1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitSelect function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CmpInstAnalysis.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/OverflowInstAnalysis.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/KnownBits.h" 41 #include "llvm/Transforms/InstCombine/InstCombiner.h" 42 #include <cassert> 43 #include <utility> 44 45 #define DEBUG_TYPE "instcombine" 46 #include "llvm/Transforms/Utils/InstructionWorklist.h" 47 48 using namespace llvm; 49 using namespace PatternMatch; 50 51 52 static Value *createMinMax(InstCombiner::BuilderTy &Builder, 53 SelectPatternFlavor SPF, Value *A, Value *B) { 54 CmpInst::Predicate Pred = getMinMaxPred(SPF); 55 assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate"); 56 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 57 } 58 59 /// Replace a select operand based on an equality comparison with the identity 60 /// constant of a binop. 61 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 62 const TargetLibraryInfo &TLI, 63 InstCombinerImpl &IC) { 64 // The select condition must be an equality compare with a constant operand. 65 Value *X; 66 Constant *C; 67 CmpInst::Predicate Pred; 68 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 69 return nullptr; 70 71 bool IsEq; 72 if (ICmpInst::isEquality(Pred)) 73 IsEq = Pred == ICmpInst::ICMP_EQ; 74 else if (Pred == FCmpInst::FCMP_OEQ) 75 IsEq = true; 76 else if (Pred == FCmpInst::FCMP_UNE) 77 IsEq = false; 78 else 79 return nullptr; 80 81 // A select operand must be a binop. 82 BinaryOperator *BO; 83 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 84 return nullptr; 85 86 // The compare constant must be the identity constant for that binop. 87 // If this a floating-point compare with 0.0, any zero constant will do. 88 Type *Ty = BO->getType(); 89 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 90 if (IdC != C) { 91 if (!IdC || !CmpInst::isFPPredicate(Pred)) 92 return nullptr; 93 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 94 return nullptr; 95 } 96 97 // Last, match the compare variable operand with a binop operand. 98 Value *Y; 99 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 100 return nullptr; 101 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 102 return nullptr; 103 104 // +0.0 compares equal to -0.0, and so it does not behave as required for this 105 // transform. Bail out if we can not exclude that possibility. 106 if (isa<FPMathOperator>(BO)) 107 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) 108 return nullptr; 109 110 // BO = binop Y, X 111 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 112 // => 113 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 114 return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y); 115 } 116 117 /// This folds: 118 /// select (icmp eq (and X, C1)), TC, FC 119 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 120 /// To something like: 121 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 122 /// Or: 123 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 124 /// With some variations depending if FC is larger than TC, or the shift 125 /// isn't needed, or the bit widths don't match. 126 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 127 InstCombiner::BuilderTy &Builder) { 128 const APInt *SelTC, *SelFC; 129 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 130 !match(Sel.getFalseValue(), m_APInt(SelFC))) 131 return nullptr; 132 133 // If this is a vector select, we need a vector compare. 134 Type *SelType = Sel.getType(); 135 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 136 return nullptr; 137 138 Value *V; 139 APInt AndMask; 140 bool CreateAnd = false; 141 ICmpInst::Predicate Pred = Cmp->getPredicate(); 142 if (ICmpInst::isEquality(Pred)) { 143 if (!match(Cmp->getOperand(1), m_Zero())) 144 return nullptr; 145 146 V = Cmp->getOperand(0); 147 const APInt *AndRHS; 148 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 149 return nullptr; 150 151 AndMask = *AndRHS; 152 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 153 Pred, V, AndMask)) { 154 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 155 if (!AndMask.isPowerOf2()) 156 return nullptr; 157 158 CreateAnd = true; 159 } else { 160 return nullptr; 161 } 162 163 // In general, when both constants are non-zero, we would need an offset to 164 // replace the select. This would require more instructions than we started 165 // with. But there's one special-case that we handle here because it can 166 // simplify/reduce the instructions. 167 APInt TC = *SelTC; 168 APInt FC = *SelFC; 169 if (!TC.isZero() && !FC.isZero()) { 170 // If the select constants differ by exactly one bit and that's the same 171 // bit that is masked and checked by the select condition, the select can 172 // be replaced by bitwise logic to set/clear one bit of the constant result. 173 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 174 return nullptr; 175 if (CreateAnd) { 176 // If we have to create an 'and', then we must kill the cmp to not 177 // increase the instruction count. 