) 2805 return *Implied ? InnerTrueVal : InnerFalseVal; 2806 return nullptr; 2807 } 2808 2809 Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op, 2810 SelectInst &SI, 2811 bool IsAnd) { 2812 assert(Op->getType()->isIntOrIntVectorTy(1) && 2813 "Op must be either i1 or vector of i1."); 2814 if (SI.getCondition()->getType() != Op->getType()) 2815 return nullptr; 2816 if (Value *V = simplifyNestedSelectsUsingImpliedCond(SI, Op, IsAnd, DL)) 2817 return SelectInst::Create(Op, 2818 IsAnd ? V : ConstantInt::getTrue(Op->getType()), 2819 IsAnd ? ConstantInt::getFalse(Op->getType()) : V); 2820 return nullptr; 2821 } 2822 2823 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 2824 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. 2825 static Instruction *foldSelectWithFCmpToFabs(SelectInst &SI, 2826 InstCombinerImpl &IC) { 2827 Value *CondVal = SI.getCondition(); 2828 2829 bool ChangedFMF = false; 2830 for (bool Swap : {false, true}) { 2831 Value *TrueVal = SI.getTrueValue(); 2832 Value *X = SI.getFalseValue(); 2833 CmpInst::Predicate Pred; 2834 2835 if (Swap) 2836 std::swap(TrueVal, X); 2837 2838 if (!match(CondVal, m_FCmp(Pred, m_Specific(X), m_AnyZeroFP()))) 2839 continue; 2840 2841 // fold (X <= +/-0.0) ? (0.0 - X) : X to fabs(X), when 'Swap' is false 2842 // fold (X > +/-0.0) ? X : (0.0 - X) to fabs(X), when 'Swap' is true 2843 if (match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) { 2844 if (!Swap && (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) { 2845 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); 2846 return IC.replaceInstUsesWith(SI, Fabs); 2847 } 2848 if (Swap && (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) { 2849 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); 2850 return IC.replaceInstUsesWith(SI, Fabs); 2851 } 2852 } 2853 2854 if (!match(TrueVal, m_FNeg(m_Specific(X)))) 2855 return nullptr; 2856 2857 // Forward-propagate nnan and ninf from the fneg to the select. 2858 // If all inputs are not those values, then the select is not either. 2859 // Note: nsz is defined differently, so it may not be correct to propagate. 2860 FastMathFlags FMF = cast<FPMathOperator>(TrueVal)->getFastMathFlags(); 2861 if (FMF.noNaNs() && !SI.hasNoNaNs()) { 2862 SI.setHasNoNaNs(true); 2863 ChangedFMF = true; 2864 } 2865 if (FMF.noInfs() && !SI.hasNoInfs()) { 2866 SI.setHasNoInfs(true); 2867 ChangedFMF = true; 2868 } 2869 2870 // With nsz, when 'Swap' is false: 2871 // fold (X < +/-0.0) ? -X : X or (X <= +/-0.0) ? -X : X to fabs(X) 2872 // fold (X > +/-0.0) ? -X : X or (X >= +/-0.0) ? -X : X to -fabs(x) 2873 // when 'Swap' is true: 2874 // fold (X > +/-0.0) ? X : -X or (X >= +/-0.0) ? X : -X to fabs(X) 2875 // fold (X < +/-0.0) ? X : -X or (X <= +/-0.0) ? X : -X to -fabs(X) 2876 // 2877 // Note: We require "nnan" for this fold because fcmp ignores the signbit 2878 // of NAN, but IEEE-754 specifies the signbit of NAN values with 2879 // fneg/fabs operations. 2880 if (!SI.hasNoSignedZeros() || !SI.hasNoNaNs()) 2881 return nullptr; 2882 2883 if (Swap) 2884 Pred = FCmpInst::getSwappedPredicate(Pred); 2885 2886 bool IsLTOrLE = Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE || 2887 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE; 2888 bool IsGTOrGE = Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE || 2889 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE; 2890 2891 if (IsLTOrLE) { 2892 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); 2893 return IC.replaceInstUsesWith(SI, Fabs); 2894 } 2895 if (IsGTOrGE) { 2896 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); 2897 Instruction *NewFNeg = UnaryOperator::CreateFNeg(Fabs); 2898 NewFNeg->setFastMathFlags(SI.getFastMathFlags()); 2899 return NewFNeg; 2900 } 2901 } 2902 2903 // Match select with (icmp slt (bitcast X to int), 0) 2904 // or (icmp sgt (bitcast X to int), -1) 2905 2906 for (bool Swap : {false, true}) { 2907 Value *TrueVal = SI.getTrueValue(); 2908 Value *X = SI.getFalseValue(); 2909 2910 if (Swap) 2911 std::swap(TrueVal, X); 2912 2913 CmpInst::Predicate Pred; 2914 const APInt *C; 2915 bool TrueIfSigned; 2916 if (!match(CondVal, 2917 m_ICmp(Pred, m_ElementWiseBitCast(m_Specific(X)), m_APInt(C))) || 2918 !isSignBitCheck(Pred, *C, TrueIfSigned)) 2919 continue; 2920 if (!match(TrueVal, m_FNeg(m_Specific(X)))) 2921 return nullptr; 2922 if (Swap == TrueIfSigned && !CondVal->hasOneUse() && !TrueVal->hasOneUse()) 2923 return nullptr; 2924 2925 // Fold (IsNeg ? -X : X) or (!IsNeg ? X : -X) to fabs(X) 2926 // Fold (IsNeg ? X : -X) or (!IsNeg ? -X : X) to -fabs(X) 2927 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); 2928 if (Swap != TrueIfSigned) 2929 return IC.replaceInstUsesWith(SI, Fabs); 2930 return UnaryOperator::CreateFNegFMF(Fabs, &SI); 2931 } 2932 2933 return ChangedFMF ? &SI : nullptr; 2934 } 2935 2936 // Match the following IR pattern: 2937 // %x.lowbits = and i8 %x, %lowbitmask 2938 // %x.lowbits.are.zero = icmp eq i8 %x.lowbits, 0 2939 // %x.biased = add i8 %x, %bias 2940 // %x.biased.highbits = and i8 %x.biased, %highbitmask 2941 // %x.roundedup = select i1 %x.lowbits.are.zero, i8 %x, i8 %x.biased.highbits 2942 // Define: 2943 // %alignment = add i8 %lowbitmask, 1 2944 // Iff 1. an %alignment is a power-of-two (aka, %lowbitmask is a low bit mask) 2945 // and 2. %bias is equal to either %lowbitmask or %alignment, 2946 // and 3. %highbitmask is equal to ~%lowbitmask (aka, to -%alignment) 2947 // then this pattern can be transformed into: 2948 // %x.offset = add i8 %x, %lowbitmask 2949 // %x.roundedup = and i8 %x.offset, %highbitmask 2950 static Value * 2951 foldRoundUpIntegerWithPow2Alignment(SelectInst &SI, 2952 InstCombiner::BuilderTy &Builder) { 2953 Value *Cond = SI.getCondition(); 2954 Value *X = SI.getTrueValue(); 2955 Value *XBiasedHighBits = SI.getFalseValue(); 2956 2957 ICmpInst::Predicate Pred; 2958 Value *XLowBits; 2959 if (!match(Cond, m_ICmp(Pred, m_Value(XLowBits), m_ZeroInt())) || 2960 !ICmpInst::isEquality(Pred)) 2961 return nullptr; 2962 2963 if (Pred == ICmpInst::Predicate::ICMP_NE) 2964 std::swap(X, XBiasedHighBits); 2965 2966 // FIXME: we could support non non-splats here. 2967 2968 const APInt *LowBitMaskCst; 2969 if (!match(XLowBits, m_And(m_Specific(X), m_APIntAllowPoison(LowBitMaskCst)))) 2970 return nullptr; 2971 2972 // Match even if the AND and ADD are swapped. 