xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp (revision a2fda816eb054d5873be223ef2461741dfcc253c)
1  //===- InstCombineSelect.cpp ----------------------------------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file implements the visitSelect function.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "InstCombineInternal.h"
14  #include "llvm/ADT/APInt.h"
15  #include "llvm/ADT/STLExtras.h"
16  #include "llvm/ADT/SmallVector.h"
17  #include "llvm/Analysis/AssumptionCache.h"
18  #include "llvm/Analysis/CmpInstAnalysis.h"
19  #include "llvm/Analysis/InstructionSimplify.h"
20  #include "llvm/Analysis/OverflowInstAnalysis.h"
21  #include "llvm/Analysis/ValueTracking.h"
22  #include "llvm/Analysis/VectorUtils.h"
23  #include "llvm/IR/BasicBlock.h"
24  #include "llvm/IR/Constant.h"
25  #include "llvm/IR/ConstantRange.h"
26  #include "llvm/IR/Constants.h"
27  #include "llvm/IR/DerivedTypes.h"
28  #include "llvm/IR/IRBuilder.h"
29  #include "llvm/IR/InstrTypes.h"
30  #include "llvm/IR/Instruction.h"
31  #include "llvm/IR/Instructions.h"
32  #include "llvm/IR/IntrinsicInst.h"
33  #include "llvm/IR/Intrinsics.h"
34  #include "llvm/IR/Operator.h"
35  #include "llvm/IR/PatternMatch.h"
36  #include "llvm/IR/Type.h"
37  #include "llvm/IR/User.h"
38  #include "llvm/IR/Value.h"
39  #include "llvm/Support/Casting.h"
40  #include "llvm/Support/ErrorHandling.h"
41  #include "llvm/Support/KnownBits.h"
42  #include "llvm/Transforms/InstCombine/InstCombiner.h"
43  #include <cassert>
44  #include <utility>
45  
46  #define DEBUG_TYPE "instcombine"
47  #include "llvm/Transforms/Utils/InstructionWorklist.h"
48  
49  using namespace llvm;
50  using namespace PatternMatch;
51  
52  
53  /// Replace a select operand based on an equality comparison with the identity
54  /// constant of a binop.
55  static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
56                                              const TargetLibraryInfo &TLI,
57                                              InstCombinerImpl &IC) {
58    // The select condition must be an equality compare with a constant operand.
59    Value *X;
60    Constant *C;
61    CmpInst::Predicate Pred;
62    if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
63      return nullptr;
64  
65    bool IsEq;
66    if (ICmpInst::isEquality(Pred))
67      IsEq = Pred == ICmpInst::ICMP_EQ;
68    else if (Pred == FCmpInst::FCMP_OEQ)
69      IsEq = true;
70    else if (Pred == FCmpInst::FCMP_UNE)
71      IsEq = false;
72    else
73      return nullptr;
74  
75    // A select operand must be a binop.
76    BinaryOperator *BO;
77    if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
78      return nullptr;
79  
80    // The compare constant must be the identity constant for that binop.
81    // If this a floating-point compare with 0.0, any zero constant will do.
82    Type *Ty = BO->getType();
83    Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
84    if (IdC != C) {
85      if (!IdC || !CmpInst::isFPPredicate(Pred))
86        return nullptr;
87      if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
88        return nullptr;
89    }
90  
91    // Last, match the compare variable operand with a binop operand.
92    Value *Y;
93    if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
94      return nullptr;
95    if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
96      return nullptr;
97  
98    // +0.0 compares equal to -0.0, and so it does not behave as required for this
99    // transform. Bail out if we can not exclude that possibility.
100    if (isa<FPMathOperator>(BO))
101      if (!BO->hasNoSignedZeros() &&
102          !cannotBeNegativeZero(Y, IC.getDataLayout(), &TLI))
103        return nullptr;
104  
105    // BO = binop Y, X
106    // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
107    // =>
108    // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
109    return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
110  }
111  
112  /// This folds:
113  ///  select (icmp eq (and X, C1)), TC, FC
114  ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
115  /// To something like:
116  ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
117  /// Or:
118  ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
119  /// With some variations depending if FC is larger than TC, or the shift
120  /// isn't needed, or the bit widths don't match.
121  static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
122                                  InstCombiner::BuilderTy &Builder) {
123    const APInt *SelTC, *SelFC;
124    if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
125        !match(Sel.getFalseValue(), m_APInt(SelFC)))
126      return nullptr;
127  
128    // If this is a vector select, we need a vector compare.
129    Type *SelType = Sel.getType();
130    if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
131      return nullptr;
132  
133    Value *V;
134    APInt AndMask;
135    bool CreateAnd = false;
136    ICmpInst::Predicate Pred = Cmp->getPredicate();
137    if (ICmpInst::isEquality(Pred)) {
138      if (!match(Cmp->getOperand(1), m_Zero()))
139        return nullptr;
140  
141      V = Cmp->getOperand(0);
142      const APInt *AndRHS;
143      if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
144        return nullptr;
145  
146      AndMask = *AndRHS;
147    } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
148                                    Pred, V, AndMask)) {
149      assert(ICmpInst::isEquality(Pred) && "Not equality test?");
150      if (!AndMask.isPowerOf2())
151        return nullptr;
152  
153      CreateAnd = true;
154    } else {
155      return nullptr;
156    }
157  
158    // In general, when both constants are non-zero, we would need an offset to
159    // replace the select. This would require more instructions than we started
160    // with. But there's one special-case that we handle here because it can
161    // simplify/reduce the instructions.
162    APInt TC = *SelTC;
163    APInt FC = *SelFC;
164    if (!TC.isZero() && !FC.isZero()) {
165      // If the select constants differ by exactly one bit and that's the same
166      // bit that is masked and checked by the select condition, the select can
167      // be replaced by bitwise logic to set/clear one bit of the constant result.
168      if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
169        return nullptr;
170      if (CreateAnd) {
171        // If we have to create an 'and', then we must kill the cmp to not
172        // increase the instruction count.
173        if (!Cmp->hasOneUse())
174          return nullptr;
175        V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
176      }
177      bool ExtraBitInTC = TC.ugt(FC);
178      if (Pred == ICmpInst::ICMP_EQ) {
179        // If the masked bit in V is clear, clear or set the bit in the result:
180        // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
181        // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
182        Constant *C = ConstantInt::get(SelType, TC);
183        return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
184      }
185      if (Pred == ICmpInst::ICMP_NE) {
186        // If the masked bit in V is set, set or clear the bit in the result:
187        // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
188        // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
189        Constant *C = ConstantInt::get(SelType, FC);
190        return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
191      }
192      llvm_unreachable("Only expecting equality predicates");
193    }
194  
195    // Make sure one of the select arms is a power-of-2.
196    if (!TC.isPowerOf2() && !FC.isPowerOf2())
197      return nullptr;
198  
199    // Determine which shift is needed to transform result of the 'and' into the
200    // desired result.
201    const APInt &ValC = !TC.isZero() ? TC : FC;
202    unsigned ValZeros = ValC.logBase2();
203    unsigned AndZeros = AndMask.logBase2();
204  
205    // Insert the 'and' instruction on the input to the truncate.
206    if (CreateAnd)
207      V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
208  
209    // If types don't match, we can still convert the select by introducing a zext
210    // or a trunc of the 'and'.
211    if (ValZeros > AndZeros) {
212      V = Builder.CreateZExtOrTrunc(V, SelType);
213      V = Builder.CreateShl(V, ValZeros - AndZeros);
214    } else if (ValZeros < AndZeros) {
215      V = Builder.CreateLShr(V, AndZeros - ValZeros);
216      V = Builder.CreateZExtOrTrunc(V, SelType);
217    } else {
218      V = Builder.CreateZExtOrTrunc(V, SelType);
219    }
220  
221    // Okay, now we know that everything is set up, we just don't know whether we
222    // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
223    bool ShouldNotVal = !TC.isZero();
224    ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
225    if (ShouldNotVal)
226      V = Builder.CreateXor(V, ValC);
227  
228    return V;
229  }
230  
231  /// We want to turn code that looks like this:
232  ///   %C = or %A, %B
233  ///   %D = select %cond, %C, %A
234  /// into:
235  ///   %C = select %cond, %B, 0
236  ///   %D = or %A, %C
237  ///
238  /// Assuming that the specified instruction is an operand to the select, return
239  /// a bitmask indicating which operands of this instruction are foldable if they
240  /// equal the other incoming value of the select.
241  static unsigned getSelectFoldableOperands(BinaryOperator *I) {
242    switch (I->getOpcode()) {
243    case Instruction::Add:
244    case Instruction::FAdd:
245    case Instruction::Mul:
246    case Instruction::FMul:
247    case Instruction::And:
248    case Instruction::Or:
249    case Instruction::Xor:
250      return 3;              // Can fold through either operand.
251    case Instruction::Sub:   // Can only fold on the amount subtracted.
252    case Instruction::FSub:
253    case Instruction::FDiv:  // Can only fold on the divisor amount.
254    case Instruction::Shl:   // Can only fold on the shift amount.
255    case Instruction::LShr:
256    case Instruction::AShr:
257      return 1;
258    default:
259      return 0;              // Cannot fold
260    }
261  }
262  
263  /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
264  Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI,
265                                                Instruction *FI) {
266    // Don't break up min/max patterns. The hasOneUse checks below prevent that
267    // for most cases, but vector min/max with bitcasts can be transformed. If the
268    // one-use restrictions are eased for other patterns, we still don't want to
269    // obfuscate min/max.
270    if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
271         match(&SI, m_SMax(m_Value(), m_Value())) ||
272         match(&SI, m_UMin(m_Value(), m_Value())) ||
273         match(&SI, m_UMax(m_Value(), m_Value()))))
274      return nullptr;
275  
276    // If this is a cast from the same type, merge.
277    Value *Cond = SI.getCondition();
278    Type *CondTy = Cond->getType();
279    if (TI->getNumOperands() == 1 && TI->isCast()) {
280      Type *FIOpndTy = FI->getOperand(0)->getType();
281      if (TI->getOperand(0)->getType() != FIOpndTy)
282        return nullptr;
283  
284      // The select condition may be a vector. We may only change the operand
285      // type if the vector width remains the same (and matches the condition).
286      if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
287        if (!FIOpndTy->isVectorTy() ||
288            CondVTy->getElementCount() !=
289                cast<VectorType>(FIOpndTy)->getElementCount())
290          return nullptr;
291  
292        // TODO: If the backend knew how to deal with casts better, we could
293        // remove this limitation. For now, there's too much potential to create
294        // worse codegen by promoting the select ahead of size-altering casts
295        // (PR28160).
296        //
297        // Note that ValueTracking's matchSelectPattern() looks through casts
298        // without checking 'hasOneUse' when it matches min/max patterns, so this
299        // transform may end up happening anyway.
300        if (TI->getOpcode() != Instruction::BitCast &&
301            (!TI->hasOneUse() || !FI->hasOneUse()))
302          return nullptr;
303      } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
304        // TODO: The one-use restrictions for a scalar select could be eased if
305        // the fold of a select in visitLoadInst() was enhanced to match a pattern
306        // that includes a cast.
307        return nullptr;
308      }
309  
310      // Fold this by inserting a select from the input values.
311      Value *NewSI =
312          Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
313                               SI.getName() + ".v", &SI);
314      return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
315                              TI->getType());
316    }
317  
318    Value *OtherOpT, *OtherOpF;
319    bool MatchIsOpZero;
320    auto getCommonOp = [&](Instruction *TI, Instruction *FI, bool Commute,
321                           bool Swapped = false) -> Value * {
322      assert(!(Commute && Swapped) &&
323             "Commute and Swapped can't set at the same time");
324      if (!Swapped) {
325        if (TI->getOperand(0) == FI->getOperand(0)) {
326          OtherOpT = TI->getOperand(1);
327          OtherOpF = FI->getOperand(1);
328          MatchIsOpZero = true;
329          return TI->getOperand(0);
330        } else if (TI->getOperand(1) == FI->getOperand(1)) {
331          OtherOpT = TI->getOperand(0);
332          OtherOpF = FI->getOperand(0);
333          MatchIsOpZero = false;
334          return TI->getOperand(1);
335        }
336      }
337  
338      if (!Commute && !Swapped)
339        return nullptr;
340  
341      // If we are allowing commute or swap of operands, then
342      // allow a cross-operand match. In that case, MatchIsOpZero
343      // means that TI's operand 0 (FI's operand 1) is the common op.
344      if (TI->getOperand(0) == FI->getOperand(1)) {
345        OtherOpT = TI->getOperand(1);
346        OtherOpF = FI->getOperand(0);
347        MatchIsOpZero = true;
348        return TI->getOperand(0);
349      } else if (TI->getOperand(1) == FI->getOperand(0)) {
350        OtherOpT = TI->getOperand(0);
351        OtherOpF = FI->getOperand(1);
352        MatchIsOpZero = false;
353        return TI->getOperand(1);
354      }
355      return nullptr;
356    };
357  
358    if (TI->hasOneUse() || FI->hasOneUse()) {
359      // Cond ? -X : -Y --> -(Cond ? X : Y)
360      Value *X, *Y;
361      if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y)))) {
362        // Intersect FMF from the fneg instructions and union those with the
363        // select.
364        FastMathFlags FMF = TI->getFastMathFlags();
365        FMF &= FI->getFastMathFlags();
366        FMF |= SI.getFastMathFlags();
367        Value *NewSel =
368            Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
369        if (auto *NewSelI = dyn_cast<Instruction>(NewSel))
370          NewSelI->setFastMathFlags(FMF);
371        Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel);
372        NewFNeg->setFastMathFlags(FMF);
373        return NewFNeg;
374      }
375  
376      // Min/max intrinsic with a common operand can have the common operand
377      // pulled after the select. This is the same transform as below for binops,
378      // but specialized for intrinsic matching and without the restrictive uses
379      // clause.
380      auto *TII = dyn_cast<IntrinsicInst>(TI);
381      auto *FII = dyn_cast<IntrinsicInst>(FI);
382      if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID()) {
383        if (match(TII, m_MaxOrMin(m_Value(), m_Value()))) {
384          if (Value *MatchOp = getCommonOp(TI, FI, true)) {
385            Value *NewSel =
386                Builder.CreateSelect(Cond, OtherOpT, OtherOpF, "minmaxop", &SI);
387            return CallInst::Create(TII->getCalledFunction(), {NewSel, MatchOp});
388          }
389        }
390  
391        // select c, (ldexp v, e0), (ldexp v, e1) -> ldexp v, (select c, e0, e1)
392        // select c, (ldexp v0, e), (ldexp v1, e) -> ldexp (select c, v0, v1), e
393        //
394        // select c, (ldexp v0, e0), (ldexp v1, e1) ->
395        //     ldexp (select c, v0, v1), (select c, e0, e1)
396        if (TII->getIntrinsicID() == Intrinsic::ldexp) {
397          Value *LdexpVal0 = TII->getArgOperand(0);
398          Value *LdexpExp0 = TII->getArgOperand(1);
399          Value *LdexpVal1 = FII->getArgOperand(0);
400          Value *LdexpExp1 = FII->getArgOperand(1);
401          if (LdexpExp0->getType() == LdexpExp1->getType()) {
402            FPMathOperator *SelectFPOp = cast<FPMathOperator>(&SI);
403            FastMathFlags FMF = cast<FPMathOperator>(TII)->getFastMathFlags();
404            FMF &= cast<FPMathOperator>(FII)->getFastMathFlags();
405            FMF |= SelectFPOp->getFastMathFlags();
406  
407            Value *SelectVal = Builder.CreateSelect(Cond, LdexpVal0, LdexpVal1);
408            Value *SelectExp = Builder.CreateSelect(Cond, LdexpExp0, LdexpExp1);
409  
410            CallInst *NewLdexp = Builder.CreateIntrinsic(
411                TII->getType(), Intrinsic::ldexp, {SelectVal, SelectExp});
412            NewLdexp->setFastMathFlags(FMF);
413            return replaceInstUsesWith(SI, NewLdexp);
414          }
415        }
416      }
417  
418      // icmp with a common operand also can have the common operand
419      // pulled after the select.
420      ICmpInst::Predicate TPred, FPred;
421      if (match(TI, m_ICmp(TPred, m_Value(), m_Value())) &&
422          match(FI, m_ICmp(FPred, m_Value(), m_Value()))) {
423        if (TPred == FPred || TPred == CmpInst::getSwappedPredicate(FPred)) {
424          bool Swapped = TPred != FPred;
425          if (Value *MatchOp =
426                  getCommonOp(TI, FI, ICmpInst::isEquality(TPred), Swapped)) {
427            Value *NewSel = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
428                                                 SI.getName() + ".v", &SI);
429            return new ICmpInst(
430                MatchIsOpZero ? TPred : CmpInst::getSwappedPredicate(TPred),
431                MatchOp, NewSel);
432          }
433        }
434      }
435    }
436  
437    // Only handle binary operators (including two-operand getelementptr) with
438    // one-use here. As with the cast case above, it may be possible to relax the
439    // one-use constraint, but that needs be examined carefully since it may not
440    // reduce the total number of instructions.
441    if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
442        !TI->isSameOperationAs(FI) ||
443        (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
444        !TI->hasOneUse() || !FI->hasOneUse())
445      return nullptr;
446  
447    // Figure out if the operations have any operands in common.
448    Value *MatchOp = getCommonOp(TI, FI, TI->isCommutative());
449    if (!MatchOp)
450      return nullptr;
451  
452    // If the select condition is a vector, the operands of the original select's
453    // operands also must be vectors. This may not be the case for getelementptr
454    // for example.
455    if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
456                                 !OtherOpF->getType()->isVectorTy()))
457      return nullptr;
458  
459    // If we are sinking div/rem after a select, we may need to freeze the
460    // condition because div/rem may induce immediate UB with a poison operand.
461    // For example, the following transform is not safe if Cond can ever be poison
462    // because we can replace poison with zero and then we have div-by-zero that
463    // didn't exist in the original code:
464    // Cond ? x/y : x/z --> x / (Cond ? y : z)
465    auto *BO = dyn_cast<BinaryOperator>(TI);
466    if (BO && BO->isIntDivRem() && !isGuaranteedNotToBePoison(Cond)) {
467      // A udiv/urem with a common divisor is safe because UB can only occur with
468      // div-by-zero, and that would be present in the original code.
469      if (BO->getOpcode() == Instruction::SDiv ||
470          BO->getOpcode() == Instruction::SRem || MatchIsOpZero)
471        Cond = Builder.CreateFreeze(Cond);
472    }
473  
474    // If we reach here, they do have operations in common.
475    Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
476                                        SI.getName() + ".v", &SI);
477    Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
478    Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
479    if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
480      BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
481      NewBO->copyIRFlags(TI);
482      NewBO->andIRFlags(FI);
483      return NewBO;
484    }
485    if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
486      auto *FGEP = cast<GetElementPtrInst>(FI);
487      Type *ElementType = TGEP->getResultElementType();
488      return TGEP->isInBounds() && FGEP->isInBounds()
489                 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
490                 : GetElementPtrInst::Create(ElementType, Op0, {Op1});
491    }
492    llvm_unreachable("Expected BinaryOperator or GEP");
493    return nullptr;
494  }
495  
496  static bool isSelect01(const APInt &C1I, const APInt &C2I) {
497    if (!C1I.isZero() && !C2I.isZero()) // One side must be zero.
498      return false;
499    return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes();
500  }
501  
502  /// Try to fold the select into one of the operands to allow further
503  /// optimization.
