xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitSelect function.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CmpInstAnalysis.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Operator.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/User.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/KnownBits.h"
40 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
41 #include <cassert>
42 #include <utility>
43 
44 using namespace llvm;
45 using namespace PatternMatch;
46 
47 #define DEBUG_TYPE "instcombine"
48 
49 static Value *createMinMax(InstCombiner::BuilderTy &Builder,
50                            SelectPatternFlavor SPF, Value *A, Value *B) {
51   CmpInst::Predicate Pred = getMinMaxPred(SPF);
52   assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
53   return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
54 }
55 
56 /// Replace a select operand based on an equality comparison with the identity
57 /// constant of a binop.
58 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
59                                             const TargetLibraryInfo &TLI) {
60   // The select condition must be an equality compare with a constant operand.
61   Value *X;
62   Constant *C;
63   CmpInst::Predicate Pred;
64   if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
65     return nullptr;
66 
67   bool IsEq;
68   if (ICmpInst::isEquality(Pred))
69     IsEq = Pred == ICmpInst::ICMP_EQ;
70   else if (Pred == FCmpInst::FCMP_OEQ)
71     IsEq = true;
72   else if (Pred == FCmpInst::FCMP_UNE)
73     IsEq = false;
74   else
75     return nullptr;
76 
77   // A select operand must be a binop.
78   BinaryOperator *BO;
79   if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
80     return nullptr;
81 
82   // The compare constant must be the identity constant for that binop.
83   // If this a floating-point compare with 0.0, any zero constant will do.
84   Type *Ty = BO->getType();
85   Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
86   if (IdC != C) {
87     if (!IdC || !CmpInst::isFPPredicate(Pred))
88       return nullptr;
89     if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
90       return nullptr;
91   }
92 
93   // Last, match the compare variable operand with a binop operand.
94   Value *Y;
95   if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
96     return nullptr;
97   if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
98     return nullptr;
99 
100   // +0.0 compares equal to -0.0, and so it does not behave as required for this
101   // transform. Bail out if we can not exclude that possibility.
102   if (isa<FPMathOperator>(BO))
103     if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
104       return nullptr;
105 
106   // BO = binop Y, X
107   // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
108   // =>
109   // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
110   Sel.setOperand(IsEq ? 1 : 2, Y);
111   return &Sel;
112 }
113 
114 /// This folds:
115 ///  select (icmp eq (and X, C1)), TC, FC
116 ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
117 /// To something like:
118 ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
119 /// Or:
120 ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
121 /// With some variations depending if FC is larger than TC, or the shift
122 /// isn't needed, or the bit widths don't match.
123 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
124                                 InstCombiner::BuilderTy &Builder) {
125   const APInt *SelTC, *SelFC;
126   if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
127       !match(Sel.getFalseValue(), m_APInt(SelFC)))
128     return nullptr;
129 
130   // If this is a vector select, we need a vector compare.
131   Type *SelType = Sel.getType();
132   if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
133     return nullptr;
134 
135   Value *V;
136   APInt AndMask;
137   bool CreateAnd = false;
138   ICmpInst::Predicate Pred = Cmp->getPredicate();
139   if (ICmpInst::isEquality(Pred)) {
140     if (!match(Cmp->getOperand(1), m_Zero()))
141       return nullptr;
142 
143     V = Cmp->getOperand(0);
144     const APInt *AndRHS;
145     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
146       return nullptr;
147 
148     AndMask = *AndRHS;
149   } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
150                                   Pred, V, AndMask)) {
151     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
152     if (!AndMask.isPowerOf2())
153       return nullptr;
154 
155     CreateAnd = true;
156   } else {
157     return nullptr;
158   }
159 
160   // In general, when both constants are non-zero, we would need an offset to
161   // replace the select. This would require more instructions than we started
162   // with. But there's one special-case that we handle here because it can
163   // simplify/reduce the instructions.
164   APInt TC = *SelTC;
165   APInt FC = *SelFC;
166   if (!TC.isNullValue() && !FC.isNullValue()) {
167     // If the select constants differ by exactly one bit and that's the same
168     // bit that is masked and checked by the select condition, the select can
169     // be replaced by bitwise logic to set/clear one bit of the constant result.
170     if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
171       return nullptr;
172     if (CreateAnd) {
173       // If we have to create an 'and', then we must kill the cmp to not
174       // increase the instruction count.
175       if (!Cmp->hasOneUse())
176         return nullptr;
177       V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
178     }
179     bool ExtraBitInTC = TC.ugt(FC);
180     if (Pred == ICmpInst::ICMP_EQ) {
181       // If the masked bit in V is clear, clear or set the bit in the result:
182       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
183       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
184       Constant *C = ConstantInt::get(SelType, TC);
185       return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
186     }
187     if (Pred == ICmpInst::ICMP_NE) {
188       // If the masked bit in V is set, set or clear the bit in the result:
189       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
190       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
191       Constant *C = ConstantInt::get(SelType, FC);
192       return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
193     }
194     llvm_unreachable("Only expecting equality predicates");
195   }
196 
197   // Make sure one of the select arms is a power-of-2.
198   if (!TC.isPowerOf2() && !FC.isPowerOf2())
199     return nullptr;
200 
201   // Determine which shift is needed to transform result of the 'and' into the
202   // desired result.
203   const APInt &ValC = !TC.isNullValue() ? TC : FC;
204   unsigned ValZeros = ValC.logBase2();
205   unsigned AndZeros = AndMask.logBase2();
206 
207   // Insert the 'and' instruction on the input to the truncate.
208   if (CreateAnd)
209     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
210 
211   // If types don't match, we can still convert the select by introducing a zext
212   // or a trunc of the 'and'.
213   if (ValZeros > AndZeros) {
214     V = Builder.CreateZExtOrTrunc(V, SelType);
215     V = Builder.CreateShl(V, ValZeros - AndZeros);
216   } else if (ValZeros < AndZeros) {
217     V = Builder.CreateLShr(V, AndZeros - ValZeros);
218     V = Builder.CreateZExtOrTrunc(V, SelType);
219   } else {
220     V = Builder.CreateZExtOrTrunc(V, SelType);
221   }
222 
223   // Okay, now we know that everything is set up, we just don't know whether we
224   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
225   bool ShouldNotVal = !TC.isNullValue();
226   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
227   if (ShouldNotVal)
228     V = Builder.CreateXor(V, ValC);
229 
230   return V;
231 }
232 
233 /// We want to turn code that looks like this:
234 ///   %C = or %A, %B
235 ///   %D = select %cond, %C, %A
236 /// into:
237 ///   %C = select %cond, %B, 0
238 ///   %D = or %A, %C
239 ///
240 /// Assuming that the specified instruction is an operand to the select, return
241 /// a bitmask indicating which operands of this instruction are foldable if they
242 /// equal the other incoming value of the select.
243 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
244   switch (I->getOpcode()) {
245   case Instruction::Add:
246   case Instruction::Mul:
247   case Instruction::And:
248   case Instruction::Or:
249   case Instruction::Xor:
250     return 3;              // Can fold through either operand.
251   case Instruction::Sub:   // Can only fold on the amount subtracted.
252   case Instruction::Shl:   // Can only fold on the shift amount.
253   case Instruction::LShr:
254   case Instruction::AShr:
255     return 1;
256   default:
257     return 0;              // Cannot fold
258   }
259 }
260 
261 /// For the same transformation as the previous function, return the identity
262 /// constant that goes into the select.
263 static APInt getSelectFoldableConstant(BinaryOperator *I) {
264   switch (I->getOpcode()) {
265   default: llvm_unreachable("This cannot happen!");
266   case Instruction::Add:
267   case Instruction::Sub:
268   case Instruction::Or:
269   case Instruction::Xor:
270   case Instruction::Shl:
271   case Instruction::LShr:
272   case Instruction::AShr:
273     return APInt::getNullValue(I->getType()->getScalarSizeInBits());
274   case Instruction::And:
275     return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits());
276   case Instruction::Mul:
277     return APInt(I->getType()->getScalarSizeInBits(), 1);
278   }
279 }
280 
281 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
282 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI,
283                                           Instruction *FI) {
284   // Don't break up min/max patterns. The hasOneUse checks below prevent that
285   // for most cases, but vector min/max with bitcasts can be transformed. If the
286   // one-use restrictions are eased for other patterns, we still don't want to
287   // obfuscate min/max.
288   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
289        match(&SI, m_SMax(m_Value(), m_Value())) ||
290        match(&SI, m_UMin(m_Value(), m_Value())) ||
291        match(&SI, m_UMax(m_Value(), m_Value()))))
292     return nullptr;
293 
294   // If this is a cast from the same type, merge.
295   Value *Cond = SI.getCondition();
296   Type *CondTy = Cond->getType();
297   if (TI->getNumOperands() == 1 && TI->isCast()) {
298     Type *FIOpndTy = FI->getOperand(0)->getType();
299     if (TI->getOperand(0)->getType() != FIOpndTy)
300       return nullptr;
301 
302     // The select condition may be a vector. We may only change the operand
303     // type if the vector width remains the same (and matches the condition).
304     if (CondTy->isVectorTy()) {
305       if (!FIOpndTy->isVectorTy())
306         return nullptr;
307       if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())
308         return nullptr;
309 
310       // TODO: If the backend knew how to deal with casts better, we could
311       // remove this limitation. For now, there's too much potential to create
312       // worse codegen by promoting the select ahead of size-altering casts
313       // (PR28160).
314       //
315       // Note that ValueTracking's matchSelectPattern() looks through casts
316       // without checking 'hasOneUse' when it matches min/max patterns, so this
317       // transform may end up happening anyway.
318       if (TI->getOpcode() != Instruction::BitCast &&
319           (!TI->hasOneUse() || !FI->hasOneUse()))
320         return nullptr;
321     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
322       // TODO: The one-use restrictions for a scalar select could be eased if
323       // the fold of a select in visitLoadInst() was enhanced to match a pattern
324       // that includes a cast.
325       return nullptr;
326     }
327 
328     // Fold this by inserting a select from the input values.
329     Value *NewSI =
330         Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
331                              SI.getName() + ".v", &SI);
332     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
333                             TI->getType());
334   }
335 
336   // Cond ? -X : -Y --> -(Cond ? X : Y)
337   Value *X, *Y;
338   if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
339       (TI->hasOneUse() || FI->hasOneUse())) {
340     Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
341     // TODO: Remove the hack for the binop form when the unary op is optimized
342     //       properly with all IR passes.
343     if (TI->getOpcode() != Instruction::FNeg)
344       return BinaryOperator::CreateFNegFMF(NewSel, cast<BinaryOperator>(TI));
345     return UnaryOperator::CreateFNeg(NewSel);
346   }
347 
348   // Only handle binary operators (including two-operand getelementptr) with
349   // one-use here. As with the cast case above, it may be possible to relax the
350   // one-use constraint, but that needs be examined carefully since it may not
351   // reduce the total number of instructions.
352   if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
353       (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
354       !TI->hasOneUse() || !FI->hasOneUse())
355     return nullptr;
356 
357   // Figure out if the operations have any operands in common.