2973 const APInt *BiasCst, *HighBitMaskCst; 2974 if (!match(XBiasedHighBits, 2975 m_And(m_Add(m_Specific(X), m_APIntAllowPoison(BiasCst)), 2976 m_APIntAllowPoison(HighBitMaskCst))) && 2977 !match(XBiasedHighBits, 2978 m_Add(m_And(m_Specific(X), m_APIntAllowPoison(HighBitMaskCst)), 2979 m_APIntAllowPoison(BiasCst)))) 2980 return nullptr; 2981 2982 if (!LowBitMaskCst->isMask()) 2983 return nullptr; 2984 2985 APInt InvertedLowBitMaskCst = ~*LowBitMaskCst; 2986 if (InvertedLowBitMaskCst != *HighBitMaskCst) 2987 return nullptr; 2988 2989 APInt AlignmentCst = *LowBitMaskCst + 1; 2990 2991 if (*BiasCst != AlignmentCst && *BiasCst != *LowBitMaskCst) 2992 return nullptr; 2993 2994 if (!XBiasedHighBits->hasOneUse()) { 2995 // We can't directly return XBiasedHighBits if it is more poisonous. 2996 if (*BiasCst == *LowBitMaskCst && impliesPoison(XBiasedHighBits, X)) 2997 return XBiasedHighBits; 2998 return nullptr; 2999 } 3000 3001 // FIXME: could we preserve undef's here? 3002 Type *Ty = X->getType(); 3003 Value *XOffset = Builder.CreateAdd(X, ConstantInt::get(Ty, *LowBitMaskCst), 3004 X->getName() + ".biased"); 3005 Value *R = Builder.CreateAnd(XOffset, ConstantInt::get(Ty, *HighBitMaskCst)); 3006 R->takeName(&SI); 3007 return R; 3008 } 3009 3010 namespace { 3011 struct DecomposedSelect { 3012 Value *Cond = nullptr; 3013 Value *TrueVal = nullptr; 3014 Value *FalseVal = nullptr; 3015 }; 3016 } // namespace 3017 3018 /// Folds patterns like: 3019 /// select c2 (select c1 a b) (select c1 b a) 3020 /// into: 3021 /// select (xor c1 c2) b a 3022 static Instruction * 3023 foldSelectOfSymmetricSelect(SelectInst &OuterSelVal, 3024 InstCombiner::BuilderTy &Builder) { 3025 3026 Value *OuterCond, *InnerCond, *InnerTrueVal, *InnerFalseVal; 3027 if (!match( 3028 &OuterSelVal, 3029 m_Select(m_Value(OuterCond), 3030 m_OneUse(m_Select(m_Value(InnerCond), m_Value(InnerTrueVal), 3031 m_Value(InnerFalseVal))), 3032 m_OneUse(m_Select(m_Deferred(InnerCond), 3033 m_Deferred(InnerFalseVal), 3034 m_Deferred(InnerTrueVal)))))) 3035 return nullptr; 3036 3037 if (OuterCond->getType() != InnerCond->getType()) 3038 return nullptr; 3039 3040 Value *Xor = Builder.CreateXor(InnerCond, OuterCond); 3041 return SelectInst::Create(Xor, InnerFalseVal, InnerTrueVal); 3042 } 3043 3044 /// Look for patterns like 3045 /// %outer.cond = select i1 %inner.cond, i1 %alt.cond, i1 false 3046 /// %inner.sel = select i1 %inner.cond, i8 %inner.sel.t, i8 %inner.sel.f 3047 /// %outer.sel = select i1 %outer.cond, i8 %outer.sel.t, i8 %inner.sel 3048 /// and rewrite it as 3049 /// %inner.sel = select i1 %cond.alternative, i8 %sel.outer.t, i8 %sel.inner.t 3050 /// %sel.outer = select i1 %cond.inner, i8 %inner.sel, i8 %sel.inner.f 3051 static Instruction *foldNestedSelects(SelectInst &OuterSelVal, 3052 InstCombiner::BuilderTy &Builder) { 3053 // We must start with a `select`. 3054 DecomposedSelect OuterSel; 3055 match(&OuterSelVal, 3056 m_Select(m_Value(OuterSel.Cond), m_Value(OuterSel.TrueVal), 3057 m_Value(OuterSel.FalseVal))); 3058 3059 // Canonicalize inversion of the outermost `select`'s condition. 3060 if (match(OuterSel.Cond, m_Not(m_Value(OuterSel.Cond)))) 3061 std::swap(OuterSel.TrueVal, OuterSel.FalseVal); 3062 3063 // The condition of the outermost select must be an `and`/`or`. 3064 if (!match(OuterSel.Cond, m_c_LogicalOp(m_Value(), m_Value()))) 3065 return nullptr; 3066 3067 // Depending on the logical op, inner select might be in different hand. 3068 bool IsAndVariant = match(OuterSel.Cond, m_LogicalAnd()); 3069 Value *InnerSelVal = IsAndVariant ? OuterSel.FalseVal : OuterSel.TrueVal; 3070 3071 // Profitability check - avoid increasing instruction count. 3072 if (none_of(ArrayRef<Value *>({OuterSelVal.getCondition(), InnerSelVal}), 3073 [](Value *V) { return V->hasOneUse(); })) 3074 return nullptr; 3075 3076 // The appropriate hand of the outermost `select` must be a select itself. 3077 DecomposedSelect InnerSel; 3078 if (!match(InnerSelVal, 3079 m_Select(m_Value(InnerSel.Cond), m_Value(InnerSel.TrueVal), 3080 m_Value(InnerSel.FalseVal)))) 3081 return nullptr; 3082 3083 // Canonicalize inversion of the innermost `select`'s condition. 3084 if (match(InnerSel.Cond, m_Not(m_Value(InnerSel.Cond)))) 3085 std::swap(InnerSel.TrueVal, InnerSel.FalseVal); 3086 3087 Value *AltCond = nullptr; 3088 auto matchOuterCond = [OuterSel, IsAndVariant, &AltCond](auto m_InnerCond) { 3089 // An unsimplified select condition can match both LogicalAnd and LogicalOr 3090 // (select true, true, false). Since below we assume that LogicalAnd implies 3091 // InnerSel match the FVal and vice versa for LogicalOr, we can't match the 3092 // alternative pattern here. 3093 return IsAndVariant ? match(OuterSel.Cond, 3094 m_c_LogicalAnd(m_InnerCond, m_Value(AltCond))) 3095 : match(OuterSel.Cond, 3096 m_c_LogicalOr(m_InnerCond, m_Value(AltCond))); 3097 }; 3098 3099 // Finally, match the condition that was driving the outermost `select`, 3100 // it should be a logical operation between the condition that was driving 3101 // the innermost `select` (after accounting for the possible inversions 3102 // of the condition), and some other condition. 3103 if (matchOuterCond(m_Specific(InnerSel.Cond))) { 3104 // Done! 3105 } else if (Value * NotInnerCond; matchOuterCond(m_CombineAnd( 3106 m_Not(m_Specific(InnerSel.Cond)), m_Value(NotInnerCond)))) { 3107 // Done! 3108 std::swap(InnerSel.TrueVal, InnerSel.FalseVal); 3109 InnerSel.Cond = NotInnerCond; 3110 } else // Not the pattern we were looking for. 3111 return nullptr; 3112 3113 Value *SelInner = Builder.CreateSelect( 3114 AltCond, IsAndVariant ? OuterSel.TrueVal : InnerSel.FalseVal, 3115 IsAndVariant ? InnerSel.TrueVal : OuterSel.FalseVal); 3116 SelInner->takeName(InnerSelVal); 3117 return SelectInst::Create(InnerSel.Cond, 3118 IsAndVariant ? SelInner : InnerSel.TrueVal, 3119 !IsAndVariant ? SelInner : InnerSel.FalseVal); 3120 } 3121 3122 Instruction *InstCombinerImpl::foldSelectOfBools(SelectInst &SI) { 3123 Value *CondVal = SI.getCondition(); 3124 Value *TrueVal = SI.getTrueValue(); 3125 Value *FalseVal = SI.getFalseValue(); 3126 Type *SelType = SI.getType(); 3127 3128 // Avoid potential infinite loops by checking for non-constant condition. 3129 // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()? 3130 // Scalar select must have simplified? 