1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitSelect function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CmpInstAnalysis.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/User.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 41 #include <cassert> 42 #include <utility> 43 44 using namespace llvm; 45 using namespace PatternMatch; 46 47 #define DEBUG_TYPE "instcombine" 48 49 static Value *createMinMax(InstCombiner::BuilderTy &Builder, 50 SelectPatternFlavor SPF, Value *A, Value *B) { 51 CmpInst::Predicate Pred = getMinMaxPred(SPF); 52 assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate"); 53 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 54 } 55 56 /// Replace a select operand based on an equality comparison with the identity 57 /// constant of a binop. 58 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 59 const TargetLibraryInfo &TLI, 60 InstCombiner &IC) { 61 // The select condition must be an equality compare with a constant operand. 62 Value *X; 63 Constant *C; 64 CmpInst::Predicate Pred; 65 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 66 return nullptr; 67 68 bool IsEq; 69 if (ICmpInst::isEquality(Pred)) 70 IsEq = Pred == ICmpInst::ICMP_EQ; 71 else if (Pred == FCmpInst::FCMP_OEQ) 72 IsEq = true; 73 else if (Pred == FCmpInst::FCMP_UNE) 74 IsEq = false; 75 else 76 return nullptr; 77 78 // A select operand must be a binop. 79 BinaryOperator *BO; 80 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 81 return nullptr; 82 83 // The compare constant must be the identity constant for that binop. 84 // If this a floating-point compare with 0.0, any zero constant will do. 85 Type *Ty = BO->getType(); 86 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 87 if (IdC != C) { 88 if (!IdC || !CmpInst::isFPPredicate(Pred)) 89 return nullptr; 90 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 91 return nullptr; 92 } 93 94 // Last, match the compare variable operand with a binop operand. 95 Value *Y; 96 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 97 return nullptr; 98 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 99 return nullptr; 100 101 // +0.0 compares equal to -0.0, and so it does not behave as required for this 102 // transform. Bail out if we can not exclude that possibility. 103 if (isa<FPMathOperator>(BO)) 104 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) 105 return nullptr; 106 107 // BO = binop Y, X 108 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 109 // => 110 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 111 return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y); 112 } 113 114 /// This folds: 115 /// select (icmp eq (and X, C1)), TC, FC 116 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 117 /// To something like: 118 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 119 /// Or: 120 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 121 /// With some variations depending if FC is larger than TC, or the shift 122 /// isn't needed, or the bit widths don't match. 123 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 124 InstCombiner::BuilderTy &Builder) { 125 const APInt *SelTC, *SelFC; 126 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 127 !match(Sel.getFalseValue(), m_APInt(SelFC))) 128 return nullptr; 129 130 // If this is a vector select, we need a vector compare. 131 Type *SelType = Sel.getType(); 132 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 133 return nullptr; 134 135 Value *V; 136 APInt AndMask; 137 bool CreateAnd = false; 138 ICmpInst::Predicate Pred = Cmp->getPredicate(); 139 if (ICmpInst::isEquality(Pred)) { 140 if (!match(Cmp->getOperand(1), m_Zero())) 141 return nullptr; 142 143 V = Cmp->getOperand(0); 144 const APInt *AndRHS; 145 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 146 return nullptr; 147 148 AndMask = *AndRHS; 149 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 150 Pred, V, AndMask)) { 151 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 152 if (!AndMask.isPowerOf2()) 153 return nullptr; 154 155 CreateAnd = true; 156 } else { 157 return nullptr; 158 } 159 160 // In general, when both constants are non-zero, we would need an offset to 161 // replace the select. This would require more instructions than we started 162 // with. But there's one special-case that we handle here because it can 163 // simplify/reduce the instructions. 164 APInt TC = *SelTC; 165 APInt FC = *SelFC; 166 if (!TC.isNullValue() && !FC.isNullValue()) { 167 // If the select constants differ by exactly one bit and that's the same 168 // bit that is masked and checked by the select condition, the select can 169 // be replaced by bitwise logic to set/clear one bit of the constant result. 170 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 171 return nullptr; 172 if (CreateAnd) { 173 // If we have to create an 'and', then we must kill the cmp to not 174 // increase the instruction count. 175 if (!Cmp->hasOneUse()) 176 return nullptr; 177 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 178 } 179 bool ExtraBitInTC = TC.ugt(FC); 180 if (Pred == ICmpInst::ICMP_EQ) { 181 // If the masked bit in V is clear, clear or set the bit in the result: 182 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 183 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 184 Constant *C = ConstantInt::get(SelType, TC); 185 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 186 } 187 if (Pred == ICmpInst::ICMP_NE) { 188 // If the masked bit in V is set, set or clear the bit in the result: 189 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 190 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 191 Constant *C = ConstantInt::get(SelType, FC); 192 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 193 } 194 llvm_unreachable("Only expecting equality predicates"); 195 } 196 197 // Make sure one of the select arms is a power-of-2. 198 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 199 return nullptr; 200 201 // Determine which shift is needed to transform result of the 'and' into the 202 // desired result. 203 const APInt &ValC = !TC.isNullValue() ? TC : FC; 204 unsigned ValZeros = ValC.logBase2(); 205 unsigned AndZeros = AndMask.logBase2(); 206 207 // Insert the 'and' instruction on the input to the truncate. 208 if (CreateAnd) 209 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 210 211 // If types don't match, we can still convert the select by introducing a zext 212 // or a trunc of the 'and'. 213 if (ValZeros > AndZeros) { 214 V = Builder.CreateZExtOrTrunc(V, SelType); 215 V = Builder.CreateShl(V, ValZeros - AndZeros); 216 } else if (ValZeros < AndZeros) { 217 V = Builder.CreateLShr(V, AndZeros - ValZeros); 218 V = Builder.CreateZExtOrTrunc(V, SelType); 219 } else { 220 V = Builder.CreateZExtOrTrunc(V, SelType); 221 } 222 223 // Okay, now we know that everything is set up, we just don't know whether we 224 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 225 bool ShouldNotVal = !TC.isNullValue(); 226 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 227 if (ShouldNotVal) 228 V = Builder.CreateXor(V, ValC); 229 230 return V; 231 } 232 233 /// We want to turn code that looks like this: 234 /// %C = or %A, %B 235 /// %D = select %cond, %C, %A 236 /// into: 237 /// %C = select %cond, %B, 0 238 /// %D = or %A, %C 239 /// 240 /// Assuming that the specified instruction is an operand to the select, return 241 /// a bitmask indicating which operands of this instruction are foldable if they 242 /// equal the other incoming value of the select. 243 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 244 switch (I->getOpcode()) { 245 case Instruction::Add: 246 case Instruction::Mul: 247 case Instruction::And: 248 case Instruction::Or: 249 case Instruction::Xor: 250 return 3; // Can fold through either operand. 251 case Instruction::Sub: // Can only fold on the amount subtracted. 252 case Instruction::Shl: // Can only fold on the shift amount. 253 case Instruction::LShr: 254 case Instruction::AShr: 255 return 1; 256 default: 257 return 0; // Cannot fold 258 } 259 } 260 261 /// For the same transformation as the previous function, return the identity 262 /// constant that goes into the select. 263 static APInt getSelectFoldableConstant(BinaryOperator *I) { 264 switch (I->getOpcode()) { 265 default: llvm_unreachable("This cannot happen!"); 266 case Instruction::Add: 267 case Instruction::Sub: 268 case Instruction::Or: 269 case Instruction::Xor: 270 case Instruction::Shl: 271 case Instruction::LShr: 272 case Instruction::AShr: 273 return APInt::getNullValue(I->getType()->getScalarSizeInBits()); 274 case Instruction::And: 275 return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits()); 276 case Instruction::Mul: 277 return APInt(I->getType()->getScalarSizeInBits(), 1); 278 } 279 } 280 281 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 282 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI, 283 Instruction *FI) { 284 // Don't break up min/max patterns. The hasOneUse checks below prevent that 285 // for most cases, but vector min/max with bitcasts can be transformed. If the 286 // one-use restrictions are eased for other patterns, we still don't want to 287 // obfuscate min/max. 288 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 289 match(&SI, m_SMax(m_Value(), m_Value())) || 290 match(&SI, m_UMin(m_Value(), m_Value())) || 291 match(&SI, m_UMax(m_Value(), m_Value())))) 292 return nullptr; 293 294 // If this is a cast from the same type, merge. 295 Value *Cond = SI.getCondition(); 296 Type *CondTy = Cond->getType(); 297 if (TI->getNumOperands() == 1 && TI->isCast()) { 298 Type *FIOpndTy = FI->getOperand(0)->getType(); 299 if (TI->getOperand(0)->getType() != FIOpndTy) 300 return nullptr; 301 302 // The select condition may be a vector. We may only change the operand 303 // type if the vector width remains the same (and matches the condition). 304 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) { 305 if (!FIOpndTy->isVectorTy()) 306 return nullptr; 307 if (CondVTy->getNumElements() != 308 cast<VectorType>(FIOpndTy)->getNumElements()) 309 return nullptr; 310 311 // TODO: If the backend knew how to deal with casts better, we could 312 // remove this limitation. For now, there's too much potential to create 313 // worse codegen by promoting the select ahead of size-altering casts 314 // (PR28160). 315 // 316 // Note that ValueTracking's matchSelectPattern() looks through casts 317 // without checking 'hasOneUse' when it matches min/max patterns, so this 318 // transform may end up happening anyway. 319 if (TI->getOpcode() != Instruction::BitCast && 320 (!TI->hasOneUse() || !FI->hasOneUse())) 321 return nullptr; 322 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 323 // TODO: The one-use restrictions for a scalar select could be eased if 324 // the fold of a select in visitLoadInst() was enhanced to match a pattern 325 // that includes a cast. 326 return nullptr; 327 } 328 329 // Fold this by inserting a select from the input values. 330 Value *NewSI = 331 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0), 332 SI.getName() + ".v", &SI); 333 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 334 TI->getType()); 335 } 336 337 // Cond ? -X : -Y --> -(Cond ? X : Y) 338 Value *X, *Y; 339 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) && 340 (TI->hasOneUse() || FI->hasOneUse())) { 341 Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI); 342 return UnaryOperator::CreateFNegFMF(NewSel, TI); 343 } 344 345 // Only handle binary operators (including two-operand getelementptr) with 346 // one-use here. As with the cast case above, it may be possible to relax the 347 // one-use constraint, but that needs be examined carefully since it may not 348 // reduce the total number of instructions. 349 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 350 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 351 !TI->hasOneUse() || !FI->hasOneUse()) 352 return nullptr; 353 354 // Figure out if the operations have any operands in common. 355 Value *MatchOp, *OtherOpT, *OtherOpF; 356 bool MatchIsOpZero; 357 if (TI->getOperand(0) == FI->getOperand(0)) { 358 MatchOp = TI->getOperand(0); 359 OtherOpT = TI->getOperand(1); 360 OtherOpF = FI->getOperand(1); 361 MatchIsOpZero = true; 362 } else if (TI->getOperand(1) == FI->getOperand(1)) { 363 MatchOp = TI->getOperand(1); 364 OtherOpT = TI->getOperand(0); 365 OtherOpF = FI->getOperand(0); 366 MatchIsOpZero = false; 367 } else if (!TI->isCommutative()) { 368 return nullptr; 369 } else if (TI->getOperand(0) == FI->getOperand(1)) { 370 MatchOp = TI->getOperand(0); 371 OtherOpT = TI->getOperand(1); 372 OtherOpF = FI->getOperand(0); 373 MatchIsOpZero = true; 374 } else if (TI->getOperand(1) == FI->getOperand(0)) { 375 MatchOp = TI->getOperand(1); 376 OtherOpT = TI->getOperand(0); 377 OtherOpF = FI->getOperand(1); 378 MatchIsOpZero = true; 379 } else { 380 return nullptr; 381 } 382 383 // If the select condition is a vector, the operands of the original select's 384 // operands also must be vectors. This may not be the case for getelementptr 385 // for example. 386 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() || 387 !OtherOpF->getType()->isVectorTy())) 388 return nullptr; 389 390 // If we reach here, they do have operations in common. 391 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 392 SI.getName() + ".v", &SI); 393 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 394 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 395 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 396 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 397 NewBO->copyIRFlags(TI); 398 NewBO->andIRFlags(FI); 399 return NewBO; 400 } 401 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 402 auto *FGEP = cast<GetElementPtrInst>(FI); 403 Type *ElementType = TGEP->getResultElementType(); 404 return TGEP->isInBounds() && FGEP->isInBounds() 405 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 406 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 407 } 408 llvm_unreachable("Expected BinaryOperator or GEP"); 409 return nullptr; 410 } 411 412 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 413 if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero. 414 return false; 415 return C1I.isOneValue() || C1I.isAllOnesValue() || 416 C2I.isOneValue() || C2I.isAllOnesValue(); 417 } 418 419 /// Try to fold the select into one of the operands to allow further 420 /// optimization. 