1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitSelect function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CmpInstAnalysis.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/User.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 41 #include "llvm/Transforms/InstCombine/InstCombiner.h" 42 #include <cassert> 43 #include <utility> 44 45 using namespace llvm; 46 using namespace PatternMatch; 47 48 #define DEBUG_TYPE "instcombine" 49 50 /// FIXME: Enabled by default until the pattern is supported well. 51 static cl::opt<bool> EnableUnsafeSelectTransform( 52 "instcombine-unsafe-select-transform", cl::init(true), 53 cl::desc("Enable poison-unsafe select to and/or transform")); 54 55 static Value *createMinMax(InstCombiner::BuilderTy &Builder, 56 SelectPatternFlavor SPF, Value *A, Value *B) { 57 CmpInst::Predicate Pred = getMinMaxPred(SPF); 58 assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate"); 59 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 60 } 61 62 /// Replace a select operand based on an equality comparison with the identity 63 /// constant of a binop. 64 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 65 const TargetLibraryInfo &TLI, 66 InstCombinerImpl &IC) { 67 // The select condition must be an equality compare with a constant operand. 68 Value *X; 69 Constant *C; 70 CmpInst::Predicate Pred; 71 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 72 return nullptr; 73 74 bool IsEq; 75 if (ICmpInst::isEquality(Pred)) 76 IsEq = Pred == ICmpInst::ICMP_EQ; 77 else if (Pred == FCmpInst::FCMP_OEQ) 78 IsEq = true; 79 else if (Pred == FCmpInst::FCMP_UNE) 80 IsEq = false; 81 else 82 return nullptr; 83 84 // A select operand must be a binop. 85 BinaryOperator *BO; 86 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 87 return nullptr; 88 89 // The compare constant must be the identity constant for that binop. 90 // If this a floating-point compare with 0.0, any zero constant will do. 91 Type *Ty = BO->getType(); 92 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 93 if (IdC != C) { 94 if (!IdC || !CmpInst::isFPPredicate(Pred)) 95 return nullptr; 96 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 97 return nullptr; 98 } 99 100 // Last, match the compare variable operand with a binop operand. 101 Value *Y; 102 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 103 return nullptr; 104 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 105 return nullptr; 106 107 // +0.0 compares equal to -0.0, and so it does not behave as required for this 108 // transform. Bail out if we can not exclude that possibility. 109 if (isa<FPMathOperator>(BO)) 110 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) 111 return nullptr; 112 113 // BO = binop Y, X 114 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 115 // => 116 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 117 return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y); 118 } 119 120 /// This folds: 121 /// select (icmp eq (and X, C1)), TC, FC 122 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 123 /// To something like: 124 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 125 /// Or: 126 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 127 /// With some variations depending if FC is larger than TC, or the shift 128 /// isn't needed, or the bit widths don't match. 129 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 130 InstCombiner::BuilderTy &Builder) { 131 const APInt *SelTC, *SelFC; 132 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 133 !match(Sel.getFalseValue(), m_APInt(SelFC))) 134 return nullptr; 135 136 // If this is a vector select, we need a vector compare. 137 Type *SelType = Sel.getType(); 138 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 139 return nullptr; 140 141 Value *V; 142 APInt AndMask; 143 bool CreateAnd = false; 144 ICmpInst::Predicate Pred = Cmp->getPredicate(); 145 if (ICmpInst::isEquality(Pred)) { 146 if (!match(Cmp->getOperand(1), m_Zero())) 147 return nullptr; 148 149 V = Cmp->getOperand(0); 150 const APInt *AndRHS; 151 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 152 return nullptr; 153 154 AndMask = *AndRHS; 155 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 156 Pred, V, AndMask)) { 157 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 158 if (!AndMask.isPowerOf2()) 159 return nullptr; 160 161 CreateAnd = true; 162 } else { 163 return nullptr; 164 } 165 166 // In general, when both constants are non-zero, we would need an offset to 167 // replace the select. This would require more instructions than we started 168 // with. But there's one special-case that we handle here because it can 169 // simplify/reduce the instructions. 170 APInt TC = *SelTC; 171 APInt FC = *SelFC; 172 if (!TC.isNullValue() && !FC.isNullValue()) { 173 // If the select constants differ by exactly one bit and that's the same 174 // bit that is masked and checked by the select condition, the select can 175 // be replaced by bitwise logic to set/clear one bit of the constant result. 176 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 177 return nullptr; 178 if (CreateAnd) { 179 // If we have to create an 'and', then we must kill the cmp to not 180 // increase the instruction count. 181 if (!Cmp->hasOneUse()) 182 return nullptr; 183 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 184 } 185 bool ExtraBitInTC = TC.ugt(FC); 186 if (Pred == ICmpInst::ICMP_EQ) { 187 // If the masked bit in V is clear, clear or set the bit in the result: 188 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 189 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 190 Constant *C = ConstantInt::get(SelType, TC); 191 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 192 } 193 if (Pred == ICmpInst::ICMP_NE) { 194 // If the masked bit in V is set, set or clear the bit in the result: 195 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 196 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 197 Constant *C = ConstantInt::get(SelType, FC); 198 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 199 } 200 llvm_unreachable("Only expecting equality predicates"); 201 } 202 203 // Make sure one of the select arms is a power-of-2. 204 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 205 return nullptr; 206 207 // Determine which shift is needed to transform result of the 'and' into the 208 // desired result. 209 const APInt &ValC = !TC.isNullValue() ? TC : FC; 210 unsigned ValZeros = ValC.logBase2(); 211 unsigned AndZeros = AndMask.logBase2(); 212 213 // Insert the 'and' instruction on the input to the truncate. 214 if (CreateAnd) 215 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 216 217 // If types don't match, we can still convert the select by introducing a zext 218 // or a trunc of the 'and'. 219 if (ValZeros > AndZeros) { 220 V = Builder.CreateZExtOrTrunc(V, SelType); 221 V = Builder.CreateShl(V, ValZeros - AndZeros); 222 } else if (ValZeros < AndZeros) { 223 V = Builder.CreateLShr(V, AndZeros - ValZeros); 224 V = Builder.CreateZExtOrTrunc(V, SelType); 225 } else { 226 V = Builder.CreateZExtOrTrunc(V, SelType); 227 } 228 229 // Okay, now we know that everything is set up, we just don't know whether we 230 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 231 bool ShouldNotVal = !TC.isNullValue(); 232 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 233 if (ShouldNotVal) 234 V = Builder.CreateXor(V, ValC); 235 236 return V; 237 } 238 239 /// We want to turn code that looks like this: 240 /// %C = or %A, %B 241 /// %D = select %cond, %C, %A 242 /// into: 243 /// %C = select %cond, %B, 0 244 /// %D = or %A, %C 245 /// 246 /// Assuming that the specified instruction is an operand to the select, return 247 /// a bitmask indicating which operands of this instruction are foldable if they 248 /// equal the other incoming value of the select. 249 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 250 switch (I->getOpcode()) { 251 case Instruction::Add: 252 case Instruction::Mul: 253 case Instruction::And: 254 case Instruction::Or: 255 case Instruction::Xor: 256 return 3; // Can fold through either operand. 257 case Instruction::Sub: // Can only fold on the amount subtracted. 258 case Instruction::Shl: // Can only fold on the shift amount. 259 case Instruction::LShr: 260 case Instruction::AShr: 261 return 1; 262 default: 263 return 0; // Cannot fold 264 } 265 } 266 267 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 268 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI, 269 Instruction *FI) { 270 // Don't break up min/max patterns. The hasOneUse checks below prevent that 271 // for most cases, but vector min/max with bitcasts can be transformed. If the 272 // one-use restrictions are eased for other patterns, we still don't want to 273 // obfuscate min/max. 274 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 275 match(&SI, m_SMax(m_Value(), m_Value())) || 276 match(&SI, m_UMin(m_Value(), m_Value())) || 277 match(&SI, m_UMax(m_Value(), m_Value())))) 278 return nullptr; 279 280 // If this is a cast from the same type, merge. 281 Value *Cond = SI.getCondition(); 282 Type *CondTy = Cond->getType(); 283 if (TI->getNumOperands() == 1 && TI->isCast()) { 284 Type *FIOpndTy = FI->getOperand(0)->getType(); 285 if (TI->getOperand(0)->getType() != FIOpndTy) 286 return nullptr; 287 288 // The select condition may be a vector. We may only change the operand 289 // type if the vector width remains the same (and matches the condition). 290 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) { 291 if (!FIOpndTy->isVectorTy() || 292 CondVTy->getElementCount() != 293 cast<VectorType>(FIOpndTy)->getElementCount()) 294 return nullptr; 295 296 // TODO: If the backend knew how to deal with casts better, we could 297 // remove this limitation. For now, there's too much potential to create 298 // worse codegen by promoting the select ahead of size-altering casts 299 // (PR28160). 300 // 301 // Note that ValueTracking's matchSelectPattern() looks through casts 302 // without checking 'hasOneUse' when it matches min/max patterns, so this 303 // transform may end up happening anyway. 304 if (TI->getOpcode() != Instruction::BitCast && 305 (!TI->hasOneUse() || !FI->hasOneUse())) 306 return nullptr; 307 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 308 // TODO: The one-use restrictions for a scalar select could be eased if 309 // the fold of a select in visitLoadInst() was enhanced to match a pattern 310 // that includes a cast. 311 return nullptr; 312 } 313 314 // Fold this by inserting a select from the input values. 315 Value *NewSI = 316 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0), 317 SI.getName() + ".v", &SI); 318 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 319 TI->getType()); 320 } 321 322 // Cond ? -X : -Y --> -(Cond ? X : Y) 323 Value *X, *Y; 324 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) && 325 (TI->hasOneUse() || FI->hasOneUse())) { 326 Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI); 327 return UnaryOperator::CreateFNegFMF(NewSel, TI); 328 } 329 330 // Only handle binary operators (including two-operand getelementptr) with 331 // one-use here. As with the cast case above, it may be possible to relax the 332 // one-use constraint, but that needs be examined carefully since it may not 333 // reduce the total number of instructions. 334 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 335 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 336 !TI->hasOneUse() || !FI->hasOneUse()) 337 return nullptr; 338 339 // Figure out if the operations have any operands in common. 340 Value *MatchOp, *OtherOpT, *OtherOpF; 341 bool MatchIsOpZero; 342 if (TI->getOperand(0) == FI->getOperand(0)) { 343 MatchOp = TI->getOperand(0); 344 OtherOpT = TI->getOperand(1); 345 OtherOpF = FI->getOperand(1); 346 MatchIsOpZero = true; 347 } else if (TI->getOperand(1) == FI->getOperand(1)) { 348 MatchOp = TI->getOperand(1); 349 OtherOpT = TI->getOperand(0); 350 OtherOpF = FI->getOperand(0); 351 MatchIsOpZero = false; 352 } else if (!TI->isCommutative()) { 353 return nullptr; 354 } else if (TI->getOperand(0) == FI->getOperand(1)) { 355 MatchOp = TI->getOperand(0); 356 OtherOpT = TI->getOperand(1); 357 OtherOpF = FI->getOperand(0); 358 MatchIsOpZero = true; 359 } else if (TI->getOperand(1) == FI->getOperand(0)) { 360 MatchOp = TI->getOperand(1); 361 OtherOpT = TI->getOperand(0); 362 OtherOpF = FI->getOperand(1); 363 MatchIsOpZero = true; 364 } else { 365 return nullptr; 366 } 367 368 // If the select condition is a vector, the operands of the original select's 369 // operands also must be vectors. This may not be the case for getelementptr 370 // for example. 371 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() || 372 !OtherOpF->getType()->isVectorTy())) 373 return nullptr; 374 375 // If we reach here, they do have operations in common. 376 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 377 SI.getName() + ".v", &SI); 378 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 379 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 380 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 381 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 382 NewBO->copyIRFlags(TI); 383 NewBO->andIRFlags(FI); 384 return NewBO; 385 } 386 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 387 auto *FGEP = cast<GetElementPtrInst>(FI); 388 Type *ElementType = TGEP->getResultElementType(); 389 return TGEP->isInBounds() && FGEP->isInBounds() 390 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 391 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 392 } 393 llvm_unreachable("Expected BinaryOperator or GEP"); 394 return nullptr; 395 } 396 397 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 398 if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero. 399 return false; 400 return C1I.isOneValue() || C1I.isAllOnesValue() || 401 C2I.isOneValue() || C2I.isAllOnesValue(); 402 } 403 404 /// Try to fold the select into one of the operands to allow further 405 /// optimization. 