504  Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
505                                                  Value *FalseVal) {
506    // See the comment above getSelectFoldableOperands for a description of the
507    // transformation we are doing here.
508    auto TryFoldSelectIntoOp = [&](SelectInst &SI, Value *TrueVal,
509                                   Value *FalseVal,
510                                   bool Swapped) -> Instruction * {
511      auto *TVI = dyn_cast<BinaryOperator>(TrueVal);
512      if (!TVI || !TVI->hasOneUse() || isa<Constant>(FalseVal))
513        return nullptr;
514  
515      unsigned SFO = getSelectFoldableOperands(TVI);
516      unsigned OpToFold = 0;
517      if ((SFO & 1) && FalseVal == TVI->getOperand(0))
518        OpToFold = 1;
519      else if ((SFO & 2) && FalseVal == TVI->getOperand(1))
520        OpToFold = 2;
521  
522      if (!OpToFold)
523        return nullptr;
524  
525      // TODO: We probably ought to revisit cases where the select and FP
526      // instructions have different flags and add tests to ensure the
527      // behaviour is correct.
528      FastMathFlags FMF;
529      if (isa<FPMathOperator>(&SI))
530        FMF = SI.getFastMathFlags();
531      Constant *C = ConstantExpr::getBinOpIdentity(
532          TVI->getOpcode(), TVI->getType(), true, FMF.noSignedZeros());
533      Value *OOp = TVI->getOperand(2 - OpToFold);
534      // Avoid creating select between 2 constants unless it's selecting
535      // between 0, 1 and -1.
536      const APInt *OOpC;
537      bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
538      if (!isa<Constant>(OOp) ||
539          (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
540        Value *NewSel = Builder.CreateSelect(SI.getCondition(), Swapped ? C : OOp,
541                                             Swapped ? OOp : C, "", &SI);
542        if (isa<FPMathOperator>(&SI))
543          cast<Instruction>(NewSel)->setFastMathFlags(FMF);
544        NewSel->takeName(TVI);
545        BinaryOperator *BO =
546            BinaryOperator::Create(TVI->getOpcode(), FalseVal, NewSel);
547        BO->copyIRFlags(TVI);
548        return BO;
549      }
550      return nullptr;
551    };
552  
553    if (Instruction *R = TryFoldSelectIntoOp(SI, TrueVal, FalseVal, false))
554      return R;
555  
556    if (Instruction *R = TryFoldSelectIntoOp(SI, FalseVal, TrueVal, true))
557      return R;
558  
559    return nullptr;
560  }
561  
562  /// We want to turn:
563  ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
564  /// into:
565  ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
566  /// Note:
567  ///   Z may be 0 if lshr is missing.
568  /// Worst-case scenario is that we will replace 5 instructions with 5 different
569  /// instructions, but we got rid of select.
570  static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
571                                           Value *TVal, Value *FVal,
572                                           InstCombiner::BuilderTy &Builder) {
573    if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
574          Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
575          match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
576      return nullptr;
577  
578    // The TrueVal has general form of:  and %B, 1
579    Value *B;
580    if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
581      return nullptr;
582  
583    // Where %B may be optionally shifted:  lshr %X, %Z.
584    Value *X, *Z;
585    const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
586  
587    // The shift must be valid.
588    // TODO: This restricts the fold to constant shift amounts. Is there a way to
589    //       handle variable shifts safely? PR47012
590    if (HasShift &&
591        !match(Z, m_SpecificInt_ICMP(CmpInst::ICMP_ULT,
592                                     APInt(SelType->getScalarSizeInBits(),
593                                           SelType->getScalarSizeInBits()))))
594      return nullptr;
595  
596    if (!HasShift)
597      X = B;
598  
599    Value *Y;
600    if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
601      return nullptr;
602  
603    // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
604    // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
605    Constant *One = ConstantInt::get(SelType, 1);
606    Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
607    Value *FullMask = Builder.CreateOr(Y, MaskB);
608    Value *MaskedX = Builder.CreateAnd(X, FullMask);
609    Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
610    return new ZExtInst(ICmpNeZero, SelType);
611  }
612  
613  /// We want to turn:
614  ///   (select (icmp eq (and X, C1), 0), 0, (shl [nsw/nuw] X, C2));
615  ///   iff C1 is a mask and the number of its leading zeros is equal to C2
616  /// into:
617  ///   shl X, C2
618  static Value *foldSelectICmpAndZeroShl(const ICmpInst *Cmp, Value *TVal,
619                                         Value *FVal,
620                                         InstCombiner::BuilderTy &Builder) {
621    ICmpInst::Predicate Pred;
622    Value *AndVal;
623    if (!match(Cmp, m_ICmp(Pred, m_Value(AndVal), m_Zero())))
624      return nullptr;
625  
626    if (Pred == ICmpInst::ICMP_NE) {
627      Pred = ICmpInst::ICMP_EQ;
628      std::swap(TVal, FVal);
629    }
630  
631    Value *X;
632    const APInt *C2, *C1;
633    if (Pred != ICmpInst::ICMP_EQ ||
634        !match(AndVal, m_And(m_Value(X), m_APInt(C1))) ||
635        !match(TVal, m_Zero()) || !match(FVal, m_Shl(m_Specific(X), m_APInt(C2))))
636      return nullptr;
637  
638    if (!C1->isMask() ||
639        C1->countLeadingZeros() != static_cast<unsigned>(C2->getZExtValue()))
640      return nullptr;
641  
642    auto *FI = dyn_cast<Instruction>(FVal);
643    if (!FI)
644      return nullptr;
645  
646    FI->setHasNoSignedWrap(false);
647    FI->setHasNoUnsignedWrap(false);
648    return FVal;
649  }
650  
651  /// We want to turn:
652  ///   (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
653  ///   (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
654  /// into:
655  ///   ashr (X, Y)
656  static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
657                                       Value *FalseVal,
658                                       InstCombiner::BuilderTy &Builder) {
659    ICmpInst::Predicate Pred = IC->getPredicate();
660    Value *CmpLHS = IC->getOperand(0);
661    Value *CmpRHS = IC->getOperand(1);
662    if (!CmpRHS->getType()->isIntOrIntVectorTy())
663      return nullptr;
664  
665    Value *X, *Y;
666    unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
667    if ((Pred != ICmpInst::ICMP_SGT ||
668         !match(CmpRHS,
669                m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
670        (Pred != ICmpInst::ICMP_SLT ||
671         !match(CmpRHS,
672                m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
673      return nullptr;
674  
675    // Canonicalize so that ashr is in FalseVal.
676    if (Pred == ICmpInst::ICMP_SLT)
677      std::swap(TrueVal, FalseVal);
678  
679    if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
680        match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
681        match(CmpLHS, m_Specific(X))) {
682      const auto *Ashr = cast<Instruction>(FalseVal);
683      // if lshr is not exact and ashr is, this new ashr must not be exact.
684      bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
685      return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
686    }
687  
688    return nullptr;
689  }
690  
691  /// We want to turn:
692  ///   (select (icmp eq (and X, C1), 0), Y, (BinOp Y, C2))
693  /// into:
694  ///   IF C2 u>= C1
695  ///     (BinOp Y, (shl (and X, C1), C3))
696  ///   ELSE
697  ///     (BinOp Y, (lshr (and X, C1), C3))
698  /// iff:
699  ///   0 on the RHS is the identity value (i.e add, xor, shl, etc...)
700  ///   C1 and C2 are both powers of 2
701  /// where:
702  ///   IF C2 u>= C1
703  ///     C3 = Log(C2) - Log(C1)
704  ///   ELSE
705  ///     C3 = Log(C1) - Log(C2)
706  ///
707  /// This transform handles cases where:
708  /// 1. The icmp predicate is inverted
709  /// 2. The select operands are reversed
710  /// 3. The magnitude of C2 and C1 are flipped
711  static Value *foldSelectICmpAndBinOp(const ICmpInst *IC, Value *TrueVal,
712                                    Value *FalseVal,
713                                    InstCombiner::BuilderTy &Builder) {
714    // Only handle integer compares. Also, if this is a vector select, we need a
715    // vector compare.
716    if (!TrueVal->getType()->isIntOrIntVectorTy() ||
717       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
718      return nullptr;
719  
720    Value *CmpLHS = IC->getOperand(0);
721    Value *CmpRHS = IC->getOperand(1);
722  
723    unsigned C1Log;
724    bool NeedAnd = false;
725    CmpInst::Predicate Pred = IC->getPredicate();
726    if (IC->isEquality()) {
727      if (!match(CmpRHS, m_Zero()))
728        return nullptr;
729  
730      const APInt *C1;
731      if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
732        return nullptr;
733  
734      C1Log = C1->logBase2();
735    } else {
736      APInt C1;
737      if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CmpLHS, C1) ||
738          !C1.isPowerOf2())
739        return nullptr;
740  
741      C1Log = C1.logBase2();
742      NeedAnd = true;
743    }
744  
745    Value *Y, *V = CmpLHS;
746    BinaryOperator *BinOp;
747    const APInt *C2;
748    bool NeedXor;
749    if (match(FalseVal, m_BinOp(m_Specific(TrueVal), m_Power2(C2)))) {
750      Y = TrueVal;
751      BinOp = cast<BinaryOperator>(FalseVal);
752      NeedXor = Pred == ICmpInst::ICMP_NE;
753    } else if (match(TrueVal, m_BinOp(m_Specific(FalseVal), m_Power2(C2)))) {
754      Y = FalseVal;
755      BinOp = cast<BinaryOperator>(TrueVal);
756      NeedXor = Pred == ICmpInst::ICMP_EQ;
757    } else {
758      return nullptr;
759    }
760  
761    // Check that 0 on RHS is identity value for this binop.
762    auto *IdentityC =
763        ConstantExpr::getBinOpIdentity(BinOp->getOpcode(), BinOp->getType(),
764                                       /*AllowRHSConstant*/ true);
765    if (IdentityC == nullptr || !IdentityC->isNullValue())
766      return nullptr;
767  
768    unsigned C2Log = C2->logBase2();
769  
770    bool NeedShift = C1Log != C2Log;
771    bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
772                         V->getType()->getScalarSizeInBits();
773  
774    // Make sure we don't create more instructions than we save.
775    if ((NeedShift + NeedXor + NeedZExtTrunc + NeedAnd) >
776        (IC->hasOneUse() + BinOp->hasOneUse()))
777      return nullptr;
778  
779    if (NeedAnd) {
780      // Insert the AND instruction on the input to the truncate.
781      APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
782      V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
783    }
784  
785    if (C2Log > C1Log) {
786      V = Builder.CreateZExtOrTrunc(V, Y->getType());
787      V = Builder.CreateShl(V, C2Log - C1Log);
788    } else if (C1Log > C2Log) {
789      V = Builder.CreateLShr(V, C1Log - C2Log);
790      V = Builder.CreateZExtOrTrunc(V, Y->getType());
791    } else
792      V = Builder.CreateZExtOrTrunc(V, Y->getType());
793  
794    if (NeedXor)
795      V = Builder.CreateXor(V, *C2);
796  
797    return Builder.CreateBinOp(BinOp->getOpcode(), Y, V);
798  }
799  
800  /// Canonicalize a set or clear of a masked set of constant bits to
801  /// select-of-constants form.
802  static Instruction *foldSetClearBits(SelectInst &Sel,
803                                       InstCombiner::BuilderTy &Builder) {
804    Value *Cond = Sel.getCondition();
805    Value *T = Sel.getTrueValue();
806    Value *F = Sel.getFalseValue();
807    Type *Ty = Sel.getType();
808    Value *X;
809    const APInt *NotC, *C;
810  
811    // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C)
812    if (match(T, m_And(m_Value(X), m_APInt(NotC))) &&
813        match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
814      Constant *Zero = ConstantInt::getNullValue(Ty);
815      Constant *OrC = ConstantInt::get(Ty, *C);
816      Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel);
817      return BinaryOperator::CreateOr(T, NewSel);
818    }
819  
820    // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0)
821    if (match(F, m_And(m_Value(X), m_APInt(NotC))) &&
822        match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
823      Constant *Zero = ConstantInt::getNullValue(Ty);
824      Constant *OrC = ConstantInt::get(Ty, *C);
825      Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel);
826      return BinaryOperator::CreateOr(F, NewSel);
827    }
828  
829    return nullptr;
830  }
831  
832  //   select (x == 0), 0, x * y --> freeze(y) * x
833  //   select (y == 0), 0, x * y --> freeze(x) * y
834  //   select (x == 0), undef, x * y --> freeze(y) * x
835  //   select (x == undef), 0, x * y --> freeze(y) * x
836  // Usage of mul instead of 0 will make the result more poisonous,
837  // so the operand that was not checked in the condition should be frozen.
838  // The latter folding is applied only when a constant compared with x is
839  // is a vector consisting of 0 and undefs. If a constant compared with x
840  // is a scalar undefined value or undefined vector then an expression
841  // should be already folded into a constant.
842  static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) {
843    auto *CondVal = SI.getCondition();
844    auto *TrueVal = SI.getTrueValue();
845    auto *FalseVal = SI.getFalseValue();
846    Value *X, *Y;
847    ICmpInst::Predicate Predicate;
848  
849    // Assuming that constant compared with zero is not undef (but it may be
850    // a vector with some undef elements). Otherwise (when a constant is undef)
851    // the select expression should be already simplified.
852    if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) ||
853        !ICmpInst::isEquality(Predicate))
854      return nullptr;
855  
856    if (Predicate == ICmpInst::ICMP_NE)
857      std::swap(TrueVal, FalseVal);
858  
859    // Check that TrueVal is a constant instead of matching it with m_Zero()
860    // to handle the case when it is a scalar undef value or a vector containing
861    // non-zero elements that are masked by undef elements in the compare
862    // constant.
863    auto *TrueValC = dyn_cast<Constant>(TrueVal);
864    if (TrueValC == nullptr ||
865        !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) ||
866        !isa<Instruction>(FalseVal))
867      return nullptr;
868  
869    auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1));
870    auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC);
871    // If X is compared with 0 then TrueVal could be either zero or undef.
872    // m_Zero match vectors containing some undef elements, but for scalars
873    // m_Undef should be used explicitly.
874    if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef()))
875      return nullptr;
876  
877    auto *FalseValI = cast<Instruction>(FalseVal);
878    auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"),
879                                       FalseValI->getIterator());
880    IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY);
881    return IC.replaceInstUsesWith(SI, FalseValI);
882  }
883  
884  /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
885  /// There are 8 commuted/swapped variants of this pattern.
886  /// TODO: Also support a - UMIN(a,b) patterns.
887  static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
888                                              const Value *TrueVal,
889                                              const Value *FalseVal,
890                                              InstCombiner::BuilderTy &Builder) {
891    ICmpInst::Predicate Pred = ICI->getPredicate();
892    Value *A = ICI->getOperand(0);
893    Value *B = ICI->getOperand(1);
894  
895    // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
896    // (a == 0) ? 0 : a - 1 -> (a != 0) ? a - 1 : 0
897    if (match(TrueVal, m_Zero())) {
898      Pred = ICmpInst::getInversePredicate(Pred);
899      std::swap(TrueVal, FalseVal);
900    }
901  
902    if (!match(FalseVal, m_Zero()))
903      return nullptr;
904  
905    // ugt 0 is canonicalized to ne 0 and requires special handling
906    // (a != 0) ? a + -1 : 0 -> usub.sat(a, 1)
907    if (Pred == ICmpInst::ICMP_NE) {
908      if (match(B, m_Zero()) && match(TrueVal, m_Add(m_Specific(A), m_AllOnes())))
909        return Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A,
910                                             ConstantInt::get(A->getType(), 1));
911      return nullptr;
912    }
913  
914    if (!ICmpInst::isUnsigned(Pred))
915      return nullptr;
916  
917    if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
918      // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
919      std::swap(A, B);
920      Pred = ICmpInst::getSwappedPredicate(Pred);
921    }
922  
923    assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
924           "Unexpected isUnsigned predicate!");
925  
926    // Ensure the sub is of the form:
927    //  (a > b) ? a - b : 0 -> usub.sat(a, b)
928    //  (a > b) ? b - a : 0 -> -usub.sat(a, b)
929    // Checking for both a-b and a+(-b) as a constant.
930    bool IsNegative = false;
931    const APInt *C;
932    if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
933        (match(A, m_APInt(C)) &&
934         match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
935      IsNegative = true;
936    else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
937             !(match(B, m_APInt(C)) &&
938               match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
939      return nullptr;
940  
941    // If we are adding a negate and the sub and icmp are used anywhere else, we
942    // would end up with more instructions.
943    if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
944      return nullptr;
945  
946    // (a > b) ? a - b : 0 -> usub.sat(a, b)
947    // (a > b) ? b - a : 0 -> -usub.sat(a, b)
948    Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
949    if (IsNegative)
950      Result = Builder.CreateNeg(Result);
951    return Result;
952  }
953  
954  static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
955                                         InstCombiner::BuilderTy &Builder) {
956    if (!Cmp->hasOneUse())
957      return nullptr;
958  
959    // Match unsigned saturated add with constant.
960    Value *Cmp0 = Cmp->getOperand(0);
961    Value *Cmp1 = Cmp->getOperand(1);
962    ICmpInst::Predicate Pred = Cmp->getPredicate();
963    Value *X;
964    const APInt *C, *CmpC;
965    if (Pred == ICmpInst::ICMP_ULT &&
966        match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
967        match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
968      // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
969      return Builder.CreateBinaryIntrinsic(
970          Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
971    }
972  
973    // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
974    // There are 8 commuted variants.
975    // Canonicalize -1 (saturated result) to true value of the select.
976    if (match(FVal, m_AllOnes())) {
977      std::swap(TVal, FVal);
978      Pred = CmpInst::getInversePredicate(Pred);
979    }
980    if (!match(TVal, m_AllOnes()))
981      return nullptr;
982  
983    // Canonicalize predicate to less-than or less-or-equal-than.
984    if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
985      std::swap(Cmp0, Cmp1);
986      Pred = CmpInst::getSwappedPredicate(Pred);
987    }
988    if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE)
989      return nullptr;
990  
991    // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
992    // Strictness of the comparison is irrelevant.
993    Value *Y;
994    if (match(Cmp0, m_Not(m_Value(X))) &&
995        match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
996      // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
997      // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
998      return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
999    }
1000    // The 'not' op may be included in the sum but not the compare.
1001    // Strictness of the comparison is irrelevant.
1002    X = Cmp0;
1003    Y = Cmp1;
1004    if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
1005      // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
1006      // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
1007      BinaryOperator *BO = cast<BinaryOperator>(FVal);
1008      return Builder.CreateBinaryIntrinsic(
1009          Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
1010    }
1011    // The overflow may be detected via the add wrapping round.
1012    // This is only valid for strict comparison!
1013    if (Pred == ICmpInst::ICMP_ULT &&
1014        match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
1015        match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
1016      // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
1017      // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
1018      return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
1019    }
1020  
1021    return nullptr;
1022  }
1023  
1024  /// Try to match patterns with select and subtract as absolute difference.
1025  static Value *foldAbsDiff(ICmpInst *Cmp, Value *TVal, Value *FVal,
1026                            InstCombiner::BuilderTy &Builder) {
1027    auto *TI = dyn_cast<Instruction>(TVal);
1028    auto *FI = dyn_cast<Instruction>(FVal);
1029    if (!TI || !FI)
1030      return nullptr;
1031  
1032    // Normalize predicate to gt/lt rather than ge/le.