358   Value *MatchOp, *OtherOpT, *OtherOpF;
359   bool MatchIsOpZero;
360   if (TI->getOperand(0) == FI->getOperand(0)) {
361     MatchOp  = TI->getOperand(0);
362     OtherOpT = TI->getOperand(1);
363     OtherOpF = FI->getOperand(1);
364     MatchIsOpZero = true;
365   } else if (TI->getOperand(1) == FI->getOperand(1)) {
366     MatchOp  = TI->getOperand(1);
367     OtherOpT = TI->getOperand(0);
368     OtherOpF = FI->getOperand(0);
369     MatchIsOpZero = false;
370   } else if (!TI->isCommutative()) {
371     return nullptr;
372   } else if (TI->getOperand(0) == FI->getOperand(1)) {
373     MatchOp  = TI->getOperand(0);
374     OtherOpT = TI->getOperand(1);
375     OtherOpF = FI->getOperand(0);
376     MatchIsOpZero = true;
377   } else if (TI->getOperand(1) == FI->getOperand(0)) {
378     MatchOp  = TI->getOperand(1);
379     OtherOpT = TI->getOperand(0);
380     OtherOpF = FI->getOperand(1);
381     MatchIsOpZero = true;
382   } else {
383     return nullptr;
384   }
385 
386   // If the select condition is a vector, the operands of the original select's
387   // operands also must be vectors. This may not be the case for getelementptr
388   // for example.
389   if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
390                                !OtherOpF->getType()->isVectorTy()))
391     return nullptr;
392 
393   // If we reach here, they do have operations in common.
394   Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
395                                       SI.getName() + ".v", &SI);
396   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
397   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
398   if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
399     BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
400     NewBO->copyIRFlags(TI);
401     NewBO->andIRFlags(FI);
402     return NewBO;
403   }
404   if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
405     auto *FGEP = cast<GetElementPtrInst>(FI);
406     Type *ElementType = TGEP->getResultElementType();
407     return TGEP->isInBounds() && FGEP->isInBounds()
408                ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
409                : GetElementPtrInst::Create(ElementType, Op0, {Op1});
410   }
411   llvm_unreachable("Expected BinaryOperator or GEP");
412   return nullptr;
413 }
414 
415 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
416   if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero.
417     return false;
418   return C1I.isOneValue() || C1I.isAllOnesValue() ||
419          C2I.isOneValue() || C2I.isAllOnesValue();
420 }
421 
422 /// Try to fold the select into one of the operands to allow further
423 /// optimization.
424 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
425                                             Value *FalseVal) {
426   // See the comment above GetSelectFoldableOperands for a description of the
427   // transformation we are doing here.
428   if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
429     if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
430       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
431         unsigned OpToFold = 0;
432         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
433           OpToFold = 1;
434         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
435           OpToFold = 2;
436         }
437 
438         if (OpToFold) {
439           APInt CI = getSelectFoldableConstant(TVI);
440           Value *OOp = TVI->getOperand(2-OpToFold);
441           // Avoid creating select between 2 constants unless it's selecting
442           // between 0, 1 and -1.
443           const APInt *OOpC;
444           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
445           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
446             Value *C = ConstantInt::get(OOp->getType(), CI);
447             Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
448             NewSel->takeName(TVI);
449             BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
450                                                         FalseVal, NewSel);
451             BO->copyIRFlags(TVI);
452             return BO;
453           }
454         }
455       }
456     }
457   }
458 
459   if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
460     if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
461       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
462         unsigned OpToFold = 0;
463         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
464           OpToFold = 1;
465         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
466           OpToFold = 2;
467         }
468 
469         if (OpToFold) {
470           APInt CI = getSelectFoldableConstant(FVI);
471           Value *OOp = FVI->getOperand(2-OpToFold);
472           // Avoid creating select between 2 constants unless it's selecting
473           // between 0, 1 and -1.
474           const APInt *OOpC;
475           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
476           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
477             Value *C = ConstantInt::get(OOp->getType(), CI);
478             Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
479             NewSel->takeName(FVI);
480             BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
481                                                         TrueVal, NewSel);
482             BO->copyIRFlags(FVI);
483             return BO;
484           }
485         }
486       }
487     }
488   }
489 
490   return nullptr;
491 }
492 
493 /// We want to turn:
494 ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
495 /// into:
496 ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
497 /// Note:
498 ///   Z may be 0 if lshr is missing.
499 /// Worst-case scenario is that we will replace 5 instructions with 5 different
500 /// instructions, but we got rid of select.
501 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
502                                          Value *TVal, Value *FVal,
503                                          InstCombiner::BuilderTy &Builder) {
504   if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
505         Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
506         match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
507     return nullptr;
508 
509   // The TrueVal has general form of:  and %B, 1
510   Value *B;
511   if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
512     return nullptr;
513 
514   // Where %B may be optionally shifted:  lshr %X, %Z.
515   Value *X, *Z;
516   const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
517   if (!HasShift)
518     X = B;
519 
520   Value *Y;
521   if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
522     return nullptr;
523 
524   // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
525   // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
526   Constant *One = ConstantInt::get(SelType, 1);
527   Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
528   Value *FullMask = Builder.CreateOr(Y, MaskB);
529   Value *MaskedX = Builder.CreateAnd(X, FullMask);
530   Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
531   return new ZExtInst(ICmpNeZero, SelType);
532 }
533 
534 /// We want to turn:
535 ///   (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
536 ///   (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
537 /// into:
538 ///   ashr (X, Y)
539 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
540                                      Value *FalseVal,
541                                      InstCombiner::BuilderTy &Builder) {
542   ICmpInst::Predicate Pred = IC->getPredicate();
543   Value *CmpLHS = IC->getOperand(0);
544   Value *CmpRHS = IC->getOperand(1);
545   if (!CmpRHS->getType()->isIntOrIntVectorTy())
546     return nullptr;
547 
548   Value *X, *Y;
549   unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
550   if ((Pred != ICmpInst::ICMP_SGT ||
551        !match(CmpRHS,
552               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
553       (Pred != ICmpInst::ICMP_SLT ||
554        !match(CmpRHS,
555               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
556     return nullptr;
557 
558   // Canonicalize so that ashr is in FalseVal.
559   if (Pred == ICmpInst::ICMP_SLT)
560     std::swap(TrueVal, FalseVal);
561 
562   if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
563       match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
564       match(CmpLHS, m_Specific(X))) {
565     const auto *Ashr = cast<Instruction>(FalseVal);
566     // if lshr is not exact and ashr is, this new ashr must not be exact.
567     bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
568     return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
569   }
570 
571   return nullptr;
572 }
573 
574 /// We want to turn:
575 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
576 /// into:
577 ///   (or (shl (and X, C1), C3), Y)
578 /// iff:
579 ///   C1 and C2 are both powers of 2
580 /// where:
581 ///   C3 = Log(C2) - Log(C1)
582 ///
583 /// This transform handles cases where:
584 /// 1. The icmp predicate is inverted
585 /// 2. The select operands are reversed
586 /// 3. The magnitude of C2 and C1 are flipped
587 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
588                                   Value *FalseVal,
589                                   InstCombiner::BuilderTy &Builder) {
590   // Only handle integer compares. Also, if this is a vector select, we need a
591   // vector compare.
592   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
593       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
594     return nullptr;
595 
596   Value *CmpLHS = IC->getOperand(0);
597   Value *CmpRHS = IC->getOperand(1);
598 
599   Value *V;
600   unsigned C1Log;
601   bool IsEqualZero;
602   bool NeedAnd = false;
603   if (IC->isEquality()) {
604     if (!match(CmpRHS, m_Zero()))
605       return nullptr;
606 
607     const APInt *C1;
608     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
609       return nullptr;
610 
611     V = CmpLHS;
612     C1Log = C1->logBase2();
613     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
614   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
615              IC->getPredicate() == ICmpInst::ICMP_SGT) {
616     // We also need to recognize (icmp slt (trunc (X)), 0) and
617     // (icmp sgt (trunc (X)), -1).
618     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
619     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
620         (!IsEqualZero && !match(CmpRHS, m_Zero())))
621       return nullptr;
622 
623     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
624       return nullptr;
625 
626     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
627     NeedAnd = true;
628   } else {
629     return nullptr;
630   }
631 
632   const APInt *C2;
633   bool OrOnTrueVal = false;
634   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
635   if (!OrOnFalseVal)
636     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
637 
638   if (!OrOnFalseVal && !OrOnTrueVal)
639     return nullptr;
640 
641   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
642 
643   unsigned C2Log = C2->logBase2();
644 
645   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
646   bool NeedShift = C1Log != C2Log;
647   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
648                        V->getType()->getScalarSizeInBits();
649 
650   // Make sure we don't create more instructions than we save.
651   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
652   if ((NeedShift + NeedXor + NeedZExtTrunc) >
653       (IC->hasOneUse() + Or->hasOneUse()))
654     return nullptr;
655 
656   if (NeedAnd) {
657     // Insert the AND instruction on the input to the truncate.
658     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
659     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
660   }
661 
662   if (C2Log > C1Log) {
663     V = Builder.CreateZExtOrTrunc(V, Y->getType());
664     V = Builder.CreateShl(V, C2Log - C1Log);
665   } else if (C1Log > C2Log) {
666     V = Builder.CreateLShr(V, C1Log - C2Log);
667     V = Builder.CreateZExtOrTrunc(V, Y->getType());
668   } else
669     V = Builder.CreateZExtOrTrunc(V, Y->getType());
670 
671   if (NeedXor)
672     V = Builder.CreateXor(V, *C2);
673 
674   return Builder.CreateOr(V, Y);
675 }
676 
677 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
678 /// There are 8 commuted/swapped variants of this pattern.
679 /// TODO: Also support a - UMIN(a,b) patterns.
680 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
681                                             const Value *TrueVal,
682                                             const Value *FalseVal,
683                                             InstCombiner::BuilderTy &Builder) {
684   ICmpInst::Predicate Pred = ICI->getPredicate();
685   if (!ICmpInst::isUnsigned(Pred))
686     return nullptr;
687 
688   // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
689   if (match(TrueVal, m_Zero())) {
690     Pred = ICmpInst::getInversePredicate(Pred);
691     std::swap(TrueVal, FalseVal);
692   }
693   if (!match(FalseVal, m_Zero()))
694     return nullptr;
695 
696   Value *A = ICI->getOperand(0);
697   Value *B = ICI->getOperand(1);
698   if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
699     // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
700     std::swap(A, B);
701     Pred = ICmpInst::getSwappedPredicate(Pred);
702   }
703 
704   assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
705          "Unexpected isUnsigned predicate!");
706 
707   // Account for swapped form of subtraction: ((a > b) ? b - a : 0).
708   bool IsNegative = false;
709   if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))))
710     IsNegative = true;
711   else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))))
712     return nullptr;
713 
714   // If sub is used anywhere else, we wouldn't be able to eliminate it
715   // afterwards.
716   if (!TrueVal->hasOneUse())
717     return nullptr;
718 
719   // (a > b) ? a - b : 0 -> usub.sat(a, b)
720   // (a > b) ? b - a : 0 -> -usub.sat(a, b)
721   Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
722   if (IsNegative)
723     Result = Builder.CreateNeg(Result);
724   return Result;
725 }
726 
727 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
728                                        InstCombiner::BuilderTy &Builder) {
729   if (!Cmp->hasOneUse())
730     return nullptr;
731 
732   // Match unsigned saturated add with constant.