406 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 407 Value *FalseVal) { 408 // See the comment above GetSelectFoldableOperands for a description of the 409 // transformation we are doing here. 410 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 411 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 412 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 413 unsigned OpToFold = 0; 414 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 415 OpToFold = 1; 416 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 417 OpToFold = 2; 418 } 419 420 if (OpToFold) { 421 Constant *C = ConstantExpr::getBinOpIdentity(TVI->getOpcode(), 422 TVI->getType(), true); 423 Value *OOp = TVI->getOperand(2-OpToFold); 424 // Avoid creating select between 2 constants unless it's selecting 425 // between 0, 1 and -1. 426 const APInt *OOpC; 427 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 428 if (!isa<Constant>(OOp) || 429 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) { 430 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 431 NewSel->takeName(TVI); 432 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), 433 FalseVal, NewSel); 434 BO->copyIRFlags(TVI); 435 return BO; 436 } 437 } 438 } 439 } 440 } 441 442 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { 443 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { 444 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 445 unsigned OpToFold = 0; 446 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 447 OpToFold = 1; 448 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 449 OpToFold = 2; 450 } 451 452 if (OpToFold) { 453 Constant *C = ConstantExpr::getBinOpIdentity(FVI->getOpcode(), 454 FVI->getType(), true); 455 Value *OOp = FVI->getOperand(2-OpToFold); 456 // Avoid creating select between 2 constants unless it's selecting 457 // between 0, 1 and -1. 458 const APInt *OOpC; 459 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 460 if (!isa<Constant>(OOp) || 461 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) { 462 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 463 NewSel->takeName(FVI); 464 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), 465 TrueVal, NewSel); 466 BO->copyIRFlags(FVI); 467 return BO; 468 } 469 } 470 } 471 } 472 } 473 474 return nullptr; 475 } 476 477 /// We want to turn: 478 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 479 /// into: 480 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 481 /// Note: 482 /// Z may be 0 if lshr is missing. 483 /// Worst-case scenario is that we will replace 5 instructions with 5 different 484 /// instructions, but we got rid of select. 485 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 486 Value *TVal, Value *FVal, 487 InstCombiner::BuilderTy &Builder) { 488 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 489 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 490 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 491 return nullptr; 492 493 // The TrueVal has general form of: and %B, 1 494 Value *B; 495 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 496 return nullptr; 497 498 // Where %B may be optionally shifted: lshr %X, %Z. 499 Value *X, *Z; 500 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 501 if (!HasShift) 502 X = B; 503 504 Value *Y; 505 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 506 return nullptr; 507 508 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 509 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 510 Constant *One = ConstantInt::get(SelType, 1); 511 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 512 Value *FullMask = Builder.CreateOr(Y, MaskB); 513 Value *MaskedX = Builder.CreateAnd(X, FullMask); 514 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 515 return new ZExtInst(ICmpNeZero, SelType); 516 } 517 518 /// We want to turn: 519 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 520 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0 521 /// into: 522 /// ashr (X, Y) 523 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, 524 Value *FalseVal, 525 InstCombiner::BuilderTy &Builder) { 526 ICmpInst::Predicate Pred = IC->getPredicate(); 527 Value *CmpLHS = IC->getOperand(0); 528 Value *CmpRHS = IC->getOperand(1); 529 if (!CmpRHS->getType()->isIntOrIntVectorTy()) 530 return nullptr; 531 532 Value *X, *Y; 533 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits(); 534 if ((Pred != ICmpInst::ICMP_SGT || 535 !match(CmpRHS, 536 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) && 537 (Pred != ICmpInst::ICMP_SLT || 538 !match(CmpRHS, 539 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0))))) 540 return nullptr; 541 542 // Canonicalize so that ashr is in FalseVal. 543 if (Pred == ICmpInst::ICMP_SLT) 544 std::swap(TrueVal, FalseVal); 545 546 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) && 547 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) && 548 match(CmpLHS, m_Specific(X))) { 549 const auto *Ashr = cast<Instruction>(FalseVal); 550 // if lshr is not exact and ashr is, this new ashr must not be exact. 551 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact(); 552 return Builder.CreateAShr(X, Y, IC->getName(), IsExact); 553 } 554 555 return nullptr; 556 } 557 558 /// We want to turn: 559 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 560 /// into: 561 /// (or (shl (and X, C1), C3), Y) 562 /// iff: 563 /// C1 and C2 are both powers of 2 564 /// where: 565 /// C3 = Log(C2) - Log(C1) 566 /// 567 /// This transform handles cases where: 568 /// 1. The icmp predicate is inverted 569 /// 2. The select operands are reversed 570 /// 3. The magnitude of C2 and C1 are flipped 571 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 572 Value *FalseVal, 573 InstCombiner::BuilderTy &Builder) { 574 // Only handle integer compares. Also, if this is a vector select, we need a 575 // vector compare. 576 if (!TrueVal->getType()->isIntOrIntVectorTy() || 577 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 578 return nullptr; 579 580 Value *CmpLHS = IC->getOperand(0); 581 Value *CmpRHS = IC->getOperand(1); 582 583 Value *V; 584 unsigned C1Log; 585 bool IsEqualZero; 586 bool NeedAnd = false; 587 if (IC->isEquality()) { 588 if (!match(CmpRHS, m_Zero())) 589 return nullptr; 590 591 const APInt *C1; 592 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 593 return nullptr; 594 595 V = CmpLHS; 596 C1Log = C1->logBase2(); 597 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 598 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 599 IC->getPredicate() == ICmpInst::ICMP_SGT) { 600 // We also need to recognize (icmp slt (trunc (X)), 0) and 601 // (icmp sgt (trunc (X)), -1). 602 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 603 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 604 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 605 return nullptr; 606 607 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 608 return nullptr; 609 610 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 611 NeedAnd = true; 612 } else { 613 return nullptr; 614 } 615 616 const APInt *C2; 617 bool OrOnTrueVal = false; 618 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 619 if (!OrOnFalseVal) 620 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 621 622 if (!OrOnFalseVal && !OrOnTrueVal) 623 return nullptr; 624 625 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 626 627 unsigned C2Log = C2->logBase2(); 628 629 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 630 bool NeedShift = C1Log != C2Log; 631 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 632 V->getType()->getScalarSizeInBits(); 633 634 // Make sure we don't create more instructions than we save. 635 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 636 if ((NeedShift + NeedXor + NeedZExtTrunc) > 637 (IC->hasOneUse() + Or->hasOneUse())) 638 return nullptr; 639 640 if (NeedAnd) { 641 // Insert the AND instruction on the input to the truncate. 642 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 643 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 644 } 645 646 if (C2Log > C1Log) { 647 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 648 V = Builder.CreateShl(V, C2Log - C1Log); 649 } else if (C1Log > C2Log) { 650 V = Builder.CreateLShr(V, C1Log - C2Log); 651 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 652 } else 653 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 654 655 if (NeedXor) 656 V = Builder.CreateXor(V, *C2); 657 658 return Builder.CreateOr(V, Y); 659 } 660 661 /// Canonicalize a set or clear of a masked set of constant bits to 662 /// select-of-constants form. 663 static Instruction *foldSetClearBits(SelectInst &Sel, 664 InstCombiner::BuilderTy &Builder) { 665 Value *Cond = Sel.getCondition(); 666 Value *T = Sel.getTrueValue(); 667 Value *F = Sel.getFalseValue(); 668 Type *Ty = Sel.getType(); 669 Value *X; 670 const APInt *NotC, *C; 671 672 // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C) 673 if (match(T, m_And(m_Value(X), m_APInt(NotC))) && 674 match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 675 Constant *Zero = ConstantInt::getNullValue(Ty); 676 Constant *OrC = ConstantInt::get(Ty, *C); 677 Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel); 678 return BinaryOperator::CreateOr(T, NewSel); 679 } 680 681 // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0) 682 if (match(F, m_And(m_Value(X), m_APInt(NotC))) && 683 match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 684 Constant *Zero = ConstantInt::getNullValue(Ty); 685 Constant *OrC = ConstantInt::get(Ty, *C); 686 Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel); 687 return BinaryOperator::CreateOr(F, NewSel); 688 } 689 690 return nullptr; 691 } 692 693 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). 694 /// There are 8 commuted/swapped variants of this pattern. 695 /// TODO: Also support a - UMIN(a,b) patterns. 696 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 697 const Value *TrueVal, 698 const Value *FalseVal, 699 InstCombiner::BuilderTy &Builder) { 700 ICmpInst::Predicate Pred = ICI->getPredicate(); 701 if (!ICmpInst::isUnsigned(Pred)) 702 return nullptr; 703 704 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 705 if (match(TrueVal, m_Zero())) { 706 Pred = ICmpInst::getInversePredicate(Pred); 707 std::swap(TrueVal, FalseVal); 708 } 709 if (!match(FalseVal, m_Zero())) 710 return nullptr; 711 712 Value *A = ICI->getOperand(0); 713 Value *B = ICI->getOperand(1); 714 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 715 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 716 std::swap(A, B); 717 Pred = ICmpInst::getSwappedPredicate(Pred); 718 } 719 720 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 721 "Unexpected isUnsigned predicate!"); 722 723 // Ensure the sub is of the form: 724 // (a > b) ? a - b : 0 -> usub.sat(a, b) 725 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 726 // Checking for both a-b and a+(-b) as a constant. 727 bool IsNegative = false; 728 const APInt *C; 729 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) || 730 (match(A, m_APInt(C)) && 731 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C))))) 732 IsNegative = true; 733 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) && 734 !(match(B, m_APInt(C)) && 735 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C))))) 736 return nullptr; 737 738 // If we are adding a negate and the sub and icmp are used anywhere else, we 739 // would end up with more instructions. 740 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse()) 741 return nullptr; 742 743 // (a > b) ? a - b : 0 -> usub.sat(a, b) 744 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 745 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); 746 if (IsNegative) 747 Result = Builder.CreateNeg(Result); 748 return Result; 749 } 750 751 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, 752 InstCombiner::BuilderTy &Builder) { 753 if (!Cmp->hasOneUse()) 754 return nullptr; 755 756 // Match unsigned saturated add with constant. 757 Value *Cmp0 = Cmp->getOperand(0); 758 Value *Cmp1 = Cmp->getOperand(1); 759 ICmpInst::Predicate Pred = Cmp->getPredicate(); 760 Value *X; 761 const APInt *C, *CmpC; 762 if (Pred == ICmpInst::ICMP_ULT && 763 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 && 764 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) { 765 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C) 766 return Builder.CreateBinaryIntrinsic( 767 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C)); 768 } 769 770 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 771 // There are 8 commuted variants. 772 // Canonicalize -1 (saturated result) to true value of the select. 773 if (match(FVal, m_AllOnes())) { 774 std::swap(TVal, FVal); 775 Pred = CmpInst::getInversePredicate(Pred); 776 } 777 if (!match(TVal, m_AllOnes())) 778 return nullptr; 779 780 // Canonicalize predicate to less-than or less-or-equal-than. 781 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 782 std::swap(Cmp0, Cmp1); 783 Pred = CmpInst::getSwappedPredicate(Pred); 784 } 785 if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE) 786 return nullptr; 787 788 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 789 // Strictness of the comparison is irrelevant. 790 Value *Y; 791 if (match(Cmp0, m_Not(m_Value(X))) && 792 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { 793 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 794 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) 795 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); 796 } 797 // The 'not' op may be included in the sum but not the compare. 798 // Strictness of the comparison is irrelevant. 799 X = Cmp0; 800 Y = Cmp1; 801 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) { 802 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) 803 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) 804 BinaryOperator *BO = cast<BinaryOperator>(FVal); 805 return Builder.CreateBinaryIntrinsic( 806 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); 807 } 808 // The overflow may be detected via the add wrapping round. 809 // This is only valid for strict comparison! 810 if (Pred == ICmpInst::ICMP_ULT && 811 match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) && 812 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) { 813 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y) 814 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 815 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y); 816 } 817 818 return nullptr; 819 } 820 821 /// Fold the following code sequence: 822 /// \code 823 /// int a = ctlz(x & -x); 824 // x ? 