3131 if (!SelType->isIntOrIntVectorTy(1) || isa<Constant>(CondVal) || 3132 TrueVal->getType() != CondVal->getType()) 3133 return nullptr; 3134 3135 auto *One = ConstantInt::getTrue(SelType); 3136 auto *Zero = ConstantInt::getFalse(SelType); 3137 Value *A, *B, *C, *D; 3138 3139 // Folding select to and/or i1 isn't poison safe in general. impliesPoison 3140 // checks whether folding it does not convert a well-defined value into 3141 // poison. 3142 if (match(TrueVal, m_One())) { 3143 if (impliesPoison(FalseVal, CondVal)) { 3144 // Change: A = select B, true, C --> A = or B, C 3145 return BinaryOperator::CreateOr(CondVal, FalseVal); 3146 } 3147 3148 if (match(CondVal, m_OneUse(m_Select(m_Value(A), m_One(), m_Value(B)))) && 3149 impliesPoison(FalseVal, B)) { 3150 // (A || B) || C --> A || (B | C) 3151 return replaceInstUsesWith( 3152 SI, Builder.CreateLogicalOr(A, Builder.CreateOr(B, FalseVal))); 3153 } 3154 3155 if (auto *LHS = dyn_cast<FCmpInst>(CondVal)) 3156 if (auto *RHS = dyn_cast<FCmpInst>(FalseVal)) 3157 if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ false, 3158 /*IsSelectLogical*/ true)) 3159 return replaceInstUsesWith(SI, V); 3160 3161 // (A && B) || (C && B) --> (A || C) && B 3162 if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) && 3163 match(FalseVal, m_LogicalAnd(m_Value(C), m_Value(D))) && 3164 (CondVal->hasOneUse() || FalseVal->hasOneUse())) { 3165 bool CondLogicAnd = isa<SelectInst>(CondVal); 3166 bool FalseLogicAnd = isa<SelectInst>(FalseVal); 3167 auto AndFactorization = [&](Value *Common, Value *InnerCond, 3168 Value *InnerVal, 3169 bool SelFirst = false) -> Instruction * { 3170 Value *InnerSel = Builder.CreateSelect(InnerCond, One, InnerVal); 3171 if (SelFirst) 3172 std::swap(Common, InnerSel); 3173 if (FalseLogicAnd || (CondLogicAnd && Common == A)) 3174 return SelectInst::Create(Common, InnerSel, Zero); 3175 else 3176 return BinaryOperator::CreateAnd(Common, InnerSel); 3177 }; 3178 3179 if (A == C) 3180 return AndFactorization(A, B, D); 3181 if (A == D) 3182 return AndFactorization(A, B, C); 3183 if (B == C) 3184 return AndFactorization(B, A, D); 3185 if (B == D) 3186 return AndFactorization(B, A, C, CondLogicAnd && FalseLogicAnd); 3187 } 3188 } 3189 3190 if (match(FalseVal, m_Zero())) { 3191 if (impliesPoison(TrueVal, CondVal)) { 3192 // Change: A = select B, C, false --> A = and B, C 3193 return BinaryOperator::CreateAnd(CondVal, TrueVal); 3194 } 3195 3196 if (match(CondVal, m_OneUse(m_Select(m_Value(A), m_Value(B), m_Zero()))) && 3197 impliesPoison(TrueVal, B)) { 3198 // (A && B) && C --> A && (B & C) 3199 return replaceInstUsesWith( 3200 SI, Builder.CreateLogicalAnd(A, Builder.CreateAnd(B, TrueVal))); 3201 } 3202 3203 if (auto *LHS = dyn_cast<FCmpInst>(CondVal)) 3204 if (auto *RHS = dyn_cast<FCmpInst>(TrueVal)) 3205 if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ true, 3206 /*IsSelectLogical*/ true)) 3207 return replaceInstUsesWith(SI, V); 3208 3209 // (A || B) && (C || B) --> (A && C) || B 3210 if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) && 3211 match(TrueVal, m_LogicalOr(m_Value(C), m_Value(D))) && 3212 (CondVal->hasOneUse() || TrueVal->hasOneUse())) { 3213 bool CondLogicOr = isa<SelectInst>(CondVal); 3214 bool TrueLogicOr = isa<SelectInst>(TrueVal); 3215 auto OrFactorization = [&](Value *Common, Value *InnerCond, 3216 Value *InnerVal, 3217 bool SelFirst = false) -> Instruction * { 3218 Value *InnerSel = Builder.CreateSelect(InnerCond, InnerVal, Zero); 3219 if (SelFirst) 3220 std::swap(Common, InnerSel); 3221 if (TrueLogicOr || (CondLogicOr && Common == A)) 3222 return SelectInst::Create(Common, One, InnerSel); 3223 else 3224 return BinaryOperator::CreateOr(Common, InnerSel); 3225 }; 3226 3227 if (A == C) 3228 return OrFactorization(A, B, D); 3229 if (A == D) 3230 return OrFactorization(A, B, C); 3231 if (B == C) 3232 return OrFactorization(B, A, D); 3233 if (B == D) 3234 return OrFactorization(B, A, C, CondLogicOr && TrueLogicOr); 3235 } 3236 } 3237 3238 // We match the "full" 0 or 1 constant here to avoid a potential infinite 3239 // loop with vectors that may have undefined/poison elements. 3240 // select a, false, b -> select !a, b, false 3241 if (match(TrueVal, m_Specific(Zero))) { 3242 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 3243 return SelectInst::Create(NotCond, FalseVal, Zero); 3244 } 3245 // select a, b, true -> select !a, true, b 3246 if (match(FalseVal, m_Specific(One))) { 3247 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 3248 return SelectInst::Create(NotCond, One, TrueVal); 3249 } 3250 3251 // DeMorgan in select form: !a && !b --> !(a || b) 3252 // select !a, !b, false --> not (select a, true, b) 3253 if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) && 3254 (CondVal->hasOneUse() || TrueVal->hasOneUse()) && 3255 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr())) 3256 return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B)); 3257 3258 // DeMorgan in select form: !a || !b --> !(a && b) 3259 // select !a, true, !b --> not (select a, b, false) 3260 if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) && 3261 (CondVal->hasOneUse() || FalseVal->hasOneUse()) && 3262 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr())) 3263 return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero)); 3264 3265 // select (select a, true, b), true, b -> select a, true, b 3266 if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 3267 match(TrueVal, m_One()) && match(FalseVal, m_Specific(B))) 3268 return replaceOperand(SI, 0, A); 3269 // select (select a, b, false), b, false -> select a, b, false 3270 if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) && 3271 match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero())) 3272 return replaceOperand(SI, 0, A); 3273 3274 // ~(A & B) & (A | B) --> A ^ B 3275 if (match(&SI, m_c_LogicalAnd(m_Not(m_LogicalAnd(m_Value(A), m_Value(B))), 3276 m_c_LogicalOr(m_Deferred(A), m_Deferred(B))))) 3277 return BinaryOperator::CreateXor(A, B); 3278 3279 // select (~a | c), a, b -> select a, (select c, true, b), false 3280 if (match(CondVal, 3281 m_OneUse(m_c_Or(m_Not(m_Specific(TrueVal)), m_Value(C))))) { 3282 Value *OrV = Builder.CreateSelect(C, One, FalseVal); 3283 return SelectInst::Create(TrueVal, OrV, Zero); 3284 } 3285 // select (c & b), a, b -> select b, (select ~c, true, a), false 3286 if (match(CondVal, m_OneUse(m_c_And(m_Value(C), m_Specific(FalseVal))))) { 3287 if (Value *NotC = getFreelyInverted(C, C->hasOneUse(), &Builder)) { 3288 Value *OrV = Builder.CreateSelect(NotC, One, TrueVal); 3289 return SelectInst::Create(FalseVal, OrV, Zero); 3290 } 3291 } 3292 // select (a | c), a, b -> select a, true, (select ~c, b, false) 3293 if (match(CondVal, m_OneUse(m_c_Or(m_Specific(TrueVal), m_Value(C))))) { 3294 if (Value *NotC = getFreelyInverted(C, C->hasOneUse(), &Builder)) { 3295 Value *AndV = Builder.CreateSelect(NotC, FalseVal, Zero); 3296 return SelectInst::Create(TrueVal, One, AndV); 3297 } 3298 } 3299 // select (c & ~b), a, b -> select b, true, (select c, a, false) 3300 if (match(CondVal, 3301 m_OneUse(m_c_And(m_Value(C), m_Not(m_Specific(FalseVal)))))) { 3302 Value *AndV = Builder.CreateSelect(C, TrueVal, Zero); 3303 return SelectInst::Create(FalseVal, One, AndV); 3304 } 3305 3306 if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) { 3307 Use *Y = nullptr; 3308 bool IsAnd = match(FalseVal, m_Zero()) ? true : false; 3309 Value *Op1 = IsAnd ? TrueVal : FalseVal; 3310 if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) { 3311 auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr"); 3312 InsertNewInstBefore(FI, cast<Instruction>(Y->getUser())->getIterator()); 3313 replaceUse(*Y, FI); 3314 return replaceInstUsesWith(SI, Op1); 3315 } 3316 3317 if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal)) 3318 if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1)) 3319 if (auto *V = foldAndOrOfICmps(ICmp0, ICmp1, SI, IsAnd, 3320 /* IsLogical */ true)) 3321 return replaceInstUsesWith(SI, V); 3322 } 3323 3324 // select (a || b), c, false -> select a, c, false 3325 // select c, (a || b), false -> select c, a, false 3326 // if c implies that b is false. 3327 if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) && 3328 match(FalseVal, m_Zero())) { 3329 std::optional<bool> Res = isImpliedCondition(TrueVal, B, DL); 3330 if (Res && *Res == false) 3331 return replaceOperand(SI, 0, A); 3332 } 3333 if (match(TrueVal, m_LogicalOr(m_Value(A), m_Value(B))) && 3334 match(FalseVal, m_Zero())) { 3335 std::optional<bool> Res = isImpliedCondition(CondVal, B, DL); 3336 if (Res && *Res == false) 3337 return replaceOperand(SI, 1, A); 3338 } 3339 // select c, true, (a && b) -> select c, true, a 3340 // select (a && b), true, c -> select a, true, c 3341 // if c = false implies that b = true 3342 if (match(TrueVal, m_One()) && 3343 match(FalseVal, m_LogicalAnd(m_Value(A), m_Value(B)))) { 3344 std::optional<bool> Res = isImpliedCondition(CondVal, B, DL, false); 3345 if (Res && *Res == true) 3346 return replaceOperand(SI, 2, A); 3347 } 3348 if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) && 3349 match(TrueVal, m_One())) { 3350 std::optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false); 3351 if (Res && *Res == true) 3352 return replaceOperand(SI, 0, A); 3353 } 3354 3355 if (match(TrueVal, m_One())) { 3356 Value *C; 3357 3358 // (C && A) || (!C && B) --> sel C, A, B 3359 // (A && C) || (!C && B) --> sel C, A, B 3360 // (C && A) || (B && !C) --> sel C, A, B 3361 // (A && C) || (B && !C) --> sel C, A, B (may require freeze) 3362 if (match(FalseVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(B))) && 3363 match(CondVal, m_c_LogicalAnd(m_Specific(C), m_Value(A)))) { 3364 auto *SelCond = dyn_cast<SelectInst>(CondVal); 3365 auto *SelFVal = dyn_cast<SelectInst>(FalseVal); 3366 bool MayNeedFreeze = SelCond && SelFVal && 3367 match(SelFVal->getTrueValue(), 3368 m_Not(m_Specific(SelCond->getTrueValue()))); 3369 if (MayNeedFreeze) 3370 C = Builder.CreateFreeze(C); 3371 return SelectInst::Create(C, A, B); 3372 } 3373 3374 // (!C && A) || (C && B) --> sel C, B, A 3375 // (A && !C) || (C && B) --> sel C, B, A 3376 // (!C && A) || (B && C) --> sel C, B, A 3377 // (A && !C) || (B && C) --> sel C, B, A (may require freeze) 3378 if (match(CondVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(A))) && 3379 match(FalseVal, m_c_LogicalAnd(m_Specific(C), m_Value(B)))) { 3380 auto *SelCond = dyn_cast<SelectInst>(CondVal); 3381 auto *SelFVal = dyn_cast<SelectInst>(FalseVal); 3382 bool MayNeedFreeze = SelCond && SelFVal && 3383 match(SelCond->getTrueValue(), 3384 m_Not(m_Specific(SelFVal->getTrueValue()))); 3385 if (MayNeedFreeze) 3386 C = Builder.CreateFreeze(C); 3387 return SelectInst::Create(C, B, A); 3388 } 3389 } 3390 3391 return nullptr; 3392 } 3393 3394 // Return true if we can safely remove the select instruction for std::bit_ceil 3395 // pattern. 3396 static bool isSafeToRemoveBitCeilSelect(ICmpInst::Predicate Pred, Value *Cond0, 3397 const APInt *Cond1, Value *CtlzOp, 3398 unsigned BitWidth, 3399 bool &ShouldDropNUW) { 3400 // The challenge in recognizing std::bit_ceil(X) is that the operand is used 3401 // for the CTLZ proper and select condition, each possibly with some 3402 // operation like add and sub. 3403 // 3404 // Our aim is to make sure that -ctlz & (BitWidth - 1) == 0 even when the 3405 // select instruction would select 1, which allows us to get rid of the select 3406 // instruction. 3407 // 3408 // To see if we can do so, we do some symbolic execution with ConstantRange. 3409 // Specifically, we compute the range of values that Cond0 could take when 3410 // Cond == false. Then we successively transform the range until we obtain 3411 // the range of values that CtlzOp could take. 3412 // 3413 // Conceptually, we follow the def-use chain backward from Cond0 while 3414 // transforming the range for Cond0 until we meet the common ancestor of Cond0 3415 // and CtlzOp. Then we follow the def-use chain forward until we obtain the 3416 // range for CtlzOp. That said, we only follow at most one ancestor from 3417 // Cond0. Likewise, we only follow at most one ancestor from CtrlOp. 3418 3419 ConstantRange CR = ConstantRange::makeExactICmpRegion( 3420 CmpInst::getInversePredicate(Pred), *Cond1); 3421 3422 ShouldDropNUW = false; 3423 3424 // Match the operation that's used to compute CtlzOp from CommonAncestor. If 3425 // CtlzOp == CommonAncestor, return true as no operation is needed. If a 3426 // match is found, execute the operation on CR, update CR, and return true. 3427 // Otherwise, return false. 3428 auto MatchForward = [&](Value *CommonAncestor) { 3429 const APInt *C = nullptr; 3430 if (CtlzOp == CommonAncestor) 3431 return true; 3432 if (match(CtlzOp, m_Add(m_Specific(CommonAncestor), m_APInt(C)))) { 3433 CR = CR.add(*C); 3434 return true; 3435 } 3436 if (match(CtlzOp, m_Sub(m_APInt(C), m_Specific(CommonAncestor)))) { 3437 ShouldDropNUW = true; 3438 CR = ConstantRange(*C).sub(CR); 3439 return true; 3440 } 3441 if (match(CtlzOp, m_Not(m_Specific(CommonAncestor)))) { 3442 CR = CR.binaryNot(); 3443 return true; 3444 } 3445 return false; 3446 }; 3447 3448 const APInt *C = nullptr; 3449 Value *CommonAncestor; 3450 if (MatchForward(Cond0)) { 3451 // Cond0 is either CtlzOp or CtlzOp's parent. CR has been updated. 