733   Value *Cmp0 = Cmp->getOperand(0);
734   Value *Cmp1 = Cmp->getOperand(1);
735   ICmpInst::Predicate Pred = Cmp->getPredicate();
736   Value *X;
737   const APInt *C, *CmpC;
738   if (Pred == ICmpInst::ICMP_ULT &&
739       match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
740       match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
741     // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
742     return Builder.CreateBinaryIntrinsic(
743         Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
744   }
745 
746   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
747   // There are 8 commuted variants.
748   // Canonicalize -1 (saturated result) to true value of the select. Just
749   // swapping the compare operands is legal, because the selected value is the
750   // same in case of equality, so we can interchange u< and u<=.
751   if (match(FVal, m_AllOnes())) {
752     std::swap(TVal, FVal);
753     std::swap(Cmp0, Cmp1);
754   }
755   if (!match(TVal, m_AllOnes()))
756     return nullptr;
757 
758   // Canonicalize predicate to 'ULT'.
759   if (Pred == ICmpInst::ICMP_UGT) {
760     Pred = ICmpInst::ICMP_ULT;
761     std::swap(Cmp0, Cmp1);
762   }
763   if (Pred != ICmpInst::ICMP_ULT)
764     return nullptr;
765 
766   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
767   Value *Y;
768   if (match(Cmp0, m_Not(m_Value(X))) &&
769       match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
770     // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
771     // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
772     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
773   }
774   // The 'not' op may be included in the sum but not the compare.
775   X = Cmp0;
776   Y = Cmp1;
777   if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
778     // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
779     // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
780     BinaryOperator *BO = cast<BinaryOperator>(FVal);
781     return Builder.CreateBinaryIntrinsic(
782         Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
783   }
784 
785   return nullptr;
786 }
787 
788 /// Fold the following code sequence:
789 /// \code
790 ///   int a = ctlz(x & -x);
791 //    x ? 31 - a : a;
792 /// \code
793 ///
794 /// into:
795 ///   cttz(x)
796 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
797                                          Value *FalseVal,
798                                          InstCombiner::BuilderTy &Builder) {
799   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
800   if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
801     return nullptr;
802 
803   if (ICI->getPredicate() == ICmpInst::ICMP_NE)
804     std::swap(TrueVal, FalseVal);
805 
806   if (!match(FalseVal,
807              m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
808     return nullptr;
809 
810   if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
811     return nullptr;
812 
813   Value *X = ICI->getOperand(0);
814   auto *II = cast<IntrinsicInst>(TrueVal);
815   if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
816     return nullptr;
817 
818   Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
819                                           II->getType());
820   return CallInst::Create(F, {X, II->getArgOperand(1)});
821 }
822 
823 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
824 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
825 ///
826 /// For example, we can fold the following code sequence:
827 /// \code
828 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
829 ///   %1 = icmp ne i32 %x, 0
830 ///   %2 = select i1 %1, i32 %0, i32 32
831 /// \code
832 ///
833 /// into:
834 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
835 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
836                                  InstCombiner::BuilderTy &Builder) {
837   ICmpInst::Predicate Pred = ICI->getPredicate();
838   Value *CmpLHS = ICI->getOperand(0);
839   Value *CmpRHS = ICI->getOperand(1);
840 
841   // Check if the condition value compares a value for equality against zero.
842   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
843     return nullptr;
844 
845   Value *Count = FalseVal;
846   Value *ValueOnZero = TrueVal;
847   if (Pred == ICmpInst::ICMP_NE)
848     std::swap(Count, ValueOnZero);
849 
850   // Skip zero extend/truncate.
851   Value *V = nullptr;
852   if (match(Count, m_ZExt(m_Value(V))) ||
853       match(Count, m_Trunc(m_Value(V))))
854     Count = V;
855 
856   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
857   // input to the cttz/ctlz is used as LHS for the compare instruction.
858   if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
859       !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
860     return nullptr;
861 
862   IntrinsicInst *II = cast<IntrinsicInst>(Count);
863 
864   // Check if the value propagated on zero is a constant number equal to the
865   // sizeof in bits of 'Count'.
866   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
867   if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
868     // Explicitly clear the 'undef_on_zero' flag.
869     IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
870     NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext()));
871     Builder.Insert(NewI);
872     return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType());
873   }
874 
875   // If the ValueOnZero is not the bitwidth, we can at least make use of the
876   // fact that the cttz/ctlz result will not be used if the input is zero, so
877   // it's okay to relax it to undef for that case.
878   if (II->hasOneUse() && !match(II->getArgOperand(1), m_One()))
879     II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
880 
881   return nullptr;
882 }
883 
884 /// Return true if we find and adjust an icmp+select pattern where the compare
885 /// is with a constant that can be incremented or decremented to match the
886 /// minimum or maximum idiom.
887 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
888   ICmpInst::Predicate Pred = Cmp.getPredicate();
889   Value *CmpLHS = Cmp.getOperand(0);
890   Value *CmpRHS = Cmp.getOperand(1);
891   Value *TrueVal = Sel.getTrueValue();
892   Value *FalseVal = Sel.getFalseValue();
893 
894   // We may move or edit the compare, so make sure the select is the only user.
895   const APInt *CmpC;
896   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
897     return false;
898 
899   // These transforms only work for selects of integers or vector selects of
900   // integer vectors.
901   Type *SelTy = Sel.getType();
902   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
903   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
904     return false;
905 
906   Constant *AdjustedRHS;
907   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
908     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
909   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
910     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
911   else
912     return false;
913 
914   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
915   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
916   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
917       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
918     ; // Nothing to do here. Values match without any sign/zero extension.
919   }
920   // Types do not match. Instead of calculating this with mixed types, promote
921   // all to the larger type. This enables scalar evolution to analyze this
922   // expression.
923   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
924     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
925 
926     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
927     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
928     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
929     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
930     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
931       CmpLHS = TrueVal;
932       AdjustedRHS = SextRHS;
933     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
934                SextRHS == TrueVal) {
935       CmpLHS = FalseVal;
936       AdjustedRHS = SextRHS;
937     } else if (Cmp.isUnsigned()) {
938       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
939       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
940       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
941       // zext + signed compare cannot be changed:
942       //    0xff <s 0x00, but 0x00ff >s 0x0000
943       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
944         CmpLHS = TrueVal;
945         AdjustedRHS = ZextRHS;
946       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
947                  ZextRHS == TrueVal) {
948         CmpLHS = FalseVal;
949         AdjustedRHS = ZextRHS;
950       } else {
951         return false;
952       }
953     } else {
954       return false;
955     }
956   } else {
957     return false;
958   }
959 
960   Pred = ICmpInst::getSwappedPredicate(Pred);
961   CmpRHS = AdjustedRHS;
962   std::swap(FalseVal, TrueVal);
963   Cmp.setPredicate(Pred);
964   Cmp.setOperand(0, CmpLHS);
965   Cmp.setOperand(1, CmpRHS);
966   Sel.setOperand(1, TrueVal);
967   Sel.setOperand(2, FalseVal);
968   Sel.swapProfMetadata();
969 
970   // Move the compare instruction right before the select instruction. Otherwise
971   // the sext/zext value may be defined after the compare instruction uses it.
972   Cmp.moveBefore(&Sel);
973 
974   return true;
975 }
976 
977 /// If this is an integer min/max (icmp + select) with a constant operand,
978 /// create the canonical icmp for the min/max operation and canonicalize the
979 /// constant to the 'false' operand of the select:
980 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
981 /// Note: if C1 != C2, this will change the icmp constant to the existing
982 /// constant operand of the select.
983 static Instruction *
984 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp,
985                                InstCombiner::BuilderTy &Builder) {
986   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
987     return nullptr;
988 
989   // Canonicalize the compare predicate based on whether we have min or max.
990   Value *LHS, *RHS;
991   SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
992   if (!SelectPatternResult::isMinOrMax(SPR.Flavor))
993     return nullptr;
994 
995   // Is this already canonical?
996   ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
997   if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
998       Cmp.getPredicate() == CanonicalPred)
999     return nullptr;
1000 
1001   // Create the canonical compare and plug it into the select.
1002   Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS));
1003 
1004   // If the select operands did not change, we're done.
1005   if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
1006     return &Sel;
1007 
1008   // If we are swapping the select operands, swap the metadata too.
1009   assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
1010          "Unexpected results from matchSelectPattern");
1011   Sel.swapValues();
1012   Sel.swapProfMetadata();
1013   return &Sel;
1014 }
1015 
1016 /// There are many select variants for each of ABS/NABS.
1017 /// In matchSelectPattern(), there are different compare constants, compare
1018 /// predicates/operands and select operands.
1019 /// In isKnownNegation(), there are different formats of negated operands.
1020 /// Canonicalize all these variants to 1 pattern.
1021 /// This makes CSE more likely.
1022 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
1023                                         InstCombiner::BuilderTy &Builder) {
1024   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
1025     return nullptr;
1026 
1027   // Choose a sign-bit check for the compare (likely simpler for codegen).
1028   // ABS:  (X <s 0) ? -X : X
1029   // NABS: (X <s 0) ? X : -X
1030   Value *LHS, *RHS;
1031   SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
1032   if (SPF != SelectPatternFlavor::SPF_ABS &&
1033       SPF != SelectPatternFlavor::SPF_NABS)
1034     return nullptr;
1035 
1036   Value *TVal = Sel.getTrueValue();
1037   Value *FVal = Sel.getFalseValue();
1038   assert(isKnownNegation(TVal, FVal) &&
1039          "Unexpected result from matchSelectPattern");
1040 
1041   // The compare may use the negated abs()/nabs() operand, or it may use
1042   // negation in non-canonical form such as: sub A, B.
1043   bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) ||
1044                           match(Cmp.getOperand(0), m_Neg(m_Specific(FVal)));
1045 
1046   bool CmpCanonicalized = !CmpUsesNegatedOp &&
1047                           match(Cmp.getOperand(1), m_ZeroInt()) &&
1048                           Cmp.getPredicate() == ICmpInst::ICMP_SLT;
1049   bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS)));
1050 
1051   // Is this already canonical?
1052   if (CmpCanonicalized && RHSCanonicalized)
1053     return nullptr;
1054 
1055   // If RHS is used by other instructions except compare and select, don't
1056   // canonicalize it to not increase the instruction count.
1057   if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp)))
1058     return nullptr;
1059 
1060   // Create the canonical compare: icmp slt LHS 0.
1061   if (!CmpCanonicalized) {
1062     Cmp.setPredicate(ICmpInst::ICMP_SLT);
1063     Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType()));
1064     if (CmpUsesNegatedOp)
1065       Cmp.setOperand(0, LHS);
1066   }
1067 
1068   // Create the canonical RHS: RHS = sub (0, LHS).
1069   if (!RHSCanonicalized) {
1070     assert(RHS->hasOneUse() && "RHS use number is not right");
1071     RHS = Builder.CreateNeg(LHS);
1072     if (TVal == LHS) {
1073       Sel.setFalseValue(RHS);
1074       FVal = RHS;
1075     } else {
1076       Sel.setTrueValue(RHS);
1077       TVal = RHS;
1078     }
1079   }
1080 
1081   // If the select operands do not change, we're done.
1082   if (SPF == SelectPatternFlavor::SPF_NABS) {
1083     if (TVal == LHS)
1084       return &Sel;
1085     assert(FVal == LHS && "Unexpected results from matchSelectPattern");
1086   } else {
1087     if (FVal == LHS)
1088       return &Sel;
1089     assert(TVal == LHS && "Unexpected results from matchSelectPattern");
1090   }
1091 
1092   // We are swapping the select operands, so swap the metadata too.