31 - a : a; 825 /// \code 826 /// 827 /// into: 828 /// cttz(x) 829 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal, 830 Value *FalseVal, 831 InstCombiner::BuilderTy &Builder) { 832 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 833 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero())) 834 return nullptr; 835 836 if (ICI->getPredicate() == ICmpInst::ICMP_NE) 837 std::swap(TrueVal, FalseVal); 838 839 if (!match(FalseVal, 840 m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1)))) 841 return nullptr; 842 843 if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>())) 844 return nullptr; 845 846 Value *X = ICI->getOperand(0); 847 auto *II = cast<IntrinsicInst>(TrueVal); 848 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X))))) 849 return nullptr; 850 851 Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz, 852 II->getType()); 853 return CallInst::Create(F, {X, II->getArgOperand(1)}); 854 } 855 856 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 857 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 858 /// 859 /// For example, we can fold the following code sequence: 860 /// \code 861 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 862 /// %1 = icmp ne i32 %x, 0 863 /// %2 = select i1 %1, i32 %0, i32 32 864 /// \code 865 /// 866 /// into: 867 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 868 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 869 InstCombiner::BuilderTy &Builder) { 870 ICmpInst::Predicate Pred = ICI->getPredicate(); 871 Value *CmpLHS = ICI->getOperand(0); 872 Value *CmpRHS = ICI->getOperand(1); 873 874 // Check if the condition value compares a value for equality against zero. 875 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 876 return nullptr; 877 878 Value *SelectArg = FalseVal; 879 Value *ValueOnZero = TrueVal; 880 if (Pred == ICmpInst::ICMP_NE) 881 std::swap(SelectArg, ValueOnZero); 882 883 // Skip zero extend/truncate. 884 Value *Count = nullptr; 885 if (!match(SelectArg, m_ZExt(m_Value(Count))) && 886 !match(SelectArg, m_Trunc(m_Value(Count)))) 887 Count = SelectArg; 888 889 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 890 // input to the cttz/ctlz is used as LHS for the compare instruction. 891 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) && 892 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) 893 return nullptr; 894 895 IntrinsicInst *II = cast<IntrinsicInst>(Count); 896 897 // Check if the value propagated on zero is a constant number equal to the 898 // sizeof in bits of 'Count'. 899 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 900 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 901 // Explicitly clear the 'undef_on_zero' flag. It's always valid to go from 902 // true to false on this flag, so we can replace it for all users. 903 II->setArgOperand(1, ConstantInt::getFalse(II->getContext())); 904 return SelectArg; 905 } 906 907 // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional 908 // zext/trunc) have one use (ending at the select), the cttz/ctlz result will 909 // not be used if the input is zero. Relax to 'undef_on_zero' for that case. 910 if (II->hasOneUse() && SelectArg->hasOneUse() && 911 !match(II->getArgOperand(1), m_One())) 912 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 913 914 return nullptr; 915 } 916 917 /// Return true if we find and adjust an icmp+select pattern where the compare 918 /// is with a constant that can be incremented or decremented to match the 919 /// minimum or maximum idiom. 920 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 921 ICmpInst::Predicate Pred = Cmp.getPredicate(); 922 Value *CmpLHS = Cmp.getOperand(0); 923 Value *CmpRHS = Cmp.getOperand(1); 924 Value *TrueVal = Sel.getTrueValue(); 925 Value *FalseVal = Sel.getFalseValue(); 926 927 // We may move or edit the compare, so make sure the select is the only user. 928 const APInt *CmpC; 929 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 930 return false; 931 932 // These transforms only work for selects of integers or vector selects of 933 // integer vectors. 934 Type *SelTy = Sel.getType(); 935 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 936 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 937 return false; 938 939 Constant *AdjustedRHS; 940 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 941 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 942 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 943 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 944 else 945 return false; 946 947 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 948 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 949 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 950 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 951 ; // Nothing to do here. Values match without any sign/zero extension. 952 } 953 // Types do not match. Instead of calculating this with mixed types, promote 954 // all to the larger type. This enables scalar evolution to analyze this 955 // expression. 956 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 957 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 958 959 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 960 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 961 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 962 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 963 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 964 CmpLHS = TrueVal; 965 AdjustedRHS = SextRHS; 966 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 967 SextRHS == TrueVal) { 968 CmpLHS = FalseVal; 969 AdjustedRHS = SextRHS; 970 } else if (Cmp.isUnsigned()) { 971 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 972 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 973 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 974 // zext + signed compare cannot be changed: 975 // 0xff <s 0x00, but 0x00ff >s 0x0000 976 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 977 CmpLHS = TrueVal; 978 AdjustedRHS = ZextRHS; 979 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 980 ZextRHS == TrueVal) { 981 CmpLHS = FalseVal; 982 AdjustedRHS = ZextRHS; 983 } else { 984 return false; 985 } 986 } else { 987 return false; 988 } 989 } else { 990 return false; 991 } 992 993 Pred = ICmpInst::getSwappedPredicate(Pred); 994 CmpRHS = AdjustedRHS; 995 std::swap(FalseVal, TrueVal); 996 Cmp.setPredicate(Pred); 997 Cmp.setOperand(0, CmpLHS); 998 Cmp.setOperand(1, CmpRHS); 999 Sel.setOperand(1, TrueVal); 1000 Sel.setOperand(2, FalseVal); 1001 Sel.swapProfMetadata(); 1002 1003 // Move the compare instruction right before the select instruction. Otherwise 1004 // the sext/zext value may be defined after the compare instruction uses it. 1005 Cmp.moveBefore(&Sel); 1006 1007 return true; 1008 } 1009 1010 /// If this is an integer min/max (icmp + select) with a constant operand, 1011 /// create the canonical icmp for the min/max operation and canonicalize the 1012 /// constant to the 'false' operand of the select: 1013 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 1014 /// Note: if C1 != C2, this will change the icmp constant to the existing 1015 /// constant operand of the select. 1016 static Instruction *canonicalizeMinMaxWithConstant(SelectInst &Sel, 1017 ICmpInst &Cmp, 1018 InstCombinerImpl &IC) { 1019 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1020 return nullptr; 1021 1022 // Canonicalize the compare predicate based on whether we have min or max. 1023 Value *LHS, *RHS; 1024 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 1025 if (!SelectPatternResult::isMinOrMax(SPR.Flavor)) 1026 return nullptr; 1027 1028 // Is this already canonical? 1029 ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor); 1030 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && 1031 Cmp.getPredicate() == CanonicalPred) 1032 return nullptr; 1033 1034 // Bail out on unsimplified X-0 operand (due to some worklist management bug), 1035 // as this may cause an infinite combine loop. Let the sub be folded first. 1036 if (match(LHS, m_Sub(m_Value(), m_Zero())) || 1037 match(RHS, m_Sub(m_Value(), m_Zero()))) 1038 return nullptr; 1039 1040 // Create the canonical compare and plug it into the select. 1041 IC.replaceOperand(Sel, 0, IC.Builder.CreateICmp(CanonicalPred, LHS, RHS)); 1042 1043 // If the select operands did not change, we're done. 1044 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) 1045 return &Sel; 1046 1047 // If we are swapping the select operands, swap the metadata too. 1048 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && 1049 "Unexpected results from matchSelectPattern"); 1050 Sel.swapValues(); 1051 Sel.swapProfMetadata(); 1052 return &Sel; 1053 } 1054 1055 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp, 1056 InstCombinerImpl &IC) { 1057 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1058 return nullptr; 1059 1060 Value *LHS, *RHS; 1061 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; 1062 if (SPF != SelectPatternFlavor::SPF_ABS && 1063 SPF != SelectPatternFlavor::SPF_NABS) 1064 return nullptr; 1065 1066 // Note that NSW flag can only be propagated for normal, non-negated abs! 1067 bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS && 1068 match(RHS, m_NSWNeg(m_Specific(LHS))); 1069 Constant *IntMinIsPoisonC = 1070 ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison); 1071 Instruction *Abs = 1072 IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC); 1073 1074 if (SPF == SelectPatternFlavor::SPF_NABS) 1075 return BinaryOperator::CreateNeg(Abs); // Always without NSW flag! 1076 1077 return IC.replaceInstUsesWith(Sel, Abs); 1078 } 1079 1080 /// If we have a select with an equality comparison, then we know the value in 1081 /// one of the arms of the select. See if substituting this value into an arm 1082 /// and simplifying the result yields the same value as the other arm. 1083 /// 1084 /// To make this transform safe, we must drop poison-generating flags 1085 /// (nsw, etc) if we simplified to a binop because the select may be guarding 1086 /// that poison from propagating. If the existing binop already had no 1087 /// poison-generating flags, then this transform can be done by instsimplify. 1088 /// 1089 /// Consider: 1090 /// %cmp = icmp eq i32 %x, 2147483647 1091 /// %add = add nsw i32 %x, 1 1092 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add 1093 /// 1094 /// We can't replace %sel with %add unless we strip away the flags. 1095 /// TODO: Wrapping flags could be preserved in some cases with better analysis. 1096 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel, 1097 ICmpInst &Cmp) { 1098 if (!Cmp.isEquality()) 1099 return nullptr; 1100 1101 // Canonicalize the pattern to ICMP_EQ by swapping the select operands. 1102 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 1103 bool Swapped = false; 1104 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) { 1105 std::swap(TrueVal, FalseVal); 1106 Swapped = true; 1107 } 1108 1109 // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand. 1110 // Make sure Y cannot be undef though, as we might pick different values for 1111 // undef in the icmp and in f(Y). Additionally, take care to avoid replacing 1112 // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite 1113 // replacement cycle. 1114 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1); 1115 if (TrueVal != CmpLHS && 1116 isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) { 1117 if (Value *V = SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ, 1118 /* AllowRefinement */ true)) 1119 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1120 1121 // Even if TrueVal does not simplify, we can directly replace a use of 1122 // CmpLHS with CmpRHS, as long as the instruction is not used anywhere 1123 // else and is safe to speculatively execute (we may end up executing it 1124 // with different operands, which should not cause side-effects or trigger 1125 // undefined behavior). Only do this if CmpRHS is a constant, as 1126 // profitability is not clear for other cases. 1127 // FIXME: The replacement could be performed recursively. 1128 if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant())) 1129 if (auto *I = dyn_cast<Instruction>(TrueVal)) 1130 if (I->hasOneUse() && isSafeToSpeculativelyExecute(I)) 1131 for (Use &U : I->operands()) 1132 if (U == CmpLHS) { 1133 replaceUse(U, CmpRHS); 1134 return &Sel; 1135 } 1136 } 1137 if (TrueVal != CmpRHS && 1138 isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT)) 1139 if (Value *V = SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ, 1140 /* AllowRefinement */ true)) 1141 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1142 1143 auto *FalseInst = dyn_cast<Instruction>(FalseVal); 1144 if (!FalseInst) 1145 return nullptr; 1146 1147 // InstSimplify already performed this fold if it was possible subject to 1148 // current poison-generating flags. Try the transform again with 1149 // poison-generating flags temporarily dropped. 1150 bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false; 1151 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) { 1152 WasNUW = OBO->hasNoUnsignedWrap(); 1153 WasNSW = OBO->hasNoSignedWrap(); 1154 FalseInst->setHasNoUnsignedWrap(false); 1155 FalseInst->setHasNoSignedWrap(false); 1156 } 1157 if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) { 1158 WasExact = PEO->isExact(); 1159 FalseInst->setIsExact(false); 1160 } 1161 if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) { 1162 WasInBounds = GEP->isInBounds(); 1163 GEP->setIsInBounds(false); 1164 } 1165 1166 // Try each equivalence substitution possibility. 1167 // We have an 'EQ' comparison, so the select's false value will propagate. 1168 // Example: 1169 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1 1170 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ, 1171 /* AllowRefinement */ false) == TrueVal || 1172 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ, 1173 /* AllowRefinement */ false) == TrueVal) { 1174 return replaceInstUsesWith(Sel, FalseVal); 1175 } 1176 1177 // Restore poison-generating flags if the transform did not apply. 