1033    ICmpInst::Predicate Pred = Cmp->getStrictPredicate();
1034    Value *A = Cmp->getOperand(0);
1035    Value *B = Cmp->getOperand(1);
1036  
1037    // Normalize "A - B" as the true value of the select.
1038    if (match(FI, m_Sub(m_Specific(A), m_Specific(B)))) {
1039      std::swap(FI, TI);
1040      Pred = ICmpInst::getSwappedPredicate(Pred);
1041    }
1042  
1043    // With any pair of no-wrap subtracts:
1044    // (A > B) ? (A - B) : (B - A) --> abs(A - B)
1045    if (Pred == CmpInst::ICMP_SGT &&
1046        match(TI, m_Sub(m_Specific(A), m_Specific(B))) &&
1047        match(FI, m_Sub(m_Specific(B), m_Specific(A))) &&
1048        (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap()) &&
1049        (FI->hasNoSignedWrap() || FI->hasNoUnsignedWrap())) {
1050      // The remaining subtract is not "nuw" any more.
1051      // If there's one use of the subtract (no other use than the use we are
1052      // about to replace), then we know that the sub is "nsw" in this context
1053      // even if it was only "nuw" before. If there's another use, then we can't
1054      // add "nsw" to the existing instruction because it may not be safe in the
1055      // other user's context.
1056      TI->setHasNoUnsignedWrap(false);
1057      if (!TI->hasNoSignedWrap())
1058        TI->setHasNoSignedWrap(TI->hasOneUse());
1059      return Builder.CreateBinaryIntrinsic(Intrinsic::abs, TI, Builder.getTrue());
1060    }
1061  
1062    return nullptr;
1063  }
1064  
1065  /// Fold the following code sequence:
1066  /// \code
1067  ///   int a = ctlz(x & -x);
1068  //    x ? 31 - a : a;
1069  //    // or
1070  //    x ? 31 - a : 32;
1071  /// \code
1072  ///
1073  /// into:
1074  ///   cttz(x)
1075  static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
1076                                           Value *FalseVal,
1077                                           InstCombiner::BuilderTy &Builder) {
1078    unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
1079    if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
1080      return nullptr;
1081  
1082    if (ICI->getPredicate() == ICmpInst::ICMP_NE)
1083      std::swap(TrueVal, FalseVal);
1084  
1085    Value *Ctlz;
1086    if (!match(FalseVal,
1087               m_Xor(m_Value(Ctlz), m_SpecificInt(BitWidth - 1))))
1088      return nullptr;
1089  
1090    if (!match(Ctlz, m_Intrinsic<Intrinsic::ctlz>()))
1091      return nullptr;
1092  
1093    if (TrueVal != Ctlz && !match(TrueVal, m_SpecificInt(BitWidth)))
1094      return nullptr;
1095  
1096    Value *X = ICI->getOperand(0);
1097    auto *II = cast<IntrinsicInst>(Ctlz);
1098    if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
1099      return nullptr;
1100  
1101    Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
1102                                            II->getType());
1103    return CallInst::Create(F, {X, II->getArgOperand(1)});
1104  }
1105  
1106  /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
1107  /// call to cttz/ctlz with flag 'is_zero_poison' cleared.
1108  ///
1109  /// For example, we can fold the following code sequence:
1110  /// \code
1111  ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
1112  ///   %1 = icmp ne i32 %x, 0
1113  ///   %2 = select i1 %1, i32 %0, i32 32
1114  /// \code
1115  ///
1116  /// into:
1117  ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
1118  static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
1119                                   InstCombiner::BuilderTy &Builder) {
1120    ICmpInst::Predicate Pred = ICI->getPredicate();
1121    Value *CmpLHS = ICI->getOperand(0);
1122    Value *CmpRHS = ICI->getOperand(1);
1123  
1124    // Check if the select condition compares a value for equality.
1125    if (!ICI->isEquality())
1126      return nullptr;
1127  
1128    Value *SelectArg = FalseVal;
1129    Value *ValueOnZero = TrueVal;
1130    if (Pred == ICmpInst::ICMP_NE)
1131      std::swap(SelectArg, ValueOnZero);
1132  
1133    // Skip zero extend/truncate.
1134    Value *Count = nullptr;
1135    if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
1136        !match(SelectArg, m_Trunc(m_Value(Count))))
1137      Count = SelectArg;
1138  
1139    // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
1140    // input to the cttz/ctlz is used as LHS for the compare instruction.
1141    Value *X;
1142    if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Value(X))) &&
1143        !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Value(X))))
1144      return nullptr;
1145  
1146    // (X == 0) ? BitWidth : ctz(X)
1147    // (X == -1) ? BitWidth : ctz(~X)
1148    if ((X != CmpLHS || !match(CmpRHS, m_Zero())) &&
1149        (!match(X, m_Not(m_Specific(CmpLHS))) || !match(CmpRHS, m_AllOnes())))
1150      return nullptr;
1151  
1152    IntrinsicInst *II = cast<IntrinsicInst>(Count);
1153  
1154    // Check if the value propagated on zero is a constant number equal to the
1155    // sizeof in bits of 'Count'.
1156    unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
1157    if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
1158      // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from
1159      // true to false on this flag, so we can replace it for all users.
1160      II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
1161      return SelectArg;
1162    }
1163  
1164    // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional
1165    // zext/trunc) have one use (ending at the select), the cttz/ctlz result will
1166    // not be used if the input is zero. Relax to 'zero is poison' for that case.
1167    if (II->hasOneUse() && SelectArg->hasOneUse() &&
1168        !match(II->getArgOperand(1), m_One()))
1169      II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
1170  
1171    return nullptr;
1172  }
1173  
1174  static Value *canonicalizeSPF(ICmpInst &Cmp, Value *TrueVal, Value *FalseVal,
1175                                InstCombinerImpl &IC) {
1176    Value *LHS, *RHS;
1177    // TODO: What to do with pointer min/max patterns?
1178    if (!TrueVal->getType()->isIntOrIntVectorTy())
1179      return nullptr;
1180  
1181    SelectPatternFlavor SPF =
1182        matchDecomposedSelectPattern(&Cmp, TrueVal, FalseVal, LHS, RHS).Flavor;
1183    if (SPF == SelectPatternFlavor::SPF_ABS ||
1184        SPF == SelectPatternFlavor::SPF_NABS) {
1185      if (!Cmp.hasOneUse() && !RHS->hasOneUse())
1186        return nullptr; // TODO: Relax this restriction.
1187  
1188      // Note that NSW flag can only be propagated for normal, non-negated abs!
1189      bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS &&
1190                            match(RHS, m_NSWNeg(m_Specific(LHS)));
1191      Constant *IntMinIsPoisonC =
1192          ConstantInt::get(Type::getInt1Ty(Cmp.getContext()), IntMinIsPoison);
1193      Instruction *Abs =
1194          IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC);
1195  
1196      if (SPF == SelectPatternFlavor::SPF_NABS)
1197        return IC.Builder.CreateNeg(Abs); // Always without NSW flag!
1198      return Abs;
1199    }
1200  
1201    if (SelectPatternResult::isMinOrMax(SPF)) {
1202      Intrinsic::ID IntrinsicID;
1203      switch (SPF) {
1204      case SelectPatternFlavor::SPF_UMIN:
1205        IntrinsicID = Intrinsic::umin;
1206        break;
1207      case SelectPatternFlavor::SPF_UMAX:
1208        IntrinsicID = Intrinsic::umax;
1209        break;
1210      case SelectPatternFlavor::SPF_SMIN:
1211        IntrinsicID = Intrinsic::smin;
1212        break;
1213      case SelectPatternFlavor::SPF_SMAX:
1214        IntrinsicID = Intrinsic::smax;
1215        break;
1216      default:
1217        llvm_unreachable("Unexpected SPF");
1218      }
1219      return IC.Builder.CreateBinaryIntrinsic(IntrinsicID, LHS, RHS);
1220    }
1221  
1222    return nullptr;
1223  }
1224  
1225  bool InstCombinerImpl::replaceInInstruction(Value *V, Value *Old, Value *New,
1226                                              unsigned Depth) {
1227    // Conservatively limit replacement to two instructions upwards.
1228    if (Depth == 2)
1229      return false;
1230  
1231    auto *I = dyn_cast<Instruction>(V);
1232    if (!I || !I->hasOneUse() || !isSafeToSpeculativelyExecute(I))
1233      return false;
1234  
1235    bool Changed = false;
1236    for (Use &U : I->operands()) {
1237      if (U == Old) {
1238        replaceUse(U, New);
1239        Worklist.add(I);
1240        Changed = true;
1241      } else {
1242        Changed |= replaceInInstruction(U, Old, New, Depth + 1);
1243      }
1244    }
1245    return Changed;
1246  }
1247  
1248  /// If we have a select with an equality comparison, then we know the value in
1249  /// one of the arms of the select. See if substituting this value into an arm
1250  /// and simplifying the result yields the same value as the other arm.
1251  ///
1252  /// To make this transform safe, we must drop poison-generating flags
1253  /// (nsw, etc) if we simplified to a binop because the select may be guarding
1254  /// that poison from propagating. If the existing binop already had no
1255  /// poison-generating flags, then this transform can be done by instsimplify.
1256  ///
1257  /// Consider:
1258  ///   %cmp = icmp eq i32 %x, 2147483647
1259  ///   %add = add nsw i32 %x, 1
1260  ///   %sel = select i1 %cmp, i32 -2147483648, i32 %add
1261  ///
1262  /// We can't replace %sel with %add unless we strip away the flags.
1263  /// TODO: Wrapping flags could be preserved in some cases with better analysis.
1264  Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel,
1265                                                            ICmpInst &Cmp) {
1266    if (!Cmp.isEquality())
1267      return nullptr;
1268  
1269    // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1270    Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1271    bool Swapped = false;
1272    if (Cmp.getPredicate() == ICmpInst::ICMP_NE) {
1273      std::swap(TrueVal, FalseVal);
1274      Swapped = true;
1275    }
1276  
1277    // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand.
1278    // Make sure Y cannot be undef though, as we might pick different values for
1279    // undef in the icmp and in f(Y). Additionally, take care to avoid replacing
1280    // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite
1281    // replacement cycle.
1282    Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1283    if (TrueVal != CmpLHS &&
1284        isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) {
1285      if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ,
1286                                            /* AllowRefinement */ true))
1287        // Require either the replacement or the simplification result to be a
1288        // constant to avoid infinite loops.
1289        // FIXME: Make this check more precise.
1290        if (isa<Constant>(CmpRHS) || isa<Constant>(V))
1291          return replaceOperand(Sel, Swapped ? 2 : 1, V);
1292  
1293      // Even if TrueVal does not simplify, we can directly replace a use of
1294      // CmpLHS with CmpRHS, as long as the instruction is not used anywhere
1295      // else and is safe to speculatively execute (we may end up executing it
1296      // with different operands, which should not cause side-effects or trigger
1297      // undefined behavior). Only do this if CmpRHS is a constant, as
1298      // profitability is not clear for other cases.
1299      // FIXME: Support vectors.
1300      if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant()) &&
1301          !Cmp.getType()->isVectorTy())
1302        if (replaceInInstruction(TrueVal, CmpLHS, CmpRHS))
1303          return &Sel;
1304    }
1305    if (TrueVal != CmpRHS &&
1306        isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT))
1307      if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ,
1308                                            /* AllowRefinement */ true))
1309        if (isa<Constant>(CmpLHS) || isa<Constant>(V))
1310          return replaceOperand(Sel, Swapped ? 2 : 1, V);
1311  
1312    auto *FalseInst = dyn_cast<Instruction>(FalseVal);
1313    if (!FalseInst)
1314      return nullptr;
1315  
1316    // InstSimplify already performed this fold if it was possible subject to
1317    // current poison-generating flags. Check whether dropping poison-generating
1318    // flags enables the transform.
1319  
1320    // Try each equivalence substitution possibility.
1321    // We have an 'EQ' comparison, so the select's false value will propagate.
1322    // Example:
1323    // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1324    SmallVector<Instruction *> DropFlags;
1325    if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ,
1326                               /* AllowRefinement */ false,
1327                               &DropFlags) == TrueVal ||
1328        simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ,
1329                               /* AllowRefinement */ false,
1330                               &DropFlags) == TrueVal) {
1331      for (Instruction *I : DropFlags) {
1332        I->dropPoisonGeneratingFlagsAndMetadata();
1333        Worklist.add(I);
1334      }
1335  
1336      return replaceInstUsesWith(Sel, FalseVal);
1337    }
1338  
1339    return nullptr;
1340  }
1341  
1342  // See if this is a pattern like:
1343  //   %old_cmp1 = icmp slt i32 %x, C2
1344  //   %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1345  //   %old_x_offseted = add i32 %x, C1
1346  //   %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1347  //   %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1348  // This can be rewritten as more canonical pattern:
1349  //   %new_cmp1 = icmp slt i32 %x, -C1
1350  //   %new_cmp2 = icmp sge i32 %x, C0-C1
1351  //   %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1352  //   %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1353  // Iff -C1 s<= C2 s<= C0-C1
1354  // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1355  //      SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
1356  static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1357                                      InstCombiner::BuilderTy &Builder) {
1358    Value *X = Sel0.getTrueValue();
1359    Value *Sel1 = Sel0.getFalseValue();
1360  
1361    // First match the condition of the outermost select.
1362    // Said condition must be one-use.
1363    if (!Cmp0.hasOneUse())
1364      return nullptr;
1365    ICmpInst::Predicate Pred0 = Cmp0.getPredicate();
1366    Value *Cmp00 = Cmp0.getOperand(0);
1367    Constant *C0;
1368    if (!match(Cmp0.getOperand(1),
1369               m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
1370      return nullptr;
1371  
1372    if (!isa<SelectInst>(Sel1)) {
1373      Pred0 = ICmpInst::getInversePredicate(Pred0);
1374      std::swap(X, Sel1);
1375    }
1376  
1377    // Canonicalize Cmp0 into ult or uge.
1378    // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1379    switch (Pred0) {
1380    case ICmpInst::Predicate::ICMP_ULT:
1381    case ICmpInst::Predicate::ICMP_UGE:
1382      // Although icmp ult %x, 0 is an unusual thing to try and should generally
1383      // have been simplified, it does not verify with undef inputs so ensure we
1384      // are not in a strange state.
1385      if (!match(C0, m_SpecificInt_ICMP(
1386                         ICmpInst::Predicate::ICMP_NE,
1387                         APInt::getZero(C0->getType()->getScalarSizeInBits()))))
1388        return nullptr;
1389      break; // Great!
1390    case ICmpInst::Predicate::ICMP_ULE:
1391    case ICmpInst::Predicate::ICMP_UGT:
1392      // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment
1393      // C0, which again means it must not have any all-ones elements.
1394      if (!match(C0,
1395                 m_SpecificInt_ICMP(
1396                     ICmpInst::Predicate::ICMP_NE,
1397                     APInt::getAllOnes(C0->getType()->getScalarSizeInBits()))))
1398        return nullptr; // Can't do, have all-ones element[s].
1399      Pred0 = ICmpInst::getFlippedStrictnessPredicate(Pred0);
1400      C0 = InstCombiner::AddOne(C0);
1401      break;
1402    default:
1403      return nullptr; // Unknown predicate.
1404    }
1405  
1406    // Now that we've canonicalized the ICmp, we know the X we expect;
1407    // the select in other hand should be one-use.
1408    if (!Sel1->hasOneUse())
1409      return nullptr;
1410  
1411    // If the types do not match, look through any truncs to the underlying
1412    // instruction.
1413    if (Cmp00->getType() != X->getType() && X->hasOneUse())
1414      match(X, m_TruncOrSelf(m_Value(X)));
1415  
1416    // We now can finish matching the condition of the outermost select:
1417    // it should either be the X itself, or an addition of some constant to X.
1418    Constant *C1;
1419    if (Cmp00 == X)
1420      C1 = ConstantInt::getNullValue(X->getType());
1421    else if (!match(Cmp00,
1422                    m_Add(m_Specific(X),
1423                          m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
1424      return nullptr;
1425  
1426    Value *Cmp1;
1427    ICmpInst::Predicate Pred1;
1428    Constant *C2;
1429    Value *ReplacementLow, *ReplacementHigh;
1430    if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1431                              m_Value(ReplacementHigh))) ||
1432        !match(Cmp1,
1433               m_ICmp(Pred1, m_Specific(X),
1434                      m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
1435      return nullptr;
1436  
1437    if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1438      return nullptr; // Not enough one-use instructions for the fold.
1439    // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1440    //        two comparisons we'll need to build.
1441  
1442    // Canonicalize Cmp1 into the form we expect.
1443    // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1444    switch (Pred1) {
1445    case ICmpInst::Predicate::ICMP_SLT:
1446      break;
1447    case ICmpInst::Predicate::ICMP_SLE:
1448      // We'd have to increment C2 by one, and for that it must not have signed
1449      // max element, but then it would have been canonicalized to 'slt' before
1450      // we get here. So we can't do anything useful with 'sle'.
1451      return nullptr;
1452    case ICmpInst::Predicate::ICMP_SGT:
1453      // We want to canonicalize it to 'slt', so we'll need to increment C2,
1454      // which again means it must not have any signed max elements.
1455      if (!match(C2,
1456                 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1457                                    APInt::getSignedMaxValue(
1458                                        C2->getType()->getScalarSizeInBits()))))
1459        return nullptr; // Can't do, have signed max element[s].
1460      C2 = InstCombiner::AddOne(C2);
1461      [[fallthrough]];
1462    case ICmpInst::Predicate::ICMP_SGE:
1463      // Also non-canonical, but here we don't need to change C2,
1464      // so we don't have any restrictions on C2, so we can just handle it.
1465      Pred1 = ICmpInst::Predicate::ICMP_SLT;
1466      std::swap(ReplacementLow, ReplacementHigh);
1467      break;
1468    default:
1469      return nullptr; // Unknown predicate.
1470    }
1471    assert(Pred1 == ICmpInst::Predicate::ICMP_SLT &&
1472           "Unexpected predicate type.");
1473  
1474    // The thresholds of this clamp-like pattern.
1475    auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1476    auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1477  
1478    assert((Pred0 == ICmpInst::Predicate::ICMP_ULT ||
1479            Pred0 == ICmpInst::Predicate::ICMP_UGE) &&
1480           "Unexpected predicate type.");
1481    if (Pred0 == ICmpInst::Predicate::ICMP_UGE)
1482      std::swap(ThresholdLowIncl, ThresholdHighExcl);
1483  
1484    // The fold has a precondition 1: C2 s>= ThresholdLow
1485    auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
1486                                           ThresholdLowIncl);
1487    if (!match(Precond1, m_One()))
1488      return nullptr;
1489    // The fold has a precondition 2: C2 s<= ThresholdHigh
1490    auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
1491                                           ThresholdHighExcl);
1492    if (!match(Precond2, m_One()))
1493      return nullptr;
1494  
1495    // If we are matching from a truncated input, we need to sext the
1496    // ReplacementLow and ReplacementHigh values. Only do the transform if they
1497    // are free to extend due to being constants.
1498    if (X->getType() != Sel0.getType()) {
1499      Constant *LowC, *HighC;
1500      if (!match(ReplacementLow, m_ImmConstant(LowC)) ||
1501          !match(ReplacementHigh, m_ImmConstant(HighC)))
1502        return nullptr;
1503      const DataLayout &DL = Sel0.getModule()->getDataLayout();
1504      ReplacementLow =
1505          ConstantFoldCastOperand(Instruction::SExt, LowC, X->getType(), DL);
1506      ReplacementHigh =
1507          ConstantFoldCastOperand(Instruction::SExt, HighC, X->getType(), DL);
1508      assert(ReplacementLow && ReplacementHigh &&
1509             "Constant folding of ImmConstant cannot fail");
1510    }
1511  
1512    // All good, finally emit the new pattern.