421 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 422 Value *FalseVal) { 423 // See the comment above GetSelectFoldableOperands for a description of the 424 // transformation we are doing here. 425 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 426 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 427 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 428 unsigned OpToFold = 0; 429 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 430 OpToFold = 1; 431 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 432 OpToFold = 2; 433 } 434 435 if (OpToFold) { 436 APInt CI = getSelectFoldableConstant(TVI); 437 Value *OOp = TVI->getOperand(2-OpToFold); 438 // Avoid creating select between 2 constants unless it's selecting 439 // between 0, 1 and -1. 440 const APInt *OOpC; 441 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 442 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 443 Value *C = ConstantInt::get(OOp->getType(), CI); 444 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 445 NewSel->takeName(TVI); 446 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), 447 FalseVal, NewSel); 448 BO->copyIRFlags(TVI); 449 return BO; 450 } 451 } 452 } 453 } 454 } 455 456 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { 457 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { 458 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 459 unsigned OpToFold = 0; 460 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 461 OpToFold = 1; 462 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 463 OpToFold = 2; 464 } 465 466 if (OpToFold) { 467 APInt CI = getSelectFoldableConstant(FVI); 468 Value *OOp = FVI->getOperand(2-OpToFold); 469 // Avoid creating select between 2 constants unless it's selecting 470 // between 0, 1 and -1. 471 const APInt *OOpC; 472 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 473 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 474 Value *C = ConstantInt::get(OOp->getType(), CI); 475 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 476 NewSel->takeName(FVI); 477 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), 478 TrueVal, NewSel); 479 BO->copyIRFlags(FVI); 480 return BO; 481 } 482 } 483 } 484 } 485 } 486 487 return nullptr; 488 } 489 490 /// We want to turn: 491 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 492 /// into: 493 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 494 /// Note: 495 /// Z may be 0 if lshr is missing. 496 /// Worst-case scenario is that we will replace 5 instructions with 5 different 497 /// instructions, but we got rid of select. 498 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 499 Value *TVal, Value *FVal, 500 InstCombiner::BuilderTy &Builder) { 501 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 502 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 503 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 504 return nullptr; 505 506 // The TrueVal has general form of: and %B, 1 507 Value *B; 508 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 509 return nullptr; 510 511 // Where %B may be optionally shifted: lshr %X, %Z. 512 Value *X, *Z; 513 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 514 if (!HasShift) 515 X = B; 516 517 Value *Y; 518 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 519 return nullptr; 520 521 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 522 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 523 Constant *One = ConstantInt::get(SelType, 1); 524 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 525 Value *FullMask = Builder.CreateOr(Y, MaskB); 526 Value *MaskedX = Builder.CreateAnd(X, FullMask); 527 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 528 return new ZExtInst(ICmpNeZero, SelType); 529 } 530 531 /// We want to turn: 532 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 533 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0 534 /// into: 535 /// ashr (X, Y) 536 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, 537 Value *FalseVal, 538 InstCombiner::BuilderTy &Builder) { 539 ICmpInst::Predicate Pred = IC->getPredicate(); 540 Value *CmpLHS = IC->getOperand(0); 541 Value *CmpRHS = IC->getOperand(1); 542 if (!CmpRHS->getType()->isIntOrIntVectorTy()) 543 return nullptr; 544 545 Value *X, *Y; 546 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits(); 547 if ((Pred != ICmpInst::ICMP_SGT || 548 !match(CmpRHS, 549 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) && 550 (Pred != ICmpInst::ICMP_SLT || 551 !match(CmpRHS, 552 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0))))) 553 return nullptr; 554 555 // Canonicalize so that ashr is in FalseVal. 556 if (Pred == ICmpInst::ICMP_SLT) 557 std::swap(TrueVal, FalseVal); 558 559 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) && 560 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) && 561 match(CmpLHS, m_Specific(X))) { 562 const auto *Ashr = cast<Instruction>(FalseVal); 563 // if lshr is not exact and ashr is, this new ashr must not be exact. 564 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact(); 565 return Builder.CreateAShr(X, Y, IC->getName(), IsExact); 566 } 567 568 return nullptr; 569 } 570 571 /// We want to turn: 572 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 573 /// into: 574 /// (or (shl (and X, C1), C3), Y) 575 /// iff: 576 /// C1 and C2 are both powers of 2 577 /// where: 578 /// C3 = Log(C2) - Log(C1) 579 /// 580 /// This transform handles cases where: 581 /// 1. The icmp predicate is inverted 582 /// 2. The select operands are reversed 583 /// 3. The magnitude of C2 and C1 are flipped 584 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 585 Value *FalseVal, 586 InstCombiner::BuilderTy &Builder) { 587 // Only handle integer compares. Also, if this is a vector select, we need a 588 // vector compare. 589 if (!TrueVal->getType()->isIntOrIntVectorTy() || 590 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 591 return nullptr; 592 593 Value *CmpLHS = IC->getOperand(0); 594 Value *CmpRHS = IC->getOperand(1); 595 596 Value *V; 597 unsigned C1Log; 598 bool IsEqualZero; 599 bool NeedAnd = false; 600 if (IC->isEquality()) { 601 if (!match(CmpRHS, m_Zero())) 602 return nullptr; 603 604 const APInt *C1; 605 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 606 return nullptr; 607 608 V = CmpLHS; 609 C1Log = C1->logBase2(); 610 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 611 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 612 IC->getPredicate() == ICmpInst::ICMP_SGT) { 613 // We also need to recognize (icmp slt (trunc (X)), 0) and 614 // (icmp sgt (trunc (X)), -1). 615 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 616 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 617 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 618 return nullptr; 619 620 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 621 return nullptr; 622 623 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 624 NeedAnd = true; 625 } else { 626 return nullptr; 627 } 628 629 const APInt *C2; 630 bool OrOnTrueVal = false; 631 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 632 if (!OrOnFalseVal) 633 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 634 635 if (!OrOnFalseVal && !OrOnTrueVal) 636 return nullptr; 637 638 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 639 640 unsigned C2Log = C2->logBase2(); 641 642 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 643 bool NeedShift = C1Log != C2Log; 644 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 645 V->getType()->getScalarSizeInBits(); 646 647 // Make sure we don't create more instructions than we save. 648 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 649 if ((NeedShift + NeedXor + NeedZExtTrunc) > 650 (IC->hasOneUse() + Or->hasOneUse())) 651 return nullptr; 652 653 if (NeedAnd) { 654 // Insert the AND instruction on the input to the truncate. 655 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 656 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 657 } 658 659 if (C2Log > C1Log) { 660 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 661 V = Builder.CreateShl(V, C2Log - C1Log); 662 } else if (C1Log > C2Log) { 663 V = Builder.CreateLShr(V, C1Log - C2Log); 664 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 665 } else 666 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 667 668 if (NeedXor) 669 V = Builder.CreateXor(V, *C2); 670 671 return Builder.CreateOr(V, Y); 672 } 673 674 /// Canonicalize a set or clear of a masked set of constant bits to 675 /// select-of-constants form. 676 static Instruction *foldSetClearBits(SelectInst &Sel, 677 InstCombiner::BuilderTy &Builder) { 678 Value *Cond = Sel.getCondition(); 679 Value *T = Sel.getTrueValue(); 680 Value *F = Sel.getFalseValue(); 681 Type *Ty = Sel.getType(); 682 Value *X; 683 const APInt *NotC, *C; 684 685 // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C) 686 if (match(T, m_And(m_Value(X), m_APInt(NotC))) && 687 match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 688 Constant *Zero = ConstantInt::getNullValue(Ty); 689 Constant *OrC = ConstantInt::get(Ty, *C); 690 Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel); 691 return BinaryOperator::CreateOr(T, NewSel); 692 } 693 694 // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0) 695 if (match(F, m_And(m_Value(X), m_APInt(NotC))) && 696 match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 697 Constant *Zero = ConstantInt::getNullValue(Ty); 698 Constant *OrC = ConstantInt::get(Ty, *C); 699 Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel); 700 return BinaryOperator::CreateOr(F, NewSel); 701 } 702 703 return nullptr; 704 } 705 706 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). 707 /// There are 8 commuted/swapped variants of this pattern. 708 /// TODO: Also support a - UMIN(a,b) patterns. 709 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 710 const Value *TrueVal, 711 const Value *FalseVal, 712 InstCombiner::BuilderTy &Builder) { 713 ICmpInst::Predicate Pred = ICI->getPredicate(); 714 if (!ICmpInst::isUnsigned(Pred)) 715 return nullptr; 716 717 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 718 if (match(TrueVal, m_Zero())) { 719 Pred = ICmpInst::getInversePredicate(Pred); 720 std::swap(TrueVal, FalseVal); 721 } 722 if (!match(FalseVal, m_Zero())) 723 return nullptr; 724 725 Value *A = ICI->getOperand(0); 726 Value *B = ICI->getOperand(1); 727 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 728 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 729 std::swap(A, B); 730 Pred = ICmpInst::getSwappedPredicate(Pred); 731 } 732 733 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 734 "Unexpected isUnsigned predicate!"); 735 736 // Ensure the sub is of the form: 737 // (a > b) ? a - b : 0 -> usub.sat(a, b) 738 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 739 // Checking for both a-b and a+(-b) as a constant. 740 bool IsNegative = false; 741 const APInt *C; 742 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) || 743 (match(A, m_APInt(C)) && 744 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C))))) 745 IsNegative = true; 746 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) && 747 !(match(B, m_APInt(C)) && 748 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C))))) 749 return nullptr; 750 751 // If we are adding a negate and the sub and icmp are used anywhere else, we 752 // would end up with more instructions. 753 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse()) 754 return nullptr; 755 756 // (a > b) ? a - b : 0 -> usub.sat(a, b) 757 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 758 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); 759 if (IsNegative) 760 Result = Builder.CreateNeg(Result); 761 return Result; 762 } 763 764 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, 765 InstCombiner::BuilderTy &Builder) { 766 if (!Cmp->hasOneUse()) 767 return nullptr; 768 769 // Match unsigned saturated add with constant. 770 Value *Cmp0 = Cmp->getOperand(0); 771 Value *Cmp1 = Cmp->getOperand(1); 772 ICmpInst::Predicate Pred = Cmp->getPredicate(); 773 Value *X; 774 const APInt *C, *CmpC; 775 if (Pred == ICmpInst::ICMP_ULT && 776 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 && 777 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) { 778 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C) 779 return Builder.CreateBinaryIntrinsic( 780 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C)); 781 } 782 783 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 784 // There are 8 commuted variants. 785 // Canonicalize -1 (saturated result) to true value of the select. Just 786 // swapping the compare operands is legal, because the selected value is the 787 // same in case of equality, so we can interchange u< and u<=. 788 if (match(FVal, m_AllOnes())) { 789 std::swap(TVal, FVal); 790 std::swap(Cmp0, Cmp1); 791 } 792 if (!match(TVal, m_AllOnes())) 793 return nullptr; 794 795 // Canonicalize predicate to 'ULT'. 796 if (Pred == ICmpInst::ICMP_UGT) { 797 Pred = ICmpInst::ICMP_ULT; 798 std::swap(Cmp0, Cmp1); 799 } 800 if (Pred != ICmpInst::ICMP_ULT) 801 return nullptr; 802 803 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 804 Value *Y; 805 if (match(Cmp0, m_Not(m_Value(X))) && 806 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { 807 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 808 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) 809 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); 810 } 811 // The 'not' op may be included in the sum but not the compare. 