1178 if (WasNUW) 1179 FalseInst->setHasNoUnsignedWrap(); 1180 if (WasNSW) 1181 FalseInst->setHasNoSignedWrap(); 1182 if (WasExact) 1183 FalseInst->setIsExact(); 1184 if (WasInBounds) 1185 cast<GetElementPtrInst>(FalseInst)->setIsInBounds(); 1186 1187 return nullptr; 1188 } 1189 1190 // See if this is a pattern like: 1191 // %old_cmp1 = icmp slt i32 %x, C2 1192 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high 1193 // %old_x_offseted = add i32 %x, C1 1194 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0 1195 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement 1196 // This can be rewritten as more canonical pattern: 1197 // %new_cmp1 = icmp slt i32 %x, -C1 1198 // %new_cmp2 = icmp sge i32 %x, C0-C1 1199 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x 1200 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low 1201 // Iff -C1 s<= C2 s<= C0-C1 1202 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result) 1203 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.) 1204 static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0, 1205 InstCombiner::BuilderTy &Builder) { 1206 Value *X = Sel0.getTrueValue(); 1207 Value *Sel1 = Sel0.getFalseValue(); 1208 1209 // First match the condition of the outermost select. 1210 // Said condition must be one-use. 1211 if (!Cmp0.hasOneUse()) 1212 return nullptr; 1213 Value *Cmp00 = Cmp0.getOperand(0); 1214 Constant *C0; 1215 if (!match(Cmp0.getOperand(1), 1216 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))) 1217 return nullptr; 1218 // Canonicalize Cmp0 into the form we expect. 1219 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1220 switch (Cmp0.getPredicate()) { 1221 case ICmpInst::Predicate::ICMP_ULT: 1222 break; // Great! 1223 case ICmpInst::Predicate::ICMP_ULE: 1224 // We'd have to increment C0 by one, and for that it must not have all-ones 1225 // element, but then it would have been canonicalized to 'ult' before 1226 // we get here. So we can't do anything useful with 'ule'. 1227 return nullptr; 1228 case ICmpInst::Predicate::ICMP_UGT: 1229 // We want to canonicalize it to 'ult', so we'll need to increment C0, 1230 // which again means it must not have any all-ones elements. 1231 if (!match(C0, 1232 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1233 APInt::getAllOnesValue( 1234 C0->getType()->getScalarSizeInBits())))) 1235 return nullptr; // Can't do, have all-ones element[s]. 1236 C0 = InstCombiner::AddOne(C0); 1237 std::swap(X, Sel1); 1238 break; 1239 case ICmpInst::Predicate::ICMP_UGE: 1240 // The only way we'd get this predicate if this `icmp` has extra uses, 1241 // but then we won't be able to do this fold. 1242 return nullptr; 1243 default: 1244 return nullptr; // Unknown predicate. 1245 } 1246 1247 // Now that we've canonicalized the ICmp, we know the X we expect; 1248 // the select in other hand should be one-use. 1249 if (!Sel1->hasOneUse()) 1250 return nullptr; 1251 1252 // We now can finish matching the condition of the outermost select: 1253 // it should either be the X itself, or an addition of some constant to X. 1254 Constant *C1; 1255 if (Cmp00 == X) 1256 C1 = ConstantInt::getNullValue(Sel0.getType()); 1257 else if (!match(Cmp00, 1258 m_Add(m_Specific(X), 1259 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1))))) 1260 return nullptr; 1261 1262 Value *Cmp1; 1263 ICmpInst::Predicate Pred1; 1264 Constant *C2; 1265 Value *ReplacementLow, *ReplacementHigh; 1266 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow), 1267 m_Value(ReplacementHigh))) || 1268 !match(Cmp1, 1269 m_ICmp(Pred1, m_Specific(X), 1270 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2))))) 1271 return nullptr; 1272 1273 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse())) 1274 return nullptr; // Not enough one-use instructions for the fold. 1275 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of 1276 // two comparisons we'll need to build. 1277 1278 // Canonicalize Cmp1 into the form we expect. 1279 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1280 switch (Pred1) { 1281 case ICmpInst::Predicate::ICMP_SLT: 1282 break; 1283 case ICmpInst::Predicate::ICMP_SLE: 1284 // We'd have to increment C2 by one, and for that it must not have signed 1285 // max element, but then it would have been canonicalized to 'slt' before 1286 // we get here. So we can't do anything useful with 'sle'. 1287 return nullptr; 1288 case ICmpInst::Predicate::ICMP_SGT: 1289 // We want to canonicalize it to 'slt', so we'll need to increment C2, 1290 // which again means it must not have any signed max elements. 1291 if (!match(C2, 1292 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1293 APInt::getSignedMaxValue( 1294 C2->getType()->getScalarSizeInBits())))) 1295 return nullptr; // Can't do, have signed max element[s]. 1296 C2 = InstCombiner::AddOne(C2); 1297 LLVM_FALLTHROUGH; 1298 case ICmpInst::Predicate::ICMP_SGE: 1299 // Also non-canonical, but here we don't need to change C2, 1300 // so we don't have any restrictions on C2, so we can just handle it. 1301 std::swap(ReplacementLow, ReplacementHigh); 1302 break; 1303 default: 1304 return nullptr; // Unknown predicate. 1305 } 1306 1307 // The thresholds of this clamp-like pattern. 1308 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1); 1309 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1); 1310 1311 // The fold has a precondition 1: C2 s>= ThresholdLow 1312 auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2, 1313 ThresholdLowIncl); 1314 if (!match(Precond1, m_One())) 1315 return nullptr; 1316 // The fold has a precondition 2: C2 s<= ThresholdHigh 1317 auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2, 1318 ThresholdHighExcl); 1319 if (!match(Precond2, m_One())) 1320 return nullptr; 1321 1322 // All good, finally emit the new pattern. 1323 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl); 1324 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl); 1325 Value *MaybeReplacedLow = 1326 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X); 1327 Instruction *MaybeReplacedHigh = 1328 SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow); 1329 1330 return MaybeReplacedHigh; 1331 } 1332 1333 // If we have 1334 // %cmp = icmp [canonical predicate] i32 %x, C0 1335 // %r = select i1 %cmp, i32 %y, i32 C1 1336 // Where C0 != C1 and %x may be different from %y, see if the constant that we 1337 // will have if we flip the strictness of the predicate (i.e. without changing 1338 // the result) is identical to the C1 in select. If it matches we can change 1339 // original comparison to one with swapped predicate, reuse the constant, 1340 // and swap the hands of select. 1341 static Instruction * 1342 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp, 1343 InstCombinerImpl &IC) { 1344 ICmpInst::Predicate Pred; 1345 Value *X; 1346 Constant *C0; 1347 if (!match(&Cmp, m_OneUse(m_ICmp( 1348 Pred, m_Value(X), 1349 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))))) 1350 return nullptr; 1351 1352 // If comparison predicate is non-relational, we won't be able to do anything. 1353 if (ICmpInst::isEquality(Pred)) 1354 return nullptr; 1355 1356 // If comparison predicate is non-canonical, then we certainly won't be able 1357 // to make it canonical; canonicalizeCmpWithConstant() already tried. 1358 if (!InstCombiner::isCanonicalPredicate(Pred)) 1359 return nullptr; 1360 1361 // If the [input] type of comparison and select type are different, lets abort 1362 // for now. We could try to compare constants with trunc/[zs]ext though. 1363 if (C0->getType() != Sel.getType()) 1364 return nullptr; 1365 1366 // FIXME: are there any magic icmp predicate+constant pairs we must not touch? 1367 1368 Value *SelVal0, *SelVal1; // We do not care which one is from where. 1369 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1))); 1370 // At least one of these values we are selecting between must be a constant 1371 // else we'll never succeed. 1372 if (!match(SelVal0, m_AnyIntegralConstant()) && 1373 !match(SelVal1, m_AnyIntegralConstant())) 1374 return nullptr; 1375 1376 // Does this constant C match any of the `select` values? 1377 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) { 1378 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1); 1379 }; 1380 1381 // If C0 *already* matches true/false value of select, we are done. 1382 if (MatchesSelectValue(C0)) 1383 return nullptr; 1384 1385 // Check the constant we'd have with flipped-strictness predicate. 1386 auto FlippedStrictness = 1387 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0); 1388 if (!FlippedStrictness) 1389 return nullptr; 1390 1391 // If said constant doesn't match either, then there is no hope, 1392 if (!MatchesSelectValue(FlippedStrictness->second)) 1393 return nullptr; 1394 1395 // It matched! Lets insert the new comparison just before select. 1396 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder); 1397 IC.Builder.SetInsertPoint(&Sel); 1398 1399 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped. 1400 Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second, 1401 Cmp.getName() + ".inv"); 1402 IC.replaceOperand(Sel, 0, NewCmp); 1403 Sel.swapValues(); 1404 Sel.swapProfMetadata(); 1405 1406 return &Sel; 1407 } 1408 1409 /// Visit a SelectInst that has an ICmpInst as its first operand. 1410 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI, 1411 ICmpInst *ICI) { 1412 if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI)) 1413 return NewSel; 1414 1415 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *this)) 1416 return NewSel; 1417 1418 if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, *this)) 1419 return NewAbs; 1420 1421 if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder)) 1422 return NewAbs; 1423 1424 if (Instruction *NewSel = 1425 tryToReuseConstantFromSelectInComparison(SI, *ICI, *this)) 1426 return NewSel; 1427 1428 bool Changed = adjustMinMax(SI, *ICI); 1429 1430 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 1431 return replaceInstUsesWith(SI, V); 1432 1433 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 1434 Value *TrueVal = SI.getTrueValue(); 1435 Value *FalseVal = SI.getFalseValue(); 1436 ICmpInst::Predicate Pred = ICI->getPredicate(); 1437 Value *CmpLHS = ICI->getOperand(0); 1438 Value *CmpRHS = ICI->getOperand(1); 1439 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 1440 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 1441 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 1442 SI.setOperand(1, CmpRHS); 1443 Changed = true; 1444 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 1445 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 1446 SI.setOperand(2, CmpRHS); 1447 Changed = true; 1448 } 1449 } 1450 1451 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 1452 // decomposeBitTestICmp() might help. 1453 { 1454 unsigned BitWidth = 1455 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 1456 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 1457 Value *X; 1458 const APInt *Y, *C; 1459 bool TrueWhenUnset; 1460 bool IsBitTest = false; 1461 if (ICmpInst::isEquality(Pred) && 1462 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 1463 match(CmpRHS, m_Zero())) { 1464 IsBitTest = true; 1465 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 1466 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 1467 X = CmpLHS; 1468 Y = &MinSignedValue; 1469 IsBitTest = true; 1470 TrueWhenUnset = false; 1471 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 1472 X = CmpLHS; 1473 Y = &MinSignedValue; 1474 IsBitTest = true; 1475 TrueWhenUnset = true; 1476 } 1477 if (IsBitTest) { 1478 Value *V = nullptr; 1479 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1480 if (TrueWhenUnset && TrueVal == X && 1481 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1482 V = Builder.CreateAnd(X, ~(*Y)); 1483 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1484 else if (!TrueWhenUnset && FalseVal == X && 1485 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1486 V = Builder.CreateAnd(X, ~(*Y)); 1487 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1488 else if (TrueWhenUnset && FalseVal == X && 1489 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1490 V = Builder.CreateOr(X, *Y); 1491 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1492 else if (!TrueWhenUnset && TrueVal == X && 1493 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1494 V = Builder.CreateOr(X, *Y); 1495 1496 if (V) 1497 return replaceInstUsesWith(SI, V); 1498 } 1499 } 1500 1501 if (Instruction *V = 1502 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1503 return V; 1504 1505 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder)) 1506 return V; 1507 1508 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 1509 return replaceInstUsesWith(SI, V); 1510 1511 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder)) 1512 return replaceInstUsesWith(SI, V); 1513 1514 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 1515 return replaceInstUsesWith(SI, V); 1516 1517 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1518 return replaceInstUsesWith(SI, V); 1519 1520 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) 1521 return replaceInstUsesWith(SI, V); 1522 1523 return Changed ? &SI : nullptr; 1524 } 1525 1526 /// SI is a select whose condition is a PHI node (but the two may be in 1527 /// different blocks). See if the true/false values (V) are live in all of the 1528 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1529 /// 1530 /// X = phi [ C1, BB1], [C2, BB2] 1531 /// Y = add 1532 /// Z = select X, Y, 0 1533 /// 1534 /// because Y is not live in BB1/BB2. 1535 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1536 const SelectInst &SI) { 1537 // If the value is a non-instruction value like a constant or argument, it 1538 // can always be mapped. 1539 const Instruction *I = dyn_cast<Instruction>(V); 1540 if (!I) return true; 1541 1542 // If V is a PHI node defined in the same block as the condition PHI, we can 1543 // map the arguments. 