1093   Sel.swapValues();
1094   Sel.swapProfMetadata();
1095   return &Sel;
1096 }
1097 
1098 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *ReplaceOp,
1099                                      const SimplifyQuery &Q) {
1100   // If this is a binary operator, try to simplify it with the replaced op
1101   // because we know Op and ReplaceOp are equivalant.
1102   // For example: V = X + 1, Op = X, ReplaceOp = 42
1103   // Simplifies as: add(42, 1) --> 43
1104   if (auto *BO = dyn_cast<BinaryOperator>(V)) {
1105     if (BO->getOperand(0) == Op)
1106       return SimplifyBinOp(BO->getOpcode(), ReplaceOp, BO->getOperand(1), Q);
1107     if (BO->getOperand(1) == Op)
1108       return SimplifyBinOp(BO->getOpcode(), BO->getOperand(0), ReplaceOp, Q);
1109   }
1110 
1111   return nullptr;
1112 }
1113 
1114 /// If we have a select with an equality comparison, then we know the value in
1115 /// one of the arms of the select. See if substituting this value into an arm
1116 /// and simplifying the result yields the same value as the other arm.
1117 ///
1118 /// To make this transform safe, we must drop poison-generating flags
1119 /// (nsw, etc) if we simplified to a binop because the select may be guarding
1120 /// that poison from propagating. If the existing binop already had no
1121 /// poison-generating flags, then this transform can be done by instsimplify.
1122 ///
1123 /// Consider:
1124 ///   %cmp = icmp eq i32 %x, 2147483647
1125 ///   %add = add nsw i32 %x, 1
1126 ///   %sel = select i1 %cmp, i32 -2147483648, i32 %add
1127 ///
1128 /// We can't replace %sel with %add unless we strip away the flags.
1129 /// TODO: Wrapping flags could be preserved in some cases with better analysis.
1130 static Value *foldSelectValueEquivalence(SelectInst &Sel, ICmpInst &Cmp,
1131                                          const SimplifyQuery &Q) {
1132   if (!Cmp.isEquality())
1133     return nullptr;
1134 
1135   // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1136   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1137   if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1138     std::swap(TrueVal, FalseVal);
1139 
1140   // Try each equivalence substitution possibility.
1141   // We have an 'EQ' comparison, so the select's false value will propagate.
1142   // Example:
1143   // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1144   // (X == 42) ? (X + 1) : 43 --> (X == 42) ? (42 + 1) : 43 --> 43
1145   Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1146   if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q) == TrueVal ||
1147       simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q) == TrueVal ||
1148       simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q) == FalseVal ||
1149       simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q) == FalseVal) {
1150     if (auto *FalseInst = dyn_cast<Instruction>(FalseVal))
1151       FalseInst->dropPoisonGeneratingFlags();
1152     return FalseVal;
1153   }
1154   return nullptr;
1155 }
1156 
1157 // See if this is a pattern like:
1158 //   %old_cmp1 = icmp slt i32 %x, C2
1159 //   %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1160 //   %old_x_offseted = add i32 %x, C1
1161 //   %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1162 //   %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1163 // This can be rewritten as more canonical pattern:
1164 //   %new_cmp1 = icmp slt i32 %x, -C1
1165 //   %new_cmp2 = icmp sge i32 %x, C0-C1
1166 //   %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1167 //   %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1168 // Iff -C1 s<= C2 s<= C0-C1
1169 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1170 //      SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
1171 static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1172                                           InstCombiner::BuilderTy &Builder) {
1173   Value *X = Sel0.getTrueValue();
1174   Value *Sel1 = Sel0.getFalseValue();
1175 
1176   // First match the condition of the outermost select.
1177   // Said condition must be one-use.
1178   if (!Cmp0.hasOneUse())
1179     return nullptr;
1180   Value *Cmp00 = Cmp0.getOperand(0);
1181   Constant *C0;
1182   if (!match(Cmp0.getOperand(1),
1183              m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
1184     return nullptr;
1185   // Canonicalize Cmp0 into the form we expect.
1186   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1187   switch (Cmp0.getPredicate()) {
1188   case ICmpInst::Predicate::ICMP_ULT:
1189     break; // Great!
1190   case ICmpInst::Predicate::ICMP_ULE:
1191     // We'd have to increment C0 by one, and for that it must not have all-ones
1192     // element, but then it would have been canonicalized to 'ult' before
1193     // we get here. So we can't do anything useful with 'ule'.
1194     return nullptr;
1195   case ICmpInst::Predicate::ICMP_UGT:
1196     // We want to canonicalize it to 'ult', so we'll need to increment C0,
1197     // which again means it must not have any all-ones elements.
1198     if (!match(C0,
1199                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1200                                   APInt::getAllOnesValue(
1201                                       C0->getType()->getScalarSizeInBits()))))
1202       return nullptr; // Can't do, have all-ones element[s].
1203     C0 = AddOne(C0);
1204     std::swap(X, Sel1);
1205     break;
1206   case ICmpInst::Predicate::ICMP_UGE:
1207     // The only way we'd get this predicate if this `icmp` has extra uses,
1208     // but then we won't be able to do this fold.
1209     return nullptr;
1210   default:
1211     return nullptr; // Unknown predicate.
1212   }
1213 
1214   // Now that we've canonicalized the ICmp, we know the X we expect;
1215   // the select in other hand should be one-use.
1216   if (!Sel1->hasOneUse())
1217     return nullptr;
1218 
1219   // We now can finish matching the condition of the outermost select:
1220   // it should either be the X itself, or an addition of some constant to X.
1221   Constant *C1;
1222   if (Cmp00 == X)
1223     C1 = ConstantInt::getNullValue(Sel0.getType());
1224   else if (!match(Cmp00,
1225                   m_Add(m_Specific(X),
1226                         m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
1227     return nullptr;
1228 
1229   Value *Cmp1;
1230   ICmpInst::Predicate Pred1;
1231   Constant *C2;
1232   Value *ReplacementLow, *ReplacementHigh;
1233   if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1234                             m_Value(ReplacementHigh))) ||
1235       !match(Cmp1,
1236              m_ICmp(Pred1, m_Specific(X),
1237                     m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
1238     return nullptr;
1239 
1240   if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1241     return nullptr; // Not enough one-use instructions for the fold.
1242   // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1243   //        two comparisons we'll need to build.
1244 
1245   // Canonicalize Cmp1 into the form we expect.
1246   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1247   switch (Pred1) {
1248   case ICmpInst::Predicate::ICMP_SLT:
1249     break;
1250   case ICmpInst::Predicate::ICMP_SLE:
1251     // We'd have to increment C2 by one, and for that it must not have signed
1252     // max element, but then it would have been canonicalized to 'slt' before
1253     // we get here. So we can't do anything useful with 'sle'.
1254     return nullptr;
1255   case ICmpInst::Predicate::ICMP_SGT:
1256     // We want to canonicalize it to 'slt', so we'll need to increment C2,
1257     // which again means it must not have any signed max elements.
1258     if (!match(C2,
1259                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1260                                   APInt::getSignedMaxValue(
1261                                       C2->getType()->getScalarSizeInBits()))))
1262       return nullptr; // Can't do, have signed max element[s].
1263     C2 = AddOne(C2);
1264     LLVM_FALLTHROUGH;
1265   case ICmpInst::Predicate::ICMP_SGE:
1266     // Also non-canonical, but here we don't need to change C2,
1267     // so we don't have any restrictions on C2, so we can just handle it.
1268     std::swap(ReplacementLow, ReplacementHigh);
1269     break;
1270   default:
1271     return nullptr; // Unknown predicate.
1272   }
1273 
1274   // The thresholds of this clamp-like pattern.
1275   auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1276   auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1277 
1278   // The fold has a precondition 1: C2 s>= ThresholdLow
1279   auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
1280                                          ThresholdLowIncl);
1281   if (!match(Precond1, m_One()))
1282     return nullptr;
1283   // The fold has a precondition 2: C2 s<= ThresholdHigh
1284   auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
1285                                          ThresholdHighExcl);
1286   if (!match(Precond2, m_One()))
1287     return nullptr;
1288 
1289   // All good, finally emit the new pattern.
1290   Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1291   Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1292   Value *MaybeReplacedLow =
1293       Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1294   Instruction *MaybeReplacedHigh =
1295       SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1296 
1297   return MaybeReplacedHigh;
1298 }
1299 
1300 // If we have
1301 //  %cmp = icmp [canonical predicate] i32 %x, C0
1302 //  %r = select i1 %cmp, i32 %y, i32 C1
1303 // Where C0 != C1 and %x may be different from %y, see if the constant that we
1304 // will have if we flip the strictness of the predicate (i.e. without changing
1305 // the result) is identical to the C1 in select. If it matches we can change
1306 // original comparison to one with swapped predicate, reuse the constant,
1307 // and swap the hands of select.
1308 static Instruction *
1309 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
1310                                          InstCombiner::BuilderTy &Builder) {
1311   ICmpInst::Predicate Pred;
1312   Value *X;
1313   Constant *C0;
1314   if (!match(&Cmp, m_OneUse(m_ICmp(
1315                        Pred, m_Value(X),
1316                        m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
1317     return nullptr;
1318 
1319   // If comparison predicate is non-relational, we won't be able to do anything.
1320   if (ICmpInst::isEquality(Pred))
1321     return nullptr;
1322 
1323   // If comparison predicate is non-canonical, then we certainly won't be able
1324   // to make it canonical; canonicalizeCmpWithConstant() already tried.
1325   if (!isCanonicalPredicate(Pred))
1326     return nullptr;
1327 
1328   // If the [input] type of comparison and select type are different, lets abort
1329   // for now. We could try to compare constants with trunc/[zs]ext though.
1330   if (C0->getType() != Sel.getType())
1331     return nullptr;
1332 
1333   // FIXME: are there any magic icmp predicate+constant pairs we must not touch?
1334 
1335   Value *SelVal0, *SelVal1; // We do not care which one is from where.
1336   match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
1337   // At least one of these values we are selecting between must be a constant
1338   // else we'll never succeed.
1339   if (!match(SelVal0, m_AnyIntegralConstant()) &&
1340       !match(SelVal1, m_AnyIntegralConstant()))
1341     return nullptr;
1342 
1343   // Does this constant C match any of the `select` values?
1344   auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
1345     return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
1346   };
1347 
1348   // If C0 *already* matches true/false value of select, we are done.
1349   if (MatchesSelectValue(C0))
1350     return nullptr;
1351 
1352   // Check the constant we'd have with flipped-strictness predicate.
1353   auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, C0);
1354   if (!FlippedStrictness)
1355     return nullptr;
1356 
1357   // If said constant doesn't match either, then there is no hope,
1358   if (!MatchesSelectValue(FlippedStrictness->second))
1359     return nullptr;
1360 
1361   // It matched! Lets insert the new comparison just before select.
1362   InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
1363   Builder.SetInsertPoint(&Sel);
1364 
1365   Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
1366   Value *NewCmp = Builder.CreateICmp(Pred, X, FlippedStrictness->second,
1367                                      Cmp.getName() + ".inv");
1368   Sel.setCondition(NewCmp);
1369   Sel.swapValues();
1370   Sel.swapProfMetadata();
1371 
1372   return &Sel;
1373 }
1374 
1375 /// Visit a SelectInst that has an ICmpInst as its first operand.