1513    Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1514    Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1515    Value *MaybeReplacedLow =
1516        Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1517  
1518    // Create the final select. If we looked through a truncate above, we will
1519    // need to retruncate the result.
1520    Value *MaybeReplacedHigh = Builder.CreateSelect(
1521        ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1522    return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType());
1523  }
1524  
1525  // If we have
1526  //  %cmp = icmp [canonical predicate] i32 %x, C0
1527  //  %r = select i1 %cmp, i32 %y, i32 C1
1528  // Where C0 != C1 and %x may be different from %y, see if the constant that we
1529  // will have if we flip the strictness of the predicate (i.e. without changing
1530  // the result) is identical to the C1 in select. If it matches we can change
1531  // original comparison to one with swapped predicate, reuse the constant,
1532  // and swap the hands of select.
1533  static Instruction *
1534  tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
1535                                           InstCombinerImpl &IC) {
1536    ICmpInst::Predicate Pred;
1537    Value *X;
1538    Constant *C0;
1539    if (!match(&Cmp, m_OneUse(m_ICmp(
1540                         Pred, m_Value(X),
1541                         m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
1542      return nullptr;
1543  
1544    // If comparison predicate is non-relational, we won't be able to do anything.
1545    if (ICmpInst::isEquality(Pred))
1546      return nullptr;
1547  
1548    // If comparison predicate is non-canonical, then we certainly won't be able
1549    // to make it canonical; canonicalizeCmpWithConstant() already tried.
1550    if (!InstCombiner::isCanonicalPredicate(Pred))
1551      return nullptr;
1552  
1553    // If the [input] type of comparison and select type are different, lets abort
1554    // for now. We could try to compare constants with trunc/[zs]ext though.
1555    if (C0->getType() != Sel.getType())
1556      return nullptr;
1557  
1558    // ULT with 'add' of a constant is canonical. See foldICmpAddConstant().
1559    // FIXME: Are there more magic icmp predicate+constant pairs we must avoid?
1560    //        Or should we just abandon this transform entirely?
1561    if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant())))
1562      return nullptr;
1563  
1564  
1565    Value *SelVal0, *SelVal1; // We do not care which one is from where.
1566    match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
1567    // At least one of these values we are selecting between must be a constant
1568    // else we'll never succeed.
1569    if (!match(SelVal0, m_AnyIntegralConstant()) &&
1570        !match(SelVal1, m_AnyIntegralConstant()))
1571      return nullptr;
1572  
1573    // Does this constant C match any of the `select` values?
1574    auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
1575      return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
1576    };
1577  
1578    // If C0 *already* matches true/false value of select, we are done.
1579    if (MatchesSelectValue(C0))
1580      return nullptr;
1581  
1582    // Check the constant we'd have with flipped-strictness predicate.
1583    auto FlippedStrictness =
1584        InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0);
1585    if (!FlippedStrictness)
1586      return nullptr;
1587  
1588    // If said constant doesn't match either, then there is no hope,
1589    if (!MatchesSelectValue(FlippedStrictness->second))
1590      return nullptr;
1591  
1592    // It matched! Lets insert the new comparison just before select.
1593    InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
1594    IC.Builder.SetInsertPoint(&Sel);
1595  
1596    Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
1597    Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
1598                                          Cmp.getName() + ".inv");
1599    IC.replaceOperand(Sel, 0, NewCmp);
1600    Sel.swapValues();
1601    Sel.swapProfMetadata();
1602  
1603    return &Sel;
1604  }
1605  
1606  static Instruction *foldSelectZeroOrOnes(ICmpInst *Cmp, Value *TVal,
1607                                           Value *FVal,
1608                                           InstCombiner::BuilderTy &Builder) {
1609    if (!Cmp->hasOneUse())
1610      return nullptr;
1611  
1612    const APInt *CmpC;
1613    if (!match(Cmp->getOperand(1), m_APIntAllowUndef(CmpC)))
1614      return nullptr;
1615  
1616    // (X u< 2) ? -X : -1 --> sext (X != 0)
1617    Value *X = Cmp->getOperand(0);
1618    if (Cmp->getPredicate() == ICmpInst::ICMP_ULT && *CmpC == 2 &&
1619        match(TVal, m_Neg(m_Specific(X))) && match(FVal, m_AllOnes()))
1620      return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType());
1621  
1622    // (X u> 1) ? -1 : -X --> sext (X != 0)
1623    if (Cmp->getPredicate() == ICmpInst::ICMP_UGT && *CmpC == 1 &&
1624        match(FVal, m_Neg(m_Specific(X))) && match(TVal, m_AllOnes()))
1625      return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType());
1626  
1627    return nullptr;
1628  }
1629  
1630  static Value *foldSelectInstWithICmpConst(SelectInst &SI, ICmpInst *ICI,
1631                                            InstCombiner::BuilderTy &Builder) {
1632    const APInt *CmpC;
1633    Value *V;
1634    CmpInst::Predicate Pred;
1635    if (!match(ICI, m_ICmp(Pred, m_Value(V), m_APInt(CmpC))))
1636      return nullptr;
1637  
1638    // Match clamp away from min/max value as a max/min operation.
1639    Value *TVal = SI.getTrueValue();
1640    Value *FVal = SI.getFalseValue();
1641    if (Pred == ICmpInst::ICMP_EQ && V == FVal) {
1642      // (V == UMIN) ? UMIN+1 : V --> umax(V, UMIN+1)
1643      if (CmpC->isMinValue() && match(TVal, m_SpecificInt(*CmpC + 1)))
1644        return Builder.CreateBinaryIntrinsic(Intrinsic::umax, V, TVal);
1645      // (V == UMAX) ? UMAX-1 : V --> umin(V, UMAX-1)
1646      if (CmpC->isMaxValue() && match(TVal, m_SpecificInt(*CmpC - 1)))
1647        return Builder.CreateBinaryIntrinsic(Intrinsic::umin, V, TVal);
1648      // (V == SMIN) ? SMIN+1 : V --> smax(V, SMIN+1)
1649      if (CmpC->isMinSignedValue() && match(TVal, m_SpecificInt(*CmpC + 1)))
1650        return Builder.CreateBinaryIntrinsic(Intrinsic::smax, V, TVal);
1651      // (V == SMAX) ? SMAX-1 : V --> smin(V, SMAX-1)
1652      if (CmpC->isMaxSignedValue() && match(TVal, m_SpecificInt(*CmpC - 1)))
1653        return Builder.CreateBinaryIntrinsic(Intrinsic::smin, V, TVal);
1654    }
1655  
1656    BinaryOperator *BO;
1657    const APInt *C;
1658    CmpInst::Predicate CPred;
1659    if (match(&SI, m_Select(m_Specific(ICI), m_APInt(C), m_BinOp(BO))))
1660      CPred = ICI->getPredicate();
1661    else if (match(&SI, m_Select(m_Specific(ICI), m_BinOp(BO), m_APInt(C))))
1662      CPred = ICI->getInversePredicate();
1663    else
1664      return nullptr;
1665  
1666    const APInt *BinOpC;
1667    if (!match(BO, m_BinOp(m_Specific(V), m_APInt(BinOpC))))
1668      return nullptr;
1669  
1670    ConstantRange R = ConstantRange::makeExactICmpRegion(CPred, *CmpC)
1671                          .binaryOp(BO->getOpcode(), *BinOpC);
1672    if (R == *C) {
1673      BO->dropPoisonGeneratingFlags();
1674      return BO;
1675    }
1676    return nullptr;
1677  }
1678  
1679  /// Visit a SelectInst that has an ICmpInst as its first operand.
1680  Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI,
1681                                                        ICmpInst *ICI) {
1682    if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI))
1683      return NewSel;
1684  
1685    if (Value *V =
1686            canonicalizeSPF(*ICI, SI.getTrueValue(), SI.getFalseValue(), *this))
1687      return replaceInstUsesWith(SI, V);
1688  
1689    if (Value *V = foldSelectInstWithICmpConst(SI, ICI, Builder))
1690      return replaceInstUsesWith(SI, V);
1691  
1692    if (Value *V = canonicalizeClampLike(SI, *ICI, Builder))
1693      return replaceInstUsesWith(SI, V);
1694  
1695    if (Instruction *NewSel =
1696            tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
1697      return NewSel;
1698  
1699    if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1700      return replaceInstUsesWith(SI, V);
1701  
1702    // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1703    bool Changed = false;
1704    Value *TrueVal = SI.getTrueValue();
1705    Value *FalseVal = SI.getFalseValue();
1706    ICmpInst::Predicate Pred = ICI->getPredicate();
1707    Value *CmpLHS = ICI->getOperand(0);
1708    Value *CmpRHS = ICI->getOperand(1);
1709    if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS) && !isa<Constant>(CmpLHS)) {
1710      if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1711        // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1712        replaceOperand(SI, 1, CmpRHS);
1713        Changed = true;
1714      } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1715        // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1716        replaceOperand(SI, 2, CmpRHS);
1717        Changed = true;
1718      }
1719    }
1720  
1721    // Canonicalize a signbit condition to use zero constant by swapping:
1722    // (CmpLHS > -1) ? TV : FV --> (CmpLHS < 0) ? FV : TV
1723    // To avoid conflicts (infinite loops) with other canonicalizations, this is
1724    // not applied with any constant select arm.
1725    if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes()) &&
1726        !match(TrueVal, m_Constant()) && !match(FalseVal, m_Constant()) &&
1727        ICI->hasOneUse()) {
1728      InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
1729      Builder.SetInsertPoint(&SI);
1730      Value *IsNeg = Builder.CreateIsNeg(CmpLHS, ICI->getName());
1731      replaceOperand(SI, 0, IsNeg);
1732      SI.swapValues();
1733      SI.swapProfMetadata();
1734      return &SI;
1735    }
1736  
1737    // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1738    // decomposeBitTestICmp() might help.
1739    if (TrueVal->getType()->isIntOrIntVectorTy()) {
1740      unsigned BitWidth =
1741          DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1742      APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1743      Value *X;
1744      const APInt *Y, *C;
1745      bool TrueWhenUnset;
1746      bool IsBitTest = false;
1747      if (ICmpInst::isEquality(Pred) &&
1748          match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1749          match(CmpRHS, m_Zero())) {
1750        IsBitTest = true;
1751        TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1752      } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1753        X = CmpLHS;
1754        Y = &MinSignedValue;
1755        IsBitTest = true;
1756        TrueWhenUnset = false;
1757      } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1758        X = CmpLHS;
1759        Y = &MinSignedValue;
1760        IsBitTest = true;
1761        TrueWhenUnset = true;
1762      }
1763      if (IsBitTest) {
1764        Value *V = nullptr;
1765        // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
1766        if (TrueWhenUnset && TrueVal == X &&
1767            match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1768          V = Builder.CreateAnd(X, ~(*Y));
1769        // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
1770        else if (!TrueWhenUnset && FalseVal == X &&
1771                 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1772          V = Builder.CreateAnd(X, ~(*Y));
1773        // (X & Y) == 0 ? X ^ Y : X  --> X | Y
1774        else if (TrueWhenUnset && FalseVal == X &&
1775                 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1776          V = Builder.CreateOr(X, *Y);
1777        // (X & Y) != 0 ? X : X ^ Y  --> X | Y
1778        else if (!TrueWhenUnset && TrueVal == X &&
1779                 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1780          V = Builder.CreateOr(X, *Y);
1781  
1782        if (V)
1783          return replaceInstUsesWith(SI, V);
1784      }
1785    }
1786  
1787    if (Instruction *V =
1788            foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1789      return V;
1790  
1791    if (Value *V = foldSelectICmpAndZeroShl(ICI, TrueVal, FalseVal, Builder))
1792      return replaceInstUsesWith(SI, V);
1793  
1794    if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
1795      return V;
1796  
1797    if (Instruction *V = foldSelectZeroOrOnes(ICI, TrueVal, FalseVal, Builder))
1798      return V;
1799  
1800    if (Value *V = foldSelectICmpAndBinOp(ICI, TrueVal, FalseVal, Builder))
1801      return replaceInstUsesWith(SI, V);
1802  
1803    if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1804      return replaceInstUsesWith(SI, V);
1805  
1806    if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1807      return replaceInstUsesWith(SI, V);
1808  
1809    if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1810      return replaceInstUsesWith(SI, V);
1811  
1812    if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1813      return replaceInstUsesWith(SI, V);
1814  
1815    if (Value *V = foldAbsDiff(ICI, TrueVal, FalseVal, Builder))
1816      return replaceInstUsesWith(SI, V);
1817  
1818    return Changed ? &SI : nullptr;
1819  }
1820  
1821  /// SI is a select whose condition is a PHI node (but the two may be in
1822  /// different blocks). See if the true/false values (V) are live in all of the
1823  /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1824  ///
1825  ///   X = phi [ C1, BB1], [C2, BB2]
1826  ///   Y = add
1827  ///   Z = select X, Y, 0
1828  ///
1829  /// because Y is not live in BB1/BB2.
1830  static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1831                                                     const SelectInst &SI) {
1832    // If the value is a non-instruction value like a constant or argument, it
1833    // can always be mapped.
1834    const Instruction *I = dyn_cast<Instruction>(V);
1835    if (!I) return true;
1836  
1837    // If V is a PHI node defined in the same block as the condition PHI, we can
1838    // map the arguments.
1839    const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1840  
1841    if (const PHINode *VP = dyn_cast<PHINode>(I))
1842      if (VP->getParent() == CondPHI->getParent())
1843        return true;
1844  
1845    // Otherwise, if the PHI and select are defined in the same block and if V is
1846    // defined in a different block, then we can transform it.
1847    if (SI.getParent() == CondPHI->getParent() &&
1848        I->getParent() != CondPHI->getParent())
1849      return true;
1850  
1851    // Otherwise we have a 'hard' case and we can't tell without doing more
1852    // detailed dominator based analysis, punt.
1853    return false;
1854  }
1855  
1856  /// We have an SPF (e.g. a min or max) of an SPF of the form:
1857  ///   SPF2(SPF1(A, B), C)
1858  Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner,
1859                                              SelectPatternFlavor SPF1, Value *A,
1860                                              Value *B, Instruction &Outer,
1861                                              SelectPatternFlavor SPF2,
1862                                              Value *C) {
1863    if (Outer.getType() != Inner->getType())
1864      return nullptr;
1865  
1866    if (C == A || C == B) {
1867      // MAX(MAX(A, B), B) -> MAX(A, B)
1868      // MIN(MIN(a, b), a) -> MIN(a, b)
1869      // TODO: This could be done in instsimplify.
1870      if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1871        return replaceInstUsesWith(Outer, Inner);
1872    }
1873  
1874    return nullptr;
1875  }
1876  
1877  /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1878  /// This is even legal for FP.
1879  static Instruction *foldAddSubSelect(SelectInst &SI,
1880                                       InstCombiner::BuilderTy &Builder) {
1881    Value *CondVal = SI.getCondition();
1882    Value *TrueVal = SI.getTrueValue();
1883    Value *FalseVal = SI.getFalseValue();
1884    auto *TI = dyn_cast<Instruction>(TrueVal);
1885    auto *FI = dyn_cast<Instruction>(FalseVal);
1886    if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1887      return nullptr;
1888  
1889    Instruction *AddOp = nullptr, *SubOp = nullptr;
1890    if ((TI->getOpcode() == Instruction::Sub &&
1891         FI->getOpcode() == Instruction::Add) ||
1892        (TI->getOpcode() == Instruction::FSub &&
1893         FI->getOpcode() == Instruction::FAdd)) {
1894      AddOp = FI;
1895      SubOp = TI;
1896    } else if ((FI->getOpcode() == Instruction::Sub &&
1897                TI->getOpcode() == Instruction::Add) ||
1898               (FI->getOpcode() == Instruction::FSub &&
1899                TI->getOpcode() == Instruction::FAdd)) {
1900      AddOp = TI;
1901      SubOp = FI;
1902    }
1903  
1904    if (AddOp) {
1905      Value *OtherAddOp = nullptr;
1906      if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1907        OtherAddOp = AddOp->getOperand(1);
1908      } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1909        OtherAddOp = AddOp->getOperand(0);
1910      }
1911  
1912      if (OtherAddOp) {
1913        // So at this point we know we have (Y -> OtherAddOp):
1914        //        select C, (add X, Y), (sub X, Z)
1915        Value *NegVal; // Compute -Z
1916        if (SI.getType()->isFPOrFPVectorTy()) {
1917          NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1918          if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1919            FastMathFlags Flags = AddOp->getFastMathFlags();
1920            Flags &= SubOp->getFastMathFlags();
1921            NegInst->setFastMathFlags(Flags);
1922          }
1923        } else {
1924          NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1925        }
1926  
1927        Value *NewTrueOp = OtherAddOp;
1928        Value *NewFalseOp = NegVal;
1929        if (AddOp != TI)
1930          std::swap(NewTrueOp, NewFalseOp);
1931        Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1932                                             SI.getName() + ".p", &SI);
1933  
1934        if (SI.getType()->isFPOrFPVectorTy()) {
1935          Instruction *RI =
1936              BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1937  
1938          FastMathFlags Flags = AddOp->getFastMathFlags();
1939          Flags &= SubOp->getFastMathFlags();
1940          RI->setFastMathFlags(Flags);
1941          return RI;
1942        } else
1943          return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1944      }
1945    }
1946    return nullptr;
1947  }
1948  
1949  /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1950  /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1951  /// Along with a number of patterns similar to:
1952  /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1953  /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1954  static Instruction *
1955  foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
1956    Value *CondVal = SI.getCondition();
1957    Value *TrueVal = SI.getTrueValue();
1958    Value *FalseVal = SI.getFalseValue();
1959  
1960    WithOverflowInst *II;
1961    if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
1962        !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
1963      return nullptr;
1964  
1965    Value *X = II->getLHS();
1966    Value *Y = II->getRHS();
1967  
1968    auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
1969      Type *Ty = Limit->getType();
1970  
1971      ICmpInst::Predicate Pred;
1972      Value *TrueVal, *FalseVal, *Op;
1973      const APInt *C;
1974      if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
1975                                 m_Value(TrueVal), m_Value(FalseVal))))
1976        return false;
1977  
1978      auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); };
1979      auto IsMinMax = [&](Value *Min, Value *Max) {
1980        APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
1981        APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
1982        return match(Min, m_SpecificInt(MinVal)) &&
1983               match(Max, m_SpecificInt(MaxVal));
1984      };
1985  
1986      if (Op != X && Op != Y)
1987        return false;
1988  
1989      if (IsAdd) {
1990        // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1991        // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1992        // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1993        // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1994        if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1995            IsMinMax(TrueVal, FalseVal))
1996          return true;
1997        // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1998        // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1999        // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2000        // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2001        if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
2002            IsMinMax(FalseVal, TrueVal))
2003          return true;
2004      } else {
2005        // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2006        // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2007        if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
2008            IsMinMax(TrueVal, FalseVal))
2009          return true;
2010        // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2011        // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2012        if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
2013            IsMinMax(FalseVal, TrueVal))
2014          return true;
2015        // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2016        // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2017        if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
2018            IsMinMax(FalseVal, TrueVal))
2019          return true;
2020        // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2021        // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2022        if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
2023            IsMinMax(TrueVal, FalseVal))
2024          return true;
2025      }
2026  
2027      return false;
2028    };
2029  
2030    Intrinsic::ID NewIntrinsicID;
2031    if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
2032        match(TrueVal, m_AllOnes()))
2033      // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
2034      NewIntrinsicID = Intrinsic::uadd_sat;
2035    else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
2036             match(TrueVal, m_Zero()))
2037      // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
2038      NewIntrinsicID = Intrinsic::usub_sat;
2039    else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
2040             IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
2041      // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2042      // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2043      // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2044      // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2045      // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2046      // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2047      // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2048      // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2049      NewIntrinsicID = Intrinsic::sadd_sat;
2050    else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
2051             IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
2052      // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2053      // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2054      // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2055      // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2056      // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2057      // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2058      // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2059      // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2060      NewIntrinsicID = Intrinsic::ssub_sat;
2061    else
2062      return nullptr;
2063  
2064    Function *F =
2065        Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
2066    return CallInst::Create(F, {X, Y});
2067  }
2068  
2069  Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) {
2070    Constant *C;
2071    if (!match(Sel.getTrueValue(), m_Constant(C)) &&
2072        !match(Sel.getFalseValue(), m_Constant(C)))
2073      return nullptr;
2074  
2075    Instruction *ExtInst;
2076    if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
2077        !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
2078      return nullptr;
2079  
2080    auto ExtOpcode = ExtInst->getOpcode();
2081    if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
2082      return nullptr;
2083  
2084    // If we are extending from a boolean type or if we can create a select that
2085    // has the same size operands as its condition, try to narrow the select.