1544 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1545 1546 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1547 if (VP->getParent() == CondPHI->getParent()) 1548 return true; 1549 1550 // Otherwise, if the PHI and select are defined in the same block and if V is 1551 // defined in a different block, then we can transform it. 1552 if (SI.getParent() == CondPHI->getParent() && 1553 I->getParent() != CondPHI->getParent()) 1554 return true; 1555 1556 // Otherwise we have a 'hard' case and we can't tell without doing more 1557 // detailed dominator based analysis, punt. 1558 return false; 1559 } 1560 1561 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1562 /// SPF2(SPF1(A, B), C) 1563 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner, 1564 SelectPatternFlavor SPF1, Value *A, 1565 Value *B, Instruction &Outer, 1566 SelectPatternFlavor SPF2, 1567 Value *C) { 1568 if (Outer.getType() != Inner->getType()) 1569 return nullptr; 1570 1571 if (C == A || C == B) { 1572 // MAX(MAX(A, B), B) -> MAX(A, B) 1573 // MIN(MIN(a, b), a) -> MIN(a, b) 1574 // TODO: This could be done in instsimplify. 1575 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 1576 return replaceInstUsesWith(Outer, Inner); 1577 1578 // MAX(MIN(a, b), a) -> a 1579 // MIN(MAX(a, b), a) -> a 1580 // TODO: This could be done in instsimplify. 1581 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 1582 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 1583 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 1584 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 1585 return replaceInstUsesWith(Outer, C); 1586 } 1587 1588 if (SPF1 == SPF2) { 1589 const APInt *CB, *CC; 1590 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 1591 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 1592 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 1593 // TODO: This could be done in instsimplify. 1594 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 1595 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 1596 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 1597 (SPF1 == SPF_SMAX && CB->sge(*CC))) 1598 return replaceInstUsesWith(Outer, Inner); 1599 1600 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 1601 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 1602 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 1603 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 1604 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 1605 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 1606 Outer.replaceUsesOfWith(Inner, A); 1607 return &Outer; 1608 } 1609 } 1610 } 1611 1612 // max(max(A, B), min(A, B)) --> max(A, B) 1613 // min(min(A, B), max(A, B)) --> min(A, B) 1614 // TODO: This could be done in instsimplify. 1615 if (SPF1 == SPF2 && 1616 ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) || 1617 (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) || 1618 (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) || 1619 (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B)))))) 1620 return replaceInstUsesWith(Outer, Inner); 1621 1622 // ABS(ABS(X)) -> ABS(X) 1623 // NABS(NABS(X)) -> NABS(X) 1624 // TODO: This could be done in instsimplify. 1625 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 1626 return replaceInstUsesWith(Outer, Inner); 1627 } 1628 1629 // ABS(NABS(X)) -> ABS(X) 1630 // NABS(ABS(X)) -> NABS(X) 1631 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 1632 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 1633 SelectInst *SI = cast<SelectInst>(Inner); 1634 Value *NewSI = 1635 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 1636 SI->getTrueValue(), SI->getName(), SI); 1637 return replaceInstUsesWith(Outer, NewSI); 1638 } 1639 1640 auto IsFreeOrProfitableToInvert = 1641 [&](Value *V, Value *&NotV, bool &ElidesXor) { 1642 if (match(V, m_Not(m_Value(NotV)))) { 1643 // If V has at most 2 uses then we can get rid of the xor operation 1644 // entirely. 1645 ElidesXor |= !V->hasNUsesOrMore(3); 1646 return true; 1647 } 1648 1649 if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) { 1650 NotV = nullptr; 1651 return true; 1652 } 1653 1654 return false; 1655 }; 1656 1657 Value *NotA, *NotB, *NotC; 1658 bool ElidesXor = false; 1659 1660 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 1661 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 1662 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 1663 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 1664 // 1665 // This transform is performance neutral if we can elide at least one xor from 1666 // the set of three operands, since we'll be tacking on an xor at the very 1667 // end. 1668 if (SelectPatternResult::isMinOrMax(SPF1) && 1669 SelectPatternResult::isMinOrMax(SPF2) && 1670 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 1671 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 1672 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 1673 if (!NotA) 1674 NotA = Builder.CreateNot(A); 1675 if (!NotB) 1676 NotB = Builder.CreateNot(B); 1677 if (!NotC) 1678 NotC = Builder.CreateNot(C); 1679 1680 Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA, 1681 NotB); 1682 Value *NewOuter = Builder.CreateNot( 1683 createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC)); 1684 return replaceInstUsesWith(Outer, NewOuter); 1685 } 1686 1687 return nullptr; 1688 } 1689 1690 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1691 /// This is even legal for FP. 1692 static Instruction *foldAddSubSelect(SelectInst &SI, 1693 InstCombiner::BuilderTy &Builder) { 1694 Value *CondVal = SI.getCondition(); 1695 Value *TrueVal = SI.getTrueValue(); 1696 Value *FalseVal = SI.getFalseValue(); 1697 auto *TI = dyn_cast<Instruction>(TrueVal); 1698 auto *FI = dyn_cast<Instruction>(FalseVal); 1699 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1700 return nullptr; 1701 1702 Instruction *AddOp = nullptr, *SubOp = nullptr; 1703 if ((TI->getOpcode() == Instruction::Sub && 1704 FI->getOpcode() == Instruction::Add) || 1705 (TI->getOpcode() == Instruction::FSub && 1706 FI->getOpcode() == Instruction::FAdd)) { 1707 AddOp = FI; 1708 SubOp = TI; 1709 } else if ((FI->getOpcode() == Instruction::Sub && 1710 TI->getOpcode() == Instruction::Add) || 1711 (FI->getOpcode() == Instruction::FSub && 1712 TI->getOpcode() == Instruction::FAdd)) { 1713 AddOp = TI; 1714 SubOp = FI; 1715 } 1716 1717 if (AddOp) { 1718 Value *OtherAddOp = nullptr; 1719 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1720 OtherAddOp = AddOp->getOperand(1); 1721 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1722 OtherAddOp = AddOp->getOperand(0); 1723 } 1724 1725 if (OtherAddOp) { 1726 // So at this point we know we have (Y -> OtherAddOp): 1727 // select C, (add X, Y), (sub X, Z) 1728 Value *NegVal; // Compute -Z 1729 if (SI.getType()->isFPOrFPVectorTy()) { 1730 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1731 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1732 FastMathFlags Flags = AddOp->getFastMathFlags(); 1733 Flags &= SubOp->getFastMathFlags(); 1734 NegInst->setFastMathFlags(Flags); 1735 } 1736 } else { 1737 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1738 } 1739 1740 Value *NewTrueOp = OtherAddOp; 1741 Value *NewFalseOp = NegVal; 1742 if (AddOp != TI) 1743 std::swap(NewTrueOp, NewFalseOp); 1744 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1745 SI.getName() + ".p", &SI); 1746 1747 if (SI.getType()->isFPOrFPVectorTy()) { 1748 Instruction *RI = 1749 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1750 1751 FastMathFlags Flags = AddOp->getFastMathFlags(); 1752 Flags &= SubOp->getFastMathFlags(); 1753 RI->setFastMathFlags(Flags); 1754 return RI; 1755 } else 1756 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1757 } 1758 } 1759 return nullptr; 1760 } 1761 1762 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1763 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1764 /// Along with a number of patterns similar to: 1765 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1766 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1767 static Instruction * 1768 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) { 1769 Value *CondVal = SI.getCondition(); 1770 Value *TrueVal = SI.getTrueValue(); 1771 Value *FalseVal = SI.getFalseValue(); 1772 1773 WithOverflowInst *II; 1774 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) || 1775 !match(FalseVal, m_ExtractValue<0>(m_Specific(II)))) 1776 return nullptr; 1777 1778 Value *X = II->getLHS(); 1779 Value *Y = II->getRHS(); 1780 1781 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) { 1782 Type *Ty = Limit->getType(); 1783 1784 ICmpInst::Predicate Pred; 1785 Value *TrueVal, *FalseVal, *Op; 1786 const APInt *C; 1787 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)), 1788 m_Value(TrueVal), m_Value(FalseVal)))) 1789 return false; 1790 1791 auto IsZeroOrOne = [](const APInt &C) { 1792 return C.isNullValue() || C.isOneValue(); 1793 }; 1794 auto IsMinMax = [&](Value *Min, Value *Max) { 1795 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 1796 APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 1797 return match(Min, m_SpecificInt(MinVal)) && 1798 match(Max, m_SpecificInt(MaxVal)); 1799 }; 1800 1801 if (Op != X && Op != Y) 1802 return false; 1803 1804 if (IsAdd) { 1805 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1806 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1807 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1808 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1809 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1810 IsMinMax(TrueVal, FalseVal)) 1811 return true; 1812 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1813 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1814 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1815 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1816 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1817 IsMinMax(FalseVal, TrueVal)) 1818 return true; 1819 } else { 1820 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1821 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1822 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) && 1823 IsMinMax(TrueVal, FalseVal)) 1824 return true; 1825 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1826 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1827 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) && 1828 IsMinMax(FalseVal, TrueVal)) 1829 return true; 1830 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1831 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1832 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1833 IsMinMax(FalseVal, TrueVal)) 1834 return true; 1835 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1836 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1837 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1838 IsMinMax(TrueVal, FalseVal)) 1839 return true; 1840 } 1841 1842 return false; 1843 }; 1844 1845 Intrinsic::ID NewIntrinsicID; 1846 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow && 1847 match(TrueVal, m_AllOnes())) 1848 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1849 NewIntrinsicID = Intrinsic::uadd_sat; 1850 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow && 1851 match(TrueVal, m_Zero())) 1852 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1853 NewIntrinsicID = Intrinsic::usub_sat; 1854 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow && 1855 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true)) 1856 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1857 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1858 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1859 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1860 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1861 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1862 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1863 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1864 NewIntrinsicID = Intrinsic::sadd_sat; 1865 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow && 1866 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false)) 1867 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1868 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1869 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1870 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1871 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1872 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1873 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1874 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1875 NewIntrinsicID = Intrinsic::ssub_sat; 1876 else 1877 return nullptr; 1878 1879 Function *F = 1880 Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType()); 1881 return CallInst::Create(F, {X, Y}); 1882 } 1883 1884 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) { 1885 Constant *C; 1886 if (!match(Sel.getTrueValue(), m_Constant(C)) && 1887 !match(Sel.getFalseValue(), m_Constant(C))) 1888 return nullptr; 1889 1890 Instruction *ExtInst; 1891 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 1892 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 1893 return nullptr; 1894 1895 auto ExtOpcode = ExtInst->getOpcode(); 1896 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 1897 return nullptr; 1898 1899 // If we are extending from a boolean type or if we can create a select that 1900 // has the same size operands as its condition, try to narrow the select. 1901 Value *X = ExtInst->getOperand(0); 1902 Type *SmallType = X->getType(); 1903 Value *Cond = Sel.getCondition(); 1904 auto *Cmp = dyn_cast<CmpInst>(Cond); 1905 if (!SmallType->isIntOrIntVectorTy(1) && 1906 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 1907 return nullptr; 1908 1909 // If the constant is the same after truncation to the smaller type and 1910 // extension to the original type, we can narrow the select. 1911 Type *SelType = Sel.getType(); 1912 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 1913 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 1914 if (ExtC == C && ExtInst->hasOneUse()) { 1915 Value *TruncCVal = cast<Value>(TruncC); 1916 if (ExtInst == Sel.getFalseValue()) 1917 std::swap(X, TruncCVal); 1918 1919 // select Cond, (ext X), C --> ext(select Cond, X, C') 1920 // select Cond, C, (ext X) --> ext(select Cond, C', X) 1921 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 1922 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 1923 } 1924 1925 // If one arm of the select is the extend of the condition, replace that arm 1926 // with the extension of the appropriate known bool value. 