1376 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI,
1377                                                   ICmpInst *ICI) {
1378   if (Value *V = foldSelectValueEquivalence(SI, *ICI, SQ))
1379     return replaceInstUsesWith(SI, V);
1380 
1381   if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder))
1382     return NewSel;
1383 
1384   if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder))
1385     return NewAbs;
1386 
1387   if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder))
1388     return NewAbs;
1389 
1390   if (Instruction *NewSel =
1391           tryToReuseConstantFromSelectInComparison(SI, *ICI, Builder))
1392     return NewSel;
1393 
1394   bool Changed = adjustMinMax(SI, *ICI);
1395 
1396   if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1397     return replaceInstUsesWith(SI, V);
1398 
1399   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1400   Value *TrueVal = SI.getTrueValue();
1401   Value *FalseVal = SI.getFalseValue();
1402   ICmpInst::Predicate Pred = ICI->getPredicate();
1403   Value *CmpLHS = ICI->getOperand(0);
1404   Value *CmpRHS = ICI->getOperand(1);
1405   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
1406     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1407       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1408       SI.setOperand(1, CmpRHS);
1409       Changed = true;
1410     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1411       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1412       SI.setOperand(2, CmpRHS);
1413       Changed = true;
1414     }
1415   }
1416 
1417   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1418   // decomposeBitTestICmp() might help.
1419   {
1420     unsigned BitWidth =
1421         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1422     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1423     Value *X;
1424     const APInt *Y, *C;
1425     bool TrueWhenUnset;
1426     bool IsBitTest = false;
1427     if (ICmpInst::isEquality(Pred) &&
1428         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1429         match(CmpRHS, m_Zero())) {
1430       IsBitTest = true;
1431       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1432     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1433       X = CmpLHS;
1434       Y = &MinSignedValue;
1435       IsBitTest = true;
1436       TrueWhenUnset = false;
1437     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1438       X = CmpLHS;
1439       Y = &MinSignedValue;
1440       IsBitTest = true;
1441       TrueWhenUnset = true;
1442     }
1443     if (IsBitTest) {
1444       Value *V = nullptr;
1445       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
1446       if (TrueWhenUnset && TrueVal == X &&
1447           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1448         V = Builder.CreateAnd(X, ~(*Y));
1449       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
1450       else if (!TrueWhenUnset && FalseVal == X &&
1451                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1452         V = Builder.CreateAnd(X, ~(*Y));
1453       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
1454       else if (TrueWhenUnset && FalseVal == X &&
1455                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1456         V = Builder.CreateOr(X, *Y);
1457       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
1458       else if (!TrueWhenUnset && TrueVal == X &&
1459                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1460         V = Builder.CreateOr(X, *Y);
1461 
1462       if (V)
1463         return replaceInstUsesWith(SI, V);
1464     }
1465   }
1466 
1467   if (Instruction *V =
1468           foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1469     return V;
1470 
1471   if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
1472     return V;
1473 
1474   if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1475     return replaceInstUsesWith(SI, V);
1476 
1477   if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1478     return replaceInstUsesWith(SI, V);
1479 
1480   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1481     return replaceInstUsesWith(SI, V);
1482 
1483   if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1484     return replaceInstUsesWith(SI, V);
1485 
1486   if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1487     return replaceInstUsesWith(SI, V);
1488 
1489   return Changed ? &SI : nullptr;
1490 }
1491 
1492 /// SI is a select whose condition is a PHI node (but the two may be in
1493 /// different blocks). See if the true/false values (V) are live in all of the
1494 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1495 ///
1496 ///   X = phi [ C1, BB1], [C2, BB2]
1497 ///   Y = add
1498 ///   Z = select X, Y, 0
1499 ///
1500 /// because Y is not live in BB1/BB2.
1501 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1502                                                    const SelectInst &SI) {
1503   // If the value is a non-instruction value like a constant or argument, it
1504   // can always be mapped.
1505   const Instruction *I = dyn_cast<Instruction>(V);
1506   if (!I) return true;
1507 
1508   // If V is a PHI node defined in the same block as the condition PHI, we can
1509   // map the arguments.
1510   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1511 
1512   if (const PHINode *VP = dyn_cast<PHINode>(I))
1513     if (VP->getParent() == CondPHI->getParent())
1514       return true;
1515 
1516   // Otherwise, if the PHI and select are defined in the same block and if V is
1517   // defined in a different block, then we can transform it.
1518   if (SI.getParent() == CondPHI->getParent() &&
1519       I->getParent() != CondPHI->getParent())
1520     return true;
1521 
1522   // Otherwise we have a 'hard' case and we can't tell without doing more
1523   // detailed dominator based analysis, punt.
1524   return false;
1525 }
1526 
1527 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1528 ///   SPF2(SPF1(A, B), C)
1529 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner,
1530                                         SelectPatternFlavor SPF1,
1531                                         Value *A, Value *B,
1532                                         Instruction &Outer,
1533                                         SelectPatternFlavor SPF2, Value *C) {
1534   if (Outer.getType() != Inner->getType())
1535     return nullptr;
1536 
1537   if (C == A || C == B) {
1538     // MAX(MAX(A, B), B) -> MAX(A, B)
1539     // MIN(MIN(a, b), a) -> MIN(a, b)
1540     // TODO: This could be done in instsimplify.
1541     if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1542       return replaceInstUsesWith(Outer, Inner);
1543 
1544     // MAX(MIN(a, b), a) -> a
1545     // MIN(MAX(a, b), a) -> a
1546     // TODO: This could be done in instsimplify.
1547     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
1548         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
1549         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
1550         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
1551       return replaceInstUsesWith(Outer, C);
1552   }
1553 
1554   if (SPF1 == SPF2) {
1555     const APInt *CB, *CC;
1556     if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
1557       // MIN(MIN(A, 23), 97) -> MIN(A, 23)
1558       // MAX(MAX(A, 97), 23) -> MAX(A, 97)
1559       // TODO: This could be done in instsimplify.
1560       if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
1561           (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
1562           (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
1563           (SPF1 == SPF_SMAX && CB->sge(*CC)))
1564         return replaceInstUsesWith(Outer, Inner);
1565 
1566       // MIN(MIN(A, 97), 23) -> MIN(A, 23)
1567       // MAX(MAX(A, 23), 97) -> MAX(A, 97)
1568       if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
1569           (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
1570           (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
1571           (SPF1 == SPF_SMAX && CB->slt(*CC))) {
1572         Outer.replaceUsesOfWith(Inner, A);
1573         return &Outer;
1574       }
1575     }
1576   }
1577 
1578   // max(max(A, B), min(A, B)) --> max(A, B)
1579   // min(min(A, B), max(A, B)) --> min(A, B)
1580   // TODO: This could be done in instsimplify.
1581   if (SPF1 == SPF2 &&
1582       ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) ||
1583        (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) ||
1584        (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) ||
1585        (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B))))))
1586     return replaceInstUsesWith(Outer, Inner);
1587 
1588   // ABS(ABS(X)) -> ABS(X)
1589   // NABS(NABS(X)) -> NABS(X)
1590   // TODO: This could be done in instsimplify.
1591   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
1592     return replaceInstUsesWith(Outer, Inner);
1593   }
1594 
1595   // ABS(NABS(X)) -> ABS(X)
1596   // NABS(ABS(X)) -> NABS(X)
1597   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
1598       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
1599     SelectInst *SI = cast<SelectInst>(Inner);
1600     Value *NewSI =
1601         Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
1602                              SI->getTrueValue(), SI->getName(), SI);
1603     return replaceInstUsesWith(Outer, NewSI);
1604   }
1605 
1606   auto IsFreeOrProfitableToInvert =
1607       [&](Value *V, Value *&NotV, bool &ElidesXor) {
1608     if (match(V, m_Not(m_Value(NotV)))) {
1609       // If V has at most 2 uses then we can get rid of the xor operation
1610       // entirely.
1611       ElidesXor |= !V->hasNUsesOrMore(3);
1612       return true;
1613     }
1614 
1615     if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) {
1616       NotV = nullptr;
1617       return true;
1618     }
1619 
1620     return false;
1621   };
1622 
1623   Value *NotA, *NotB, *NotC;
1624   bool ElidesXor = false;
1625 
1626   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
1627   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
1628   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
1629   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
1630   //
1631   // This transform is performance neutral if we can elide at least one xor from
1632   // the set of three operands, since we'll be tacking on an xor at the very
1633   // end.
1634   if (SelectPatternResult::isMinOrMax(SPF1) &&
1635       SelectPatternResult::isMinOrMax(SPF2) &&
1636       IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
1637       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
1638       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
1639     if (!NotA)
1640       NotA = Builder.CreateNot(A);
1641     if (!NotB)
1642       NotB = Builder.CreateNot(B);
1643     if (!NotC)
1644       NotC = Builder.CreateNot(C);
1645 
1646     Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
1647                                    NotB);
1648     Value *NewOuter = Builder.CreateNot(
1649         createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
1650     return replaceInstUsesWith(Outer, NewOuter);
1651   }
1652 
1653   return nullptr;
1654 }
1655 
1656 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1657 /// This is even legal for FP.
1658 static Instruction *foldAddSubSelect(SelectInst &SI,
1659                                      InstCombiner::BuilderTy &Builder) {
1660   Value *CondVal = SI.getCondition();
1661   Value *TrueVal = SI.getTrueValue();
1662   Value *FalseVal = SI.getFalseValue();
1663   auto *TI = dyn_cast<Instruction>(TrueVal);
1664   auto *FI = dyn_cast<Instruction>(FalseVal);
1665   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1666     return nullptr;
1667 
1668   Instruction *AddOp = nullptr, *SubOp = nullptr;
1669   if ((TI->getOpcode() == Instruction::Sub &&
1670        FI->getOpcode() == Instruction::Add) ||
1671       (TI->getOpcode() == Instruction::FSub &&
1672        FI->getOpcode() == Instruction::FAdd)) {
1673     AddOp = FI;
1674     SubOp = TI;
1675   } else if ((FI->getOpcode() == Instruction::Sub &&
1676               TI->getOpcode() == Instruction::Add) ||
1677              (FI->getOpcode() == Instruction::FSub &&
1678               TI->getOpcode() == Instruction::FAdd)) {
1679     AddOp = TI;
1680     SubOp = FI;
1681   }
1682 
1683   if (AddOp) {
1684     Value *OtherAddOp = nullptr;
1685     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1686       OtherAddOp = AddOp->getOperand(1);
1687     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1688       OtherAddOp = AddOp->getOperand(0);
1689     }
1690 
1691     if (OtherAddOp) {
1692       // So at this point we know we have (Y -> OtherAddOp):
1693       //        select C, (add X, Y), (sub X, Z)
1694       Value *NegVal; // Compute -Z
1695       if (SI.getType()->isFPOrFPVectorTy()) {
1696         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1697         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1698           FastMathFlags Flags = AddOp->getFastMathFlags();
1699           Flags &= SubOp->getFastMathFlags();
1700           NegInst->setFastMathFlags(Flags);
1701         }
1702       } else {
1703         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1704       }
1705 
1706       Value *NewTrueOp = OtherAddOp;
1707       Value *NewFalseOp = NegVal;
1708       if (AddOp != TI)
1709         std::swap(NewTrueOp, NewFalseOp);
1710       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1711                                            SI.getName() + ".p", &SI);
1712 
1713       if (SI.getType()->isFPOrFPVectorTy()) {
1714         Instruction *RI =
1715             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1716 
1717         FastMathFlags Flags = AddOp->getFastMathFlags();
1718         Flags &= SubOp->getFastMathFlags();
1719         RI->setFastMathFlags(Flags);
1720         return RI;
1721       } else
1722         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1723     }
1724   }
1725   return nullptr;
1726 }
1727 
1728 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) {
1729   Constant *C;
1730   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
1731       !match(Sel.getFalseValue(), m_Constant(C)))
1732     return nullptr;
1733 
1734   Instruction *ExtInst;
1735   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
1736       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
1737     return nullptr;
1738 
1739   auto ExtOpcode = ExtInst->getOpcode();
1740   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
1741     return nullptr;
1742 
1743   // If we are extending from a boolean type or if we can create a select that
1744   // has the same size operands as its condition, try to narrow the select.