2086    Value *X = ExtInst->getOperand(0);
2087    Type *SmallType = X->getType();
2088    Value *Cond = Sel.getCondition();
2089    auto *Cmp = dyn_cast<CmpInst>(Cond);
2090    if (!SmallType->isIntOrIntVectorTy(1) &&
2091        (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
2092      return nullptr;
2093  
2094    // If the constant is the same after truncation to the smaller type and
2095    // extension to the original type, we can narrow the select.
2096    Type *SelType = Sel.getType();
2097    Constant *TruncC = getLosslessTrunc(C, SmallType, ExtOpcode);
2098    if (TruncC && ExtInst->hasOneUse()) {
2099      Value *TruncCVal = cast<Value>(TruncC);
2100      if (ExtInst == Sel.getFalseValue())
2101        std::swap(X, TruncCVal);
2102  
2103      // select Cond, (ext X), C --> ext(select Cond, X, C')
2104      // select Cond, C, (ext X) --> ext(select Cond, C', X)
2105      Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
2106      return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
2107    }
2108  
2109    return nullptr;
2110  }
2111  
2112  /// Try to transform a vector select with a constant condition vector into a
2113  /// shuffle for easier combining with other shuffles and insert/extract.
2114  static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
2115    Value *CondVal = SI.getCondition();
2116    Constant *CondC;
2117    auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType());
2118    if (!CondValTy || !match(CondVal, m_Constant(CondC)))
2119      return nullptr;
2120  
2121    unsigned NumElts = CondValTy->getNumElements();
2122    SmallVector<int, 16> Mask;
2123    Mask.reserve(NumElts);
2124    for (unsigned i = 0; i != NumElts; ++i) {
2125      Constant *Elt = CondC->getAggregateElement(i);
2126      if (!Elt)
2127        return nullptr;
2128  
2129      if (Elt->isOneValue()) {
2130        // If the select condition element is true, choose from the 1st vector.
2131        Mask.push_back(i);
2132      } else if (Elt->isNullValue()) {
2133        // If the select condition element is false, choose from the 2nd vector.
2134        Mask.push_back(i + NumElts);
2135      } else if (isa<UndefValue>(Elt)) {
2136        // Undef in a select condition (choose one of the operands) does not mean
2137        // the same thing as undef in a shuffle mask (any value is acceptable), so
2138        // give up.
2139        return nullptr;
2140      } else {
2141        // Bail out on a constant expression.
2142        return nullptr;
2143      }
2144    }
2145  
2146    return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask);
2147  }
2148  
2149  /// If we have a select of vectors with a scalar condition, try to convert that
2150  /// to a vector select by splatting the condition. A splat may get folded with
2151  /// other operations in IR and having all operands of a select be vector types
2152  /// is likely better for vector codegen.
2153  static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel,
2154                                                     InstCombinerImpl &IC) {
2155    auto *Ty = dyn_cast<VectorType>(Sel.getType());
2156    if (!Ty)
2157      return nullptr;
2158  
2159    // We can replace a single-use extract with constant index.
2160    Value *Cond = Sel.getCondition();
2161    if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt()))))
2162      return nullptr;
2163  
2164    // select (extelt V, Index), T, F --> select (splat V, Index), T, F
2165    // Splatting the extracted condition reduces code (we could directly create a
2166    // splat shuffle of the source vector to eliminate the intermediate step).
2167    return IC.replaceOperand(
2168        Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond));
2169  }
2170  
2171  /// Reuse bitcasted operands between a compare and select:
2172  /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2173  /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
2174  static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
2175                                            InstCombiner::BuilderTy &Builder) {
2176    Value *Cond = Sel.getCondition();
2177    Value *TVal = Sel.getTrueValue();
2178    Value *FVal = Sel.getFalseValue();
2179  
2180    CmpInst::Predicate Pred;
2181    Value *A, *B;
2182    if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
2183      return nullptr;
2184  
2185    // The select condition is a compare instruction. If the select's true/false
2186    // values are already the same as the compare operands, there's nothing to do.
2187    if (TVal == A || TVal == B || FVal == A || FVal == B)
2188      return nullptr;
2189  
2190    Value *C, *D;
2191    if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
2192      return nullptr;
2193  
2194    // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
2195    Value *TSrc, *FSrc;
2196    if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
2197        !match(FVal, m_BitCast(m_Value(FSrc))))
2198      return nullptr;
2199  
2200    // If the select true/false values are *different bitcasts* of the same source
2201    // operands, make the select operands the same as the compare operands and
2202    // cast the result. This is the canonical select form for min/max.
2203    Value *NewSel;
2204    if (TSrc == C && FSrc == D) {
2205      // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2206      // bitcast (select (cmp A, B), A, B)
2207      NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
2208    } else if (TSrc == D && FSrc == C) {
2209      // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
2210      // bitcast (select (cmp A, B), B, A)
2211      NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
2212    } else {
2213      return nullptr;
2214    }
2215    return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
2216  }
2217  
2218  /// Try to eliminate select instructions that test the returned flag of cmpxchg
2219  /// instructions.
2220  ///
2221  /// If a select instruction tests the returned flag of a cmpxchg instruction and
2222  /// selects between the returned value of the cmpxchg instruction its compare
2223  /// operand, the result of the select will always be equal to its false value.
2224  /// For example:
2225  ///
2226  ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2227  ///   %1 = extractvalue { i64, i1 } %0, 1
2228  ///   %2 = extractvalue { i64, i1 } %0, 0
2229  ///   %3 = select i1 %1, i64 %compare, i64 %2
2230  ///   ret i64 %3
2231  ///
2232  /// The returned value of the cmpxchg instruction (%2) is the original value
2233  /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
2234  /// must have been equal to %compare. Thus, the result of the select is always
2235  /// equal to %2, and the code can be simplified to:
2236  ///
2237  ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2238  ///   %1 = extractvalue { i64, i1 } %0, 0
2239  ///   ret i64 %1
2240  ///
2241  static Value *foldSelectCmpXchg(SelectInst &SI) {
2242    // A helper that determines if V is an extractvalue instruction whose
2243    // aggregate operand is a cmpxchg instruction and whose single index is equal
2244    // to I. If such conditions are true, the helper returns the cmpxchg
2245    // instruction; otherwise, a nullptr is returned.
2246    auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
2247      auto *Extract = dyn_cast<ExtractValueInst>(V);
2248      if (!Extract)
2249        return nullptr;
2250      if (Extract->getIndices()[0] != I)
2251        return nullptr;
2252      return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
2253    };
2254  
2255    // If the select has a single user, and this user is a select instruction that
2256    // we can simplify, skip the cmpxchg simplification for now.
2257    if (SI.hasOneUse())
2258      if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
2259        if (Select->getCondition() == SI.getCondition())
2260          if (Select->getFalseValue() == SI.getTrueValue() ||
2261              Select->getTrueValue() == SI.getFalseValue())
2262            return nullptr;
2263  
2264    // Ensure the select condition is the returned flag of a cmpxchg instruction.
2265    auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
2266    if (!CmpXchg)
2267      return nullptr;
2268  
2269    // Check the true value case: The true value of the select is the returned
2270    // value of the same cmpxchg used by the condition, and the false value is the
2271    // cmpxchg instruction's compare operand.
2272    if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
2273      if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue())
2274        return SI.getFalseValue();
2275  
2276    // Check the false value case: The false value of the select is the returned
2277    // value of the same cmpxchg used by the condition, and the true value is the
2278    // cmpxchg instruction's compare operand.
2279    if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
2280      if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue())
2281        return SI.getFalseValue();
2282  
2283    return nullptr;
2284  }
2285  
2286  /// Try to reduce a funnel/rotate pattern that includes a compare and select
2287  /// into a funnel shift intrinsic. Example:
2288  /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2289  ///              --> call llvm.fshl.i32(a, a, b)
2290  /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c)))
2291  ///                 --> call llvm.fshl.i32(a, b, c)
2292  /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c)))
2293  ///                 --> call llvm.fshr.i32(a, b, c)
2294  static Instruction *foldSelectFunnelShift(SelectInst &Sel,
2295                                            InstCombiner::BuilderTy &Builder) {
2296    // This must be a power-of-2 type for a bitmasking transform to be valid.
2297    unsigned Width = Sel.getType()->getScalarSizeInBits();
2298    if (!isPowerOf2_32(Width))
2299      return nullptr;
2300  
2301    BinaryOperator *Or0, *Or1;
2302    if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
2303      return nullptr;
2304  
2305    Value *SV0, *SV1, *SA0, *SA1;
2306    if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0),
2307                                            m_ZExtOrSelf(m_Value(SA0))))) ||
2308        !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1),
2309                                            m_ZExtOrSelf(m_Value(SA1))))) ||
2310        Or0->getOpcode() == Or1->getOpcode())
2311      return nullptr;
2312  
2313    // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)).
2314    if (Or0->getOpcode() == BinaryOperator::LShr) {
2315      std::swap(Or0, Or1);
2316      std::swap(SV0, SV1);
2317      std::swap(SA0, SA1);
2318    }
2319    assert(Or0->getOpcode() == BinaryOperator::Shl &&
2320           Or1->getOpcode() == BinaryOperator::LShr &&
2321           "Illegal or(shift,shift) pair");
2322  
2323    // Check the shift amounts to see if they are an opposite pair.
2324    Value *ShAmt;
2325    if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
2326      ShAmt = SA0;
2327    else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
2328      ShAmt = SA1;
2329    else
2330      return nullptr;
2331  
2332    // We should now have this pattern:
2333    // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1))
2334    // The false value of the select must be a funnel-shift of the true value:
2335    // IsFShl -> TVal must be SV0 else TVal must be SV1.
2336    bool IsFshl = (ShAmt == SA0);
2337    Value *TVal = Sel.getTrueValue();
2338    if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
2339      return nullptr;
2340  
2341    // Finally, see if the select is filtering out a shift-by-zero.
2342    Value *Cond = Sel.getCondition();
2343    ICmpInst::Predicate Pred;
2344    if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
2345        Pred != ICmpInst::ICMP_EQ)
2346      return nullptr;
2347  
2348    // If this is not a rotate then the select was blocking poison from the
2349    // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
2350    if (SV0 != SV1) {
2351      if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1))
2352        SV1 = Builder.CreateFreeze(SV1);
2353      else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0))
2354        SV0 = Builder.CreateFreeze(SV0);
2355    }
2356  
2357    // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2358    // Convert to funnel shift intrinsic.
2359    Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2360    Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
2361    ShAmt = Builder.CreateZExt(ShAmt, Sel.getType());
2362    return CallInst::Create(F, { SV0, SV1, ShAmt });
2363  }
2364  
2365  static Instruction *foldSelectToCopysign(SelectInst &Sel,
2366                                           InstCombiner::BuilderTy &Builder) {
2367    Value *Cond = Sel.getCondition();
2368    Value *TVal = Sel.getTrueValue();
2369    Value *FVal = Sel.getFalseValue();
2370    Type *SelType = Sel.getType();
2371  
2372    if (ICmpInst::makeCmpResultType(TVal->getType()) != Cond->getType())
2373      return nullptr;
2374  
2375    // Match select ?, TC, FC where the constants are equal but negated.
2376    // TODO: Generalize to handle a negated variable operand?
2377    const APFloat *TC, *FC;
2378    if (!match(TVal, m_APFloatAllowUndef(TC)) ||
2379        !match(FVal, m_APFloatAllowUndef(FC)) ||
2380        !abs(*TC).bitwiseIsEqual(abs(*FC)))
2381      return nullptr;
2382  
2383    assert(TC != FC && "Expected equal select arms to simplify");
2384  
2385    Value *X;
2386    const APInt *C;
2387    bool IsTrueIfSignSet;
2388    ICmpInst::Predicate Pred;
2389    if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) ||
2390        !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) ||
2391        X->getType() != SelType)
2392      return nullptr;
2393  
2394    // If needed, negate the value that will be the sign argument of the copysign:
2395    // (bitcast X) <  0 ? -TC :  TC --> copysign(TC,  X)
2396    // (bitcast X) <  0 ?  TC : -TC --> copysign(TC, -X)
2397    // (bitcast X) >= 0 ? -TC :  TC --> copysign(TC, -X)
2398    // (bitcast X) >= 0 ?  TC : -TC --> copysign(TC,  X)
2399    // Note: FMF from the select can not be propagated to the new instructions.
2400    if (IsTrueIfSignSet ^ TC->isNegative())
2401      X = Builder.CreateFNeg(X);
2402  
2403    // Canonicalize the magnitude argument as the positive constant since we do
2404    // not care about its sign.
2405    Value *MagArg = ConstantFP::get(SelType, abs(*TC));
2406    Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign,
2407                                            Sel.getType());
2408    return CallInst::Create(F, { MagArg, X });
2409  }
2410  
2411  Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) {
2412    if (!isa<VectorType>(Sel.getType()))
2413      return nullptr;
2414  
2415    Value *Cond = Sel.getCondition();
2416    Value *TVal = Sel.getTrueValue();
2417    Value *FVal = Sel.getFalseValue();
2418    Value *C, *X, *Y;
2419  
2420    if (match(Cond, m_VecReverse(m_Value(C)))) {
2421      auto createSelReverse = [&](Value *C, Value *X, Value *Y) {
2422        Value *V = Builder.CreateSelect(C, X, Y, Sel.getName(), &Sel);
2423        if (auto *I = dyn_cast<Instruction>(V))
2424          I->copyIRFlags(&Sel);
2425        Module *M = Sel.getModule();
2426        Function *F = Intrinsic::getDeclaration(
2427            M, Intrinsic::experimental_vector_reverse, V->getType());
2428        return CallInst::Create(F, V);
2429      };
2430  
2431      if (match(TVal, m_VecReverse(m_Value(X)))) {
2432        // select rev(C), rev(X), rev(Y) --> rev(select C, X, Y)
2433        if (match(FVal, m_VecReverse(m_Value(Y))) &&
2434            (Cond->hasOneUse() || TVal->hasOneUse() || FVal->hasOneUse()))
2435          return createSelReverse(C, X, Y);
2436  
2437        // select rev(C), rev(X), FValSplat --> rev(select C, X, FValSplat)
2438        if ((Cond->hasOneUse() || TVal->hasOneUse()) && isSplatValue(FVal))
2439          return createSelReverse(C, X, FVal);
2440      }
2441      // select rev(C), TValSplat, rev(Y) --> rev(select C, TValSplat, Y)
2442      else if (isSplatValue(TVal) && match(FVal, m_VecReverse(m_Value(Y))) &&
2443               (Cond->hasOneUse() || FVal->hasOneUse()))
2444        return createSelReverse(C, TVal, Y);
2445    }
2446  
2447    auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType());
2448    if (!VecTy)
2449      return nullptr;
2450  
2451    unsigned NumElts = VecTy->getNumElements();
2452    APInt PoisonElts(NumElts, 0);
2453    APInt AllOnesEltMask(APInt::getAllOnes(NumElts));
2454    if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, PoisonElts)) {
2455      if (V != &Sel)
2456        return replaceInstUsesWith(Sel, V);
2457      return &Sel;
2458    }
2459  
2460    // A select of a "select shuffle" with a common operand can be rearranged
2461    // to select followed by "select shuffle". Because of poison, this only works
2462    // in the case of a shuffle with no undefined mask elements.
2463    ArrayRef<int> Mask;
2464    if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2465        !is_contained(Mask, PoisonMaskElem) &&
2466        cast<ShuffleVectorInst>(TVal)->isSelect()) {
2467      if (X == FVal) {
2468        // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X)
2469        Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2470        return new ShuffleVectorInst(X, NewSel, Mask);
2471      }
2472      if (Y == FVal) {
2473        // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y
2474        Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2475        return new ShuffleVectorInst(NewSel, Y, Mask);
2476      }
2477    }
2478    if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2479        !is_contained(Mask, PoisonMaskElem) &&
2480        cast<ShuffleVectorInst>(FVal)->isSelect()) {
2481      if (X == TVal) {
2482        // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y)
2483        Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2484        return new ShuffleVectorInst(X, NewSel, Mask);
2485      }
2486      if (Y == TVal) {
2487        // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y
2488        Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2489        return new ShuffleVectorInst(NewSel, Y, Mask);
2490      }
2491    }
2492  
2493    return nullptr;
2494  }
2495  
2496  static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB,
2497                                          const DominatorTree &DT,
2498                                          InstCombiner::BuilderTy &Builder) {
2499    // Find the block's immediate dominator that ends with a conditional branch
2500    // that matches select's condition (maybe inverted).
2501    auto *IDomNode = DT[BB]->getIDom();
2502    if (!IDomNode)
2503      return nullptr;
2504    BasicBlock *IDom = IDomNode->getBlock();
2505  
2506    Value *Cond = Sel.getCondition();
2507    Value *IfTrue, *IfFalse;
2508    BasicBlock *TrueSucc, *FalseSucc;
2509    if (match(IDom->getTerminator(),
2510              m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc),
2511                   m_BasicBlock(FalseSucc)))) {
2512      IfTrue = Sel.getTrueValue();
2513      IfFalse = Sel.getFalseValue();
2514    } else if (match(IDom->getTerminator(),
2515                     m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc),
2516                          m_BasicBlock(FalseSucc)))) {
2517      IfTrue = Sel.getFalseValue();
2518      IfFalse = Sel.getTrueValue();
2519    } else
2520      return nullptr;
2521  
2522    // Make sure the branches are actually different.
2523    if (TrueSucc == FalseSucc)
2524      return nullptr;
2525  
2526    // We want to replace select %cond, %a, %b with a phi that takes value %a
2527    // for all incoming edges that are dominated by condition `%cond == true`,
2528    // and value %b for edges dominated by condition `%cond == false`. If %a
2529    // or %b are also phis from the same basic block, we can go further and take
2530    // their incoming values from the corresponding blocks.