1927 if (Cond == X) { 1928 if (ExtInst == Sel.getTrueValue()) { 1929 // select X, (sext X), C --> select X, -1, C 1930 // select X, (zext X), C --> select X, 1, C 1931 Constant *One = ConstantInt::getTrue(SmallType); 1932 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 1933 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 1934 } else { 1935 // select X, C, (sext X) --> select X, C, 0 1936 // select X, C, (zext X) --> select X, C, 0 1937 Constant *Zero = ConstantInt::getNullValue(SelType); 1938 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 1939 } 1940 } 1941 1942 return nullptr; 1943 } 1944 1945 /// Try to transform a vector select with a constant condition vector into a 1946 /// shuffle for easier combining with other shuffles and insert/extract. 1947 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 1948 Value *CondVal = SI.getCondition(); 1949 Constant *CondC; 1950 auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType()); 1951 if (!CondValTy || !match(CondVal, m_Constant(CondC))) 1952 return nullptr; 1953 1954 unsigned NumElts = CondValTy->getNumElements(); 1955 SmallVector<int, 16> Mask; 1956 Mask.reserve(NumElts); 1957 for (unsigned i = 0; i != NumElts; ++i) { 1958 Constant *Elt = CondC->getAggregateElement(i); 1959 if (!Elt) 1960 return nullptr; 1961 1962 if (Elt->isOneValue()) { 1963 // If the select condition element is true, choose from the 1st vector. 1964 Mask.push_back(i); 1965 } else if (Elt->isNullValue()) { 1966 // If the select condition element is false, choose from the 2nd vector. 1967 Mask.push_back(i + NumElts); 1968 } else if (isa<UndefValue>(Elt)) { 1969 // Undef in a select condition (choose one of the operands) does not mean 1970 // the same thing as undef in a shuffle mask (any value is acceptable), so 1971 // give up. 1972 return nullptr; 1973 } else { 1974 // Bail out on a constant expression. 1975 return nullptr; 1976 } 1977 } 1978 1979 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask); 1980 } 1981 1982 /// If we have a select of vectors with a scalar condition, try to convert that 1983 /// to a vector select by splatting the condition. A splat may get folded with 1984 /// other operations in IR and having all operands of a select be vector types 1985 /// is likely better for vector codegen. 1986 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel, 1987 InstCombinerImpl &IC) { 1988 auto *Ty = dyn_cast<VectorType>(Sel.getType()); 1989 if (!Ty) 1990 return nullptr; 1991 1992 // We can replace a single-use extract with constant index. 1993 Value *Cond = Sel.getCondition(); 1994 if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt())))) 1995 return nullptr; 1996 1997 // select (extelt V, Index), T, F --> select (splat V, Index), T, F 1998 // Splatting the extracted condition reduces code (we could directly create a 1999 // splat shuffle of the source vector to eliminate the intermediate step). 2000 return IC.replaceOperand( 2001 Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond)); 2002 } 2003 2004 /// Reuse bitcasted operands between a compare and select: 2005 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2006 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 2007 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 2008 InstCombiner::BuilderTy &Builder) { 2009 Value *Cond = Sel.getCondition(); 2010 Value *TVal = Sel.getTrueValue(); 2011 Value *FVal = Sel.getFalseValue(); 2012 2013 CmpInst::Predicate Pred; 2014 Value *A, *B; 2015 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 2016 return nullptr; 2017 2018 // The select condition is a compare instruction. If the select's true/false 2019 // values are already the same as the compare operands, there's nothing to do. 2020 if (TVal == A || TVal == B || FVal == A || FVal == B) 2021 return nullptr; 2022 2023 Value *C, *D; 2024 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 2025 return nullptr; 2026 2027 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 2028 Value *TSrc, *FSrc; 2029 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 2030 !match(FVal, m_BitCast(m_Value(FSrc)))) 2031 return nullptr; 2032 2033 // If the select true/false values are *different bitcasts* of the same source 2034 // operands, make the select operands the same as the compare operands and 2035 // cast the result. This is the canonical select form for min/max. 2036 Value *NewSel; 2037 if (TSrc == C && FSrc == D) { 2038 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2039 // bitcast (select (cmp A, B), A, B) 2040 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 2041 } else if (TSrc == D && FSrc == C) { 2042 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 2043 // bitcast (select (cmp A, B), B, A) 2044 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 2045 } else { 2046 return nullptr; 2047 } 2048 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 2049 } 2050 2051 /// Try to eliminate select instructions that test the returned flag of cmpxchg 2052 /// instructions. 2053 /// 2054 /// If a select instruction tests the returned flag of a cmpxchg instruction and 2055 /// selects between the returned value of the cmpxchg instruction its compare 2056 /// operand, the result of the select will always be equal to its false value. 2057 /// For example: 2058 /// 2059 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2060 /// %1 = extractvalue { i64, i1 } %0, 1 2061 /// %2 = extractvalue { i64, i1 } %0, 0 2062 /// %3 = select i1 %1, i64 %compare, i64 %2 2063 /// ret i64 %3 2064 /// 2065 /// The returned value of the cmpxchg instruction (%2) is the original value 2066 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 2067 /// must have been equal to %compare. Thus, the result of the select is always 2068 /// equal to %2, and the code can be simplified to: 2069 /// 2070 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2071 /// %1 = extractvalue { i64, i1 } %0, 0 2072 /// ret i64 %1 2073 /// 2074 static Value *foldSelectCmpXchg(SelectInst &SI) { 2075 // A helper that determines if V is an extractvalue instruction whose 2076 // aggregate operand is a cmpxchg instruction and whose single index is equal 2077 // to I. If such conditions are true, the helper returns the cmpxchg 2078 // instruction; otherwise, a nullptr is returned. 2079 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 2080 auto *Extract = dyn_cast<ExtractValueInst>(V); 2081 if (!Extract) 2082 return nullptr; 2083 if (Extract->getIndices()[0] != I) 2084 return nullptr; 2085 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 2086 }; 2087 2088 // If the select has a single user, and this user is a select instruction that 2089 // we can simplify, skip the cmpxchg simplification for now. 2090 if (SI.hasOneUse()) 2091 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 2092 if (Select->getCondition() == SI.getCondition()) 2093 if (Select->getFalseValue() == SI.getTrueValue() || 2094 Select->getTrueValue() == SI.getFalseValue()) 2095 return nullptr; 2096 2097 // Ensure the select condition is the returned flag of a cmpxchg instruction. 2098 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 2099 if (!CmpXchg) 2100 return nullptr; 2101 2102 // Check the true value case: The true value of the select is the returned 2103 // value of the same cmpxchg used by the condition, and the false value is the 2104 // cmpxchg instruction's compare operand. 2105 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 2106 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) 2107 return SI.getFalseValue(); 2108 2109 // Check the false value case: The false value of the select is the returned 2110 // value of the same cmpxchg used by the condition, and the true value is the 2111 // cmpxchg instruction's compare operand. 2112 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 2113 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) 2114 return SI.getFalseValue(); 2115 2116 return nullptr; 2117 } 2118 2119 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X, 2120 Value *Y, 2121 InstCombiner::BuilderTy &Builder) { 2122 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern"); 2123 bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN || 2124 SPF == SelectPatternFlavor::SPF_UMAX; 2125 // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change 2126 // the constant value check to an assert. 2127 Value *A; 2128 const APInt *C1, *C2; 2129 if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) && 2130 match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) { 2131 // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1 2132 // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1 2133 Value *NewMinMax = createMinMax(Builder, SPF, A, 2134 ConstantInt::get(X->getType(), *C2 - *C1)); 2135 return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax, 2136 ConstantInt::get(X->getType(), *C1)); 2137 } 2138 2139 if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) && 2140 match(Y, m_APInt(C2)) && X->hasNUses(2)) { 2141 bool Overflow; 2142 APInt Diff = C2->ssub_ov(*C1, Overflow); 2143 if (!Overflow) { 2144 // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1 2145 // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1 2146 Value *NewMinMax = createMinMax(Builder, SPF, A, 2147 ConstantInt::get(X->getType(), Diff)); 2148 return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax, 2149 ConstantInt::get(X->getType(), *C1)); 2150 } 2151 } 2152 2153 return nullptr; 2154 } 2155 2156 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value. 2157 Instruction *InstCombinerImpl::matchSAddSubSat(SelectInst &MinMax1) { 2158 Type *Ty = MinMax1.getType(); 2159 2160 // We are looking for a tree of: 2161 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B)))) 2162 // Where the min and max could be reversed 2163 Instruction *MinMax2; 2164 BinaryOperator *AddSub; 2165 const APInt *MinValue, *MaxValue; 2166 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) { 2167 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue)))) 2168 return nullptr; 2169 } else if (match(&MinMax1, 2170 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) { 2171 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue)))) 2172 return nullptr; 2173 } else 2174 return nullptr; 2175 2176 // Check that the constants clamp a saturate, and that the new type would be 2177 // sensible to convert to. 2178 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1) 2179 return nullptr; 2180 // In what bitwidth can this be treated as saturating arithmetics? 2181 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1; 2182 // FIXME: This isn't quite right for vectors, but using the scalar type is a 2183 // good first approximation for what should be done there. 2184 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth)) 2185 return nullptr; 2186 2187 // Also make sure that the number of uses is as expected. The "3"s are for the 2188 // the two items of min/max (the compare and the select). 2189 if (MinMax2->hasNUsesOrMore(3) || AddSub->hasNUsesOrMore(3)) 2190 return nullptr; 2191 2192 // Create the new type (which can be a vector type) 2193 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth); 2194 // Match the two extends from the add/sub 2195 Value *A, *B; 2196 if(!match(AddSub, m_BinOp(m_SExt(m_Value(A)), m_SExt(m_Value(B))))) 2197 return nullptr; 2198 // And check the incoming values are of a type smaller than or equal to the 2199 // size of the saturation. Otherwise the higher bits can cause different 2200 // results. 2201 if (A->getType()->getScalarSizeInBits() > NewBitWidth || 2202 B->getType()->getScalarSizeInBits() > NewBitWidth) 2203 return nullptr; 2204 2205 Intrinsic::ID IntrinsicID; 2206 if (AddSub->getOpcode() == Instruction::Add) 2207 IntrinsicID = Intrinsic::sadd_sat; 2208 else if (AddSub->getOpcode() == Instruction::Sub) 2209 IntrinsicID = Intrinsic::ssub_sat; 2210 else 2211 return nullptr; 2212 2213 // Finally create and return the sat intrinsic, truncated to the new type 2214 Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy); 2215 Value *AT = Builder.CreateSExt(A, NewTy); 2216 Value *BT = Builder.CreateSExt(B, NewTy); 2217 Value *Sat = Builder.CreateCall(F, {AT, BT}); 2218 return CastInst::Create(Instruction::SExt, Sat, Ty); 2219 } 2220 2221 /// Reduce a sequence of min/max with a common operand. 2222 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS, 2223 Value *RHS, 2224 InstCombiner::BuilderTy &Builder) { 2225 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"); 2226 // TODO: Allow FP min/max with nnan/nsz. 2227 if (!LHS->getType()->isIntOrIntVectorTy()) 2228 return nullptr; 2229 2230 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 2231 Value *A, *B, *C, *D; 2232 SelectPatternResult L = matchSelectPattern(LHS, A, B); 2233 SelectPatternResult R = matchSelectPattern(RHS, C, D); 2234 if (SPF != L.Flavor || L.Flavor != R.Flavor) 2235 return nullptr; 2236 2237 // Look for a common operand. The use checks are different than usual because 2238 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by 2239 // the select. 2240 Value *MinMaxOp = nullptr; 2241 Value *ThirdOp = nullptr; 2242 if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) { 2243 // If the LHS is only used in this chain and the RHS is used outside of it, 2244 // reuse the RHS min/max because that will eliminate the LHS. 2245 if (D == A || C == A) { 2246 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 2247 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 2248 MinMaxOp = RHS; 2249 ThirdOp = B; 2250 } else if (D == B || C == B) { 2251 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 2252 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 2253 MinMaxOp = RHS; 2254 ThirdOp = A; 2255 } 2256 } else if (!RHS->hasNUsesOrMore(3)) { 2257 // Reuse the LHS. This will eliminate the RHS. 2258 if (D == A || D == B) { 2259 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 2260 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 2261 MinMaxOp = LHS; 2262 ThirdOp = C; 2263 } else if (C == A || C == B) { 2264 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 2265 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 2266 MinMaxOp = LHS; 2267 ThirdOp = D; 2268 } 2269 } 2270 if (!MinMaxOp || !ThirdOp) 2271 return nullptr; 2272 2273 CmpInst::Predicate P = getMinMaxPred(SPF); 2274 Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp); 2275 return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp); 2276 } 2277 2278 /// Try to reduce a funnel/rotate pattern that includes a compare and select 2279 /// into a funnel shift intrinsic. Example: 2280 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 2281 /// --> call llvm.fshl.i32(a, a, b) 2282 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c))) 2283 /// --> call llvm.fshl.i32(a, b, c) 2284 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c))) 2285 /// --> call llvm.fshr.i32(a, b, c) 2286 static Instruction *foldSelectFunnelShift(SelectInst &Sel, 2287 InstCombiner::BuilderTy &Builder) { 2288 // This must be a power-of-2 type for a bitmasking transform to be valid. 