3452 } else if (match(Cond0, m_Add(m_Value(CommonAncestor), m_APInt(C)))) { 3453 CR = CR.sub(*C); 3454 if (!MatchForward(CommonAncestor)) 3455 return false; 3456 // Cond0's parent is either CtlzOp or CtlzOp's parent. CR has been updated. 3457 } else { 3458 return false; 3459 } 3460 3461 // Return true if all the values in the range are either 0 or negative (if 3462 // treated as signed). We do so by evaluating: 3463 // 3464 // CR - 1 u>= (1 << BitWidth) - 1. 3465 APInt IntMax = APInt::getSignMask(BitWidth) - 1; 3466 CR = CR.sub(APInt(BitWidth, 1)); 3467 return CR.icmp(ICmpInst::ICMP_UGE, IntMax); 3468 } 3469 3470 // Transform the std::bit_ceil(X) pattern like: 3471 // 3472 // %dec = add i32 %x, -1 3473 // %ctlz = tail call i32 @llvm.ctlz.i32(i32 %dec, i1 false) 3474 // %sub = sub i32 32, %ctlz 3475 // %shl = shl i32 1, %sub 3476 // %ugt = icmp ugt i32 %x, 1 3477 // %sel = select i1 %ugt, i32 %shl, i32 1 3478 // 3479 // into: 3480 // 3481 // %dec = add i32 %x, -1 3482 // %ctlz = tail call i32 @llvm.ctlz.i32(i32 %dec, i1 false) 3483 // %neg = sub i32 0, %ctlz 3484 // %masked = and i32 %ctlz, 31 3485 // %shl = shl i32 1, %sub 3486 // 3487 // Note that the select is optimized away while the shift count is masked with 3488 // 31. We handle some variations of the input operand like std::bit_ceil(X + 3489 // 1). 3490 static Instruction *foldBitCeil(SelectInst &SI, IRBuilderBase &Builder) { 3491 Type *SelType = SI.getType(); 3492 unsigned BitWidth = SelType->getScalarSizeInBits(); 3493 3494 Value *FalseVal = SI.getFalseValue(); 3495 Value *TrueVal = SI.getTrueValue(); 3496 ICmpInst::Predicate Pred; 3497 const APInt *Cond1; 3498 Value *Cond0, *Ctlz, *CtlzOp; 3499 if (!match(SI.getCondition(), m_ICmp(Pred, m_Value(Cond0), m_APInt(Cond1)))) 3500 return nullptr; 3501 3502 if (match(TrueVal, m_One())) { 3503 std::swap(FalseVal, TrueVal); 3504 Pred = CmpInst::getInversePredicate(Pred); 3505 } 3506 3507 bool ShouldDropNUW; 3508 3509 if (!match(FalseVal, m_One()) || 3510 !match(TrueVal, 3511 m_OneUse(m_Shl(m_One(), m_OneUse(m_Sub(m_SpecificInt(BitWidth), 3512 m_Value(Ctlz)))))) || 3513 !match(Ctlz, m_Intrinsic<Intrinsic::ctlz>(m_Value(CtlzOp), m_Zero())) || 3514 !isSafeToRemoveBitCeilSelect(Pred, Cond0, Cond1, CtlzOp, BitWidth, 3515 ShouldDropNUW)) 3516 return nullptr; 3517 3518 if (ShouldDropNUW) 3519 cast<Instruction>(CtlzOp)->setHasNoUnsignedWrap(false); 3520 3521 // Build 1 << (-CTLZ & (BitWidth-1)). The negation likely corresponds to a 3522 // single hardware instruction as opposed to BitWidth - CTLZ, where BitWidth 3523 // is an integer constant. Masking with BitWidth-1 comes free on some 3524 // hardware as part of the shift instruction. 3525 Value *Neg = Builder.CreateNeg(Ctlz); 3526 Value *Masked = 3527 Builder.CreateAnd(Neg, ConstantInt::get(SelType, BitWidth - 1)); 3528 return BinaryOperator::Create(Instruction::Shl, ConstantInt::get(SelType, 1), 3529 Masked); 3530 } 3531 3532 bool InstCombinerImpl::fmulByZeroIsZero(Value *MulVal, FastMathFlags FMF, 3533 const Instruction *CtxI) const { 3534 KnownFPClass Known = computeKnownFPClass(MulVal, FMF, fcNegative, CtxI); 3535 3536 return Known.isKnownNeverNaN() && Known.isKnownNeverInfinity() && 3537 (FMF.noSignedZeros() || Known.signBitIsZeroOrNaN()); 3538 } 3539 3540 static bool matchFMulByZeroIfResultEqZero(InstCombinerImpl &IC, Value *Cmp0, 3541 Value *Cmp1, Value *TrueVal, 3542 Value *FalseVal, Instruction &CtxI, 3543 bool SelectIsNSZ) { 3544 Value *MulRHS; 3545 if (match(Cmp1, m_PosZeroFP()) && 3546 match(TrueVal, m_c_FMul(m_Specific(Cmp0), m_Value(MulRHS)))) { 3547 FastMathFlags FMF = cast<FPMathOperator>(TrueVal)->getFastMathFlags(); 3548 // nsz must be on the select, it must be ignored on the multiply. We 3549 // need nnan and ninf on the multiply for the other value. 3550 FMF.setNoSignedZeros(SelectIsNSZ); 3551 return IC.fmulByZeroIsZero(MulRHS, FMF, &CtxI); 3552 } 3553 3554 return false; 3555 } 3556 3557 /// Check whether the KnownBits of a select arm may be affected by the 3558 /// select condition. 3559 static bool hasAffectedValue(Value *V, SmallPtrSetImpl<Value *> &Affected, 3560 unsigned Depth) { 3561 if (Depth == MaxAnalysisRecursionDepth) 3562 return false; 3563 3564 // Ignore the case where the select arm itself is affected. These cases 3565 // are handled more efficiently by other optimizations. 3566 if (Depth != 0 && Affected.contains(V)) 3567 return true; 3568 3569 if (auto *I = dyn_cast<Instruction>(V)) { 3570 if (isa<PHINode>(I)) { 3571 if (Depth == MaxAnalysisRecursionDepth - 1) 3572 return false; 3573 Depth = MaxAnalysisRecursionDepth - 2; 3574 } 3575 return any_of(I->operands(), [&](Value *Op) { 3576 return Op->getType()->isIntOrIntVectorTy() && 3577 hasAffectedValue(Op, Affected, Depth + 1); 3578 }); 3579 } 3580 3581 return false; 3582 } 3583 3584 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) { 3585 Value *CondVal = SI.getCondition(); 3586 Value *TrueVal = SI.getTrueValue(); 3587 Value *FalseVal = SI.getFalseValue(); 3588 Type *SelType = SI.getType(); 3589 3590 if (Value *V = simplifySelectInst(CondVal, TrueVal, FalseVal, 3591 SQ.getWithInstruction(&SI))) 3592 return replaceInstUsesWith(SI, V); 3593 3594 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 3595 return I; 3596 3597 if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this)) 3598 return I; 3599 3600 // If the type of select is not an integer type or if the condition and 3601 // the selection type are not both scalar nor both vector types, there is no 3602 // point in attempting to match these patterns. 3603 Type *CondType = CondVal->getType(); 3604 if (!isa<Constant>(CondVal) && SelType->isIntOrIntVectorTy() && 3605 CondType->isVectorTy() == SelType->isVectorTy()) { 3606 if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal, 3607 ConstantInt::getTrue(CondType), SQ, 3608 /* AllowRefinement */ true)) 3609 return replaceOperand(SI, 1, S); 3610 3611 if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal, 3612 ConstantInt::getFalse(CondType), SQ, 3613 /* AllowRefinement */ true)) 3614 return replaceOperand(SI, 2, S); 3615 } 3616 3617 if (Instruction *R = foldSelectOfBools(SI)) 3618 return R; 3619 3620 // Selecting between two integer or vector splat integer constants? 