812 X = Cmp0; 813 Y = Cmp1; 814 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) { 815 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) 816 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) 817 BinaryOperator *BO = cast<BinaryOperator>(FVal); 818 return Builder.CreateBinaryIntrinsic( 819 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); 820 } 821 // The overflow may be detected via the add wrapping round. 822 if (match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) && 823 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) { 824 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y) 825 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 826 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y); 827 } 828 829 return nullptr; 830 } 831 832 /// Fold the following code sequence: 833 /// \code 834 /// int a = ctlz(x & -x); 835 // x ? 31 - a : a; 836 /// \code 837 /// 838 /// into: 839 /// cttz(x) 840 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal, 841 Value *FalseVal, 842 InstCombiner::BuilderTy &Builder) { 843 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 844 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero())) 845 return nullptr; 846 847 if (ICI->getPredicate() == ICmpInst::ICMP_NE) 848 std::swap(TrueVal, FalseVal); 849 850 if (!match(FalseVal, 851 m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1)))) 852 return nullptr; 853 854 if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>())) 855 return nullptr; 856 857 Value *X = ICI->getOperand(0); 858 auto *II = cast<IntrinsicInst>(TrueVal); 859 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X))))) 860 return nullptr; 861 862 Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz, 863 II->getType()); 864 return CallInst::Create(F, {X, II->getArgOperand(1)}); 865 } 866 867 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 868 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 869 /// 870 /// For example, we can fold the following code sequence: 871 /// \code 872 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 873 /// %1 = icmp ne i32 %x, 0 874 /// %2 = select i1 %1, i32 %0, i32 32 875 /// \code 876 /// 877 /// into: 878 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 879 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 880 InstCombiner::BuilderTy &Builder) { 881 ICmpInst::Predicate Pred = ICI->getPredicate(); 882 Value *CmpLHS = ICI->getOperand(0); 883 Value *CmpRHS = ICI->getOperand(1); 884 885 // Check if the condition value compares a value for equality against zero. 886 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 887 return nullptr; 888 889 Value *SelectArg = FalseVal; 890 Value *ValueOnZero = TrueVal; 891 if (Pred == ICmpInst::ICMP_NE) 892 std::swap(SelectArg, ValueOnZero); 893 894 // Skip zero extend/truncate. 895 Value *Count = nullptr; 896 if (!match(SelectArg, m_ZExt(m_Value(Count))) && 897 !match(SelectArg, m_Trunc(m_Value(Count)))) 898 Count = SelectArg; 899 900 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 901 // input to the cttz/ctlz is used as LHS for the compare instruction. 902 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) && 903 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) 904 return nullptr; 905 906 IntrinsicInst *II = cast<IntrinsicInst>(Count); 907 908 // Check if the value propagated on zero is a constant number equal to the 909 // sizeof in bits of 'Count'. 910 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 911 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 912 // Explicitly clear the 'undef_on_zero' flag. It's always valid to go from 913 // true to false on this flag, so we can replace it for all users. 914 II->setArgOperand(1, ConstantInt::getFalse(II->getContext())); 915 return SelectArg; 916 } 917 918 // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional 919 // zext/trunc) have one use (ending at the select), the cttz/ctlz result will 920 // not be used if the input is zero. Relax to 'undef_on_zero' for that case. 921 if (II->hasOneUse() && SelectArg->hasOneUse() && 922 !match(II->getArgOperand(1), m_One())) 923 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 924 925 return nullptr; 926 } 927 928 /// Return true if we find and adjust an icmp+select pattern where the compare 929 /// is with a constant that can be incremented or decremented to match the 930 /// minimum or maximum idiom. 931 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 932 ICmpInst::Predicate Pred = Cmp.getPredicate(); 933 Value *CmpLHS = Cmp.getOperand(0); 934 Value *CmpRHS = Cmp.getOperand(1); 935 Value *TrueVal = Sel.getTrueValue(); 936 Value *FalseVal = Sel.getFalseValue(); 937 938 // We may move or edit the compare, so make sure the select is the only user. 939 const APInt *CmpC; 940 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 941 return false; 942 943 // These transforms only work for selects of integers or vector selects of 944 // integer vectors. 945 Type *SelTy = Sel.getType(); 946 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 947 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 948 return false; 949 950 Constant *AdjustedRHS; 951 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 952 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 953 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 954 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 955 else 956 return false; 957 958 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 959 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 960 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 961 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 962 ; // Nothing to do here. Values match without any sign/zero extension. 963 } 964 // Types do not match. Instead of calculating this with mixed types, promote 965 // all to the larger type. This enables scalar evolution to analyze this 966 // expression. 967 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 968 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 969 970 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 971 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 972 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 973 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 974 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 975 CmpLHS = TrueVal; 976 AdjustedRHS = SextRHS; 977 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 978 SextRHS == TrueVal) { 979 CmpLHS = FalseVal; 980 AdjustedRHS = SextRHS; 981 } else if (Cmp.isUnsigned()) { 982 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 983 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 984 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 985 // zext + signed compare cannot be changed: 986 // 0xff <s 0x00, but 0x00ff >s 0x0000 987 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 988 CmpLHS = TrueVal; 989 AdjustedRHS = ZextRHS; 990 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 991 ZextRHS == TrueVal) { 992 CmpLHS = FalseVal; 993 AdjustedRHS = ZextRHS; 994 } else { 995 return false; 996 } 997 } else { 998 return false; 999 } 1000 } else { 1001 return false; 1002 } 1003 1004 Pred = ICmpInst::getSwappedPredicate(Pred); 1005 CmpRHS = AdjustedRHS; 1006 std::swap(FalseVal, TrueVal); 1007 Cmp.setPredicate(Pred); 1008 Cmp.setOperand(0, CmpLHS); 1009 Cmp.setOperand(1, CmpRHS); 1010 Sel.setOperand(1, TrueVal); 1011 Sel.setOperand(2, FalseVal); 1012 Sel.swapProfMetadata(); 1013 1014 // Move the compare instruction right before the select instruction. Otherwise 1015 // the sext/zext value may be defined after the compare instruction uses it. 1016 Cmp.moveBefore(&Sel); 1017 1018 return true; 1019 } 1020 1021 /// If this is an integer min/max (icmp + select) with a constant operand, 1022 /// create the canonical icmp for the min/max operation and canonicalize the 1023 /// constant to the 'false' operand of the select: 1024 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 1025 /// Note: if C1 != C2, this will change the icmp constant to the existing 1026 /// constant operand of the select. 1027 static Instruction * 1028 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp, 1029 InstCombiner &IC) { 1030 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1031 return nullptr; 1032 1033 // Canonicalize the compare predicate based on whether we have min or max. 1034 Value *LHS, *RHS; 1035 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 1036 if (!SelectPatternResult::isMinOrMax(SPR.Flavor)) 1037 return nullptr; 1038 1039 // Is this already canonical? 1040 ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor); 1041 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && 1042 Cmp.getPredicate() == CanonicalPred) 1043 return nullptr; 1044 1045 // Bail out on unsimplified X-0 operand (due to some worklist management bug), 1046 // as this may cause an infinite combine loop. Let the sub be folded first. 1047 if (match(LHS, m_Sub(m_Value(), m_Zero())) || 1048 match(RHS, m_Sub(m_Value(), m_Zero()))) 1049 return nullptr; 1050 1051 // Create the canonical compare and plug it into the select. 1052 IC.replaceOperand(Sel, 0, IC.Builder.CreateICmp(CanonicalPred, LHS, RHS)); 1053 1054 // If the select operands did not change, we're done. 1055 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) 1056 return &Sel; 1057 1058 // If we are swapping the select operands, swap the metadata too. 1059 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && 1060 "Unexpected results from matchSelectPattern"); 1061 Sel.swapValues(); 1062 Sel.swapProfMetadata(); 1063 return &Sel; 1064 } 1065 1066 /// There are many select variants for each of ABS/NABS. 1067 /// In matchSelectPattern(), there are different compare constants, compare 1068 /// predicates/operands and select operands. 1069 /// In isKnownNegation(), there are different formats of negated operands. 1070 /// Canonicalize all these variants to 1 pattern. 1071 /// This makes CSE more likely. 1072 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp, 1073 InstCombiner &IC) { 1074 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1075 return nullptr; 1076 1077 // Choose a sign-bit check for the compare (likely simpler for codegen). 1078 // ABS: (X <s 0) ? -X : X 1079 // NABS: (X <s 0) ? X : -X 1080 Value *LHS, *RHS; 1081 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; 1082 if (SPF != SelectPatternFlavor::SPF_ABS && 1083 SPF != SelectPatternFlavor::SPF_NABS) 1084 return nullptr; 1085 1086 Value *TVal = Sel.getTrueValue(); 1087 Value *FVal = Sel.getFalseValue(); 1088 assert(isKnownNegation(TVal, FVal) && 1089 "Unexpected result from matchSelectPattern"); 1090 1091 // The compare may use the negated abs()/nabs() operand, or it may use 1092 // negation in non-canonical form such as: sub A, B. 1093 bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) || 1094 match(Cmp.getOperand(0), m_Neg(m_Specific(FVal))); 1095 1096 bool CmpCanonicalized = !CmpUsesNegatedOp && 1097 match(Cmp.getOperand(1), m_ZeroInt()) && 1098 Cmp.getPredicate() == ICmpInst::ICMP_SLT; 1099 bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS))); 1100 1101 // Is this already canonical? 1102 if (CmpCanonicalized && RHSCanonicalized) 1103 return nullptr; 1104 1105 // If RHS is not canonical but is used by other instructions, don't 1106 // canonicalize it and potentially increase the instruction count. 1107 if (!RHSCanonicalized) 1108 if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp))) 1109 return nullptr; 1110 1111 // Create the canonical compare: icmp slt LHS 0. 1112 if (!CmpCanonicalized) { 1113 Cmp.setPredicate(ICmpInst::ICMP_SLT); 1114 Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType())); 1115 if (CmpUsesNegatedOp) 1116 Cmp.setOperand(0, LHS); 1117 } 1118 1119 // Create the canonical RHS: RHS = sub (0, LHS). 1120 if (!RHSCanonicalized) { 1121 assert(RHS->hasOneUse() && "RHS use number is not right"); 1122 RHS = IC.Builder.CreateNeg(LHS); 1123 if (TVal == LHS) { 1124 // Replace false value. 1125 IC.replaceOperand(Sel, 2, RHS); 1126 FVal = RHS; 1127 } else { 1128 // Replace true value. 1129 IC.replaceOperand(Sel, 1, RHS); 1130 TVal = RHS; 1131 } 1132 } 1133 1134 // If the select operands do not change, we're done. 1135 if (SPF == SelectPatternFlavor::SPF_NABS) { 1136 if (TVal == LHS) 1137 return &Sel; 1138 assert(FVal == LHS && "Unexpected results from matchSelectPattern"); 1139 } else { 1140 if (FVal == LHS) 1141 return &Sel; 1142 assert(TVal == LHS && "Unexpected results from matchSelectPattern"); 1143 } 1144 1145 // We are swapping the select operands, so swap the metadata too. 1146 Sel.swapValues(); 1147 Sel.swapProfMetadata(); 1148 return &Sel; 1149 } 1150 1151 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *ReplaceOp, 1152 const SimplifyQuery &Q) { 1153 // If this is a binary operator, try to simplify it with the replaced op 1154 // because we know Op and ReplaceOp are equivalant. 1155 // For example: V = X + 1, Op = X, ReplaceOp = 42 1156 // Simplifies as: add(42, 1) --> 43 1157 if (auto *BO = dyn_cast<BinaryOperator>(V)) { 1158 if (BO->getOperand(0) == Op) 1159 return SimplifyBinOp(BO->getOpcode(), ReplaceOp, BO->getOperand(1), Q); 1160 if (BO->getOperand(1) == Op) 1161 return SimplifyBinOp(BO->getOpcode(), BO->getOperand(0), ReplaceOp, Q); 1162 } 1163 1164 return nullptr; 1165 } 1166 1167 /// If we have a select with an equality comparison, then we know the value in 1168 /// one of the arms of the select. See if substituting this value into an arm 1169 /// and simplifying the result yields the same value as the other arm. 1170 /// 1171 /// To make this transform safe, we must drop poison-generating flags 1172 /// (nsw, etc) if we simplified to a binop because the select may be guarding 1173 /// that poison from propagating. If the existing binop already had no 1174 /// poison-generating flags, then this transform can be done by instsimplify. 1175 /// 1176 /// Consider: 1177 /// %cmp = icmp eq i32 %x, 2147483647 1178 /// %add = add nsw i32 %x, 1 1179 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add 1180 /// 1181 /// We can't replace %sel with %add unless we strip away the flags. 