1745   Value *X = ExtInst->getOperand(0);
1746   Type *SmallType = X->getType();
1747   Value *Cond = Sel.getCondition();
1748   auto *Cmp = dyn_cast<CmpInst>(Cond);
1749   if (!SmallType->isIntOrIntVectorTy(1) &&
1750       (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
1751     return nullptr;
1752 
1753   // If the constant is the same after truncation to the smaller type and
1754   // extension to the original type, we can narrow the select.
1755   Type *SelType = Sel.getType();
1756   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
1757   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
1758   if (ExtC == C) {
1759     Value *TruncCVal = cast<Value>(TruncC);
1760     if (ExtInst == Sel.getFalseValue())
1761       std::swap(X, TruncCVal);
1762 
1763     // select Cond, (ext X), C --> ext(select Cond, X, C')
1764     // select Cond, C, (ext X) --> ext(select Cond, C', X)
1765     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
1766     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
1767   }
1768 
1769   // If one arm of the select is the extend of the condition, replace that arm
1770   // with the extension of the appropriate known bool value.
1771   if (Cond == X) {
1772     if (ExtInst == Sel.getTrueValue()) {
1773       // select X, (sext X), C --> select X, -1, C
1774       // select X, (zext X), C --> select X,  1, C
1775       Constant *One = ConstantInt::getTrue(SmallType);
1776       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
1777       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
1778     } else {
1779       // select X, C, (sext X) --> select X, C, 0
1780       // select X, C, (zext X) --> select X, C, 0
1781       Constant *Zero = ConstantInt::getNullValue(SelType);
1782       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
1783     }
1784   }
1785 
1786   return nullptr;
1787 }
1788 
1789 /// Try to transform a vector select with a constant condition vector into a
1790 /// shuffle for easier combining with other shuffles and insert/extract.
1791 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
1792   Value *CondVal = SI.getCondition();
1793   Constant *CondC;
1794   if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
1795     return nullptr;
1796 
1797   unsigned NumElts = CondVal->getType()->getVectorNumElements();
1798   SmallVector<Constant *, 16> Mask;
1799   Mask.reserve(NumElts);
1800   Type *Int32Ty = Type::getInt32Ty(CondVal->getContext());
1801   for (unsigned i = 0; i != NumElts; ++i) {
1802     Constant *Elt = CondC->getAggregateElement(i);
1803     if (!Elt)
1804       return nullptr;
1805 
1806     if (Elt->isOneValue()) {
1807       // If the select condition element is true, choose from the 1st vector.
1808       Mask.push_back(ConstantInt::get(Int32Ty, i));
1809     } else if (Elt->isNullValue()) {
1810       // If the select condition element is false, choose from the 2nd vector.
1811       Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts));
1812     } else if (isa<UndefValue>(Elt)) {
1813       // Undef in a select condition (choose one of the operands) does not mean
1814       // the same thing as undef in a shuffle mask (any value is acceptable), so
1815       // give up.
1816       return nullptr;
1817     } else {
1818       // Bail out on a constant expression.
1819       return nullptr;
1820     }
1821   }
1822 
1823   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(),
1824                                ConstantVector::get(Mask));
1825 }
1826 
1827 /// If we have a select of vectors with a scalar condition, try to convert that
1828 /// to a vector select by splatting the condition. A splat may get folded with
1829 /// other operations in IR and having all operands of a select be vector types
1830 /// is likely better for vector codegen.
1831 static Instruction *canonicalizeScalarSelectOfVecs(
1832     SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
1833   Type *Ty = Sel.getType();
1834   if (!Ty->isVectorTy())
1835     return nullptr;
1836 
1837   // We can replace a single-use extract with constant index.
1838   Value *Cond = Sel.getCondition();
1839   if (!match(Cond, m_OneUse(m_ExtractElement(m_Value(), m_ConstantInt()))))
1840     return nullptr;
1841 
1842   // select (extelt V, Index), T, F --> select (splat V, Index), T, F
1843   // Splatting the extracted condition reduces code (we could directly create a
1844   // splat shuffle of the source vector to eliminate the intermediate step).
1845   unsigned NumElts = Ty->getVectorNumElements();
1846   Value *SplatCond = Builder.CreateVectorSplat(NumElts, Cond);
1847   Sel.setCondition(SplatCond);
1848   return &Sel;
1849 }
1850 
1851 /// Reuse bitcasted operands between a compare and select:
1852 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1853 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
1854 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
1855                                           InstCombiner::BuilderTy &Builder) {
1856   Value *Cond = Sel.getCondition();
1857   Value *TVal = Sel.getTrueValue();
1858   Value *FVal = Sel.getFalseValue();
1859 
1860   CmpInst::Predicate Pred;
1861   Value *A, *B;
1862   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
1863     return nullptr;
1864 
1865   // The select condition is a compare instruction. If the select's true/false
1866   // values are already the same as the compare operands, there's nothing to do.
1867   if (TVal == A || TVal == B || FVal == A || FVal == B)
1868     return nullptr;
1869 
1870   Value *C, *D;
1871   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
1872     return nullptr;
1873 
1874   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
1875   Value *TSrc, *FSrc;
1876   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
1877       !match(FVal, m_BitCast(m_Value(FSrc))))
1878     return nullptr;
1879 
1880   // If the select true/false values are *different bitcasts* of the same source
1881   // operands, make the select operands the same as the compare operands and
1882   // cast the result. This is the canonical select form for min/max.
1883   Value *NewSel;
1884   if (TSrc == C && FSrc == D) {
1885     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1886     // bitcast (select (cmp A, B), A, B)
1887     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
1888   } else if (TSrc == D && FSrc == C) {
1889     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
1890     // bitcast (select (cmp A, B), B, A)
1891     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
1892   } else {
1893     return nullptr;
1894   }
1895   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
1896 }
1897 
1898 /// Try to eliminate select instructions that test the returned flag of cmpxchg
1899 /// instructions.
1900 ///
1901 /// If a select instruction tests the returned flag of a cmpxchg instruction and
1902 /// selects between the returned value of the cmpxchg instruction its compare
1903 /// operand, the result of the select will always be equal to its false value.
1904 /// For example:
1905 ///
1906 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
1907 ///   %1 = extractvalue { i64, i1 } %0, 1
1908 ///   %2 = extractvalue { i64, i1 } %0, 0
1909 ///   %3 = select i1 %1, i64 %compare, i64 %2
1910 ///   ret i64 %3
1911 ///
1912 /// The returned value of the cmpxchg instruction (%2) is the original value
1913 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
1914 /// must have been equal to %compare. Thus, the result of the select is always
1915 /// equal to %2, and the code can be simplified to:
1916 ///
1917 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
1918 ///   %1 = extractvalue { i64, i1 } %0, 0
1919 ///   ret i64 %1
1920 ///
1921 static Instruction *foldSelectCmpXchg(SelectInst &SI) {
1922   // A helper that determines if V is an extractvalue instruction whose
1923   // aggregate operand is a cmpxchg instruction and whose single index is equal
1924   // to I. If such conditions are true, the helper returns the cmpxchg
1925   // instruction; otherwise, a nullptr is returned.
1926   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
1927     auto *Extract = dyn_cast<ExtractValueInst>(V);
1928     if (!Extract)
1929       return nullptr;
1930     if (Extract->getIndices()[0] != I)
1931       return nullptr;
1932     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
1933   };
1934 
1935   // If the select has a single user, and this user is a select instruction that
1936   // we can simplify, skip the cmpxchg simplification for now.
1937   if (SI.hasOneUse())
1938     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
1939       if (Select->getCondition() == SI.getCondition())
1940         if (Select->getFalseValue() == SI.getTrueValue() ||
1941             Select->getTrueValue() == SI.getFalseValue())
1942           return nullptr;
1943 
1944   // Ensure the select condition is the returned flag of a cmpxchg instruction.
1945   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
1946   if (!CmpXchg)
1947     return nullptr;
1948 
1949   // Check the true value case: The true value of the select is the returned
1950   // value of the same cmpxchg used by the condition, and the false value is the
1951   // cmpxchg instruction's compare operand.
1952   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
1953     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) {
1954       SI.setTrueValue(SI.getFalseValue());
1955       return &SI;
1956     }
1957 
1958   // Check the false value case: The false value of the select is the returned
1959   // value of the same cmpxchg used by the condition, and the true value is the
1960   // cmpxchg instruction's compare operand.
1961   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
1962     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) {
1963       SI.setTrueValue(SI.getFalseValue());
1964       return &SI;
1965     }
1966 
1967   return nullptr;
1968 }
1969 
1970 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X,
1971                                        Value *Y,
1972                                        InstCombiner::BuilderTy &Builder) {
1973   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern");
1974   bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN ||
1975                     SPF == SelectPatternFlavor::SPF_UMAX;
1976   // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change
1977   // the constant value check to an assert.
1978   Value *A;
1979   const APInt *C1, *C2;
1980   if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) &&
1981       match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) {
1982     // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1
1983     // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1
1984     Value *NewMinMax = createMinMax(Builder, SPF, A,
1985                                     ConstantInt::get(X->getType(), *C2 - *C1));
1986     return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax,
1987                                      ConstantInt::get(X->getType(), *C1));
1988   }
1989 
1990   if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) &&
1991       match(Y, m_APInt(C2)) && X->hasNUses(2)) {
1992     bool Overflow;
1993     APInt Diff = C2->ssub_ov(*C1, Overflow);
1994     if (!Overflow) {
1995       // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1
1996       // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1
1997       Value *NewMinMax = createMinMax(Builder, SPF, A,
1998                                       ConstantInt::get(X->getType(), Diff));
1999       return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax,
2000                                        ConstantInt::get(X->getType(), *C1));
2001     }
2002   }
2003 
2004   return nullptr;
2005 }
2006 
2007 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
2008 Instruction *InstCombiner::matchSAddSubSat(SelectInst &MinMax1) {
2009   Type *Ty = MinMax1.getType();
2010 
2011   // We are looking for a tree of:
2012   // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
2013   // Where the min and max could be reversed
2014   Instruction *MinMax2;
2015   BinaryOperator *AddSub;
2016   const APInt *MinValue, *MaxValue;
2017   if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
2018     if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
2019       return nullptr;
2020   } else if (match(&MinMax1,
2021                    m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
2022     if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
2023       return nullptr;
2024   } else
2025     return nullptr;
2026 
2027   // Check that the constants clamp a saturate, and that the new type would be
2028   // sensible to convert to.