3621 // 3622 // Note that we don't handle a scalar select of vectors: 3623 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 3624 // because that may need 3 instructions to splat the condition value: 3625 // extend, insertelement, shufflevector. 3626 // 3627 // Do not handle i1 TrueVal and FalseVal otherwise would result in 3628 // zext/sext i1 to i1. 3629 if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) && 3630 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 3631 // select C, 1, 0 -> zext C to int 3632 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 3633 return new ZExtInst(CondVal, SelType); 3634 3635 // select C, -1, 0 -> sext C to int 3636 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 3637 return new SExtInst(CondVal, SelType); 3638 3639 // select C, 0, 1 -> zext !C to int 3640 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 3641 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 3642 return new ZExtInst(NotCond, SelType); 3643 } 3644 3645 // select C, 0, -1 -> sext !C to int 3646 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 3647 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 3648 return new SExtInst(NotCond, SelType); 3649 } 3650 } 3651 3652 auto *SIFPOp = dyn_cast<FPMathOperator>(&SI); 3653 3654 if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) { 3655 FCmpInst::Predicate Pred = FCmp->getPredicate(); 3656 Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1); 3657 // Are we selecting a value based on a comparison of the two values? 3658 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) || 3659 (Cmp0 == FalseVal && Cmp1 == TrueVal)) { 3660 // Canonicalize to use ordered comparisons by swapping the select 3661 // operands. 3662 // 3663 // e.g. 3664 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 3665 if (FCmp->hasOneUse() && FCmpInst::isUnordered(Pred)) { 3666 FCmpInst::Predicate InvPred = FCmp->getInversePredicate(); 3667 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 3668 // FIXME: The FMF should propagate from the select, not the fcmp. 3669 Builder.setFastMathFlags(FCmp->getFastMathFlags()); 3670 Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1, 3671 FCmp->getName() + ".inv"); 3672 Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal); 3673 return replaceInstUsesWith(SI, NewSel); 3674 } 3675 } 3676 3677 if (SIFPOp) { 3678 // Fold out scale-if-equals-zero pattern. 3679 // 3680 // This pattern appears in code with denormal range checks after it's 3681 // assumed denormals are treated as zero. This drops a canonicalization. 3682 3683 // TODO: Could relax the signed zero logic. We just need to know the sign 3684 // of the result matches (fmul x, y has the same sign as x). 3685 // 3686 // TODO: Handle always-canonicalizing variant that selects some value or 1 3687 // scaling factor in the fmul visitor. 3688 3689 // TODO: Handle ldexp too 3690 3691 Value *MatchCmp0 = nullptr; 3692 Value *MatchCmp1 = nullptr; 3693 3694 // (select (fcmp [ou]eq x, 0.0), (fmul x, K), x => x 3695 // (select (fcmp [ou]ne x, 0.0), x, (fmul x, K) => x 3696 if (Pred == CmpInst::FCMP_OEQ || Pred == CmpInst::FCMP_UEQ) { 3697 MatchCmp0 = FalseVal; 3698 MatchCmp1 = TrueVal; 3699 } else if (Pred == CmpInst::FCMP_ONE || Pred == CmpInst::FCMP_UNE) { 3700 MatchCmp0 = TrueVal; 3701 MatchCmp1 = FalseVal; 3702 } 3703 3704 if (Cmp0 == MatchCmp0 && 3705 matchFMulByZeroIfResultEqZero(*this, Cmp0, Cmp1, MatchCmp1, MatchCmp0, 3706 SI, SIFPOp->hasNoSignedZeros())) 3707 return replaceInstUsesWith(SI, Cmp0); 3708 } 3709 } 3710 3711 if (SIFPOp) { 3712 // TODO: Try to forward-propagate FMF from select arms to the select. 3713 3714 // Canonicalize select of FP values where NaN and -0.0 are not valid as 3715 // minnum/maxnum intrinsics. 3716 if (SIFPOp->hasNoNaNs() && SIFPOp->hasNoSignedZeros()) { 3717 Value *X, *Y; 3718 if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y)))) 3719 return replaceInstUsesWith( 3720 SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI)); 3721 3722 if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y)))) 3723 return replaceInstUsesWith( 3724 SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI)); 3725 } 3726 } 3727 3728 // Fold selecting to fabs. 3729 if (Instruction *Fabs = foldSelectWithFCmpToFabs(SI, *this)) 3730 return Fabs; 3731 3732 // See if we are selecting two values based on a comparison of the two values. 3733 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 3734 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 3735 return Result; 3736 3737 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 3738 return Add; 3739 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder)) 3740 return Add; 3741 if (Instruction *Or = foldSetClearBits(SI, Builder)) 3742 return Or; 3743 if (Instruction *Mul = foldSelectZeroOrMul(SI, *this)) 3744 return Mul; 3745 3746 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 3747 auto *TI = dyn_cast<Instruction>(TrueVal); 3748 auto *FI = dyn_cast<Instruction>(FalseVal); 3749 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 3750 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 3751 return IV; 3752 3753 if (Instruction *I = foldSelectExtConst(SI)) 3754 return I; 3755 3756 if (Instruction *I = foldSelectWithSRem(SI, *this, Builder)) 3757 return I; 3758 3759 // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0)) 3760 // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx)) 3761 auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base, 3762 bool Swap) -> GetElementPtrInst * { 3763 Value *Ptr = Gep->getPointerOperand(); 3764 if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base || 3765 !Gep->hasOneUse()) 3766 return nullptr; 3767 Value *Idx = Gep->getOperand(1); 3768 if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType())) 3769 return nullptr; 3770 Type *ElementType = Gep->getSourceElementType(); 3771 Value *NewT = Idx; 3772 Value *NewF = Constant::getNullValue(Idx->getType()); 3773 if (Swap) 3774 std::swap(NewT, NewF); 3775 Value *NewSI = 3776 Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI); 3777 return GetElementPtrInst::Create(ElementType, Ptr, NewSI, 3778 Gep->getNoWrapFlags()); 3779 }; 3780 if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal)) 3781 if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false)) 3782 return NewGep; 3783 if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal)) 3784 if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true)) 3785 return NewGep; 3786 3787 // See if we can fold the select into one of our operands. 