2531    BasicBlockEdge TrueEdge(IDom, TrueSucc);
2532    BasicBlockEdge FalseEdge(IDom, FalseSucc);
2533    DenseMap<BasicBlock *, Value *> Inputs;
2534    for (auto *Pred : predecessors(BB)) {
2535      // Check implication.
2536      BasicBlockEdge Incoming(Pred, BB);
2537      if (DT.dominates(TrueEdge, Incoming))
2538        Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred);
2539      else if (DT.dominates(FalseEdge, Incoming))
2540        Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred);
2541      else
2542        return nullptr;
2543      // Check availability.
2544      if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred]))
2545        if (!DT.dominates(Insn, Pred->getTerminator()))
2546          return nullptr;
2547    }
2548  
2549    Builder.SetInsertPoint(BB, BB->begin());
2550    auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size());
2551    for (auto *Pred : predecessors(BB))
2552      PN->addIncoming(Inputs[Pred], Pred);
2553    PN->takeName(&Sel);
2554    return PN;
2555  }
2556  
2557  static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT,
2558                                      InstCombiner::BuilderTy &Builder) {
2559    // Try to replace this select with Phi in one of these blocks.
2560    SmallSetVector<BasicBlock *, 4> CandidateBlocks;
2561    CandidateBlocks.insert(Sel.getParent());
2562    for (Value *V : Sel.operands())
2563      if (auto *I = dyn_cast<Instruction>(V))
2564        CandidateBlocks.insert(I->getParent());
2565  
2566    for (BasicBlock *BB : CandidateBlocks)
2567      if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
2568        return PN;
2569    return nullptr;
2570  }
2571  
2572  /// Tries to reduce a pattern that arises when calculating the remainder of the
2573  /// Euclidean division. When the divisor is a power of two and is guaranteed not
2574  /// to be negative, a signed remainder can be folded with a bitwise and.
2575  ///
2576  /// (x % n) < 0 ? (x % n) + n : (x % n)
2577  ///    -> x & (n - 1)
2578  static Instruction *foldSelectWithSRem(SelectInst &SI, InstCombinerImpl &IC,
2579                                         IRBuilderBase &Builder) {
2580    Value *CondVal = SI.getCondition();
2581    Value *TrueVal = SI.getTrueValue();
2582    Value *FalseVal = SI.getFalseValue();
2583  
2584    ICmpInst::Predicate Pred;
2585    Value *Op, *RemRes, *Remainder;
2586    const APInt *C;
2587    bool TrueIfSigned = false;
2588  
2589    if (!(match(CondVal, m_ICmp(Pred, m_Value(RemRes), m_APInt(C))) &&
2590          IC.isSignBitCheck(Pred, *C, TrueIfSigned)))
2591      return nullptr;
2592  
2593    // If the sign bit is not set, we have a SGE/SGT comparison, and the operands
2594    // of the select are inverted.
2595    if (!TrueIfSigned)
2596      std::swap(TrueVal, FalseVal);
2597  
2598    auto FoldToBitwiseAnd = [&](Value *Remainder) -> Instruction * {
2599      Value *Add = Builder.CreateAdd(
2600          Remainder, Constant::getAllOnesValue(RemRes->getType()));
2601      return BinaryOperator::CreateAnd(Op, Add);
2602    };
2603  
2604    // Match the general case:
2605    // %rem = srem i32 %x, %n
2606    // %cnd = icmp slt i32 %rem, 0
2607    // %add = add i32 %rem, %n
2608    // %sel = select i1 %cnd, i32 %add, i32 %rem
2609    if (match(TrueVal, m_Add(m_Specific(RemRes), m_Value(Remainder))) &&
2610        match(RemRes, m_SRem(m_Value(Op), m_Specific(Remainder))) &&
2611        IC.isKnownToBeAPowerOfTwo(Remainder, /*OrZero*/ true) &&
2612        FalseVal == RemRes)
2613      return FoldToBitwiseAnd(Remainder);
2614  
2615    // Match the case where the one arm has been replaced by constant 1:
2616    // %rem = srem i32 %n, 2
2617    // %cnd = icmp slt i32 %rem, 0
2618    // %sel = select i1 %cnd, i32 1, i32 %rem
2619    if (match(TrueVal, m_One()) &&
2620        match(RemRes, m_SRem(m_Value(Op), m_SpecificInt(2))) &&
2621        FalseVal == RemRes)
2622      return FoldToBitwiseAnd(ConstantInt::get(RemRes->getType(), 2));
2623  
2624    return nullptr;
2625  }
2626  
2627  static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
2628    FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition());
2629    if (!FI)
2630      return nullptr;
2631  
2632    Value *Cond = FI->getOperand(0);
2633    Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
2634  
2635    //   select (freeze(x == y)), x, y --> y
2636    //   select (freeze(x != y)), x, y --> x
2637    // The freeze should be only used by this select. Otherwise, remaining uses of
2638    // the freeze can observe a contradictory value.
2639    //   c = freeze(x == y)   ; Let's assume that y = poison & x = 42; c is 0 or 1
2640    //   a = select c, x, y   ;
2641    //   f(a, c)              ; f(poison, 1) cannot happen, but if a is folded
2642    //                        ; to y, this can happen.
2643    CmpInst::Predicate Pred;
2644    if (FI->hasOneUse() &&
2645        match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) &&
2646        (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) {
2647      return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
2648    }
2649  
2650    return nullptr;
2651  }
2652  
2653  Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op,
2654                                                                   SelectInst &SI,
2655                                                                   bool IsAnd) {
2656    Value *CondVal = SI.getCondition();
2657    Value *A = SI.getTrueValue();
2658    Value *B = SI.getFalseValue();
2659  
2660    assert(Op->getType()->isIntOrIntVectorTy(1) &&
2661           "Op must be either i1 or vector of i1.");
2662  
2663    std::optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd);
2664    if (!Res)
2665      return nullptr;
2666  
2667    Value *Zero = Constant::getNullValue(A->getType());
2668    Value *One = Constant::getAllOnesValue(A->getType());
2669  
2670    if (*Res == true) {
2671      if (IsAnd)
2672        // select op, (select cond, A, B), false => select op, A, false
2673        // and    op, (select cond, A, B)        => select op, A, false
2674        //   if op = true implies condval = true.
2675        return SelectInst::Create(Op, A, Zero);
2676      else
2677        // select op, true, (select cond, A, B) => select op, true, A
2678        // or     op, (select cond, A, B)       => select op, true, A
2679        //   if op = false implies condval = true.
2680        return SelectInst::Create(Op, One, A);
2681    } else {
2682      if (IsAnd)
2683        // select op, (select cond, A, B), false => select op, B, false
2684        // and    op, (select cond, A, B)        => select op, B, false
2685        //   if op = true implies condval = false.
2686        return SelectInst::Create(Op, B, Zero);
2687      else
2688        // select op, true, (select cond, A, B) => select op, true, B
2689        // or     op, (select cond, A, B)       => select op, true, B
2690        //   if op = false implies condval = false.
2691        return SelectInst::Create(Op, One, B);
2692    }
2693  }
2694  
2695  // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2696  // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work.
2697  static Instruction *foldSelectWithFCmpToFabs(SelectInst &SI,
2698                                               InstCombinerImpl &IC) {
2699    Value *CondVal = SI.getCondition();
2700  
2701    bool ChangedFMF = false;
2702    for (bool Swap : {false, true}) {
2703      Value *TrueVal = SI.getTrueValue();
2704      Value *X = SI.getFalseValue();
2705      CmpInst::Predicate Pred;
2706  
2707      if (Swap)
2708        std::swap(TrueVal, X);
2709  
2710      if (!match(CondVal, m_FCmp(Pred, m_Specific(X), m_AnyZeroFP())))
2711        continue;
2712  
2713      // fold (X <= +/-0.0) ? (0.0 - X) : X to fabs(X), when 'Swap' is false
2714      // fold (X >  +/-0.0) ? X : (0.0 - X) to fabs(X), when 'Swap' is true
2715      if (match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) {
2716        if (!Swap && (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2717          Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2718          return IC.replaceInstUsesWith(SI, Fabs);
2719        }
2720        if (Swap && (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2721          Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2722          return IC.replaceInstUsesWith(SI, Fabs);
2723        }
2724      }
2725  
2726      if (!match(TrueVal, m_FNeg(m_Specific(X))))
2727        return nullptr;
2728  
2729      // Forward-propagate nnan and ninf from the fneg to the select.
2730      // If all inputs are not those values, then the select is not either.
2731      // Note: nsz is defined differently, so it may not be correct to propagate.
2732      FastMathFlags FMF = cast<FPMathOperator>(TrueVal)->getFastMathFlags();
2733      if (FMF.noNaNs() && !SI.hasNoNaNs()) {
2734        SI.setHasNoNaNs(true);
2735        ChangedFMF = true;
2736      }
2737      if (FMF.noInfs() && !SI.hasNoInfs()) {
2738        SI.setHasNoInfs(true);
2739        ChangedFMF = true;
2740      }
2741  
2742      // With nsz, when 'Swap' is false:
2743      // fold (X < +/-0.0) ? -X : X or (X <= +/-0.0) ? -X : X to fabs(X)
2744      // fold (X > +/-0.0) ? -X : X or (X >= +/-0.0) ? -X : X to -fabs(x)
2745      // when 'Swap' is true:
2746      // fold (X > +/-0.0) ? X : -X or (X >= +/-0.0) ? X : -X to fabs(X)
2747      // fold (X < +/-0.0) ? X : -X or (X <= +/-0.0) ? X : -X to -fabs(X)
2748      //
2749      // Note: We require "nnan" for this fold because fcmp ignores the signbit
2750      //       of NAN, but IEEE-754 specifies the signbit of NAN values with
2751      //       fneg/fabs operations.
2752      if (!SI.hasNoSignedZeros() || !SI.hasNoNaNs())
2753        return nullptr;
2754  
2755      if (Swap)
2756        Pred = FCmpInst::getSwappedPredicate(Pred);
2757  
2758      bool IsLTOrLE = Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2759                      Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE;
2760      bool IsGTOrGE = Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2761                      Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE;
2762  
2763      if (IsLTOrLE) {
2764        Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2765        return IC.replaceInstUsesWith(SI, Fabs);
2766      }
2767      if (IsGTOrGE) {
2768        Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2769        Instruction *NewFNeg = UnaryOperator::CreateFNeg(Fabs);
2770        NewFNeg->setFastMathFlags(SI.getFastMathFlags());
2771        return NewFNeg;
2772      }
2773    }
2774  
2775    return ChangedFMF ? &SI : nullptr;
2776  }
2777  
2778  // Match the following IR pattern:
2779  //   %x.lowbits = and i8 %x, %lowbitmask
2780  //   %x.lowbits.are.zero = icmp eq i8 %x.lowbits, 0
2781  //   %x.biased = add i8 %x, %bias
2782  //   %x.biased.highbits = and i8 %x.biased, %highbitmask
2783  //   %x.roundedup = select i1 %x.lowbits.are.zero, i8 %x, i8 %x.biased.highbits
2784  // Define:
2785  //   %alignment = add i8 %lowbitmask, 1
2786  // Iff 1. an %alignment is a power-of-two (aka, %lowbitmask is a low bit mask)
2787  // and 2. %bias is equal to either %lowbitmask or %alignment,
2788  // and 3. %highbitmask is equal to ~%lowbitmask (aka, to -%alignment)
2789  // then this pattern can be transformed into:
2790  //   %x.offset = add i8 %x, %lowbitmask
2791  //   %x.roundedup = and i8 %x.offset, %highbitmask
2792  static Value *
2793  foldRoundUpIntegerWithPow2Alignment(SelectInst &SI,
2794                                      InstCombiner::BuilderTy &Builder) {
2795    Value *Cond = SI.getCondition();
2796    Value *X = SI.getTrueValue();
2797    Value *XBiasedHighBits = SI.getFalseValue();
2798  
2799    ICmpInst::Predicate Pred;
2800    Value *XLowBits;
2801    if (!match(Cond, m_ICmp(Pred, m_Value(XLowBits), m_ZeroInt())) ||
2802        !ICmpInst::isEquality(Pred))
2803      return nullptr;
2804  
2805    if (Pred == ICmpInst::Predicate::ICMP_NE)
2806      std::swap(X, XBiasedHighBits);
2807  
2808    // FIXME: we could support non non-splats here.
2809  
2810    const APInt *LowBitMaskCst;
2811    if (!match(XLowBits, m_And(m_Specific(X), m_APIntAllowUndef(LowBitMaskCst))))
2812      return nullptr;
2813  
2814    // Match even if the AND and ADD are swapped.
2815    const APInt *BiasCst, *HighBitMaskCst;
2816    if (!match(XBiasedHighBits,
2817               m_And(m_Add(m_Specific(X), m_APIntAllowUndef(BiasCst)),
2818                     m_APIntAllowUndef(HighBitMaskCst))) &&
2819        !match(XBiasedHighBits,
2820               m_Add(m_And(m_Specific(X), m_APIntAllowUndef(HighBitMaskCst)),
2821                     m_APIntAllowUndef(BiasCst))))
2822      return nullptr;
2823  
2824    if (!LowBitMaskCst->isMask())
2825      return nullptr;
2826  
2827    APInt InvertedLowBitMaskCst = ~*LowBitMaskCst;
2828    if (InvertedLowBitMaskCst != *HighBitMaskCst)
2829      return nullptr;
2830  
2831    APInt AlignmentCst = *LowBitMaskCst + 1;
2832  
2833    if (*BiasCst != AlignmentCst && *BiasCst != *LowBitMaskCst)
2834      return nullptr;
2835  
2836    if (!XBiasedHighBits->hasOneUse()) {
2837      if (*BiasCst == *LowBitMaskCst)
2838        return XBiasedHighBits;
2839      return nullptr;
2840    }
2841  
2842    // FIXME: could we preserve undef's here?
2843    Type *Ty = X->getType();
2844    Value *XOffset = Builder.CreateAdd(X, ConstantInt::get(Ty, *LowBitMaskCst),
2845                                       X->getName() + ".biased");
2846    Value *R = Builder.CreateAnd(XOffset, ConstantInt::get(Ty, *HighBitMaskCst));
2847    R->takeName(&SI);
2848    return R;
2849  }
2850  
2851  namespace {
2852  struct DecomposedSelect {
2853    Value *Cond = nullptr;
2854    Value *TrueVal = nullptr;
2855    Value *FalseVal = nullptr;
2856  };
2857  } // namespace
2858  
2859  /// Look for patterns like
2860  ///   %outer.cond = select i1 %inner.cond, i1 %alt.cond, i1 false
2861  ///   %inner.sel = select i1 %inner.cond, i8 %inner.sel.t, i8 %inner.sel.f
2862  ///   %outer.sel = select i1 %outer.cond, i8 %outer.sel.t, i8 %inner.sel
2863  /// and rewrite it as
2864  ///   %inner.sel = select i1 %cond.alternative, i8 %sel.outer.t, i8 %sel.inner.t
2865  ///   %sel.outer = select i1 %cond.inner, i8 %inner.sel, i8 %sel.inner.f
2866  static Instruction *foldNestedSelects(SelectInst &OuterSelVal,
2867                                        InstCombiner::BuilderTy &Builder) {
2868    // We must start with a `select`.
2869    DecomposedSelect OuterSel;
2870    match(&OuterSelVal,
2871          m_Select(m_Value(OuterSel.Cond), m_Value(OuterSel.TrueVal),
2872                   m_Value(OuterSel.FalseVal)));
2873  
2874    // Canonicalize inversion of the outermost `select`'s condition.
2875    if (match(OuterSel.Cond, m_Not(m_Value(OuterSel.Cond))))
2876      std::swap(OuterSel.TrueVal, OuterSel.FalseVal);
2877  
2878    // The condition of the outermost select must be an `and`/`or`.
2879    if (!match(OuterSel.Cond, m_c_LogicalOp(m_Value(), m_Value())))
2880      return nullptr;
2881  
2882    // Depending on the logical op, inner select might be in different hand.
2883    bool IsAndVariant = match(OuterSel.Cond, m_LogicalAnd());
2884    Value *InnerSelVal = IsAndVariant ? OuterSel.FalseVal : OuterSel.TrueVal;
2885  
2886    // Profitability check - avoid increasing instruction count.
2887    if (none_of(ArrayRef<Value *>({OuterSelVal.getCondition(), InnerSelVal}),
2888                [](Value *V) { return V->hasOneUse(); }))
2889      return nullptr;
2890  
2891    // The appropriate hand of the outermost `select` must be a select itself.
2892    DecomposedSelect InnerSel;
2893    if (!match(InnerSelVal,
2894               m_Select(m_Value(InnerSel.Cond), m_Value(InnerSel.TrueVal),
2895                        m_Value(InnerSel.FalseVal))))
2896      return nullptr;
2897  
2898    // Canonicalize inversion of the innermost `select`'s condition.
2899    if (match(InnerSel.Cond, m_Not(m_Value(InnerSel.Cond))))
2900      std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
2901  
2902    Value *AltCond = nullptr;
2903    auto matchOuterCond = [OuterSel, IsAndVariant, &AltCond](auto m_InnerCond) {
2904      // An unsimplified select condition can match both LogicalAnd and LogicalOr
2905      // (select true, true, false). Since below we assume that LogicalAnd implies
2906      // InnerSel match the FVal and vice versa for LogicalOr, we can't match the
2907      // alternative pattern here.
2908      return IsAndVariant ? match(OuterSel.Cond,
2909                                  m_c_LogicalAnd(m_InnerCond, m_Value(AltCond)))
2910                          : match(OuterSel.Cond,
2911                                  m_c_LogicalOr(m_InnerCond, m_Value(AltCond)));
2912    };
2913  
2914    // Finally, match the condition that was driving the outermost `select`,
2915    // it should be a logical operation between the condition that was driving
2916    // the innermost `select` (after accounting for the possible inversions
2917    // of the condition), and some other condition.
2918    if (matchOuterCond(m_Specific(InnerSel.Cond))) {
2919      // Done!
2920    } else if (Value * NotInnerCond; matchOuterCond(m_CombineAnd(
2921                   m_Not(m_Specific(InnerSel.Cond)), m_Value(NotInnerCond)))) {
2922      // Done!
2923      std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
2924      InnerSel.Cond = NotInnerCond;
2925    } else // Not the pattern we were looking for.
2926      return nullptr;
2927  
2928    Value *SelInner = Builder.CreateSelect(
2929        AltCond, IsAndVariant ? OuterSel.TrueVal : InnerSel.FalseVal,
2930        IsAndVariant ? InnerSel.TrueVal : OuterSel.FalseVal);
2931    SelInner->takeName(InnerSelVal);
2932    return SelectInst::Create(InnerSel.Cond,
2933                              IsAndVariant ? SelInner : InnerSel.TrueVal,
2934                              !IsAndVariant ? SelInner : InnerSel.FalseVal);
2935  }
2936  
2937  Instruction *InstCombinerImpl::foldSelectOfBools(SelectInst &SI) {
2938    Value *CondVal = SI.getCondition();
2939    Value *TrueVal = SI.getTrueValue();
2940    Value *FalseVal = SI.getFalseValue();
2941    Type *SelType = SI.getType();
2942  
2943    // Avoid potential infinite loops by checking for non-constant condition.
2944    // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()?
2945    //       Scalar select must have simplified?