2289 unsigned Width = Sel.getType()->getScalarSizeInBits(); 2290 if (!isPowerOf2_32(Width)) 2291 return nullptr; 2292 2293 BinaryOperator *Or0, *Or1; 2294 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 2295 return nullptr; 2296 2297 Value *SV0, *SV1, *SA0, *SA1; 2298 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0), 2299 m_ZExtOrSelf(m_Value(SA0))))) || 2300 !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1), 2301 m_ZExtOrSelf(m_Value(SA1))))) || 2302 Or0->getOpcode() == Or1->getOpcode()) 2303 return nullptr; 2304 2305 // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)). 2306 if (Or0->getOpcode() == BinaryOperator::LShr) { 2307 std::swap(Or0, Or1); 2308 std::swap(SV0, SV1); 2309 std::swap(SA0, SA1); 2310 } 2311 assert(Or0->getOpcode() == BinaryOperator::Shl && 2312 Or1->getOpcode() == BinaryOperator::LShr && 2313 "Illegal or(shift,shift) pair"); 2314 2315 // Check the shift amounts to see if they are an opposite pair. 2316 Value *ShAmt; 2317 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 2318 ShAmt = SA0; 2319 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 2320 ShAmt = SA1; 2321 else 2322 return nullptr; 2323 2324 // We should now have this pattern: 2325 // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1)) 2326 // The false value of the select must be a funnel-shift of the true value: 2327 // IsFShl -> TVal must be SV0 else TVal must be SV1. 2328 bool IsFshl = (ShAmt == SA0); 2329 Value *TVal = Sel.getTrueValue(); 2330 if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1)) 2331 return nullptr; 2332 2333 // Finally, see if the select is filtering out a shift-by-zero. 2334 Value *Cond = Sel.getCondition(); 2335 ICmpInst::Predicate Pred; 2336 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || 2337 Pred != ICmpInst::ICMP_EQ) 2338 return nullptr; 2339 2340 // If this is not a rotate then the select was blocking poison from the 2341 // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it. 2342 if (SV0 != SV1) { 2343 if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1)) 2344 SV1 = Builder.CreateFreeze(SV1); 2345 else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0)) 2346 SV0 = Builder.CreateFreeze(SV0); 2347 } 2348 2349 // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way. 2350 // Convert to funnel shift intrinsic. 2351 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 2352 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); 2353 ShAmt = Builder.CreateZExt(ShAmt, Sel.getType()); 2354 return IntrinsicInst::Create(F, { SV0, SV1, ShAmt }); 2355 } 2356 2357 static Instruction *foldSelectToCopysign(SelectInst &Sel, 2358 InstCombiner::BuilderTy &Builder) { 2359 Value *Cond = Sel.getCondition(); 2360 Value *TVal = Sel.getTrueValue(); 2361 Value *FVal = Sel.getFalseValue(); 2362 Type *SelType = Sel.getType(); 2363 2364 // Match select ?, TC, FC where the constants are equal but negated. 2365 // TODO: Generalize to handle a negated variable operand? 2366 const APFloat *TC, *FC; 2367 if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) || 2368 !abs(*TC).bitwiseIsEqual(abs(*FC))) 2369 return nullptr; 2370 2371 assert(TC != FC && "Expected equal select arms to simplify"); 2372 2373 Value *X; 2374 const APInt *C; 2375 bool IsTrueIfSignSet; 2376 ICmpInst::Predicate Pred; 2377 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) || 2378 !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) || 2379 X->getType() != SelType) 2380 return nullptr; 2381 2382 // If needed, negate the value that will be the sign argument of the copysign: 2383 // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X) 2384 // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X) 2385 // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X) 2386 // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X) 2387 if (IsTrueIfSignSet ^ TC->isNegative()) 2388 X = Builder.CreateFNegFMF(X, &Sel); 2389 2390 // Canonicalize the magnitude argument as the positive constant since we do 2391 // not care about its sign. 2392 Value *MagArg = TC->isNegative() ? FVal : TVal; 2393 Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign, 2394 Sel.getType()); 2395 Instruction *CopySign = IntrinsicInst::Create(F, { MagArg, X }); 2396 CopySign->setFastMathFlags(Sel.getFastMathFlags()); 2397 return CopySign; 2398 } 2399 2400 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) { 2401 auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType()); 2402 if (!VecTy) 2403 return nullptr; 2404 2405 unsigned NumElts = VecTy->getNumElements(); 2406 APInt UndefElts(NumElts, 0); 2407 APInt AllOnesEltMask(APInt::getAllOnesValue(NumElts)); 2408 if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) { 2409 if (V != &Sel) 2410 return replaceInstUsesWith(Sel, V); 2411 return &Sel; 2412 } 2413 2414 // A select of a "select shuffle" with a common operand can be rearranged 2415 // to select followed by "select shuffle". Because of poison, this only works 2416 // in the case of a shuffle with no undefined mask elements. 2417 Value *Cond = Sel.getCondition(); 2418 Value *TVal = Sel.getTrueValue(); 2419 Value *FVal = Sel.getFalseValue(); 2420 Value *X, *Y; 2421 ArrayRef<int> Mask; 2422 if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2423 !is_contained(Mask, UndefMaskElem) && 2424 cast<ShuffleVectorInst>(TVal)->isSelect()) { 2425 if (X == FVal) { 2426 // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X) 2427 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2428 return new ShuffleVectorInst(X, NewSel, Mask); 2429 } 2430 if (Y == FVal) { 2431 // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y 2432 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2433 return new ShuffleVectorInst(NewSel, Y, Mask); 2434 } 2435 } 2436 if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2437 !is_contained(Mask, UndefMaskElem) && 2438 cast<ShuffleVectorInst>(FVal)->isSelect()) { 2439 if (X == TVal) { 2440 // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y) 2441 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2442 return new ShuffleVectorInst(X, NewSel, Mask); 2443 } 2444 if (Y == TVal) { 2445 // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y 2446 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2447 return new ShuffleVectorInst(NewSel, Y, Mask); 2448 } 2449 } 2450 2451 return nullptr; 2452 } 2453 2454 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB, 2455 const DominatorTree &DT, 2456 InstCombiner::BuilderTy &Builder) { 2457 // Find the block's immediate dominator that ends with a conditional branch 2458 // that matches select's condition (maybe inverted). 2459 auto *IDomNode = DT[BB]->getIDom(); 2460 if (!IDomNode) 2461 return nullptr; 2462 BasicBlock *IDom = IDomNode->getBlock(); 2463 2464 Value *Cond = Sel.getCondition(); 2465 Value *IfTrue, *IfFalse; 2466 BasicBlock *TrueSucc, *FalseSucc; 2467 if (match(IDom->getTerminator(), 2468 m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc), 2469 m_BasicBlock(FalseSucc)))) { 2470 IfTrue = Sel.getTrueValue(); 2471 IfFalse = Sel.getFalseValue(); 2472 } else if (match(IDom->getTerminator(), 2473 m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc), 2474 m_BasicBlock(FalseSucc)))) { 2475 IfTrue = Sel.getFalseValue(); 2476 IfFalse = Sel.getTrueValue(); 2477 } else 2478 return nullptr; 2479 2480 // Make sure the branches are actually different. 2481 if (TrueSucc == FalseSucc) 2482 return nullptr; 2483 2484 // We want to replace select %cond, %a, %b with a phi that takes value %a 2485 // for all incoming edges that are dominated by condition `%cond == true`, 2486 // and value %b for edges dominated by condition `%cond == false`. If %a 2487 // or %b are also phis from the same basic block, we can go further and take 2488 // their incoming values from the corresponding blocks. 2489 BasicBlockEdge TrueEdge(IDom, TrueSucc); 2490 BasicBlockEdge FalseEdge(IDom, FalseSucc); 2491 DenseMap<BasicBlock *, Value *> Inputs; 2492 for (auto *Pred : predecessors(BB)) { 2493 // Check implication. 2494 BasicBlockEdge Incoming(Pred, BB); 2495 if (DT.dominates(TrueEdge, Incoming)) 2496 Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred); 2497 else if (DT.dominates(FalseEdge, Incoming)) 2498 Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred); 2499 else 2500 return nullptr; 2501 // Check availability. 2502 if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred])) 2503 if (!DT.dominates(Insn, Pred->getTerminator())) 2504 return nullptr; 2505 } 2506 2507 Builder.SetInsertPoint(&*BB->begin()); 2508 auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size()); 2509 for (auto *Pred : predecessors(BB)) 2510 PN->addIncoming(Inputs[Pred], Pred); 2511 PN->takeName(&Sel); 2512 return PN; 2513 } 2514 2515 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT, 2516 InstCombiner::BuilderTy &Builder) { 2517 // Try to replace this select with Phi in one of these blocks. 2518 SmallSetVector<BasicBlock *, 4> CandidateBlocks; 2519 CandidateBlocks.insert(Sel.getParent()); 2520 for (Value *V : Sel.operands()) 2521 if (auto *I = dyn_cast<Instruction>(V)) 2522 CandidateBlocks.insert(I->getParent()); 2523 2524 for (BasicBlock *BB : CandidateBlocks) 2525 if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder)) 2526 return PN; 2527 return nullptr; 2528 } 2529 2530 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) { 2531 FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition()); 2532 if (!FI) 2533 return nullptr; 2534 2535 Value *Cond = FI->getOperand(0); 2536 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 2537 2538 // select (freeze(x == y)), x, y --> y 2539 // select (freeze(x != y)), x, y --> x 2540 // The freeze should be only used by this select. Otherwise, remaining uses of 2541 // the freeze can observe a contradictory value. 2542 // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1 2543 // a = select c, x, y ; 2544 // f(a, c) ; f(poison, 1) cannot happen, but if a is folded 2545 // ; to y, this can happen. 2546 CmpInst::Predicate Pred; 2547 if (FI->hasOneUse() && 2548 match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) && 2549 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) { 2550 return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal; 2551 } 2552 2553 return nullptr; 2554 } 2555 2556 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) { 2557 Value *CondVal = SI.getCondition(); 2558 Value *TrueVal = SI.getTrueValue(); 2559 Value *FalseVal = SI.getFalseValue(); 2560 Type *SelType = SI.getType(); 2561 2562 // FIXME: Remove this workaround when freeze related patches are done. 2563 // For select with undef operand which feeds into an equality comparison, 2564 // don't simplify it so loop unswitch can know the equality comparison 2565 // may have an undef operand. This is a workaround for PR31652 caused by 2566 // descrepancy about branch on undef between LoopUnswitch and GVN. 2567 if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) { 2568 if (llvm::any_of(SI.users(), [&](User *U) { 2569 ICmpInst *CI = dyn_cast<ICmpInst>(U); 2570 if (CI && CI->isEquality()) 2571 return true; 2572 return false; 2573 })) { 2574 return nullptr; 2575 } 2576 } 2577 2578 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 2579 SQ.getWithInstruction(&SI))) 2580 return replaceInstUsesWith(SI, V); 2581 2582 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 2583 return I; 2584 2585 if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this)) 2586 return I; 2587 2588 CmpInst::Predicate Pred; 2589 2590 if (SelType->isIntOrIntVectorTy(1) && 2591 TrueVal->getType() == CondVal->getType()) { 2592 if (match(TrueVal, m_One()) && 2593 (EnableUnsafeSelectTransform || impliesPoison(FalseVal, CondVal))) { 2594 // Change: A = select B, true, C --> A = or B, C 2595 return BinaryOperator::CreateOr(CondVal, FalseVal); 2596 } 2597 if (match(FalseVal, m_Zero()) && 2598 (EnableUnsafeSelectTransform || impliesPoison(TrueVal, CondVal))) { 2599 // Change: A = select B, C, false --> A = and B, C 2600 return BinaryOperator::CreateAnd(CondVal, TrueVal); 2601 } 2602 2603 // select a, false, b -> select !a, b, false 2604 if (match(TrueVal, m_Zero())) { 2605 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2606 return SelectInst::Create(NotCond, FalseVal, 2607 ConstantInt::getFalse(SelType)); 2608 } 2609 // select a, b, true -> select !a, true, b 2610 if (match(FalseVal, m_One())) { 2611 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2612 return SelectInst::Create(NotCond, ConstantInt::getTrue(SelType), 2613 TrueVal); 2614 } 2615 2616 // select a, a, b -> select a, true, b 2617 if (CondVal == TrueVal) 2618 return replaceOperand(SI, 1, ConstantInt::getTrue(SelType)); 2619 // select a, b, a -> select a, b, false 2620 if (CondVal == FalseVal) 2621 return replaceOperand(SI, 2, ConstantInt::getFalse(SelType)); 2622 2623 // select a, !a, b -> select !a, b, false 2624 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 2625 return SelectInst::Create(TrueVal, FalseVal, 2626 ConstantInt::getFalse(SelType)); 2627 // select a, b, !a -> select !a, true, b 2628 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 2629 return SelectInst::Create(FalseVal, ConstantInt::getTrue(SelType), 2630 TrueVal); 2631 } 2632 2633 // Selecting between two integer or vector splat integer constants? 2634 // 2635 // Note that we don't handle a scalar select of vectors: 2636 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 2637 // because that may need 3 instructions to splat the condition value: 2638 // extend, insertelement, shufflevector. 2639 // 2640 // Do not handle i1 TrueVal and FalseVal otherwise would result in 2641 // zext/sext i1 to i1. 