1182 /// TODO: Wrapping flags could be preserved in some cases with better analysis. 1183 static Value *foldSelectValueEquivalence(SelectInst &Sel, ICmpInst &Cmp, 1184 const SimplifyQuery &Q) { 1185 if (!Cmp.isEquality()) 1186 return nullptr; 1187 1188 // Canonicalize the pattern to ICMP_EQ by swapping the select operands. 1189 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 1190 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1191 std::swap(TrueVal, FalseVal); 1192 1193 // Try each equivalence substitution possibility. 1194 // We have an 'EQ' comparison, so the select's false value will propagate. 1195 // Example: 1196 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1 1197 // (X == 42) ? (X + 1) : 43 --> (X == 42) ? (42 + 1) : 43 --> 43 1198 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1); 1199 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q) == TrueVal || 1200 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q) == TrueVal || 1201 simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q) == FalseVal || 1202 simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q) == FalseVal) { 1203 if (auto *FalseInst = dyn_cast<Instruction>(FalseVal)) 1204 FalseInst->dropPoisonGeneratingFlags(); 1205 return FalseVal; 1206 } 1207 return nullptr; 1208 } 1209 1210 // See if this is a pattern like: 1211 // %old_cmp1 = icmp slt i32 %x, C2 1212 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high 1213 // %old_x_offseted = add i32 %x, C1 1214 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0 1215 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement 1216 // This can be rewritten as more canonical pattern: 1217 // %new_cmp1 = icmp slt i32 %x, -C1 1218 // %new_cmp2 = icmp sge i32 %x, C0-C1 1219 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x 1220 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low 1221 // Iff -C1 s<= C2 s<= C0-C1 1222 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result) 1223 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.) 1224 static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0, 1225 InstCombiner::BuilderTy &Builder) { 1226 Value *X = Sel0.getTrueValue(); 1227 Value *Sel1 = Sel0.getFalseValue(); 1228 1229 // First match the condition of the outermost select. 1230 // Said condition must be one-use. 1231 if (!Cmp0.hasOneUse()) 1232 return nullptr; 1233 Value *Cmp00 = Cmp0.getOperand(0); 1234 Constant *C0; 1235 if (!match(Cmp0.getOperand(1), 1236 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))) 1237 return nullptr; 1238 // Canonicalize Cmp0 into the form we expect. 1239 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1240 switch (Cmp0.getPredicate()) { 1241 case ICmpInst::Predicate::ICMP_ULT: 1242 break; // Great! 1243 case ICmpInst::Predicate::ICMP_ULE: 1244 // We'd have to increment C0 by one, and for that it must not have all-ones 1245 // element, but then it would have been canonicalized to 'ult' before 1246 // we get here. So we can't do anything useful with 'ule'. 1247 return nullptr; 1248 case ICmpInst::Predicate::ICMP_UGT: 1249 // We want to canonicalize it to 'ult', so we'll need to increment C0, 1250 // which again means it must not have any all-ones elements. 1251 if (!match(C0, 1252 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1253 APInt::getAllOnesValue( 1254 C0->getType()->getScalarSizeInBits())))) 1255 return nullptr; // Can't do, have all-ones element[s]. 1256 C0 = AddOne(C0); 1257 std::swap(X, Sel1); 1258 break; 1259 case ICmpInst::Predicate::ICMP_UGE: 1260 // The only way we'd get this predicate if this `icmp` has extra uses, 1261 // but then we won't be able to do this fold. 1262 return nullptr; 1263 default: 1264 return nullptr; // Unknown predicate. 1265 } 1266 1267 // Now that we've canonicalized the ICmp, we know the X we expect; 1268 // the select in other hand should be one-use. 1269 if (!Sel1->hasOneUse()) 1270 return nullptr; 1271 1272 // We now can finish matching the condition of the outermost select: 1273 // it should either be the X itself, or an addition of some constant to X. 1274 Constant *C1; 1275 if (Cmp00 == X) 1276 C1 = ConstantInt::getNullValue(Sel0.getType()); 1277 else if (!match(Cmp00, 1278 m_Add(m_Specific(X), 1279 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1))))) 1280 return nullptr; 1281 1282 Value *Cmp1; 1283 ICmpInst::Predicate Pred1; 1284 Constant *C2; 1285 Value *ReplacementLow, *ReplacementHigh; 1286 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow), 1287 m_Value(ReplacementHigh))) || 1288 !match(Cmp1, 1289 m_ICmp(Pred1, m_Specific(X), 1290 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2))))) 1291 return nullptr; 1292 1293 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse())) 1294 return nullptr; // Not enough one-use instructions for the fold. 1295 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of 1296 // two comparisons we'll need to build. 1297 1298 // Canonicalize Cmp1 into the form we expect. 1299 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1300 switch (Pred1) { 1301 case ICmpInst::Predicate::ICMP_SLT: 1302 break; 1303 case ICmpInst::Predicate::ICMP_SLE: 1304 // We'd have to increment C2 by one, and for that it must not have signed 1305 // max element, but then it would have been canonicalized to 'slt' before 1306 // we get here. So we can't do anything useful with 'sle'. 1307 return nullptr; 1308 case ICmpInst::Predicate::ICMP_SGT: 1309 // We want to canonicalize it to 'slt', so we'll need to increment C2, 1310 // which again means it must not have any signed max elements. 1311 if (!match(C2, 1312 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1313 APInt::getSignedMaxValue( 1314 C2->getType()->getScalarSizeInBits())))) 1315 return nullptr; // Can't do, have signed max element[s]. 1316 C2 = AddOne(C2); 1317 LLVM_FALLTHROUGH; 1318 case ICmpInst::Predicate::ICMP_SGE: 1319 // Also non-canonical, but here we don't need to change C2, 1320 // so we don't have any restrictions on C2, so we can just handle it. 1321 std::swap(ReplacementLow, ReplacementHigh); 1322 break; 1323 default: 1324 return nullptr; // Unknown predicate. 1325 } 1326 1327 // The thresholds of this clamp-like pattern. 1328 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1); 1329 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1); 1330 1331 // The fold has a precondition 1: C2 s>= ThresholdLow 1332 auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2, 1333 ThresholdLowIncl); 1334 if (!match(Precond1, m_One())) 1335 return nullptr; 1336 // The fold has a precondition 2: C2 s<= ThresholdHigh 1337 auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2, 1338 ThresholdHighExcl); 1339 if (!match(Precond2, m_One())) 1340 return nullptr; 1341 1342 // All good, finally emit the new pattern. 1343 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl); 1344 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl); 1345 Value *MaybeReplacedLow = 1346 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X); 1347 Instruction *MaybeReplacedHigh = 1348 SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow); 1349 1350 return MaybeReplacedHigh; 1351 } 1352 1353 // If we have 1354 // %cmp = icmp [canonical predicate] i32 %x, C0 1355 // %r = select i1 %cmp, i32 %y, i32 C1 1356 // Where C0 != C1 and %x may be different from %y, see if the constant that we 1357 // will have if we flip the strictness of the predicate (i.e. without changing 1358 // the result) is identical to the C1 in select. If it matches we can change 1359 // original comparison to one with swapped predicate, reuse the constant, 1360 // and swap the hands of select. 1361 static Instruction * 1362 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp, 1363 InstCombiner &IC) { 1364 ICmpInst::Predicate Pred; 1365 Value *X; 1366 Constant *C0; 1367 if (!match(&Cmp, m_OneUse(m_ICmp( 1368 Pred, m_Value(X), 1369 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))))) 1370 return nullptr; 1371 1372 // If comparison predicate is non-relational, we won't be able to do anything. 1373 if (ICmpInst::isEquality(Pred)) 1374 return nullptr; 1375 1376 // If comparison predicate is non-canonical, then we certainly won't be able 1377 // to make it canonical; canonicalizeCmpWithConstant() already tried. 1378 if (!isCanonicalPredicate(Pred)) 1379 return nullptr; 1380 1381 // If the [input] type of comparison and select type are different, lets abort 1382 // for now. We could try to compare constants with trunc/[zs]ext though. 1383 if (C0->getType() != Sel.getType()) 1384 return nullptr; 1385 1386 // FIXME: are there any magic icmp predicate+constant pairs we must not touch? 1387 1388 Value *SelVal0, *SelVal1; // We do not care which one is from where. 1389 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1))); 1390 // At least one of these values we are selecting between must be a constant 1391 // else we'll never succeed. 1392 if (!match(SelVal0, m_AnyIntegralConstant()) && 1393 !match(SelVal1, m_AnyIntegralConstant())) 1394 return nullptr; 1395 1396 // Does this constant C match any of the `select` values? 1397 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) { 1398 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1); 1399 }; 1400 1401 // If C0 *already* matches true/false value of select, we are done. 1402 if (MatchesSelectValue(C0)) 1403 return nullptr; 1404 1405 // Check the constant we'd have with flipped-strictness predicate. 1406 auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, C0); 1407 if (!FlippedStrictness) 1408 return nullptr; 1409 1410 // If said constant doesn't match either, then there is no hope, 1411 if (!MatchesSelectValue(FlippedStrictness->second)) 1412 return nullptr; 1413 1414 // It matched! Lets insert the new comparison just before select. 1415 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder); 1416 IC.Builder.SetInsertPoint(&Sel); 1417 1418 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped. 1419 Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second, 1420 Cmp.getName() + ".inv"); 1421 IC.replaceOperand(Sel, 0, NewCmp); 1422 Sel.swapValues(); 1423 Sel.swapProfMetadata(); 1424 1425 return &Sel; 1426 } 1427 1428 /// Visit a SelectInst that has an ICmpInst as its first operand. 1429 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI, 1430 ICmpInst *ICI) { 1431 if (Value *V = foldSelectValueEquivalence(SI, *ICI, SQ)) 1432 return replaceInstUsesWith(SI, V); 1433 1434 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *this)) 1435 return NewSel; 1436 1437 if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, *this)) 1438 return NewAbs; 1439 1440 if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder)) 1441 return NewAbs; 1442 1443 if (Instruction *NewSel = 1444 tryToReuseConstantFromSelectInComparison(SI, *ICI, *this)) 1445 return NewSel; 1446 1447 bool Changed = adjustMinMax(SI, *ICI); 1448 1449 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 1450 return replaceInstUsesWith(SI, V); 1451 1452 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 1453 Value *TrueVal = SI.getTrueValue(); 1454 Value *FalseVal = SI.getFalseValue(); 1455 ICmpInst::Predicate Pred = ICI->getPredicate(); 1456 Value *CmpLHS = ICI->getOperand(0); 1457 Value *CmpRHS = ICI->getOperand(1); 1458 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 1459 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 1460 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 1461 SI.setOperand(1, CmpRHS); 1462 Changed = true; 1463 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 1464 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 1465 SI.setOperand(2, CmpRHS); 1466 Changed = true; 1467 } 1468 } 1469 1470 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 1471 // decomposeBitTestICmp() might help. 1472 { 1473 unsigned BitWidth = 1474 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 1475 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 1476 Value *X; 1477 const APInt *Y, *C; 1478 bool TrueWhenUnset; 1479 bool IsBitTest = false; 1480 if (ICmpInst::isEquality(Pred) && 1481 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 1482 match(CmpRHS, m_Zero())) { 1483 IsBitTest = true; 1484 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 1485 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 1486 X = CmpLHS; 1487 Y = &MinSignedValue; 1488 IsBitTest = true; 1489 TrueWhenUnset = false; 1490 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 1491 X = CmpLHS; 1492 Y = &MinSignedValue; 1493 IsBitTest = true; 1494 TrueWhenUnset = true; 1495 } 1496 if (IsBitTest) { 1497 Value *V = nullptr; 1498 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1499 if (TrueWhenUnset && TrueVal == X && 1500 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1501 V = Builder.CreateAnd(X, ~(*Y)); 1502 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1503 else if (!TrueWhenUnset && FalseVal == X && 1504 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1505 V = Builder.CreateAnd(X, ~(*Y)); 1506 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1507 else if (TrueWhenUnset && FalseVal == X && 1508 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1509 V = Builder.CreateOr(X, *Y); 1510 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1511 else if (!TrueWhenUnset && TrueVal == X && 1512 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1513 V = Builder.CreateOr(X, *Y); 1514 1515 if (V) 1516 return replaceInstUsesWith(SI, V); 1517 } 1518 } 1519 1520 if (Instruction *V = 1521 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1522 return V; 1523 1524 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder)) 1525 return V; 1526 1527 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 1528 return replaceInstUsesWith(SI, V); 1529 1530 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder)) 1531 return replaceInstUsesWith(SI, V); 1532 1533 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 1534 return replaceInstUsesWith(SI, V); 1535 1536 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1537 return replaceInstUsesWith(SI, V); 1538 1539 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) 1540 return replaceInstUsesWith(SI, V); 1541 1542 return Changed ? &SI : nullptr; 1543 } 1544 1545 /// SI is a select whose condition is a PHI node (but the two may be in 1546 /// different blocks). See if the true/false values (V) are live in all of the 1547 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1548 /// 1549 /// X = phi [ C1, BB1], [C2, BB2] 1550 /// Y = add 1551 /// Z = select X, Y, 0 1552 /// 1553 /// because Y is not live in BB1/BB2. 