3788 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 3789 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 3790 return FoldI; 3791 3792 Value *LHS, *RHS; 3793 Instruction::CastOps CastOp; 3794 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 3795 auto SPF = SPR.Flavor; 3796 if (SPF) { 3797 Value *LHS2, *RHS2; 3798 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 3799 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 3800 RHS2, SI, SPF, RHS)) 3801 return R; 3802 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 3803 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 3804 RHS2, SI, SPF, LHS)) 3805 return R; 3806 } 3807 3808 if (SelectPatternResult::isMinOrMax(SPF)) { 3809 // Canonicalize so that 3810 // - type casts are outside select patterns. 3811 // - float clamp is transformed to min/max pattern 3812 3813 bool IsCastNeeded = LHS->getType() != SelType; 3814 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 3815 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 3816 if (IsCastNeeded || 3817 (LHS->getType()->isFPOrFPVectorTy() && 3818 ((CmpLHS != LHS && CmpLHS != RHS) || 3819 (CmpRHS != LHS && CmpRHS != RHS)))) { 3820 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered); 3821 3822 Value *Cmp; 3823 if (CmpInst::isIntPredicate(MinMaxPred)) { 3824 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS); 3825 } else { 3826 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 3827 auto FMF = 3828 cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 3829 Builder.setFastMathFlags(FMF); 3830 Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS); 3831 } 3832 3833 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 3834 if (!IsCastNeeded) 3835 return replaceInstUsesWith(SI, NewSI); 3836 3837 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 3838 return replaceInstUsesWith(SI, NewCast); 3839 } 3840 } 3841 } 3842 3843 // See if we can fold the select into a phi node if the condition is a select. 3844 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 3845 // The true/false values have to be live in the PHI predecessor's blocks. 3846 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 3847 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 3848 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 3849 return NV; 3850 3851 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 3852 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 3853 // Fold nested selects if the inner condition can be implied by the outer 3854 // condition. 3855 if (Value *V = simplifyNestedSelectsUsingImpliedCond( 3856 *TrueSI, CondVal, /*CondIsTrue=*/true, DL)) 3857 return replaceOperand(SI, 1, V); 3858 3859 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 3860 // We choose this as normal form to enable folding on the And and 3861 // shortening paths for the values (this helps getUnderlyingObjects() for 3862 // example). 3863 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 3864 Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition()); 3865 replaceOperand(SI, 0, And); 3866 replaceOperand(SI, 1, TrueSI->getTrueValue()); 3867 return &SI; 3868 } 3869 } 3870 } 3871 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 3872 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 3873 // Fold nested selects if the inner condition can be implied by the outer 3874 // condition. 3875 if (Value *V = simplifyNestedSelectsUsingImpliedCond( 3876 *FalseSI, CondVal, /*CondIsTrue=*/false, DL)) 3877 return replaceOperand(SI, 2, V); 3878 3879 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 3880 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 3881 Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition()); 3882 replaceOperand(SI, 0, Or); 3883 replaceOperand(SI, 2, FalseSI->getFalseValue()); 3884 return &SI; 3885 } 3886 } 3887 } 3888 3889 // Try to simplify a binop sandwiched between 2 selects with the same 3890 // condition. This is not valid for div/rem because the select might be 3891 // preventing a division-by-zero. 3892 // TODO: A div/rem restriction is conservative; use something like 3893 // isSafeToSpeculativelyExecute(). 3894 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 3895 BinaryOperator *TrueBO; 3896 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && !TrueBO->isIntDivRem()) { 3897 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 3898 if (TrueBOSI->getCondition() == CondVal) { 3899 replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue()); 3900 Worklist.push(TrueBO); 3901 return &SI; 3902 } 3903 } 3904 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 3905 if (TrueBOSI->getCondition() == CondVal) { 3906 replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue()); 3907 Worklist.push(TrueBO); 3908 return &SI; 3909 } 3910 } 3911 } 3912 3913 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 3914 BinaryOperator *FalseBO; 3915 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && !FalseBO->isIntDivRem()) { 3916 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 3917 if (FalseBOSI->getCondition() == CondVal) { 3918 replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue()); 3919 Worklist.push(FalseBO); 3920 return &SI; 3921 } 3922 } 3923 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 3924 if (FalseBOSI->getCondition() == CondVal) { 3925 replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue()); 3926 Worklist.push(FalseBO); 3927 return &SI; 3928 } 3929 } 3930 } 3931 3932 Value *NotCond; 3933 if (match(CondVal, m_Not(m_Value(NotCond))) && 3934 !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) { 3935 replaceOperand(SI, 0, NotCond); 3936 SI.swapValues(); 3937 SI.swapProfMetadata(); 3938 return &SI; 3939 } 3940 3941 if (Instruction *I = foldVectorSelect(SI)) 3942 return I; 3943 3944 // If we can compute the condition, there's no need for a select. 3945 // Like the above fold, we are attempting to reduce compile-time cost by 3946 // putting this fold here with limitations rather than in InstSimplify. 3947 // The motivation for this call into value tracking is to take advantage of 3948 // the assumption cache, so make sure that is populated. 