2642 if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) && 2643 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 2644 // select C, 1, 0 -> zext C to int 2645 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 2646 return new ZExtInst(CondVal, SelType); 2647 2648 // select C, -1, 0 -> sext C to int 2649 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 2650 return new SExtInst(CondVal, SelType); 2651 2652 // select C, 0, 1 -> zext !C to int 2653 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 2654 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2655 return new ZExtInst(NotCond, SelType); 2656 } 2657 2658 // select C, 0, -1 -> sext !C to int 2659 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 2660 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2661 return new SExtInst(NotCond, SelType); 2662 } 2663 } 2664 2665 // See if we are selecting two values based on a comparison of the two values. 2666 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 2667 Value *Cmp0 = FCI->getOperand(0), *Cmp1 = FCI->getOperand(1); 2668 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) || 2669 (Cmp0 == FalseVal && Cmp1 == TrueVal)) { 2670 // Canonicalize to use ordered comparisons by swapping the select 2671 // operands. 2672 // 2673 // e.g. 2674 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 2675 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 2676 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 2677 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2678 // FIXME: The FMF should propagate from the select, not the fcmp. 2679 Builder.setFastMathFlags(FCI->getFastMathFlags()); 2680 Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1, 2681 FCI->getName() + ".inv"); 2682 Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal); 2683 return replaceInstUsesWith(SI, NewSel); 2684 } 2685 2686 // NOTE: if we wanted to, this is where to detect MIN/MAX 2687 } 2688 } 2689 2690 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 2691 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We 2692 // also require nnan because we do not want to unintentionally change the 2693 // sign of a NaN value. 2694 // FIXME: These folds should test/propagate FMF from the select, not the 2695 // fsub or fneg. 2696 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X) 2697 Instruction *FSub; 2698 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2699 match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) && 2700 match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() && 2701 (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) { 2702 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub); 2703 return replaceInstUsesWith(SI, Fabs); 2704 } 2705 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X) 2706 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2707 match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) && 2708 match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() && 2709 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) { 2710 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub); 2711 return replaceInstUsesWith(SI, Fabs); 2712 } 2713 // With nnan and nsz: 2714 // (X < +/-0.0) ? -X : X --> fabs(X) 2715 // (X <= +/-0.0) ? -X : X --> fabs(X) 2716 Instruction *FNeg; 2717 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2718 match(TrueVal, m_FNeg(m_Specific(FalseVal))) && 2719 match(TrueVal, m_Instruction(FNeg)) && 2720 FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() && 2721 (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE || 2722 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) { 2723 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg); 2724 return replaceInstUsesWith(SI, Fabs); 2725 } 2726 // With nnan and nsz: 2727 // (X > +/-0.0) ? X : -X --> fabs(X) 2728 // (X >= +/-0.0) ? X : -X --> fabs(X) 2729 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2730 match(FalseVal, m_FNeg(m_Specific(TrueVal))) && 2731 match(FalseVal, m_Instruction(FNeg)) && 2732 FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() && 2733 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE || 2734 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) { 2735 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg); 2736 return replaceInstUsesWith(SI, Fabs); 2737 } 2738 2739 // See if we are selecting two values based on a comparison of the two values. 2740 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 2741 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 2742 return Result; 2743 2744 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 2745 return Add; 2746 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder)) 2747 return Add; 2748 if (Instruction *Or = foldSetClearBits(SI, Builder)) 2749 return Or; 2750 2751 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 2752 auto *TI = dyn_cast<Instruction>(TrueVal); 2753 auto *FI = dyn_cast<Instruction>(FalseVal); 2754 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 2755 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 2756 return IV; 2757 2758 if (Instruction *I = foldSelectExtConst(SI)) 2759 return I; 2760 2761 // See if we can fold the select into one of our operands. 2762 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 2763 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 2764 return FoldI; 2765 2766 Value *LHS, *RHS; 2767 Instruction::CastOps CastOp; 2768 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 2769 auto SPF = SPR.Flavor; 2770 if (SPF) { 2771 Value *LHS2, *RHS2; 2772 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 2773 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 2774 RHS2, SI, SPF, RHS)) 2775 return R; 2776 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 2777 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 2778 RHS2, SI, SPF, LHS)) 2779 return R; 2780 // TODO. 2781 // ABS(-X) -> ABS(X) 2782 } 2783 2784 if (SelectPatternResult::isMinOrMax(SPF)) { 2785 // Canonicalize so that 2786 // - type casts are outside select patterns. 2787 // - float clamp is transformed to min/max pattern 2788 2789 bool IsCastNeeded = LHS->getType() != SelType; 2790 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 2791 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 2792 if (IsCastNeeded || 2793 (LHS->getType()->isFPOrFPVectorTy() && 2794 ((CmpLHS != LHS && CmpLHS != RHS) || 2795 (CmpRHS != LHS && CmpRHS != RHS)))) { 2796 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered); 2797 2798 Value *Cmp; 2799 if (CmpInst::isIntPredicate(MinMaxPred)) { 2800 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS); 2801 } else { 2802 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2803 auto FMF = 2804 cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 2805 Builder.setFastMathFlags(FMF); 2806 Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS); 2807 } 2808 2809 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 2810 if (!IsCastNeeded) 2811 return replaceInstUsesWith(SI, NewSI); 2812 2813 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 2814 return replaceInstUsesWith(SI, NewCast); 2815 } 2816 2817 // MAX(~a, ~b) -> ~MIN(a, b) 2818 // MAX(~a, C) -> ~MIN(a, ~C) 2819 // MIN(~a, ~b) -> ~MAX(a, b) 2820 // MIN(~a, C) -> ~MAX(a, ~C) 2821 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { 2822 Value *A; 2823 if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) && 2824 !isFreeToInvert(A, A->hasOneUse()) && 2825 // Passing false to only consider m_Not and constants. 2826 isFreeToInvert(Y, false)) { 2827 Value *B = Builder.CreateNot(Y); 2828 Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF), 2829 A, B); 2830 // Copy the profile metadata. 2831 if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) { 2832 cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD); 2833 // Swap the metadata if the operands are swapped. 2834 if (X == SI.getFalseValue() && Y == SI.getTrueValue()) 2835 cast<SelectInst>(NewMinMax)->swapProfMetadata(); 2836 } 2837 2838 return BinaryOperator::CreateNot(NewMinMax); 2839 } 2840 2841 return nullptr; 2842 }; 2843 2844 if (Instruction *I = moveNotAfterMinMax(LHS, RHS)) 2845 return I; 2846 if (Instruction *I = moveNotAfterMinMax(RHS, LHS)) 2847 return I; 2848 2849 if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder)) 2850 return I; 2851 2852 if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder)) 2853 return I; 2854 if (Instruction *I = matchSAddSubSat(SI)) 2855 return I; 2856 } 2857 } 2858 2859 // Canonicalize select of FP values where NaN and -0.0 are not valid as 2860 // minnum/maxnum intrinsics. 2861 if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) { 2862 Value *X, *Y; 2863 if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y)))) 2864 return replaceInstUsesWith( 2865 SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI)); 2866 2867 if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y)))) 2868 return replaceInstUsesWith( 2869 SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI)); 2870 } 2871 2872 // See if we can fold the select into a phi node if the condition is a select. 2873 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 2874 // The true/false values have to be live in the PHI predecessor's blocks. 2875 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 2876 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 2877 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 2878 return NV; 2879 2880 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 2881 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 2882 // select(C, select(C, a, b), c) -> select(C, a, c) 2883 if (TrueSI->getCondition() == CondVal) { 2884 if (SI.getTrueValue() == TrueSI->getTrueValue()) 2885 return nullptr; 2886 return replaceOperand(SI, 1, TrueSI->getTrueValue()); 2887 } 2888 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 2889 // We choose this as normal form to enable folding on the And and 2890 // shortening paths for the values (this helps getUnderlyingObjects() for 2891 // example). 2892 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 2893 Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition()); 2894 replaceOperand(SI, 0, And); 2895 replaceOperand(SI, 1, TrueSI->getTrueValue()); 2896 return &SI; 2897 } 2898 } 2899 } 2900 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 2901 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 2902 // select(C, a, select(C, b, c)) -> select(C, a, c) 2903 if (FalseSI->getCondition() == CondVal) { 2904 if (SI.getFalseValue() == FalseSI->getFalseValue()) 2905 return nullptr; 2906 return replaceOperand(SI, 2, FalseSI->getFalseValue()); 2907 } 2908 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 2909 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 2910 Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition()); 2911 replaceOperand(SI, 0, Or); 2912 replaceOperand(SI, 2, FalseSI->getFalseValue()); 2913 return &SI; 2914 } 2915 } 2916 } 2917 2918 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { 2919 // The select might be preventing a division by 0. 2920 switch (BO->getOpcode()) { 2921 default: 2922 return true; 2923 case Instruction::SRem: 2924 case Instruction::URem: 2925 case Instruction::SDiv: 2926 case Instruction::UDiv: 2927 return false; 2928 } 2929 }; 2930 2931 // Try to simplify a binop sandwiched between 2 selects with the same 2932 // condition. 2933 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 2934 BinaryOperator *TrueBO; 2935 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && 2936 canMergeSelectThroughBinop(TrueBO)) { 2937 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 2938 if (TrueBOSI->getCondition() == CondVal) { 2939 replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue()); 2940 Worklist.push(TrueBO); 2941 return &SI; 2942 } 2943 } 2944 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 2945 if (TrueBOSI->getCondition() == CondVal) { 2946 replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue()); 2947 Worklist.push(TrueBO); 2948 return &SI; 2949 } 2950 } 2951 } 2952 2953 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 2954 BinaryOperator *FalseBO; 2955 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && 2956 canMergeSelectThroughBinop(FalseBO)) { 2957 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 2958 if (FalseBOSI->getCondition() == CondVal) { 2959 replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue()); 2960 Worklist.push(FalseBO); 2961 return &SI; 2962 } 2963 } 2964 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 2965 if (FalseBOSI->getCondition() == CondVal) { 2966 replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue()); 2967 Worklist.push(FalseBO); 2968 return &SI; 2969 } 2970 } 2971 } 2972 2973 Value *NotCond; 2974 if (match(CondVal, m_Not(m_Value(NotCond))) && 2975 !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) { 2976 replaceOperand(SI, 0, NotCond); 2977 SI.swapValues(); 2978 SI.swapProfMetadata(); 2979 return &SI; 2980 } 2981 2982 if (Instruction *I = foldVectorSelect(SI)) 2983 return I; 2984 2985 // If we can compute the condition, there's no need for a select. 2986 // Like the above fold, we are attempting to reduce compile-time cost by 2987 // putting this fold here with limitations rather than in InstSimplify. 2988 // The motivation for this call into value tracking is to take advantage of 2989 // the assumption cache, so make sure that is populated. 2990 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 2991 KnownBits Known(1); 2992 computeKnownBits(CondVal, Known, 0, &SI); 2993 if (Known.One.isOneValue()) 2994 return replaceInstUsesWith(SI, TrueVal); 2995 if (Known.Zero.isOneValue()) 2996 return replaceInstUsesWith(SI, FalseVal); 2997 } 2998 2999 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 3000 return BitCastSel; 3001 3002 // Simplify selects that test the returned flag of cmpxchg instructions. 3003 if (Value *V = foldSelectCmpXchg(SI)) 3004 return replaceInstUsesWith(SI, V); 3005 3006 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this)) 3007 return Select; 3008 3009 if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder)) 3010 return Funnel; 3011 3012 if (Instruction *Copysign = foldSelectToCopysign(SI, Builder)) 3013 return Copysign; 3014 3015 if (Instruction *PN = foldSelectToPhi(SI, DT, Builder)) 3016 return replaceInstUsesWith(SI, PN); 3017 3018 if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder)) 3019 return replaceInstUsesWith(SI, Fr); 3020 3021 return nullptr; 3022 } 3023