1554 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1555 const SelectInst &SI) { 1556 // If the value is a non-instruction value like a constant or argument, it 1557 // can always be mapped. 1558 const Instruction *I = dyn_cast<Instruction>(V); 1559 if (!I) return true; 1560 1561 // If V is a PHI node defined in the same block as the condition PHI, we can 1562 // map the arguments. 1563 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1564 1565 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1566 if (VP->getParent() == CondPHI->getParent()) 1567 return true; 1568 1569 // Otherwise, if the PHI and select are defined in the same block and if V is 1570 // defined in a different block, then we can transform it. 1571 if (SI.getParent() == CondPHI->getParent() && 1572 I->getParent() != CondPHI->getParent()) 1573 return true; 1574 1575 // Otherwise we have a 'hard' case and we can't tell without doing more 1576 // detailed dominator based analysis, punt. 1577 return false; 1578 } 1579 1580 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1581 /// SPF2(SPF1(A, B), C) 1582 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner, 1583 SelectPatternFlavor SPF1, 1584 Value *A, Value *B, 1585 Instruction &Outer, 1586 SelectPatternFlavor SPF2, Value *C) { 1587 if (Outer.getType() != Inner->getType()) 1588 return nullptr; 1589 1590 if (C == A || C == B) { 1591 // MAX(MAX(A, B), B) -> MAX(A, B) 1592 // MIN(MIN(a, b), a) -> MIN(a, b) 1593 // TODO: This could be done in instsimplify. 1594 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 1595 return replaceInstUsesWith(Outer, Inner); 1596 1597 // MAX(MIN(a, b), a) -> a 1598 // MIN(MAX(a, b), a) -> a 1599 // TODO: This could be done in instsimplify. 1600 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 1601 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 1602 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 1603 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 1604 return replaceInstUsesWith(Outer, C); 1605 } 1606 1607 if (SPF1 == SPF2) { 1608 const APInt *CB, *CC; 1609 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 1610 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 1611 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 1612 // TODO: This could be done in instsimplify. 1613 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 1614 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 1615 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 1616 (SPF1 == SPF_SMAX && CB->sge(*CC))) 1617 return replaceInstUsesWith(Outer, Inner); 1618 1619 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 1620 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 1621 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 1622 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 1623 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 1624 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 1625 Outer.replaceUsesOfWith(Inner, A); 1626 return &Outer; 1627 } 1628 } 1629 } 1630 1631 // max(max(A, B), min(A, B)) --> max(A, B) 1632 // min(min(A, B), max(A, B)) --> min(A, B) 1633 // TODO: This could be done in instsimplify. 1634 if (SPF1 == SPF2 && 1635 ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) || 1636 (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) || 1637 (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) || 1638 (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B)))))) 1639 return replaceInstUsesWith(Outer, Inner); 1640 1641 // ABS(ABS(X)) -> ABS(X) 1642 // NABS(NABS(X)) -> NABS(X) 1643 // TODO: This could be done in instsimplify. 1644 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 1645 return replaceInstUsesWith(Outer, Inner); 1646 } 1647 1648 // ABS(NABS(X)) -> ABS(X) 1649 // NABS(ABS(X)) -> NABS(X) 1650 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 1651 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 1652 SelectInst *SI = cast<SelectInst>(Inner); 1653 Value *NewSI = 1654 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 1655 SI->getTrueValue(), SI->getName(), SI); 1656 return replaceInstUsesWith(Outer, NewSI); 1657 } 1658 1659 auto IsFreeOrProfitableToInvert = 1660 [&](Value *V, Value *&NotV, bool &ElidesXor) { 1661 if (match(V, m_Not(m_Value(NotV)))) { 1662 // If V has at most 2 uses then we can get rid of the xor operation 1663 // entirely. 1664 ElidesXor |= !V->hasNUsesOrMore(3); 1665 return true; 1666 } 1667 1668 if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) { 1669 NotV = nullptr; 1670 return true; 1671 } 1672 1673 return false; 1674 }; 1675 1676 Value *NotA, *NotB, *NotC; 1677 bool ElidesXor = false; 1678 1679 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 1680 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 1681 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 1682 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 1683 // 1684 // This transform is performance neutral if we can elide at least one xor from 1685 // the set of three operands, since we'll be tacking on an xor at the very 1686 // end. 1687 if (SelectPatternResult::isMinOrMax(SPF1) && 1688 SelectPatternResult::isMinOrMax(SPF2) && 1689 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 1690 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 1691 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 1692 if (!NotA) 1693 NotA = Builder.CreateNot(A); 1694 if (!NotB) 1695 NotB = Builder.CreateNot(B); 1696 if (!NotC) 1697 NotC = Builder.CreateNot(C); 1698 1699 Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA, 1700 NotB); 1701 Value *NewOuter = Builder.CreateNot( 1702 createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC)); 1703 return replaceInstUsesWith(Outer, NewOuter); 1704 } 1705 1706 return nullptr; 1707 } 1708 1709 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1710 /// This is even legal for FP. 1711 static Instruction *foldAddSubSelect(SelectInst &SI, 1712 InstCombiner::BuilderTy &Builder) { 1713 Value *CondVal = SI.getCondition(); 1714 Value *TrueVal = SI.getTrueValue(); 1715 Value *FalseVal = SI.getFalseValue(); 1716 auto *TI = dyn_cast<Instruction>(TrueVal); 1717 auto *FI = dyn_cast<Instruction>(FalseVal); 1718 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1719 return nullptr; 1720 1721 Instruction *AddOp = nullptr, *SubOp = nullptr; 1722 if ((TI->getOpcode() == Instruction::Sub && 1723 FI->getOpcode() == Instruction::Add) || 1724 (TI->getOpcode() == Instruction::FSub && 1725 FI->getOpcode() == Instruction::FAdd)) { 1726 AddOp = FI; 1727 SubOp = TI; 1728 } else if ((FI->getOpcode() == Instruction::Sub && 1729 TI->getOpcode() == Instruction::Add) || 1730 (FI->getOpcode() == Instruction::FSub && 1731 TI->getOpcode() == Instruction::FAdd)) { 1732 AddOp = TI; 1733 SubOp = FI; 1734 } 1735 1736 if (AddOp) { 1737 Value *OtherAddOp = nullptr; 1738 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1739 OtherAddOp = AddOp->getOperand(1); 1740 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1741 OtherAddOp = AddOp->getOperand(0); 1742 } 1743 1744 if (OtherAddOp) { 1745 // So at this point we know we have (Y -> OtherAddOp): 1746 // select C, (add X, Y), (sub X, Z) 1747 Value *NegVal; // Compute -Z 1748 if (SI.getType()->isFPOrFPVectorTy()) { 1749 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1750 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1751 FastMathFlags Flags = AddOp->getFastMathFlags(); 1752 Flags &= SubOp->getFastMathFlags(); 1753 NegInst->setFastMathFlags(Flags); 1754 } 1755 } else { 1756 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1757 } 1758 1759 Value *NewTrueOp = OtherAddOp; 1760 Value *NewFalseOp = NegVal; 1761 if (AddOp != TI) 1762 std::swap(NewTrueOp, NewFalseOp); 1763 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1764 SI.getName() + ".p", &SI); 1765 1766 if (SI.getType()->isFPOrFPVectorTy()) { 1767 Instruction *RI = 1768 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1769 1770 FastMathFlags Flags = AddOp->getFastMathFlags(); 1771 Flags &= SubOp->getFastMathFlags(); 1772 RI->setFastMathFlags(Flags); 1773 return RI; 1774 } else 1775 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1776 } 1777 } 1778 return nullptr; 1779 } 1780 1781 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1782 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1783 /// Along with a number of patterns similar to: 1784 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1785 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1786 static Instruction * 1787 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) { 1788 Value *CondVal = SI.getCondition(); 1789 Value *TrueVal = SI.getTrueValue(); 1790 Value *FalseVal = SI.getFalseValue(); 1791 1792 WithOverflowInst *II; 1793 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) || 1794 !match(FalseVal, m_ExtractValue<0>(m_Specific(II)))) 1795 return nullptr; 1796 1797 Value *X = II->getLHS(); 1798 Value *Y = II->getRHS(); 1799 1800 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) { 1801 Type *Ty = Limit->getType(); 1802 1803 ICmpInst::Predicate Pred; 1804 Value *TrueVal, *FalseVal, *Op; 1805 const APInt *C; 1806 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)), 1807 m_Value(TrueVal), m_Value(FalseVal)))) 1808 return false; 1809 1810 auto IsZeroOrOne = [](const APInt &C) { 1811 return C.isNullValue() || C.isOneValue(); 1812 }; 1813 auto IsMinMax = [&](Value *Min, Value *Max) { 1814 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 1815 APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 1816 return match(Min, m_SpecificInt(MinVal)) && 1817 match(Max, m_SpecificInt(MaxVal)); 1818 }; 1819 1820 if (Op != X && Op != Y) 1821 return false; 1822 1823 if (IsAdd) { 1824 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1825 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1826 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1827 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1828 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1829 IsMinMax(TrueVal, FalseVal)) 1830 return true; 1831 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1832 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1833 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1834 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1835 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1836 IsMinMax(FalseVal, TrueVal)) 1837 return true; 1838 } else { 1839 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1840 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1841 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) && 1842 IsMinMax(TrueVal, FalseVal)) 1843 return true; 1844 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1845 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1846 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) && 1847 IsMinMax(FalseVal, TrueVal)) 1848 return true; 1849 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1850 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1851 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1852 IsMinMax(FalseVal, TrueVal)) 1853 return true; 1854 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1855 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1856 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1857 IsMinMax(TrueVal, FalseVal)) 1858 return true; 1859 } 1860 1861 return false; 1862 }; 1863 1864 Intrinsic::ID NewIntrinsicID; 1865 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow && 1866 match(TrueVal, m_AllOnes())) 1867 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1868 NewIntrinsicID = Intrinsic::uadd_sat; 1869 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow && 1870 match(TrueVal, m_Zero())) 1871 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1872 NewIntrinsicID = Intrinsic::usub_sat; 1873 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow && 1874 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true)) 1875 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1876 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1877 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1878 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1879 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1880 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1881 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1882 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1883 NewIntrinsicID = Intrinsic::sadd_sat; 1884 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow && 1885 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false)) 1886 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1887 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1888 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1889 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1890 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1891 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1892 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1893 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1894 NewIntrinsicID = Intrinsic::ssub_sat; 1895 else 1896 return nullptr; 1897 1898 Function *F = 1899 Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType()); 1900 return CallInst::Create(F, {X, Y}); 1901 } 1902 1903 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) { 1904 Constant *C; 1905 if (!match(Sel.getTrueValue(), m_Constant(C)) && 1906 !match(Sel.getFalseValue(), m_Constant(C))) 1907 return nullptr; 1908 1909 Instruction *ExtInst; 1910 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 1911 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 1912 return nullptr; 1913 1914 auto ExtOpcode = ExtInst->getOpcode(); 1915 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 1916 return nullptr; 1917 1918 // If we are extending from a boolean type or if we can create a select that 1919 // has the same size operands as its condition, try to narrow the select. 