3949 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 3950 KnownBits Known(1); 3951 computeKnownBits(CondVal, Known, 0, &SI); 3952 if (Known.One.isOne()) 3953 return replaceInstUsesWith(SI, TrueVal); 3954 if (Known.Zero.isOne()) 3955 return replaceInstUsesWith(SI, FalseVal); 3956 } 3957 3958 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 3959 return BitCastSel; 3960 3961 // Simplify selects that test the returned flag of cmpxchg instructions. 3962 if (Value *V = foldSelectCmpXchg(SI)) 3963 return replaceInstUsesWith(SI, V); 3964 3965 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this)) 3966 return Select; 3967 3968 if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder)) 3969 return Funnel; 3970 3971 if (Instruction *Copysign = foldSelectToCopysign(SI, Builder)) 3972 return Copysign; 3973 3974 if (Instruction *PN = foldSelectToPhi(SI, DT, Builder)) 3975 return replaceInstUsesWith(SI, PN); 3976 3977 if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder)) 3978 return replaceInstUsesWith(SI, Fr); 3979 3980 if (Value *V = foldRoundUpIntegerWithPow2Alignment(SI, Builder)) 3981 return replaceInstUsesWith(SI, V); 3982 3983 // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0) 3984 // Load inst is intentionally not checked for hasOneUse() 3985 if (match(FalseVal, m_Zero()) && 3986 (match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal), 3987 m_CombineOr(m_Undef(), m_Zero()))) || 3988 match(TrueVal, m_MaskedGather(m_Value(), m_Value(), m_Specific(CondVal), 3989 m_CombineOr(m_Undef(), m_Zero()))))) { 3990 auto *MaskedInst = cast<IntrinsicInst>(TrueVal); 3991 if (isa<UndefValue>(MaskedInst->getArgOperand(3))) 3992 MaskedInst->setArgOperand(3, FalseVal /* Zero */); 3993 return replaceInstUsesWith(SI, MaskedInst); 3994 } 3995 3996 Value *Mask; 3997 if (match(TrueVal, m_Zero()) && 3998 (match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask), 3999 m_CombineOr(m_Undef(), m_Zero()))) || 4000 match(FalseVal, m_MaskedGather(m_Value(), m_Value(), m_Value(Mask), 4001 m_CombineOr(m_Undef(), m_Zero())))) && 4002 (CondVal->getType() == Mask->getType())) { 4003 // We can remove the select by ensuring the load zeros all lanes the 4004 // select would have. We determine this by proving there is no overlap 4005 // between the load and select masks. 4006 // (i.e (load_mask & select_mask) == 0 == no overlap) 4007 bool CanMergeSelectIntoLoad = false; 4008 if (Value *V = simplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI))) 4009 CanMergeSelectIntoLoad = match(V, m_Zero()); 4010 4011 if (CanMergeSelectIntoLoad) { 4012 auto *MaskedInst = cast<IntrinsicInst>(FalseVal); 4013 if (isa<UndefValue>(MaskedInst->getArgOperand(3))) 4014 MaskedInst->setArgOperand(3, TrueVal /* Zero */); 4015 return replaceInstUsesWith(SI, MaskedInst); 4016 } 4017 } 4018 4019 if (Instruction *I = foldSelectOfSymmetricSelect(SI, Builder)) 4020 return I; 4021 4022 if (Instruction *I = foldNestedSelects(SI, Builder)) 4023 return I; 4024 4025 // Match logical variants of the pattern, 4026 // and transform them iff that gets rid of inversions. 4027 // (~x) | y --> ~(x & (~y)) 4028 // (~x) & y --> ~(x | (~y)) 4029 if (sinkNotIntoOtherHandOfLogicalOp(SI)) 4030 return &SI; 4031 4032 if (Instruction *I = foldBitCeil(SI, Builder)) 4033 return I; 4034 4035 // Fold: 4036 // (select A && B, T, F) -> (select A, (select B, T, F), F) 4037 // (select A || B, T, F) -> (select A, T, (select B, T, F)) 4038 // if (select B, T, F) is foldable. 4039 // TODO: preserve FMF flags 4040 auto FoldSelectWithAndOrCond = [&](bool IsAnd, Value *A, 4041 Value *B) -> Instruction * { 4042 if (Value *V = simplifySelectInst(B, TrueVal, FalseVal, 4043 SQ.getWithInstruction(&SI))) 4044 return SelectInst::Create(A, IsAnd ? V : TrueVal, IsAnd ? FalseVal : V); 4045 4046 // Is (select B, T, F) a SPF? 4047 if (CondVal->hasOneUse() && SelType->isIntOrIntVectorTy()) { 4048 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(B)) 4049 if (Value *V = canonicalizeSPF(*Cmp, TrueVal, FalseVal, *this)) 4050 return SelectInst::Create(A, IsAnd ? V : TrueVal, 4051 IsAnd ? FalseVal : V); 4052 } 4053 4054 return nullptr; 4055 }; 4056 4057 Value *LHS, *RHS; 4058 if (match(CondVal, m_And(m_Value(LHS), m_Value(RHS)))) { 4059 if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, LHS, RHS)) 4060 return I; 4061 if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, RHS, LHS)) 4062 return I; 4063 } else if (match(CondVal, m_Or(m_Value(LHS), m_Value(RHS)))) { 4064 if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, LHS, RHS)) 4065 return I; 4066 if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, RHS, LHS)) 4067 return I; 4068 } else { 4069 // We cannot swap the operands of logical and/or. 4070 // TODO: Can we swap the operands by inserting a freeze? 4071 if (match(CondVal, m_LogicalAnd(m_Value(LHS), m_Value(RHS)))) { 4072 if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, LHS, RHS)) 4073 return I; 4074 } else if (match(CondVal, m_LogicalOr(m_Value(LHS), m_Value(RHS)))) { 4075 if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, LHS, RHS)) 4076 return I; 4077 } 4078 } 4079 4080 // select Cond, !X, X -> xor Cond, X 4081 if (CondVal->getType() == SI.getType() && isKnownInversion(FalseVal, TrueVal)) 4082 return BinaryOperator::CreateXor(CondVal, FalseVal); 4083 4084 // For vectors, this transform is only safe if the simplification does not 4085 // look through any lane-crossing operations. For now, limit to scalars only. 4086 if (SelType->isIntegerTy() && 4087 (!isa<Constant>(TrueVal) || !isa<Constant>(FalseVal))) { 4088 // Try to simplify select arms based on KnownBits implied by the condition. 4089 CondContext CC(CondVal); 4090 findValuesAffectedByCondition(CondVal, /*IsAssume=*/false, [&](Value *V) { 4091 CC.AffectedValues.insert(V); 4092 }); 4093 SimplifyQuery Q = SQ.getWithInstruction(&SI).getWithCondContext(CC); 4094 if (!CC.AffectedValues.empty()) { 4095 if (!isa<Constant>(TrueVal) && 4096 hasAffectedValue(TrueVal, CC.AffectedValues, /*Depth=*/0)) { 4097 KnownBits Known = llvm::computeKnownBits(TrueVal, /*Depth=*/0, Q); 4098 if (Known.isConstant()) 4099 return replaceOperand(SI, 1, 4100 ConstantInt::get(SelType, Known.getConstant())); 4101 } 4102 4103 CC.Invert = true; 4104 if (!isa<Constant>(FalseVal) && 4105 hasAffectedValue(FalseVal, CC.AffectedValues, /*Depth=*/0)) { 4106 KnownBits Known = llvm::computeKnownBits(FalseVal, /*Depth=*/0, Q); 4107 if (Known.isConstant()) 4108 return replaceOperand(SI, 2, 4109 ConstantInt::get(SelType, Known.getConstant())); 4110 } 4111 } 4112 } 4113 4114 return nullptr; 4115 } 4116