2029   if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
2030     return nullptr;
2031   // In what bitwidth can this be treated as saturating arithmetics?
2032   unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
2033   // FIXME: This isn't quite right for vectors, but using the scalar type is a
2034   // good first approximation for what should be done there.
2035   if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
2036     return nullptr;
2037 
2038   // Also make sure that the number of uses is as expected. The "3"s are for the
2039   // the two items of min/max (the compare and the select).
2040   if (MinMax2->hasNUsesOrMore(3) || AddSub->hasNUsesOrMore(3))
2041     return nullptr;
2042 
2043   // Create the new type (which can be a vector type)
2044   Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
2045   // Match the two extends from the add/sub
2046   Value *A, *B;
2047   if(!match(AddSub, m_BinOp(m_SExt(m_Value(A)), m_SExt(m_Value(B)))))
2048     return nullptr;
2049   // And check the incoming values are of a type smaller than or equal to the
2050   // size of the saturation. Otherwise the higher bits can cause different
2051   // results.
2052   if (A->getType()->getScalarSizeInBits() > NewBitWidth ||
2053       B->getType()->getScalarSizeInBits() > NewBitWidth)
2054     return nullptr;
2055 
2056   Intrinsic::ID IntrinsicID;
2057   if (AddSub->getOpcode() == Instruction::Add)
2058     IntrinsicID = Intrinsic::sadd_sat;
2059   else if (AddSub->getOpcode() == Instruction::Sub)
2060     IntrinsicID = Intrinsic::ssub_sat;
2061   else
2062     return nullptr;
2063 
2064   // Finally create and return the sat intrinsic, truncated to the new type
2065   Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
2066   Value *AT = Builder.CreateSExt(A, NewTy);
2067   Value *BT = Builder.CreateSExt(B, NewTy);
2068   Value *Sat = Builder.CreateCall(F, {AT, BT});
2069   return CastInst::Create(Instruction::SExt, Sat, Ty);
2070 }
2071 
2072 /// Reduce a sequence of min/max with a common operand.
2073 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
2074                                         Value *RHS,
2075                                         InstCombiner::BuilderTy &Builder) {
2076   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
2077   // TODO: Allow FP min/max with nnan/nsz.
2078   if (!LHS->getType()->isIntOrIntVectorTy())
2079     return nullptr;
2080 
2081   // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
2082   Value *A, *B, *C, *D;
2083   SelectPatternResult L = matchSelectPattern(LHS, A, B);
2084   SelectPatternResult R = matchSelectPattern(RHS, C, D);
2085   if (SPF != L.Flavor || L.Flavor != R.Flavor)
2086     return nullptr;
2087 
2088   // Look for a common operand. The use checks are different than usual because
2089   // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
2090   // the select.
2091   Value *MinMaxOp = nullptr;
2092   Value *ThirdOp = nullptr;
2093   if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
2094     // If the LHS is only used in this chain and the RHS is used outside of it,
2095     // reuse the RHS min/max because that will eliminate the LHS.
2096     if (D == A || C == A) {
2097       // min(min(a, b), min(c, a)) --> min(min(c, a), b)
2098       // min(min(a, b), min(a, d)) --> min(min(a, d), b)
2099       MinMaxOp = RHS;
2100       ThirdOp = B;
2101     } else if (D == B || C == B) {
2102       // min(min(a, b), min(c, b)) --> min(min(c, b), a)
2103       // min(min(a, b), min(b, d)) --> min(min(b, d), a)
2104       MinMaxOp = RHS;
2105       ThirdOp = A;
2106     }
2107   } else if (!RHS->hasNUsesOrMore(3)) {
2108     // Reuse the LHS. This will eliminate the RHS.
2109     if (D == A || D == B) {
2110       // min(min(a, b), min(c, a)) --> min(min(a, b), c)
2111       // min(min(a, b), min(c, b)) --> min(min(a, b), c)
2112       MinMaxOp = LHS;
2113       ThirdOp = C;
2114     } else if (C == A || C == B) {
2115       // min(min(a, b), min(b, d)) --> min(min(a, b), d)
2116       // min(min(a, b), min(c, b)) --> min(min(a, b), d)
2117       MinMaxOp = LHS;
2118       ThirdOp = D;
2119     }
2120   }
2121   if (!MinMaxOp || !ThirdOp)
2122     return nullptr;
2123 
2124   CmpInst::Predicate P = getMinMaxPred(SPF);
2125   Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
2126   return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
2127 }
2128 
2129 /// Try to reduce a rotate pattern that includes a compare and select into a
2130 /// funnel shift intrinsic. Example:
2131 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2132 ///              --> call llvm.fshl.i32(a, a, b)
2133 static Instruction *foldSelectRotate(SelectInst &Sel) {
2134   // The false value of the select must be a rotate of the true value.
2135   Value *Or0, *Or1;
2136   if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
2137     return nullptr;
2138 
2139   Value *TVal = Sel.getTrueValue();
2140   Value *SA0, *SA1;
2141   if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA0)))) ||
2142       !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA1)))))
2143     return nullptr;
2144 
2145   auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
2146   auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
2147   if (ShiftOpcode0 == ShiftOpcode1)
2148     return nullptr;
2149 
2150   // We have one of these patterns so far:
2151   // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1))
2152   // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1))
2153   // This must be a power-of-2 rotate for a bitmasking transform to be valid.
2154   unsigned Width = Sel.getType()->getScalarSizeInBits();
2155   if (!isPowerOf2_32(Width))
2156     return nullptr;
2157 
2158   // Check the shift amounts to see if they are an opposite pair.
2159   Value *ShAmt;
2160   if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
2161     ShAmt = SA0;
2162   else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
2163     ShAmt = SA1;
2164   else
2165     return nullptr;
2166 
2167   // Finally, see if the select is filtering out a shift-by-zero.
2168   Value *Cond = Sel.getCondition();
2169   ICmpInst::Predicate Pred;
2170   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
2171       Pred != ICmpInst::ICMP_EQ)
2172     return nullptr;
2173 
2174   // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2175   // Convert to funnel shift intrinsic.
2176   bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) ||
2177                 (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl);
2178   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2179   Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
2180   return IntrinsicInst::Create(F, { TVal, TVal, ShAmt });
2181 }
2182 
2183 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
2184   Value *CondVal = SI.getCondition();
2185   Value *TrueVal = SI.getTrueValue();
2186   Value *FalseVal = SI.getFalseValue();
2187   Type *SelType = SI.getType();
2188 
2189   // FIXME: Remove this workaround when freeze related patches are done.
2190   // For select with undef operand which feeds into an equality comparison,
2191   // don't simplify it so loop unswitch can know the equality comparison
2192   // may have an undef operand. This is a workaround for PR31652 caused by
2193   // descrepancy about branch on undef between LoopUnswitch and GVN.
2194   if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) {
2195     if (llvm::any_of(SI.users(), [&](User *U) {
2196           ICmpInst *CI = dyn_cast<ICmpInst>(U);
2197           if (CI && CI->isEquality())
2198             return true;
2199           return false;
2200         })) {
2201       return nullptr;
2202     }
2203   }
2204 
2205   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
2206                                     SQ.getWithInstruction(&SI)))
2207     return replaceInstUsesWith(SI, V);
2208 
2209   if (Instruction *I = canonicalizeSelectToShuffle(SI))
2210     return I;
2211 
2212   if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, Builder))
2213     return I;
2214 
2215   // Canonicalize a one-use integer compare with a non-canonical predicate by
2216   // inverting the predicate and swapping the select operands. This matches a
2217   // compare canonicalization for conditional branches.
2218   // TODO: Should we do the same for FP compares?
2219   CmpInst::Predicate Pred;
2220   if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) &&
2221       !isCanonicalPredicate(Pred)) {
2222     // Swap true/false values and condition.
2223     CmpInst *Cond = cast<CmpInst>(CondVal);
2224     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2225     SI.setOperand(1, FalseVal);
2226     SI.setOperand(2, TrueVal);
2227     SI.swapProfMetadata();
2228     Worklist.Add(Cond);
2229     return &SI;
2230   }
2231 
2232   if (SelType->isIntOrIntVectorTy(1) &&
2233       TrueVal->getType() == CondVal->getType()) {
2234     if (match(TrueVal, m_One())) {
2235       // Change: A = select B, true, C --> A = or B, C
2236       return BinaryOperator::CreateOr(CondVal, FalseVal);
2237     }
2238     if (match(TrueVal, m_Zero())) {
2239       // Change: A = select B, false, C --> A = and !B, C
2240       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2241       return BinaryOperator::CreateAnd(NotCond, FalseVal);
2242     }
2243     if (match(FalseVal, m_Zero())) {
2244       // Change: A = select B, C, false --> A = and B, C
2245       return BinaryOperator::CreateAnd(CondVal, TrueVal);
2246     }
2247     if (match(FalseVal, m_One())) {
2248       // Change: A = select B, C, true --> A = or !B, C
2249       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2250       return BinaryOperator::CreateOr(NotCond, TrueVal);
2251     }
2252 
2253     // select a, a, b  -> a | b
2254     // select a, b, a  -> a & b
2255     if (CondVal == TrueVal)
2256       return BinaryOperator::CreateOr(CondVal, FalseVal);
2257     if (CondVal == FalseVal)
2258       return BinaryOperator::CreateAnd(CondVal, TrueVal);
2259 
2260     // select a, ~a, b -> (~a) & b
2261     // select a, b, ~a -> (~a) | b
2262     if (match(TrueVal, m_Not(m_Specific(CondVal))))
2263       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
2264     if (match(FalseVal, m_Not(m_Specific(CondVal))))
2265       return BinaryOperator::CreateOr(TrueVal, FalseVal);
2266   }
2267 
2268   // Selecting between two integer or vector splat integer constants?
2269   //
2270   // Note that we don't handle a scalar select of vectors:
2271   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
2272   // because that may need 3 instructions to splat the condition value:
2273   // extend, insertelement, shufflevector.
2274   if (SelType->isIntOrIntVectorTy() &&
2275       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
2276     // select C, 1, 0 -> zext C to int
2277     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
2278       return new ZExtInst(CondVal, SelType);
2279 
2280     // select C, -1, 0 -> sext C to int
2281     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
2282       return new SExtInst(CondVal, SelType);
2283 
2284     // select C, 0, 1 -> zext !C to int
2285     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
2286       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2287       return new ZExtInst(NotCond, SelType);
2288     }
2289 
2290     // select C, 0, -1 -> sext !C to int
2291     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
2292       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2293       return new SExtInst(NotCond, SelType);
2294     }
2295   }
2296 
2297   // See if we are selecting two values based on a comparison of the two values.
2298   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
2299     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
2300       // Canonicalize to use ordered comparisons by swapping the select
2301       // operands.
2302       //
2303       // e.g.
2304       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
2305       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
2306         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
2307         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2308         Builder.setFastMathFlags(FCI->getFastMathFlags());
2309         Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal,
2310                                             FCI->getName() + ".inv");
2311 
2312         return SelectInst::Create(NewCond, FalseVal, TrueVal,
2313                                   SI.getName() + ".p");
2314       }
2315 
2316       // NOTE: if we wanted to, this is where to detect MIN/MAX
2317     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
2318       // Canonicalize to use ordered comparisons by swapping the select
2319       // operands.