1920 Value *X = ExtInst->getOperand(0); 1921 Type *SmallType = X->getType(); 1922 Value *Cond = Sel.getCondition(); 1923 auto *Cmp = dyn_cast<CmpInst>(Cond); 1924 if (!SmallType->isIntOrIntVectorTy(1) && 1925 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 1926 return nullptr; 1927 1928 // If the constant is the same after truncation to the smaller type and 1929 // extension to the original type, we can narrow the select. 1930 Type *SelType = Sel.getType(); 1931 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 1932 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 1933 if (ExtC == C && ExtInst->hasOneUse()) { 1934 Value *TruncCVal = cast<Value>(TruncC); 1935 if (ExtInst == Sel.getFalseValue()) 1936 std::swap(X, TruncCVal); 1937 1938 // select Cond, (ext X), C --> ext(select Cond, X, C') 1939 // select Cond, C, (ext X) --> ext(select Cond, C', X) 1940 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 1941 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 1942 } 1943 1944 // If one arm of the select is the extend of the condition, replace that arm 1945 // with the extension of the appropriate known bool value. 1946 if (Cond == X) { 1947 if (ExtInst == Sel.getTrueValue()) { 1948 // select X, (sext X), C --> select X, -1, C 1949 // select X, (zext X), C --> select X, 1, C 1950 Constant *One = ConstantInt::getTrue(SmallType); 1951 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 1952 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 1953 } else { 1954 // select X, C, (sext X) --> select X, C, 0 1955 // select X, C, (zext X) --> select X, C, 0 1956 Constant *Zero = ConstantInt::getNullValue(SelType); 1957 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 1958 } 1959 } 1960 1961 return nullptr; 1962 } 1963 1964 /// Try to transform a vector select with a constant condition vector into a 1965 /// shuffle for easier combining with other shuffles and insert/extract. 1966 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 1967 Value *CondVal = SI.getCondition(); 1968 Constant *CondC; 1969 if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC))) 1970 return nullptr; 1971 1972 unsigned NumElts = cast<VectorType>(CondVal->getType())->getNumElements(); 1973 SmallVector<int, 16> Mask; 1974 Mask.reserve(NumElts); 1975 for (unsigned i = 0; i != NumElts; ++i) { 1976 Constant *Elt = CondC->getAggregateElement(i); 1977 if (!Elt) 1978 return nullptr; 1979 1980 if (Elt->isOneValue()) { 1981 // If the select condition element is true, choose from the 1st vector. 1982 Mask.push_back(i); 1983 } else if (Elt->isNullValue()) { 1984 // If the select condition element is false, choose from the 2nd vector. 1985 Mask.push_back(i + NumElts); 1986 } else if (isa<UndefValue>(Elt)) { 1987 // Undef in a select condition (choose one of the operands) does not mean 1988 // the same thing as undef in a shuffle mask (any value is acceptable), so 1989 // give up. 1990 return nullptr; 1991 } else { 1992 // Bail out on a constant expression. 1993 return nullptr; 1994 } 1995 } 1996 1997 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask); 1998 } 1999 2000 /// If we have a select of vectors with a scalar condition, try to convert that 2001 /// to a vector select by splatting the condition. A splat may get folded with 2002 /// other operations in IR and having all operands of a select be vector types 2003 /// is likely better for vector codegen. 2004 static Instruction *canonicalizeScalarSelectOfVecs( 2005 SelectInst &Sel, InstCombiner &IC) { 2006 auto *Ty = dyn_cast<VectorType>(Sel.getType()); 2007 if (!Ty) 2008 return nullptr; 2009 2010 // We can replace a single-use extract with constant index. 2011 Value *Cond = Sel.getCondition(); 2012 if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt())))) 2013 return nullptr; 2014 2015 // select (extelt V, Index), T, F --> select (splat V, Index), T, F 2016 // Splatting the extracted condition reduces code (we could directly create a 2017 // splat shuffle of the source vector to eliminate the intermediate step). 2018 unsigned NumElts = Ty->getNumElements(); 2019 return IC.replaceOperand(Sel, 0, IC.Builder.CreateVectorSplat(NumElts, Cond)); 2020 } 2021 2022 /// Reuse bitcasted operands between a compare and select: 2023 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2024 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 2025 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 2026 InstCombiner::BuilderTy &Builder) { 2027 Value *Cond = Sel.getCondition(); 2028 Value *TVal = Sel.getTrueValue(); 2029 Value *FVal = Sel.getFalseValue(); 2030 2031 CmpInst::Predicate Pred; 2032 Value *A, *B; 2033 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 2034 return nullptr; 2035 2036 // The select condition is a compare instruction. If the select's true/false 2037 // values are already the same as the compare operands, there's nothing to do. 2038 if (TVal == A || TVal == B || FVal == A || FVal == B) 2039 return nullptr; 2040 2041 Value *C, *D; 2042 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 2043 return nullptr; 2044 2045 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 2046 Value *TSrc, *FSrc; 2047 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 2048 !match(FVal, m_BitCast(m_Value(FSrc)))) 2049 return nullptr; 2050 2051 // If the select true/false values are *different bitcasts* of the same source 2052 // operands, make the select operands the same as the compare operands and 2053 // cast the result. This is the canonical select form for min/max. 2054 Value *NewSel; 2055 if (TSrc == C && FSrc == D) { 2056 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2057 // bitcast (select (cmp A, B), A, B) 2058 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 2059 } else if (TSrc == D && FSrc == C) { 2060 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 2061 // bitcast (select (cmp A, B), B, A) 2062 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 2063 } else { 2064 return nullptr; 2065 } 2066 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 2067 } 2068 2069 /// Try to eliminate select instructions that test the returned flag of cmpxchg 2070 /// instructions. 2071 /// 2072 /// If a select instruction tests the returned flag of a cmpxchg instruction and 2073 /// selects between the returned value of the cmpxchg instruction its compare 2074 /// operand, the result of the select will always be equal to its false value. 2075 /// For example: 2076 /// 2077 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2078 /// %1 = extractvalue { i64, i1 } %0, 1 2079 /// %2 = extractvalue { i64, i1 } %0, 0 2080 /// %3 = select i1 %1, i64 %compare, i64 %2 2081 /// ret i64 %3 2082 /// 2083 /// The returned value of the cmpxchg instruction (%2) is the original value 2084 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 2085 /// must have been equal to %compare. Thus, the result of the select is always 2086 /// equal to %2, and the code can be simplified to: 2087 /// 2088 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2089 /// %1 = extractvalue { i64, i1 } %0, 0 2090 /// ret i64 %1 2091 /// 2092 static Value *foldSelectCmpXchg(SelectInst &SI) { 2093 // A helper that determines if V is an extractvalue instruction whose 2094 // aggregate operand is a cmpxchg instruction and whose single index is equal 2095 // to I. If such conditions are true, the helper returns the cmpxchg 2096 // instruction; otherwise, a nullptr is returned. 2097 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 2098 auto *Extract = dyn_cast<ExtractValueInst>(V); 2099 if (!Extract) 2100 return nullptr; 2101 if (Extract->getIndices()[0] != I) 2102 return nullptr; 2103 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 2104 }; 2105 2106 // If the select has a single user, and this user is a select instruction that 2107 // we can simplify, skip the cmpxchg simplification for now. 2108 if (SI.hasOneUse()) 2109 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 2110 if (Select->getCondition() == SI.getCondition()) 2111 if (Select->getFalseValue() == SI.getTrueValue() || 2112 Select->getTrueValue() == SI.getFalseValue()) 2113 return nullptr; 2114 2115 // Ensure the select condition is the returned flag of a cmpxchg instruction. 2116 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 2117 if (!CmpXchg) 2118 return nullptr; 2119 2120 // Check the true value case: The true value of the select is the returned 2121 // value of the same cmpxchg used by the condition, and the false value is the 2122 // cmpxchg instruction's compare operand. 2123 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 2124 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) 2125 return SI.getFalseValue(); 2126 2127 // Check the false value case: The false value of the select is the returned 2128 // value of the same cmpxchg used by the condition, and the true value is the 2129 // cmpxchg instruction's compare operand. 2130 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 2131 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) 2132 return SI.getFalseValue(); 2133 2134 return nullptr; 2135 } 2136 2137 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X, 2138 Value *Y, 2139 InstCombiner::BuilderTy &Builder) { 2140 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern"); 2141 bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN || 2142 SPF == SelectPatternFlavor::SPF_UMAX; 2143 // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change 2144 // the constant value check to an assert. 2145 Value *A; 2146 const APInt *C1, *C2; 2147 if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) && 2148 match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) { 2149 // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1 2150 // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1 2151 Value *NewMinMax = createMinMax(Builder, SPF, A, 2152 ConstantInt::get(X->getType(), *C2 - *C1)); 2153 return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax, 2154 ConstantInt::get(X->getType(), *C1)); 2155 } 2156 2157 if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) && 2158 match(Y, m_APInt(C2)) && X->hasNUses(2)) { 2159 bool Overflow; 2160 APInt Diff = C2->ssub_ov(*C1, Overflow); 2161 if (!Overflow) { 2162 // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1 2163 // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1 2164 Value *NewMinMax = createMinMax(Builder, SPF, A, 2165 ConstantInt::get(X->getType(), Diff)); 2166 return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax, 2167 ConstantInt::get(X->getType(), *C1)); 2168 } 2169 } 2170 2171 return nullptr; 2172 } 2173 2174 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value. 2175 Instruction *InstCombiner::matchSAddSubSat(SelectInst &MinMax1) { 2176 Type *Ty = MinMax1.getType(); 2177 2178 // We are looking for a tree of: 2179 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B)))) 2180 // Where the min and max could be reversed 2181 Instruction *MinMax2; 2182 BinaryOperator *AddSub; 2183 const APInt *MinValue, *MaxValue; 2184 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) { 2185 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue)))) 2186 return nullptr; 2187 } else if (match(&MinMax1, 2188 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) { 2189 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue)))) 2190 return nullptr; 2191 } else 2192 return nullptr; 2193 2194 // Check that the constants clamp a saturate, and that the new type would be 2195 // sensible to convert to. 2196 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1) 2197 return nullptr; 2198 // In what bitwidth can this be treated as saturating arithmetics? 2199 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1; 2200 // FIXME: This isn't quite right for vectors, but using the scalar type is a 2201 // good first approximation for what should be done there. 2202 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth)) 2203 return nullptr; 2204 2205 // Also make sure that the number of uses is as expected. The "3"s are for the 2206 // the two items of min/max (the compare and the select). 2207 if (MinMax2->hasNUsesOrMore(3) || AddSub->hasNUsesOrMore(3)) 2208 return nullptr; 2209 2210 // Create the new type (which can be a vector type) 2211 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth); 2212 // Match the two extends from the add/sub 2213 Value *A, *B; 2214 if(!match(AddSub, m_BinOp(m_SExt(m_Value(A)), m_SExt(m_Value(B))))) 2215 return nullptr; 2216 // And check the incoming values are of a type smaller than or equal to the 2217 // size of the saturation. Otherwise the higher bits can cause different 2218 // results. 2219 if (A->getType()->getScalarSizeInBits() > NewBitWidth || 2220 B->getType()->getScalarSizeInBits() > NewBitWidth) 2221 return nullptr; 2222 2223 Intrinsic::ID IntrinsicID; 2224 if (AddSub->getOpcode() == Instruction::Add) 2225 IntrinsicID = Intrinsic::sadd_sat; 2226 else if (AddSub->getOpcode() == Instruction::Sub) 2227 IntrinsicID = Intrinsic::ssub_sat; 2228 else 2229 return nullptr; 2230 2231 // Finally create and return the sat intrinsic, truncated to the new type 2232 Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy); 2233 Value *AT = Builder.CreateSExt(A, NewTy); 2234 Value *BT = Builder.CreateSExt(B, NewTy); 2235 Value *Sat = Builder.CreateCall(F, {AT, BT}); 2236 return CastInst::Create(Instruction::SExt, Sat, Ty); 2237 } 2238 2239 /// Reduce a sequence of min/max with a common operand. 