2946    if (!SelType->isIntOrIntVectorTy(1) || isa<Constant>(CondVal) ||
2947        TrueVal->getType() != CondVal->getType())
2948      return nullptr;
2949  
2950    auto *One = ConstantInt::getTrue(SelType);
2951    auto *Zero = ConstantInt::getFalse(SelType);
2952    Value *A, *B, *C, *D;
2953  
2954    // Folding select to and/or i1 isn't poison safe in general. impliesPoison
2955    // checks whether folding it does not convert a well-defined value into
2956    // poison.
2957    if (match(TrueVal, m_One())) {
2958      if (impliesPoison(FalseVal, CondVal)) {
2959        // Change: A = select B, true, C --> A = or B, C
2960        return BinaryOperator::CreateOr(CondVal, FalseVal);
2961      }
2962  
2963      if (auto *LHS = dyn_cast<FCmpInst>(CondVal))
2964        if (auto *RHS = dyn_cast<FCmpInst>(FalseVal))
2965          if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ false,
2966                                          /*IsSelectLogical*/ true))
2967            return replaceInstUsesWith(SI, V);
2968  
2969      // (A && B) || (C && B) --> (A || C) && B
2970      if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) &&
2971          match(FalseVal, m_LogicalAnd(m_Value(C), m_Value(D))) &&
2972          (CondVal->hasOneUse() || FalseVal->hasOneUse())) {
2973        bool CondLogicAnd = isa<SelectInst>(CondVal);
2974        bool FalseLogicAnd = isa<SelectInst>(FalseVal);
2975        auto AndFactorization = [&](Value *Common, Value *InnerCond,
2976                                    Value *InnerVal,
2977                                    bool SelFirst = false) -> Instruction * {
2978          Value *InnerSel = Builder.CreateSelect(InnerCond, One, InnerVal);
2979          if (SelFirst)
2980            std::swap(Common, InnerSel);
2981          if (FalseLogicAnd || (CondLogicAnd && Common == A))
2982            return SelectInst::Create(Common, InnerSel, Zero);
2983          else
2984            return BinaryOperator::CreateAnd(Common, InnerSel);
2985        };
2986  
2987        if (A == C)
2988          return AndFactorization(A, B, D);
2989        if (A == D)
2990          return AndFactorization(A, B, C);
2991        if (B == C)
2992          return AndFactorization(B, A, D);
2993        if (B == D)
2994          return AndFactorization(B, A, C, CondLogicAnd && FalseLogicAnd);
2995      }
2996    }
2997  
2998    if (match(FalseVal, m_Zero())) {
2999      if (impliesPoison(TrueVal, CondVal)) {
3000        // Change: A = select B, C, false --> A = and B, C
3001        return BinaryOperator::CreateAnd(CondVal, TrueVal);
3002      }
3003  
3004      if (auto *LHS = dyn_cast<FCmpInst>(CondVal))
3005        if (auto *RHS = dyn_cast<FCmpInst>(TrueVal))
3006          if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ true,
3007                                          /*IsSelectLogical*/ true))
3008            return replaceInstUsesWith(SI, V);
3009  
3010      // (A || B) && (C || B) --> (A && C) || B
3011      if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
3012          match(TrueVal, m_LogicalOr(m_Value(C), m_Value(D))) &&
3013          (CondVal->hasOneUse() || TrueVal->hasOneUse())) {
3014        bool CondLogicOr = isa<SelectInst>(CondVal);
3015        bool TrueLogicOr = isa<SelectInst>(TrueVal);
3016        auto OrFactorization = [&](Value *Common, Value *InnerCond,
3017                                   Value *InnerVal,
3018                                   bool SelFirst = false) -> Instruction * {
3019          Value *InnerSel = Builder.CreateSelect(InnerCond, InnerVal, Zero);
3020          if (SelFirst)
3021            std::swap(Common, InnerSel);
3022          if (TrueLogicOr || (CondLogicOr && Common == A))
3023            return SelectInst::Create(Common, One, InnerSel);
3024          else
3025            return BinaryOperator::CreateOr(Common, InnerSel);
3026        };
3027  
3028        if (A == C)
3029          return OrFactorization(A, B, D);
3030        if (A == D)
3031          return OrFactorization(A, B, C);
3032        if (B == C)
3033          return OrFactorization(B, A, D);
3034        if (B == D)
3035          return OrFactorization(B, A, C, CondLogicOr && TrueLogicOr);
3036      }
3037    }
3038  
3039    // We match the "full" 0 or 1 constant here to avoid a potential infinite
3040    // loop with vectors that may have undefined/poison elements.
3041    // select a, false, b -> select !a, b, false
3042    if (match(TrueVal, m_Specific(Zero))) {
3043      Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
3044      return SelectInst::Create(NotCond, FalseVal, Zero);
3045    }
3046    // select a, b, true -> select !a, true, b
3047    if (match(FalseVal, m_Specific(One))) {
3048      Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
3049      return SelectInst::Create(NotCond, One, TrueVal);
3050    }
3051  
3052    // DeMorgan in select form: !a && !b --> !(a || b)
3053    // select !a, !b, false --> not (select a, true, b)
3054    if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
3055        (CondVal->hasOneUse() || TrueVal->hasOneUse()) &&
3056        !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
3057      return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B));
3058  
3059    // DeMorgan in select form: !a || !b --> !(a && b)
3060    // select !a, true, !b --> not (select a, b, false)
3061    if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
3062        (CondVal->hasOneUse() || FalseVal->hasOneUse()) &&
3063        !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
3064      return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero));
3065  
3066    // select (select a, true, b), true, b -> select a, true, b
3067    if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
3068        match(TrueVal, m_One()) && match(FalseVal, m_Specific(B)))
3069      return replaceOperand(SI, 0, A);
3070    // select (select a, b, false), b, false -> select a, b, false
3071    if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
3072        match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero()))
3073      return replaceOperand(SI, 0, A);
3074  
3075    // ~(A & B) & (A | B) --> A ^ B
3076    if (match(&SI, m_c_LogicalAnd(m_Not(m_LogicalAnd(m_Value(A), m_Value(B))),
3077                                  m_c_LogicalOr(m_Deferred(A), m_Deferred(B)))))
3078      return BinaryOperator::CreateXor(A, B);
3079  
3080    // select (~a | c), a, b -> select a, (select c, true, b), false
3081    if (match(CondVal,
3082              m_OneUse(m_c_Or(m_Not(m_Specific(TrueVal)), m_Value(C))))) {
3083      Value *OrV = Builder.CreateSelect(C, One, FalseVal);
3084      return SelectInst::Create(TrueVal, OrV, Zero);
3085    }
3086    // select (c & b), a, b -> select b, (select ~c, true, a), false
3087    if (match(CondVal, m_OneUse(m_c_And(m_Value(C), m_Specific(FalseVal))))) {
3088      if (Value *NotC = getFreelyInverted(C, C->hasOneUse(), &Builder)) {
3089        Value *OrV = Builder.CreateSelect(NotC, One, TrueVal);
3090        return SelectInst::Create(FalseVal, OrV, Zero);
3091      }
3092    }
3093    // select (a | c), a, b -> select a, true, (select ~c, b, false)
3094    if (match(CondVal, m_OneUse(m_c_Or(m_Specific(TrueVal), m_Value(C))))) {
3095      if (Value *NotC = getFreelyInverted(C, C->hasOneUse(), &Builder)) {
3096        Value *AndV = Builder.CreateSelect(NotC, FalseVal, Zero);
3097        return SelectInst::Create(TrueVal, One, AndV);
3098      }
3099    }
3100    // select (c & ~b), a, b -> select b, true, (select c, a, false)
3101    if (match(CondVal,
3102              m_OneUse(m_c_And(m_Value(C), m_Not(m_Specific(FalseVal)))))) {
3103      Value *AndV = Builder.CreateSelect(C, TrueVal, Zero);
3104      return SelectInst::Create(FalseVal, One, AndV);
3105    }
3106  
3107    if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) {
3108      Use *Y = nullptr;
3109      bool IsAnd = match(FalseVal, m_Zero()) ? true : false;
3110      Value *Op1 = IsAnd ? TrueVal : FalseVal;
3111      if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) {
3112        auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr");
3113        InsertNewInstBefore(FI, cast<Instruction>(Y->getUser())->getIterator());
3114        replaceUse(*Y, FI);
3115        return replaceInstUsesWith(SI, Op1);
3116      }
3117  
3118      if (auto *Op1SI = dyn_cast<SelectInst>(Op1))
3119        if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI,
3120                                                        /* IsAnd */ IsAnd))
3121          return I;
3122  
3123      if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal))
3124        if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1))
3125          if (auto *V = foldAndOrOfICmps(ICmp0, ICmp1, SI, IsAnd,
3126                                         /* IsLogical */ true))
3127            return replaceInstUsesWith(SI, V);
3128    }
3129  
3130    // select (a || b), c, false -> select a, c, false
3131    // select c, (a || b), false -> select c, a, false
3132    //   if c implies that b is false.
3133    if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
3134        match(FalseVal, m_Zero())) {
3135      std::optional<bool> Res = isImpliedCondition(TrueVal, B, DL);
3136      if (Res && *Res == false)
3137        return replaceOperand(SI, 0, A);
3138    }
3139    if (match(TrueVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
3140        match(FalseVal, m_Zero())) {
3141      std::optional<bool> Res = isImpliedCondition(CondVal, B, DL);
3142      if (Res && *Res == false)
3143        return replaceOperand(SI, 1, A);
3144    }
3145    // select c, true, (a && b)  -> select c, true, a
3146    // select (a && b), true, c  -> select a, true, c
3147    //   if c = false implies that b = true
3148    if (match(TrueVal, m_One()) &&
3149        match(FalseVal, m_LogicalAnd(m_Value(A), m_Value(B)))) {
3150      std::optional<bool> Res = isImpliedCondition(CondVal, B, DL, false);
3151      if (Res && *Res == true)
3152        return replaceOperand(SI, 2, A);
3153    }
3154    if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) &&
3155        match(TrueVal, m_One())) {
3156      std::optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false);
3157      if (Res && *Res == true)
3158        return replaceOperand(SI, 0, A);
3159    }
3160  
3161    if (match(TrueVal, m_One())) {
3162      Value *C;
3163  
3164      // (C && A) || (!C && B) --> sel C, A, B
3165      // (A && C) || (!C && B) --> sel C, A, B
3166      // (C && A) || (B && !C) --> sel C, A, B
3167      // (A && C) || (B && !C) --> sel C, A, B (may require freeze)
3168      if (match(FalseVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(B))) &&
3169          match(CondVal, m_c_LogicalAnd(m_Specific(C), m_Value(A)))) {
3170        auto *SelCond = dyn_cast<SelectInst>(CondVal);
3171        auto *SelFVal = dyn_cast<SelectInst>(FalseVal);
3172        bool MayNeedFreeze = SelCond && SelFVal &&
3173                             match(SelFVal->getTrueValue(),
3174                                   m_Not(m_Specific(SelCond->getTrueValue())));
3175        if (MayNeedFreeze)
3176          C = Builder.CreateFreeze(C);
3177        return SelectInst::Create(C, A, B);
3178      }
3179  
3180      // (!C && A) || (C && B) --> sel C, B, A
3181      // (A && !C) || (C && B) --> sel C, B, A
3182      // (!C && A) || (B && C) --> sel C, B, A
3183      // (A && !C) || (B && C) --> sel C, B, A (may require freeze)
3184      if (match(CondVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(A))) &&
3185          match(FalseVal, m_c_LogicalAnd(m_Specific(C), m_Value(B)))) {
3186        auto *SelCond = dyn_cast<SelectInst>(CondVal);
3187        auto *SelFVal = dyn_cast<SelectInst>(FalseVal);
3188        bool MayNeedFreeze = SelCond && SelFVal &&
3189                             match(SelCond->getTrueValue(),
3190                                   m_Not(m_Specific(SelFVal->getTrueValue())));
3191        if (MayNeedFreeze)
3192          C = Builder.CreateFreeze(C);
3193        return SelectInst::Create(C, B, A);
3194      }
3195    }
3196  
3197    return nullptr;
3198  }
3199  
3200  // Return true if we can safely remove the select instruction for std::bit_ceil
3201  // pattern.
3202  static bool isSafeToRemoveBitCeilSelect(ICmpInst::Predicate Pred, Value *Cond0,
3203                                          const APInt *Cond1, Value *CtlzOp,
3204                                          unsigned BitWidth,
3205                                          bool &ShouldDropNUW) {
3206    // The challenge in recognizing std::bit_ceil(X) is that the operand is used
3207    // for the CTLZ proper and select condition, each possibly with some
3208    // operation like add and sub.
3209    //
3210    // Our aim is to make sure that -ctlz & (BitWidth - 1) == 0 even when the
3211    // select instruction would select 1, which allows us to get rid of the select
3212    // instruction.
3213    //
3214    // To see if we can do so, we do some symbolic execution with ConstantRange.
3215    // Specifically, we compute the range of values that Cond0 could take when
3216    // Cond == false.  Then we successively transform the range until we obtain
3217    // the range of values that CtlzOp could take.
3218    //
3219    // Conceptually, we follow the def-use chain backward from Cond0 while
3220    // transforming the range for Cond0 until we meet the common ancestor of Cond0
3221    // and CtlzOp.  Then we follow the def-use chain forward until we obtain the
3222    // range for CtlzOp.  That said, we only follow at most one ancestor from
3223    // Cond0.  Likewise, we only follow at most one ancestor from CtrlOp.
3224  
3225    ConstantRange CR = ConstantRange::makeExactICmpRegion(
3226        CmpInst::getInversePredicate(Pred), *Cond1);
3227  
3228    ShouldDropNUW = false;
3229  
3230    // Match the operation that's used to compute CtlzOp from CommonAncestor.  If
3231    // CtlzOp == CommonAncestor, return true as no operation is needed.  If a
3232    // match is found, execute the operation on CR, update CR, and return true.
3233    // Otherwise, return false.
3234    auto MatchForward = [&](Value *CommonAncestor) {
3235      const APInt *C = nullptr;
3236      if (CtlzOp == CommonAncestor)
3237        return true;
3238      if (match(CtlzOp, m_Add(m_Specific(CommonAncestor), m_APInt(C)))) {
3239        CR = CR.add(*C);
3240        return true;
3241      }
3242      if (match(CtlzOp, m_Sub(m_APInt(C), m_Specific(CommonAncestor)))) {
3243        ShouldDropNUW = true;
3244        CR = ConstantRange(*C).sub(CR);
3245        return true;
3246      }
3247      if (match(CtlzOp, m_Not(m_Specific(CommonAncestor)))) {
3248        CR = CR.binaryNot();
3249        return true;
3250      }
3251      return false;
3252    };
3253  
3254    const APInt *C = nullptr;
3255    Value *CommonAncestor;
3256    if (MatchForward(Cond0)) {
3257      // Cond0 is either CtlzOp or CtlzOp's parent.  CR has been updated.
3258    } else if (match(Cond0, m_Add(m_Value(CommonAncestor), m_APInt(C)))) {
3259      CR = CR.sub(*C);
3260      if (!MatchForward(CommonAncestor))
3261        return false;
3262      // Cond0's parent is either CtlzOp or CtlzOp's parent.  CR has been updated.
3263    } else {
3264      return false;
3265    }
3266  
3267    // Return true if all the values in the range are either 0 or negative (if
3268    // treated as signed).  We do so by evaluating:
3269    //
3270    //   CR - 1 u>= (1 << BitWidth) - 1.
3271    APInt IntMax = APInt::getSignMask(BitWidth) - 1;
3272    CR = CR.sub(APInt(BitWidth, 1));
3273    return CR.icmp(ICmpInst::ICMP_UGE, IntMax);
3274  }
3275  
3276  // Transform the std::bit_ceil(X) pattern like:
3277  //
3278  //   %dec = add i32 %x, -1
3279  //   %ctlz = tail call i32 @llvm.ctlz.i32(i32 %dec, i1 false)
3280  //   %sub = sub i32 32, %ctlz
3281  //   %shl = shl i32 1, %sub
3282  //   %ugt = icmp ugt i32 %x, 1
3283  //   %sel = select i1 %ugt, i32 %shl, i32 1
3284  //
3285  // into:
3286  //
3287  //   %dec = add i32 %x, -1
3288  //   %ctlz = tail call i32 @llvm.ctlz.i32(i32 %dec, i1 false)
3289  //   %neg = sub i32 0, %ctlz
3290  //   %masked = and i32 %ctlz, 31
3291  //   %shl = shl i32 1, %sub
3292  //
3293  // Note that the select is optimized away while the shift count is masked with
3294  // 31.  We handle some variations of the input operand like std::bit_ceil(X +
3295  // 1).
3296  static Instruction *foldBitCeil(SelectInst &SI, IRBuilderBase &Builder) {
3297    Type *SelType = SI.getType();
3298    unsigned BitWidth = SelType->getScalarSizeInBits();
3299  
3300    Value *FalseVal = SI.getFalseValue();
3301    Value *TrueVal = SI.getTrueValue();
3302    ICmpInst::Predicate Pred;
3303    const APInt *Cond1;
3304    Value *Cond0, *Ctlz, *CtlzOp;
3305    if (!match(SI.getCondition(), m_ICmp(Pred, m_Value(Cond0), m_APInt(Cond1))))
3306      return nullptr;
3307  
3308    if (match(TrueVal, m_One())) {
3309      std::swap(FalseVal, TrueVal);
3310      Pred = CmpInst::getInversePredicate(Pred);
3311    }
3312  
3313    bool ShouldDropNUW;
3314  
3315    if (!match(FalseVal, m_One()) ||
3316        !match(TrueVal,
3317               m_OneUse(m_Shl(m_One(), m_OneUse(m_Sub(m_SpecificInt(BitWidth),
3318                                                      m_Value(Ctlz)))))) ||
3319        !match(Ctlz, m_Intrinsic<Intrinsic::ctlz>(m_Value(CtlzOp), m_Zero())) ||
3320        !isSafeToRemoveBitCeilSelect(Pred, Cond0, Cond1, CtlzOp, BitWidth,
3321                                     ShouldDropNUW))
3322      return nullptr;
3323  
3324    if (ShouldDropNUW)
3325      cast<Instruction>(CtlzOp)->setHasNoUnsignedWrap(false);
3326  
3327    // Build 1 << (-CTLZ & (BitWidth-1)).  The negation likely corresponds to a
3328    // single hardware instruction as opposed to BitWidth - CTLZ, where BitWidth
3329    // is an integer constant.  Masking with BitWidth-1 comes free on some
3330    // hardware as part of the shift instruction.
3331    Value *Neg = Builder.CreateNeg(Ctlz);
3332    Value *Masked =
3333        Builder.CreateAnd(Neg, ConstantInt::get(SelType, BitWidth - 1));
3334    return BinaryOperator::Create(Instruction::Shl, ConstantInt::get(SelType, 1),
3335                                  Masked);
3336  }
3337  
3338  bool InstCombinerImpl::fmulByZeroIsZero(Value *MulVal, FastMathFlags FMF,
3339                                          const Instruction *CtxI) const {
3340    KnownFPClass Known = computeKnownFPClass(MulVal, FMF, fcNegative, CtxI);
3341  
3342    return Known.isKnownNeverNaN() && Known.isKnownNeverInfinity() &&
3343           (FMF.noSignedZeros() || Known.signBitIsZeroOrNaN());
3344  }
3345  
3346  static bool matchFMulByZeroIfResultEqZero(InstCombinerImpl &IC, Value *Cmp0,
3347                                            Value *Cmp1, Value *TrueVal,
3348                                            Value *FalseVal, Instruction &CtxI,
3349                                            bool SelectIsNSZ) {
3350    Value *MulRHS;
3351    if (match(Cmp1, m_PosZeroFP()) &&
3352        match(TrueVal, m_c_FMul(m_Specific(Cmp0), m_Value(MulRHS)))) {
3353      FastMathFlags FMF = cast<FPMathOperator>(TrueVal)->getFastMathFlags();
3354      // nsz must be on the select, it must be ignored on the multiply. We
3355      // need nnan and ninf on the multiply for the other value.