2320       //
2321       // e.g.
2322       // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y
2323       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
2324         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
2325         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2326         Builder.setFastMathFlags(FCI->getFastMathFlags());
2327         Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal,
2328                                             FCI->getName() + ".inv");
2329 
2330         return SelectInst::Create(NewCond, FalseVal, TrueVal,
2331                                   SI.getName() + ".p");
2332       }
2333 
2334       // NOTE: if we wanted to, this is where to detect MIN/MAX
2335     }
2336   }
2337 
2338   // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2339   // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We
2340   // also require nnan because we do not want to unintentionally change the
2341   // sign of a NaN value.
2342   // FIXME: These folds should test/propagate FMF from the select, not the
2343   //        fsub or fneg.
2344   // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
2345   Instruction *FSub;
2346   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2347       match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
2348       match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
2349       (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2350     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub);
2351     return replaceInstUsesWith(SI, Fabs);
2352   }
2353   // (X >  +/-0.0) ? X : (0.0 - X) --> fabs(X)
2354   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2355       match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
2356       match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
2357       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2358     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub);
2359     return replaceInstUsesWith(SI, Fabs);
2360   }
2361   // With nnan and nsz:
2362   // (X <  +/-0.0) ? -X : X --> fabs(X)
2363   // (X <= +/-0.0) ? -X : X --> fabs(X)
2364   Instruction *FNeg;
2365   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2366       match(TrueVal, m_FNeg(m_Specific(FalseVal))) &&
2367       match(TrueVal, m_Instruction(FNeg)) &&
2368       FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
2369       (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2370        Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
2371     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg);
2372     return replaceInstUsesWith(SI, Fabs);
2373   }
2374   // With nnan and nsz:
2375   // (X >  +/-0.0) ? X : -X --> fabs(X)
2376   // (X >= +/-0.0) ? X : -X --> fabs(X)
2377   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2378       match(FalseVal, m_FNeg(m_Specific(TrueVal))) &&
2379       match(FalseVal, m_Instruction(FNeg)) &&
2380       FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
2381       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2382        Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
2383     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg);
2384     return replaceInstUsesWith(SI, Fabs);
2385   }
2386 
2387   // See if we are selecting two values based on a comparison of the two values.
2388   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
2389     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
2390       return Result;
2391 
2392   if (Instruction *Add = foldAddSubSelect(SI, Builder))
2393     return Add;
2394 
2395   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
2396   auto *TI = dyn_cast<Instruction>(TrueVal);
2397   auto *FI = dyn_cast<Instruction>(FalseVal);
2398   if (TI && FI && TI->getOpcode() == FI->getOpcode())
2399     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
2400       return IV;
2401 
2402   if (Instruction *I = foldSelectExtConst(SI))
2403     return I;
2404 
2405   // See if we can fold the select into one of our operands.
2406   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
2407     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
2408       return FoldI;
2409 
2410     Value *LHS, *RHS;
2411     Instruction::CastOps CastOp;
2412     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
2413     auto SPF = SPR.Flavor;
2414     if (SPF) {
2415       Value *LHS2, *RHS2;
2416       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
2417         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
2418                                           RHS2, SI, SPF, RHS))
2419           return R;
2420       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
2421         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
2422                                           RHS2, SI, SPF, LHS))
2423           return R;
2424       // TODO.
2425       // ABS(-X) -> ABS(X)
2426     }
2427 
2428     if (SelectPatternResult::isMinOrMax(SPF)) {
2429       // Canonicalize so that
2430       // - type casts are outside select patterns.
2431       // - float clamp is transformed to min/max pattern
2432 
2433       bool IsCastNeeded = LHS->getType() != SelType;
2434       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
2435       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
2436       if (IsCastNeeded ||
2437           (LHS->getType()->isFPOrFPVectorTy() &&
2438            ((CmpLHS != LHS && CmpLHS != RHS) ||
2439             (CmpRHS != LHS && CmpRHS != RHS)))) {
2440         CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
2441 
2442         Value *Cmp;
2443         if (CmpInst::isIntPredicate(MinMaxPred)) {
2444           Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
2445         } else {
2446           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2447           auto FMF =
2448               cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
2449           Builder.setFastMathFlags(FMF);
2450           Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
2451         }
2452 
2453         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
2454         if (!IsCastNeeded)
2455           return replaceInstUsesWith(SI, NewSI);
2456 
2457         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
2458         return replaceInstUsesWith(SI, NewCast);
2459       }
2460 
2461       // MAX(~a, ~b) -> ~MIN(a, b)
2462       // MAX(~a, C)  -> ~MIN(a, ~C)
2463       // MIN(~a, ~b) -> ~MAX(a, b)
2464       // MIN(~a, C)  -> ~MAX(a, ~C)
2465       auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
2466         Value *A;
2467         if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
2468             !isFreeToInvert(A, A->hasOneUse()) &&
2469             // Passing false to only consider m_Not and constants.
2470             isFreeToInvert(Y, false)) {
2471           Value *B = Builder.CreateNot(Y);
2472           Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
2473                                           A, B);
2474           // Copy the profile metadata.
2475           if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
2476             cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
2477             // Swap the metadata if the operands are swapped.
2478             if (X == SI.getFalseValue() && Y == SI.getTrueValue())
2479               cast<SelectInst>(NewMinMax)->swapProfMetadata();
2480           }
2481 
2482           return BinaryOperator::CreateNot(NewMinMax);
2483         }
2484 
2485         return nullptr;
2486       };
2487 
2488       if (Instruction *I = moveNotAfterMinMax(LHS, RHS))
2489         return I;
2490       if (Instruction *I = moveNotAfterMinMax(RHS, LHS))
2491         return I;
2492 
2493       if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder))
2494         return I;
2495 
2496       if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
2497         return I;
2498       if (Instruction *I = matchSAddSubSat(SI))
2499         return I;
2500     }
2501   }
2502 
2503   // Canonicalize select of FP values where NaN and -0.0 are not valid as
2504   // minnum/maxnum intrinsics.
2505   if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
2506     Value *X, *Y;
2507     if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
2508       return replaceInstUsesWith(
2509           SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
2510 
2511     if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
2512       return replaceInstUsesWith(
2513           SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
2514   }
2515 
2516   // See if we can fold the select into a phi node if the condition is a select.
2517   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
2518     // The true/false values have to be live in the PHI predecessor's blocks.
2519     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
2520         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
2521       if (Instruction *NV = foldOpIntoPhi(SI, PN))
2522         return NV;
2523 
2524   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
2525     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
2526       // select(C, select(C, a, b), c) -> select(C, a, c)
2527       if (TrueSI->getCondition() == CondVal) {
2528         if (SI.getTrueValue() == TrueSI->getTrueValue())
2529           return nullptr;
2530         SI.setOperand(1, TrueSI->getTrueValue());
2531         return &SI;
2532       }
2533       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
2534       // We choose this as normal form to enable folding on the And and shortening
2535       // paths for the values (this helps GetUnderlyingObjects() for example).
2536       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
2537         Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition());
2538         SI.setOperand(0, And);
2539         SI.setOperand(1, TrueSI->getTrueValue());
2540         return &SI;
2541       }
2542     }
2543   }
2544   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
2545     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
2546       // select(C, a, select(C, b, c)) -> select(C, a, c)
2547       if (FalseSI->getCondition() == CondVal) {
2548         if (SI.getFalseValue() == FalseSI->getFalseValue())
2549           return nullptr;
2550         SI.setOperand(2, FalseSI->getFalseValue());
2551         return &SI;
2552       }
2553       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
2554       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
2555         Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition());
2556         SI.setOperand(0, Or);
2557         SI.setOperand(2, FalseSI->getFalseValue());
2558         return &SI;
2559       }
2560     }
2561   }
2562 
2563   auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
2564     // The select might be preventing a division by 0.
2565     switch (BO->getOpcode()) {
2566     default:
2567       return true;
2568     case Instruction::SRem:
2569     case Instruction::URem:
2570     case Instruction::SDiv:
2571     case Instruction::UDiv:
2572       return false;
2573     }
2574   };
2575 
2576   // Try to simplify a binop sandwiched between 2 selects with the same
2577   // condition.
2578   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
2579   BinaryOperator *TrueBO;
2580   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
2581       canMergeSelectThroughBinop(TrueBO)) {
2582     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
2583       if (TrueBOSI->getCondition() == CondVal) {
2584         TrueBO->setOperand(0, TrueBOSI->getTrueValue());
2585         Worklist.Add(TrueBO);
2586         return &SI;
2587       }
2588     }
2589     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
2590       if (TrueBOSI->getCondition() == CondVal) {
2591         TrueBO->setOperand(1, TrueBOSI->getTrueValue());
2592         Worklist.Add(TrueBO);
2593         return &SI;
2594       }
2595     }
2596   }
2597 
2598   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
2599   BinaryOperator *FalseBO;
2600   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
2601       canMergeSelectThroughBinop(FalseBO)) {
2602     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
2603       if (FalseBOSI->getCondition() == CondVal) {
2604         FalseBO->setOperand(0, FalseBOSI->getFalseValue());
2605         Worklist.Add(FalseBO);
2606         return &SI;
2607       }
2608     }
2609     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
2610       if (FalseBOSI->getCondition() == CondVal) {
2611         FalseBO->setOperand(1, FalseBOSI->getFalseValue());
2612         Worklist.Add(FalseBO);
2613         return &SI;
2614       }
2615     }
2616   }
2617 
2618   Value *NotCond;
2619   if (match(CondVal, m_Not(m_Value(NotCond)))) {
2620     SI.setOperand(0, NotCond);
2621     SI.setOperand(1, FalseVal);
2622     SI.setOperand(2, TrueVal);
2623     SI.swapProfMetadata();
2624     return &SI;
2625   }
2626 
2627   if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) {
2628     unsigned VWidth = VecTy->getNumElements();
2629     APInt UndefElts(VWidth, 0);
2630     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
2631     if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
2632       if (V != &SI)
2633         return replaceInstUsesWith(SI, V);
2634       return &SI;
2635     }
2636   }
2637 
2638   // If we can compute the condition, there's no need for a select.
2639   // Like the above fold, we are attempting to reduce compile-time cost by
2640   // putting this fold here with limitations rather than in InstSimplify.
2641   // The motivation for this call into value tracking is to take advantage of
2642   // the assumption cache, so make sure that is populated.
2643   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
2644     KnownBits Known(1);
2645     computeKnownBits(CondVal, Known, 0, &SI);
2646     if (Known.One.isOneValue())
2647       return replaceInstUsesWith(SI, TrueVal);
2648     if (Known.Zero.isOneValue())
2649       return replaceInstUsesWith(SI, FalseVal);
2650   }
2651 
2652   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
2653     return BitCastSel;
2654 
2655   // Simplify selects that test the returned flag of cmpxchg instructions.
2656   if (Instruction *Select = foldSelectCmpXchg(SI))
2657     return Select;
2658 
2659   if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI))
2660     return Select;
2661 
2662   if (Instruction *Rot = foldSelectRotate(SI))
2663     return Rot;
2664 
2665   return nullptr;
2666 }
2667