2240 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS, 2241 Value *RHS, 2242 InstCombiner::BuilderTy &Builder) { 2243 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"); 2244 // TODO: Allow FP min/max with nnan/nsz. 2245 if (!LHS->getType()->isIntOrIntVectorTy()) 2246 return nullptr; 2247 2248 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 2249 Value *A, *B, *C, *D; 2250 SelectPatternResult L = matchSelectPattern(LHS, A, B); 2251 SelectPatternResult R = matchSelectPattern(RHS, C, D); 2252 if (SPF != L.Flavor || L.Flavor != R.Flavor) 2253 return nullptr; 2254 2255 // Look for a common operand. The use checks are different than usual because 2256 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by 2257 // the select. 2258 Value *MinMaxOp = nullptr; 2259 Value *ThirdOp = nullptr; 2260 if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) { 2261 // If the LHS is only used in this chain and the RHS is used outside of it, 2262 // reuse the RHS min/max because that will eliminate the LHS. 2263 if (D == A || C == A) { 2264 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 2265 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 2266 MinMaxOp = RHS; 2267 ThirdOp = B; 2268 } else if (D == B || C == B) { 2269 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 2270 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 2271 MinMaxOp = RHS; 2272 ThirdOp = A; 2273 } 2274 } else if (!RHS->hasNUsesOrMore(3)) { 2275 // Reuse the LHS. This will eliminate the RHS. 2276 if (D == A || D == B) { 2277 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 2278 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 2279 MinMaxOp = LHS; 2280 ThirdOp = C; 2281 } else if (C == A || C == B) { 2282 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 2283 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 2284 MinMaxOp = LHS; 2285 ThirdOp = D; 2286 } 2287 } 2288 if (!MinMaxOp || !ThirdOp) 2289 return nullptr; 2290 2291 CmpInst::Predicate P = getMinMaxPred(SPF); 2292 Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp); 2293 return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp); 2294 } 2295 2296 /// Try to reduce a rotate pattern that includes a compare and select into a 2297 /// funnel shift intrinsic. Example: 2298 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 2299 /// --> call llvm.fshl.i32(a, a, b) 2300 static Instruction *foldSelectRotate(SelectInst &Sel) { 2301 // The false value of the select must be a rotate of the true value. 2302 Value *Or0, *Or1; 2303 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1))))) 2304 return nullptr; 2305 2306 Value *TVal = Sel.getTrueValue(); 2307 Value *SA0, *SA1; 2308 if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA0)))) || 2309 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA1))))) 2310 return nullptr; 2311 2312 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode(); 2313 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode(); 2314 if (ShiftOpcode0 == ShiftOpcode1) 2315 return nullptr; 2316 2317 // We have one of these patterns so far: 2318 // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1)) 2319 // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1)) 2320 // This must be a power-of-2 rotate for a bitmasking transform to be valid. 2321 unsigned Width = Sel.getType()->getScalarSizeInBits(); 2322 if (!isPowerOf2_32(Width)) 2323 return nullptr; 2324 2325 // Check the shift amounts to see if they are an opposite pair. 2326 Value *ShAmt; 2327 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 2328 ShAmt = SA0; 2329 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 2330 ShAmt = SA1; 2331 else 2332 return nullptr; 2333 2334 // Finally, see if the select is filtering out a shift-by-zero. 2335 Value *Cond = Sel.getCondition(); 2336 ICmpInst::Predicate Pred; 2337 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || 2338 Pred != ICmpInst::ICMP_EQ) 2339 return nullptr; 2340 2341 // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way. 2342 // Convert to funnel shift intrinsic. 2343 bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) || 2344 (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl); 2345 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 2346 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); 2347 return IntrinsicInst::Create(F, { TVal, TVal, ShAmt }); 2348 } 2349 2350 static Instruction *foldSelectToCopysign(SelectInst &Sel, 2351 InstCombiner::BuilderTy &Builder) { 2352 Value *Cond = Sel.getCondition(); 2353 Value *TVal = Sel.getTrueValue(); 2354 Value *FVal = Sel.getFalseValue(); 2355 Type *SelType = Sel.getType(); 2356 2357 // Match select ?, TC, FC where the constants are equal but negated. 2358 // TODO: Generalize to handle a negated variable operand? 2359 const APFloat *TC, *FC; 2360 if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) || 2361 !abs(*TC).bitwiseIsEqual(abs(*FC))) 2362 return nullptr; 2363 2364 assert(TC != FC && "Expected equal select arms to simplify"); 2365 2366 Value *X; 2367 const APInt *C; 2368 bool IsTrueIfSignSet; 2369 ICmpInst::Predicate Pred; 2370 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) || 2371 !isSignBitCheck(Pred, *C, IsTrueIfSignSet) || X->getType() != SelType) 2372 return nullptr; 2373 2374 // If needed, negate the value that will be the sign argument of the copysign: 2375 // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X) 2376 // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X) 2377 // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X) 2378 // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X) 2379 if (IsTrueIfSignSet ^ TC->isNegative()) 2380 X = Builder.CreateFNegFMF(X, &Sel); 2381 2382 // Canonicalize the magnitude argument as the positive constant since we do 2383 // not care about its sign. 2384 Value *MagArg = TC->isNegative() ? FVal : TVal; 2385 Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign, 2386 Sel.getType()); 2387 Instruction *CopySign = IntrinsicInst::Create(F, { MagArg, X }); 2388 CopySign->setFastMathFlags(Sel.getFastMathFlags()); 2389 return CopySign; 2390 } 2391 2392 Instruction *InstCombiner::foldVectorSelect(SelectInst &Sel) { 2393 auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType()); 2394 if (!VecTy) 2395 return nullptr; 2396 2397 unsigned NumElts = VecTy->getNumElements(); 2398 APInt UndefElts(NumElts, 0); 2399 APInt AllOnesEltMask(APInt::getAllOnesValue(NumElts)); 2400 if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) { 2401 if (V != &Sel) 2402 return replaceInstUsesWith(Sel, V); 2403 return &Sel; 2404 } 2405 2406 // A select of a "select shuffle" with a common operand can be rearranged 2407 // to select followed by "select shuffle". Because of poison, this only works 2408 // in the case of a shuffle with no undefined mask elements. 2409 Value *Cond = Sel.getCondition(); 2410 Value *TVal = Sel.getTrueValue(); 2411 Value *FVal = Sel.getFalseValue(); 2412 Value *X, *Y; 2413 ArrayRef<int> Mask; 2414 if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2415 !is_contained(Mask, UndefMaskElem) && 2416 cast<ShuffleVectorInst>(TVal)->isSelect()) { 2417 if (X == FVal) { 2418 // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X) 2419 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2420 return new ShuffleVectorInst(X, NewSel, Mask); 2421 } 2422 if (Y == FVal) { 2423 // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y 2424 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2425 return new ShuffleVectorInst(NewSel, Y, Mask); 2426 } 2427 } 2428 if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2429 !is_contained(Mask, UndefMaskElem) && 2430 cast<ShuffleVectorInst>(FVal)->isSelect()) { 2431 if (X == TVal) { 2432 // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y) 2433 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2434 return new ShuffleVectorInst(X, NewSel, Mask); 2435 } 2436 if (Y == TVal) { 2437 // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y 2438 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2439 return new ShuffleVectorInst(NewSel, Y, Mask); 2440 } 2441 } 2442 2443 return nullptr; 2444 } 2445 2446 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB, 2447 const DominatorTree &DT, 2448 InstCombiner::BuilderTy &Builder) { 2449 // Find the block's immediate dominator that ends with a conditional branch 2450 // that matches select's condition (maybe inverted). 2451 auto *IDomNode = DT[BB]->getIDom(); 2452 if (!IDomNode) 2453 return nullptr; 2454 BasicBlock *IDom = IDomNode->getBlock(); 2455 2456 Value *Cond = Sel.getCondition(); 2457 Value *IfTrue, *IfFalse; 2458 BasicBlock *TrueSucc, *FalseSucc; 2459 if (match(IDom->getTerminator(), 2460 m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc), 2461 m_BasicBlock(FalseSucc)))) { 2462 IfTrue = Sel.getTrueValue(); 2463 IfFalse = Sel.getFalseValue(); 2464 } else if (match(IDom->getTerminator(), 2465 m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc), 2466 m_BasicBlock(FalseSucc)))) { 2467 IfTrue = Sel.getFalseValue(); 2468 IfFalse = Sel.getTrueValue(); 2469 } else 2470 return nullptr; 2471 2472 // Make sure the branches are actually different. 2473 if (TrueSucc == FalseSucc) 2474 return nullptr; 2475 2476 // We want to replace select %cond, %a, %b with a phi that takes value %a 2477 // for all incoming edges that are dominated by condition `%cond == true`, 2478 // and value %b for edges dominated by condition `%cond == false`. If %a 2479 // or %b are also phis from the same basic block, we can go further and take 2480 // their incoming values from the corresponding blocks. 2481 BasicBlockEdge TrueEdge(IDom, TrueSucc); 2482 BasicBlockEdge FalseEdge(IDom, FalseSucc); 2483 DenseMap<BasicBlock *, Value *> Inputs; 2484 for (auto *Pred : predecessors(BB)) { 2485 // Check implication. 2486 BasicBlockEdge Incoming(Pred, BB); 2487 if (DT.dominates(TrueEdge, Incoming)) 2488 Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred); 2489 else if (DT.dominates(FalseEdge, Incoming)) 2490 Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred); 2491 else 2492 return nullptr; 2493 // Check availability. 2494 if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred])) 2495 if (!DT.dominates(Insn, Pred->getTerminator())) 2496 return nullptr; 2497 } 2498 2499 Builder.SetInsertPoint(&*BB->begin()); 2500 auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size()); 2501 for (auto *Pred : predecessors(BB)) 2502 PN->addIncoming(Inputs[Pred], Pred); 2503 PN->takeName(&Sel); 2504 return PN; 2505 } 2506 2507 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT, 2508 InstCombiner::BuilderTy &Builder) { 2509 // Try to replace this select with Phi in one of these blocks. 2510 SmallSetVector<BasicBlock *, 4> CandidateBlocks; 2511 CandidateBlocks.insert(Sel.getParent()); 2512 for (Value *V : Sel.operands()) 2513 if (auto *I = dyn_cast<Instruction>(V)) 2514 CandidateBlocks.insert(I->getParent()); 2515 2516 for (BasicBlock *BB : CandidateBlocks) 2517 if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder)) 2518 return PN; 2519 return nullptr; 2520 } 2521 2522 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { 2523 Value *CondVal = SI.getCondition(); 2524 Value *TrueVal = SI.getTrueValue(); 2525 Value *FalseVal = SI.getFalseValue(); 2526 Type *SelType = SI.getType(); 2527 2528 // FIXME: Remove this workaround when freeze related patches are done. 2529 // For select with undef operand which feeds into an equality comparison, 2530 // don't simplify it so loop unswitch can know the equality comparison 2531 // may have an undef operand. This is a workaround for PR31652 caused by 2532 // descrepancy about branch on undef between LoopUnswitch and GVN. 2533 if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) { 2534 if (llvm::any_of(SI.users(), [&](User *U) { 2535 ICmpInst *CI = dyn_cast<ICmpInst>(U); 2536 if (CI && CI->isEquality()) 2537 return true; 2538 return false; 2539 })) { 2540 return nullptr; 2541 } 2542 } 2543 2544 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 2545 SQ.getWithInstruction(&SI))) 2546 return replaceInstUsesWith(SI, V); 2547 2548 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 2549 return I; 2550 2551 if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this)) 2552 return I; 2553 2554 CmpInst::Predicate Pred; 2555 2556 if (SelType->isIntOrIntVectorTy(1) && 2557 TrueVal->getType() == CondVal->getType()) { 2558 if (match(TrueVal, m_One())) { 2559 // Change: A = select B, true, C --> A = or B, C 2560 return BinaryOperator::CreateOr(CondVal, FalseVal); 2561 } 2562 if (match(TrueVal, m_Zero())) { 2563 // Change: A = select B, false, C --> A = and !B, C 2564 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2565 return BinaryOperator::CreateAnd(NotCond, FalseVal); 2566 } 2567 if (match(FalseVal, m_Zero())) { 2568 // Change: A = select B, C, false --> A = and B, C 2569 return BinaryOperator::CreateAnd(CondVal, TrueVal); 2570 } 2571 if (match(FalseVal, m_One())) { 2572 // Change: A = select B, C, true --> A = or !B, C 2573 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2574 return BinaryOperator::CreateOr(NotCond, TrueVal); 2575 } 2576 2577 // select a, a, b -> a | b 2578 // select a, b, a -> a & b 2579 if (CondVal == TrueVal) 2580 return BinaryOperator::CreateOr(CondVal, FalseVal); 2581 if (CondVal == FalseVal) 2582 return BinaryOperator::CreateAnd(CondVal, TrueVal); 2583 2584 // select a, ~a, b -> (~a) & b 2585 // select a, b, ~a -> (~a) | b 2586 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 2587 return BinaryOperator::CreateAnd(TrueVal, FalseVal); 2588 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 2589 return BinaryOperator::CreateOr(TrueVal, FalseVal); 2590 } 2591 2592 // Selecting between two integer or vector splat integer constants? 2593 // 2594 // Note that we don't handle a scalar select of vectors: 2595 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 2596 // because that may need 3 instructions to splat the condition value: 2597 // extend, insertelement, shufflevector. 