3356      FMF.setNoSignedZeros(SelectIsNSZ);
3357      return IC.fmulByZeroIsZero(MulRHS, FMF, &CtxI);
3358    }
3359  
3360    return false;
3361  }
3362  
3363  Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) {
3364    Value *CondVal = SI.getCondition();
3365    Value *TrueVal = SI.getTrueValue();
3366    Value *FalseVal = SI.getFalseValue();
3367    Type *SelType = SI.getType();
3368  
3369    if (Value *V = simplifySelectInst(CondVal, TrueVal, FalseVal,
3370                                      SQ.getWithInstruction(&SI)))
3371      return replaceInstUsesWith(SI, V);
3372  
3373    if (Instruction *I = canonicalizeSelectToShuffle(SI))
3374      return I;
3375  
3376    if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this))
3377      return I;
3378  
3379    // If the type of select is not an integer type or if the condition and
3380    // the selection type are not both scalar nor both vector types, there is no
3381    // point in attempting to match these patterns.
3382    Type *CondType = CondVal->getType();
3383    if (!isa<Constant>(CondVal) && SelType->isIntOrIntVectorTy() &&
3384        CondType->isVectorTy() == SelType->isVectorTy()) {
3385      if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal,
3386                                            ConstantInt::getTrue(CondType), SQ,
3387                                            /* AllowRefinement */ true))
3388        return replaceOperand(SI, 1, S);
3389  
3390      if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal,
3391                                            ConstantInt::getFalse(CondType), SQ,
3392                                            /* AllowRefinement */ true))
3393        return replaceOperand(SI, 2, S);
3394    }
3395  
3396    if (Instruction *R = foldSelectOfBools(SI))
3397      return R;
3398  
3399    // Selecting between two integer or vector splat integer constants?
3400    //
3401    // Note that we don't handle a scalar select of vectors:
3402    // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
3403    // because that may need 3 instructions to splat the condition value:
3404    // extend, insertelement, shufflevector.
3405    //
3406    // Do not handle i1 TrueVal and FalseVal otherwise would result in
3407    // zext/sext i1 to i1.
3408    if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) &&
3409        CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
3410      // select C, 1, 0 -> zext C to int
3411      if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
3412        return new ZExtInst(CondVal, SelType);
3413  
3414      // select C, -1, 0 -> sext C to int
3415      if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
3416        return new SExtInst(CondVal, SelType);
3417  
3418      // select C, 0, 1 -> zext !C to int
3419      if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
3420        Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
3421        return new ZExtInst(NotCond, SelType);
3422      }
3423  
3424      // select C, 0, -1 -> sext !C to int
3425      if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
3426        Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
3427        return new SExtInst(NotCond, SelType);
3428      }
3429    }
3430  
3431    auto *SIFPOp = dyn_cast<FPMathOperator>(&SI);
3432  
3433    if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) {
3434      FCmpInst::Predicate Pred = FCmp->getPredicate();
3435      Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1);
3436      // Are we selecting a value based on a comparison of the two values?
3437      if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
3438          (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
3439        // Canonicalize to use ordered comparisons by swapping the select
3440        // operands.
3441        //
3442        // e.g.
3443        // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
3444        if (FCmp->hasOneUse() && FCmpInst::isUnordered(Pred)) {
3445          FCmpInst::Predicate InvPred = FCmp->getInversePredicate();
3446          IRBuilder<>::FastMathFlagGuard FMFG(Builder);
3447          // FIXME: The FMF should propagate from the select, not the fcmp.
3448          Builder.setFastMathFlags(FCmp->getFastMathFlags());
3449          Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
3450                                              FCmp->getName() + ".inv");
3451          Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
3452          return replaceInstUsesWith(SI, NewSel);
3453        }
3454      }
3455  
3456      if (SIFPOp) {
3457        // Fold out scale-if-equals-zero pattern.
3458        //
3459        // This pattern appears in code with denormal range checks after it's
3460        // assumed denormals are treated as zero. This drops a canonicalization.
3461  
3462        // TODO: Could relax the signed zero logic. We just need to know the sign
3463        // of the result matches (fmul x, y has the same sign as x).
3464        //
3465        // TODO: Handle always-canonicalizing variant that selects some value or 1
3466        // scaling factor in the fmul visitor.
3467  
3468        // TODO: Handle ldexp too
3469  
3470        Value *MatchCmp0 = nullptr;
3471        Value *MatchCmp1 = nullptr;
3472  
3473        // (select (fcmp [ou]eq x, 0.0), (fmul x, K), x => x
3474        // (select (fcmp [ou]ne x, 0.0), x, (fmul x, K) => x
3475        if (Pred == CmpInst::FCMP_OEQ || Pred == CmpInst::FCMP_UEQ) {
3476          MatchCmp0 = FalseVal;
3477          MatchCmp1 = TrueVal;
3478        } else if (Pred == CmpInst::FCMP_ONE || Pred == CmpInst::FCMP_UNE) {
3479          MatchCmp0 = TrueVal;
3480          MatchCmp1 = FalseVal;
3481        }
3482  
3483        if (Cmp0 == MatchCmp0 &&
3484            matchFMulByZeroIfResultEqZero(*this, Cmp0, Cmp1, MatchCmp1, MatchCmp0,
3485                                          SI, SIFPOp->hasNoSignedZeros()))
3486          return replaceInstUsesWith(SI, Cmp0);
3487      }
3488    }
3489  
3490    if (SIFPOp) {
3491      // TODO: Try to forward-propagate FMF from select arms to the select.
3492  
3493      // Canonicalize select of FP values where NaN and -0.0 are not valid as
3494      // minnum/maxnum intrinsics.
3495      if (SIFPOp->hasNoNaNs() && SIFPOp->hasNoSignedZeros()) {
3496        Value *X, *Y;
3497        if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
3498          return replaceInstUsesWith(
3499              SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
3500  
3501        if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
3502          return replaceInstUsesWith(
3503              SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
3504      }
3505    }
3506  
3507    // Fold selecting to fabs.
3508    if (Instruction *Fabs = foldSelectWithFCmpToFabs(SI, *this))
3509      return Fabs;
3510  
3511    // See if we are selecting two values based on a comparison of the two values.
3512    if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
3513      if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
3514        return Result;
3515  
3516    if (Instruction *Add = foldAddSubSelect(SI, Builder))
3517      return Add;
3518    if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
3519      return Add;
3520    if (Instruction *Or = foldSetClearBits(SI, Builder))
3521      return Or;
3522    if (Instruction *Mul = foldSelectZeroOrMul(SI, *this))
3523      return Mul;
3524  
3525    // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
3526    auto *TI = dyn_cast<Instruction>(TrueVal);
3527    auto *FI = dyn_cast<Instruction>(FalseVal);
3528    if (TI && FI && TI->getOpcode() == FI->getOpcode())
3529      if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
3530        return IV;
3531  
3532    if (Instruction *I = foldSelectExtConst(SI))
3533      return I;
3534  
3535    if (Instruction *I = foldSelectWithSRem(SI, *this, Builder))
3536      return I;
3537  
3538    // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))
3539    // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx))
3540    auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base,
3541                                 bool Swap) -> GetElementPtrInst * {
3542      Value *Ptr = Gep->getPointerOperand();
3543      if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base ||
3544          !Gep->hasOneUse())
3545        return nullptr;
3546      Value *Idx = Gep->getOperand(1);
3547      if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType()))
3548        return nullptr;
3549      Type *ElementType = Gep->getResultElementType();
3550      Value *NewT = Idx;
3551      Value *NewF = Constant::getNullValue(Idx->getType());
3552      if (Swap)
3553        std::swap(NewT, NewF);
3554      Value *NewSI =
3555          Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI);
3556      if (Gep->isInBounds())
3557        return GetElementPtrInst::CreateInBounds(ElementType, Ptr, {NewSI});
3558      return GetElementPtrInst::Create(ElementType, Ptr, {NewSI});
3559    };
3560    if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal))
3561      if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false))
3562        return NewGep;
3563    if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal))
3564      if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true))
3565        return NewGep;
3566  
3567    // See if we can fold the select into one of our operands.
3568    if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
3569      if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
3570        return FoldI;
3571  
3572      Value *LHS, *RHS;
3573      Instruction::CastOps CastOp;
3574      SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
3575      auto SPF = SPR.Flavor;
3576      if (SPF) {
3577        Value *LHS2, *RHS2;
3578        if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
3579          if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
3580                                            RHS2, SI, SPF, RHS))
3581            return R;
3582        if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
3583          if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
3584                                            RHS2, SI, SPF, LHS))
3585            return R;
3586      }
3587  
3588      if (SelectPatternResult::isMinOrMax(SPF)) {
3589        // Canonicalize so that
3590        // - type casts are outside select patterns.
3591        // - float clamp is transformed to min/max pattern
3592  
3593        bool IsCastNeeded = LHS->getType() != SelType;
3594        Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
3595        Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
3596        if (IsCastNeeded ||
3597            (LHS->getType()->isFPOrFPVectorTy() &&
3598             ((CmpLHS != LHS && CmpLHS != RHS) ||
3599              (CmpRHS != LHS && CmpRHS != RHS)))) {
3600          CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
3601  
3602          Value *Cmp;
3603          if (CmpInst::isIntPredicate(MinMaxPred)) {
3604            Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
3605          } else {
3606            IRBuilder<>::FastMathFlagGuard FMFG(Builder);
3607            auto FMF =
3608                cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
3609            Builder.setFastMathFlags(FMF);
3610            Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
3611          }
3612  
3613          Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
3614          if (!IsCastNeeded)
3615            return replaceInstUsesWith(SI, NewSI);
3616  
3617          Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
3618          return replaceInstUsesWith(SI, NewCast);
3619        }
3620      }
3621    }
3622  
3623    // See if we can fold the select into a phi node if the condition is a select.
3624    if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
3625      // The true/false values have to be live in the PHI predecessor's blocks.
3626      if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
3627          canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
3628        if (Instruction *NV = foldOpIntoPhi(SI, PN))
3629          return NV;
3630  
3631    if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
3632      if (TrueSI->getCondition()->getType() == CondVal->getType()) {
3633        // select(C, select(C, a, b), c) -> select(C, a, c)
3634        if (TrueSI->getCondition() == CondVal) {
3635          if (SI.getTrueValue() == TrueSI->getTrueValue())
3636            return nullptr;
3637          return replaceOperand(SI, 1, TrueSI->getTrueValue());
3638        }
3639        // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
3640        // We choose this as normal form to enable folding on the And and
3641        // shortening paths for the values (this helps getUnderlyingObjects() for
3642        // example).
3643        if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
3644          Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition());
3645          replaceOperand(SI, 0, And);
3646          replaceOperand(SI, 1, TrueSI->getTrueValue());
3647          return &SI;
3648        }
3649      }
3650    }
3651    if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
3652      if (FalseSI->getCondition()->getType() == CondVal->getType()) {
3653        // select(C, a, select(C, b, c)) -> select(C, a, c)
3654        if (FalseSI->getCondition() == CondVal) {
3655          if (SI.getFalseValue() == FalseSI->getFalseValue())
3656            return nullptr;
3657          return replaceOperand(SI, 2, FalseSI->getFalseValue());
3658        }
3659        // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
3660        if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
3661          Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition());
3662          replaceOperand(SI, 0, Or);
3663          replaceOperand(SI, 2, FalseSI->getFalseValue());
3664          return &SI;
3665        }
3666      }
3667    }
3668  
3669    // Try to simplify a binop sandwiched between 2 selects with the same
3670    // condition. This is not valid for div/rem because the select might be
3671    // preventing a division-by-zero.
3672    // TODO: A div/rem restriction is conservative; use something like
3673    //       isSafeToSpeculativelyExecute().
3674    // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
3675    BinaryOperator *TrueBO;
3676    if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && !TrueBO->isIntDivRem()) {
3677      if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
3678        if (TrueBOSI->getCondition() == CondVal) {
3679          replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue());
3680          Worklist.push(TrueBO);
3681          return &SI;
3682        }
3683      }
3684      if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
3685        if (TrueBOSI->getCondition() == CondVal) {
3686          replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue());
3687          Worklist.push(TrueBO);
3688          return &SI;
3689        }
3690      }
3691    }
3692  
3693    // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
3694    BinaryOperator *FalseBO;
3695    if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && !FalseBO->isIntDivRem()) {
3696      if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
3697        if (FalseBOSI->getCondition() == CondVal) {
3698          replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue());
3699          Worklist.push(FalseBO);
3700          return &SI;
3701        }
3702      }
3703      if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
3704        if (FalseBOSI->getCondition() == CondVal) {
3705          replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue());
3706          Worklist.push(FalseBO);
3707          return &SI;
3708        }
3709      }
3710    }
3711  
3712    Value *NotCond;
3713    if (match(CondVal, m_Not(m_Value(NotCond))) &&
3714        !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) {
3715      replaceOperand(SI, 0, NotCond);
3716      SI.swapValues();
3717      SI.swapProfMetadata();
3718      return &SI;
3719    }
3720  
3721    if (Instruction *I = foldVectorSelect(SI))
3722      return I;
3723  
3724    // If we can compute the condition, there's no need for a select.
3725    // Like the above fold, we are attempting to reduce compile-time cost by
3726    // putting this fold here with limitations rather than in InstSimplify.
3727    // The motivation for this call into value tracking is to take advantage of
3728    // the assumption cache, so make sure that is populated.
3729    if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
3730      KnownBits Known(1);
3731      computeKnownBits(CondVal, Known, 0, &SI);
3732      if (Known.One.isOne())
3733        return replaceInstUsesWith(SI, TrueVal);
3734      if (Known.Zero.isOne())
3735        return replaceInstUsesWith(SI, FalseVal);
3736    }
3737  
3738    if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
3739      return BitCastSel;
3740  
3741    // Simplify selects that test the returned flag of cmpxchg instructions.
3742    if (Value *V = foldSelectCmpXchg(SI))
3743      return replaceInstUsesWith(SI, V);
3744  
3745    if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
3746      return Select;
3747  
3748    if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder))
3749      return Funnel;
3750  
3751    if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
3752      return Copysign;
3753  
3754    if (Instruction *PN = foldSelectToPhi(SI, DT, Builder))
3755      return replaceInstUsesWith(SI, PN);
3756  
3757    if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder))
3758      return replaceInstUsesWith(SI, Fr);
3759  
3760    if (Value *V = foldRoundUpIntegerWithPow2Alignment(SI, Builder))
3761      return replaceInstUsesWith(SI, V);
3762  
3763    // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0)
3764    // Load inst is intentionally not checked for hasOneUse()
3765    if (match(FalseVal, m_Zero()) &&
3766        (match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal),
3767                                     m_CombineOr(m_Undef(), m_Zero()))) ||
3768         match(TrueVal, m_MaskedGather(m_Value(), m_Value(), m_Specific(CondVal),
3769                                       m_CombineOr(m_Undef(), m_Zero()))))) {
3770      auto *MaskedInst = cast<IntrinsicInst>(TrueVal);
3771      if (isa<UndefValue>(MaskedInst->getArgOperand(3)))
3772        MaskedInst->setArgOperand(3, FalseVal /* Zero */);
3773      return replaceInstUsesWith(SI, MaskedInst);
3774    }
3775  
3776    Value *Mask;
3777    if (match(TrueVal, m_Zero()) &&
3778        (match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask),
3779                                      m_CombineOr(m_Undef(), m_Zero()))) ||
3780         match(FalseVal, m_MaskedGather(m_Value(), m_Value(), m_Value(Mask),
3781                                        m_CombineOr(m_Undef(), m_Zero())))) &&
3782        (CondVal->getType() == Mask->getType())) {
3783      // We can remove the select by ensuring the load zeros all lanes the
3784      // select would have.  We determine this by proving there is no overlap
3785      // between the load and select masks.
3786      // (i.e (load_mask & select_mask) == 0 == no overlap)
3787      bool CanMergeSelectIntoLoad = false;
3788      if (Value *V = simplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI)))
3789        CanMergeSelectIntoLoad = match(V, m_Zero());
3790  
3791      if (CanMergeSelectIntoLoad) {
3792        auto *MaskedInst = cast<IntrinsicInst>(FalseVal);
3793        if (isa<UndefValue>(MaskedInst->getArgOperand(3)))
3794          MaskedInst->setArgOperand(3, TrueVal /* Zero */);
3795        return replaceInstUsesWith(SI, MaskedInst);
3796      }
3797    }
3798  
3799    if (Instruction *I = foldNestedSelects(SI, Builder))
3800      return I;
3801  
3802    // Match logical variants of the pattern,
3803    // and transform them iff that gets rid of inversions.
3804    //   (~x) | y  -->  ~(x & (~y))
3805    //   (~x) & y  -->  ~(x | (~y))
3806    if (sinkNotIntoOtherHandOfLogicalOp(SI))
3807      return &SI;
3808  
3809    if (Instruction *I = foldBitCeil(SI, Builder))
3810      return I;
3811  
3812    // Fold:
3813    // (select A && B, T, F) -> (select A, (select B, T, F), F)
3814    // (select A || B, T, F) -> (select A, T, (select B, T, F))
3815    // if (select B, T, F) is foldable.
3816    // TODO: preserve FMF flags
3817    auto FoldSelectWithAndOrCond = [&](bool IsAnd, Value *A,
3818                                       Value *B) -> Instruction * {
3819      if (Value *V = simplifySelectInst(B, TrueVal, FalseVal,
3820                                        SQ.getWithInstruction(&SI)))
3821        return SelectInst::Create(A, IsAnd ? V : TrueVal, IsAnd ? FalseVal : V);
3822  
3823      // Is (select B, T, F) a SPF?
3824      if (CondVal->hasOneUse() && SelType->isIntOrIntVectorTy()) {
3825        if (ICmpInst *Cmp = dyn_cast<ICmpInst>(B))
3826          if (Value *V = canonicalizeSPF(*Cmp, TrueVal, FalseVal, *this))
3827            return SelectInst::Create(A, IsAnd ? V : TrueVal,
3828                                      IsAnd ? FalseVal : V);
3829      }
3830  
3831      return nullptr;
3832    };
3833  
3834    Value *LHS, *RHS;
3835    if (match(CondVal, m_And(m_Value(LHS), m_Value(RHS)))) {
3836      if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, LHS, RHS))
3837        return I;
3838      if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, RHS, LHS))
3839        return I;
3840    } else if (match(CondVal, m_Or(m_Value(LHS), m_Value(RHS)))) {
3841      if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, LHS, RHS))
3842        return I;
3843      if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, RHS, LHS))
3844        return I;
3845    } else {
3846      // We cannot swap the operands of logical and/or.
3847      // TODO: Can we swap the operands by inserting a freeze?
3848      if (match(CondVal, m_LogicalAnd(m_Value(LHS), m_Value(RHS)))) {
3849        if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, LHS, RHS))
3850          return I;
3851      } else if (match(CondVal, m_LogicalOr(m_Value(LHS), m_Value(RHS)))) {
3852        if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, LHS, RHS))
3853          return I;
3854      }
3855    }
3856  
3857    return nullptr;
3858  }
3859