2598 if (SelType->isIntOrIntVectorTy() && 2599 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 2600 // select C, 1, 0 -> zext C to int 2601 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 2602 return new ZExtInst(CondVal, SelType); 2603 2604 // select C, -1, 0 -> sext C to int 2605 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 2606 return new SExtInst(CondVal, SelType); 2607 2608 // select C, 0, 1 -> zext !C to int 2609 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 2610 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2611 return new ZExtInst(NotCond, SelType); 2612 } 2613 2614 // select C, 0, -1 -> sext !C to int 2615 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 2616 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2617 return new SExtInst(NotCond, SelType); 2618 } 2619 } 2620 2621 // See if we are selecting two values based on a comparison of the two values. 2622 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 2623 Value *Cmp0 = FCI->getOperand(0), *Cmp1 = FCI->getOperand(1); 2624 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) || 2625 (Cmp0 == FalseVal && Cmp1 == TrueVal)) { 2626 // Canonicalize to use ordered comparisons by swapping the select 2627 // operands. 2628 // 2629 // e.g. 2630 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 2631 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 2632 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 2633 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2634 // FIXME: The FMF should propagate from the select, not the fcmp. 2635 Builder.setFastMathFlags(FCI->getFastMathFlags()); 2636 Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1, 2637 FCI->getName() + ".inv"); 2638 Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal); 2639 return replaceInstUsesWith(SI, NewSel); 2640 } 2641 2642 // NOTE: if we wanted to, this is where to detect MIN/MAX 2643 } 2644 } 2645 2646 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 2647 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We 2648 // also require nnan because we do not want to unintentionally change the 2649 // sign of a NaN value. 2650 // FIXME: These folds should test/propagate FMF from the select, not the 2651 // fsub or fneg. 2652 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X) 2653 Instruction *FSub; 2654 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2655 match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) && 2656 match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() && 2657 (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) { 2658 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub); 2659 return replaceInstUsesWith(SI, Fabs); 2660 } 2661 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X) 2662 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2663 match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) && 2664 match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() && 2665 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) { 2666 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub); 2667 return replaceInstUsesWith(SI, Fabs); 2668 } 2669 // With nnan and nsz: 2670 // (X < +/-0.0) ? -X : X --> fabs(X) 2671 // (X <= +/-0.0) ? -X : X --> fabs(X) 2672 Instruction *FNeg; 2673 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2674 match(TrueVal, m_FNeg(m_Specific(FalseVal))) && 2675 match(TrueVal, m_Instruction(FNeg)) && 2676 FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() && 2677 (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE || 2678 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) { 2679 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg); 2680 return replaceInstUsesWith(SI, Fabs); 2681 } 2682 // With nnan and nsz: 2683 // (X > +/-0.0) ? X : -X --> fabs(X) 2684 // (X >= +/-0.0) ? X : -X --> fabs(X) 2685 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2686 match(FalseVal, m_FNeg(m_Specific(TrueVal))) && 2687 match(FalseVal, m_Instruction(FNeg)) && 2688 FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() && 2689 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE || 2690 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) { 2691 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg); 2692 return replaceInstUsesWith(SI, Fabs); 2693 } 2694 2695 // See if we are selecting two values based on a comparison of the two values. 2696 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 2697 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 2698 return Result; 2699 2700 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 2701 return Add; 2702 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder)) 2703 return Add; 2704 if (Instruction *Or = foldSetClearBits(SI, Builder)) 2705 return Or; 2706 2707 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 2708 auto *TI = dyn_cast<Instruction>(TrueVal); 2709 auto *FI = dyn_cast<Instruction>(FalseVal); 2710 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 2711 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 2712 return IV; 2713 2714 if (Instruction *I = foldSelectExtConst(SI)) 2715 return I; 2716 2717 // See if we can fold the select into one of our operands. 2718 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 2719 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 2720 return FoldI; 2721 2722 Value *LHS, *RHS; 2723 Instruction::CastOps CastOp; 2724 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 2725 auto SPF = SPR.Flavor; 2726 if (SPF) { 2727 Value *LHS2, *RHS2; 2728 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 2729 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 2730 RHS2, SI, SPF, RHS)) 2731 return R; 2732 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 2733 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 2734 RHS2, SI, SPF, LHS)) 2735 return R; 2736 // TODO. 2737 // ABS(-X) -> ABS(X) 2738 } 2739 2740 if (SelectPatternResult::isMinOrMax(SPF)) { 2741 // Canonicalize so that 2742 // - type casts are outside select patterns. 2743 // - float clamp is transformed to min/max pattern 2744 2745 bool IsCastNeeded = LHS->getType() != SelType; 2746 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 2747 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 2748 if (IsCastNeeded || 2749 (LHS->getType()->isFPOrFPVectorTy() && 2750 ((CmpLHS != LHS && CmpLHS != RHS) || 2751 (CmpRHS != LHS && CmpRHS != RHS)))) { 2752 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered); 2753 2754 Value *Cmp; 2755 if (CmpInst::isIntPredicate(MinMaxPred)) { 2756 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS); 2757 } else { 2758 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2759 auto FMF = 2760 cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 2761 Builder.setFastMathFlags(FMF); 2762 Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS); 2763 } 2764 2765 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 2766 if (!IsCastNeeded) 2767 return replaceInstUsesWith(SI, NewSI); 2768 2769 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 2770 return replaceInstUsesWith(SI, NewCast); 2771 } 2772 2773 // MAX(~a, ~b) -> ~MIN(a, b) 2774 // MAX(~a, C) -> ~MIN(a, ~C) 2775 // MIN(~a, ~b) -> ~MAX(a, b) 2776 // MIN(~a, C) -> ~MAX(a, ~C) 2777 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { 2778 Value *A; 2779 if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) && 2780 !isFreeToInvert(A, A->hasOneUse()) && 2781 // Passing false to only consider m_Not and constants. 2782 isFreeToInvert(Y, false)) { 2783 Value *B = Builder.CreateNot(Y); 2784 Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF), 2785 A, B); 2786 // Copy the profile metadata. 2787 if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) { 2788 cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD); 2789 // Swap the metadata if the operands are swapped. 2790 if (X == SI.getFalseValue() && Y == SI.getTrueValue()) 2791 cast<SelectInst>(NewMinMax)->swapProfMetadata(); 2792 } 2793 2794 return BinaryOperator::CreateNot(NewMinMax); 2795 } 2796 2797 return nullptr; 2798 }; 2799 2800 if (Instruction *I = moveNotAfterMinMax(LHS, RHS)) 2801 return I; 2802 if (Instruction *I = moveNotAfterMinMax(RHS, LHS)) 2803 return I; 2804 2805 if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder)) 2806 return I; 2807 2808 if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder)) 2809 return I; 2810 if (Instruction *I = matchSAddSubSat(SI)) 2811 return I; 2812 } 2813 } 2814 2815 // Canonicalize select of FP values where NaN and -0.0 are not valid as 2816 // minnum/maxnum intrinsics. 2817 if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) { 2818 Value *X, *Y; 2819 if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y)))) 2820 return replaceInstUsesWith( 2821 SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI)); 2822 2823 if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y)))) 2824 return replaceInstUsesWith( 2825 SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI)); 2826 } 2827 2828 // See if we can fold the select into a phi node if the condition is a select. 2829 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 2830 // The true/false values have to be live in the PHI predecessor's blocks. 2831 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 2832 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 2833 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 2834 return NV; 2835 2836 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 2837 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 2838 // select(C, select(C, a, b), c) -> select(C, a, c) 2839 if (TrueSI->getCondition() == CondVal) { 2840 if (SI.getTrueValue() == TrueSI->getTrueValue()) 2841 return nullptr; 2842 return replaceOperand(SI, 1, TrueSI->getTrueValue()); 2843 } 2844 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 2845 // We choose this as normal form to enable folding on the And and shortening 2846 // paths for the values (this helps GetUnderlyingObjects() for example). 2847 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 2848 Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition()); 2849 replaceOperand(SI, 0, And); 2850 replaceOperand(SI, 1, TrueSI->getTrueValue()); 2851 return &SI; 2852 } 2853 } 2854 } 2855 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 2856 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 2857 // select(C, a, select(C, b, c)) -> select(C, a, c) 2858 if (FalseSI->getCondition() == CondVal) { 2859 if (SI.getFalseValue() == FalseSI->getFalseValue()) 2860 return nullptr; 2861 return replaceOperand(SI, 2, FalseSI->getFalseValue()); 2862 } 2863 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 2864 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 2865 Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition()); 2866 replaceOperand(SI, 0, Or); 2867 replaceOperand(SI, 2, FalseSI->getFalseValue()); 2868 return &SI; 2869 } 2870 } 2871 } 2872 2873 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { 2874 // The select might be preventing a division by 0. 2875 switch (BO->getOpcode()) { 2876 default: 2877 return true; 2878 case Instruction::SRem: 2879 case Instruction::URem: 2880 case Instruction::SDiv: 2881 case Instruction::UDiv: 2882 return false; 2883 } 2884 }; 2885 2886 // Try to simplify a binop sandwiched between 2 selects with the same 2887 // condition. 2888 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 2889 BinaryOperator *TrueBO; 2890 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && 2891 canMergeSelectThroughBinop(TrueBO)) { 2892 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 2893 if (TrueBOSI->getCondition() == CondVal) { 2894 replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue()); 2895 Worklist.push(TrueBO); 2896 return &SI; 2897 } 2898 } 2899 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 2900 if (TrueBOSI->getCondition() == CondVal) { 2901 replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue()); 2902 Worklist.push(TrueBO); 2903 return &SI; 2904 } 2905 } 2906 } 2907 2908 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 2909 BinaryOperator *FalseBO; 2910 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && 2911 canMergeSelectThroughBinop(FalseBO)) { 2912 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 2913 if (FalseBOSI->getCondition() == CondVal) { 2914 replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue()); 2915 Worklist.push(FalseBO); 2916 return &SI; 2917 } 2918 } 2919 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 2920 if (FalseBOSI->getCondition() == CondVal) { 2921 replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue()); 2922 Worklist.push(FalseBO); 2923 return &SI; 2924 } 2925 } 2926 } 2927 2928 Value *NotCond; 2929 if (match(CondVal, m_Not(m_Value(NotCond)))) { 2930 replaceOperand(SI, 0, NotCond); 2931 SI.swapValues(); 2932 SI.swapProfMetadata(); 2933 return &SI; 2934 } 2935 2936 if (Instruction *I = foldVectorSelect(SI)) 2937 return I; 2938 2939 // If we can compute the condition, there's no need for a select. 2940 // Like the above fold, we are attempting to reduce compile-time cost by 2941 // putting this fold here with limitations rather than in InstSimplify. 2942 // The motivation for this call into value tracking is to take advantage of 2943 // the assumption cache, so make sure that is populated. 2944 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 2945 KnownBits Known(1); 2946 computeKnownBits(CondVal, Known, 0, &SI); 2947 if (Known.One.isOneValue()) 2948 return replaceInstUsesWith(SI, TrueVal); 2949 if (Known.Zero.isOneValue()) 2950 return replaceInstUsesWith(SI, FalseVal); 2951 } 2952 2953 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 2954 return BitCastSel; 2955 2956 // Simplify selects that test the returned flag of cmpxchg instructions. 2957 if (Value *V = foldSelectCmpXchg(SI)) 2958 return replaceInstUsesWith(SI, V); 2959 2960 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this)) 2961 return Select; 2962 2963 if (Instruction *Rot = foldSelectRotate(SI)) 2964 return Rot; 2965 2966 if (Instruction *Copysign = foldSelectToCopysign(SI, Builder)) 2967 return Copysign; 2968 2969 if (Instruction *PN = foldSelectToPhi(SI, DT, Builder)) 2970 return replaceInstUsesWith(SI, PN); 2971 2972 return nullptr; 2973 } 2974