178 if (!Cmp->hasOneUse()) 179 return nullptr; 180 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 181 } 182 bool ExtraBitInTC = TC.ugt(FC); 183 if (Pred == ICmpInst::ICMP_EQ) { 184 // If the masked bit in V is clear, clear or set the bit in the result: 185 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 186 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 187 Constant *C = ConstantInt::get(SelType, TC); 188 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 189 } 190 if (Pred == ICmpInst::ICMP_NE) { 191 // If the masked bit in V is set, set or clear the bit in the result: 192 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 193 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 194 Constant *C = ConstantInt::get(SelType, FC); 195 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 196 } 197 llvm_unreachable("Only expecting equality predicates"); 198 } 199 200 // Make sure one of the select arms is a power-of-2. 201 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 202 return nullptr; 203 204 // Determine which shift is needed to transform result of the 'and' into the 205 // desired result. 206 const APInt &ValC = !TC.isZero() ? TC : FC; 207 unsigned ValZeros = ValC.logBase2(); 208 unsigned AndZeros = AndMask.logBase2(); 209 210 // Insert the 'and' instruction on the input to the truncate. 211 if (CreateAnd) 212 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 213 214 // If types don't match, we can still convert the select by introducing a zext 215 // or a trunc of the 'and'. 216 if (ValZeros > AndZeros) { 217 V = Builder.CreateZExtOrTrunc(V, SelType); 218 V = Builder.CreateShl(V, ValZeros - AndZeros); 219 } else if (ValZeros < AndZeros) { 220 V = Builder.CreateLShr(V, AndZeros - ValZeros); 221 V = Builder.CreateZExtOrTrunc(V, SelType); 222 } else { 223 V = Builder.CreateZExtOrTrunc(V, SelType); 224 } 225 226 // Okay, now we know that everything is set up, we just don't know whether we 227 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 228 bool ShouldNotVal = !TC.isZero(); 229 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 230 if (ShouldNotVal) 231 V = Builder.CreateXor(V, ValC); 232 233 return V; 234 } 235 236 /// We want to turn code that looks like this: 237 /// %C = or %A, %B 238 /// %D = select %cond, %C, %A 239 /// into: 240 /// %C = select %cond, %B, 0 241 /// %D = or %A, %C 242 /// 243 /// Assuming that the specified instruction is an operand to the select, return 244 /// a bitmask indicating which operands of this instruction are foldable if they 245 /// equal the other incoming value of the select. 246 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 247 switch (I->getOpcode()) { 248 case Instruction::Add: 249 case Instruction::Mul: 250 case Instruction::And: 251 case Instruction::Or: 252 case Instruction::Xor: 253 return 3; // Can fold through either operand. 254 case Instruction::Sub: // Can only fold on the amount subtracted. 255 case Instruction::Shl: // Can only fold on the shift amount. 256 case Instruction::LShr: 257 case Instruction::AShr: 258 return 1; 259 default: 260 return 0; // Cannot fold 261 } 262 } 263 264 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 265 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI, 266 Instruction *FI) { 267 // Don't break up min/max patterns. The hasOneUse checks below prevent that 268 // for most cases, but vector min/max with bitcasts can be transformed. If the 269 // one-use restrictions are eased for other patterns, we still don't want to 270 // obfuscate min/max. 271 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 272 match(&SI, m_SMax(m_Value(), m_Value())) || 273 match(&SI, m_UMin(m_Value(), m_Value())) || 274 match(&SI, m_UMax(m_Value(), m_Value())))) 275 return nullptr; 276 277 // If this is a cast from the same type, merge. 278 Value *Cond = SI.getCondition(); 279 Type *CondTy = Cond->getType(); 280 if (TI->getNumOperands() == 1 && TI->isCast()) { 281 Type *FIOpndTy = FI->getOperand(0)->getType(); 282 if (TI->getOperand(0)->getType() != FIOpndTy) 283 return nullptr; 284 285 // The select condition may be a vector. We may only change the operand 286 // type if the vector width remains the same (and matches the condition). 287 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) { 288 if (!FIOpndTy->isVectorTy() || 289 CondVTy->getElementCount() != 290 cast<VectorType>(FIOpndTy)->getElementCount()) 291 return nullptr; 292 293 // TODO: If the backend knew how to deal with casts better, we could 294 // remove this limitation. For now, there's too much potential to create 295 // worse codegen by promoting the select ahead of size-altering casts 296 // (PR28160). 297 // 298 // Note that ValueTracking's matchSelectPattern() looks through casts 299 // without checking 'hasOneUse' when it matches min/max patterns, so this 300 // transform may end up happening anyway. 301 if (TI->getOpcode() != Instruction::BitCast && 302 (!TI->hasOneUse() || !FI->hasOneUse())) 303 return nullptr; 304 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 305 // TODO: The one-use restrictions for a scalar select could be eased if 306 // the fold of a select in visitLoadInst() was enhanced to match a pattern 307 // that includes a cast. 308 return nullptr; 309 } 310 311 // Fold this by inserting a select from the input values. 312 Value *NewSI = 313 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0), 314 SI.getName() + ".v", &SI); 315 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 316 TI->getType()); 317 } 318 319 // Cond ? -X : -Y --> -(Cond ? X : Y) 320 Value *X, *Y; 321 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) && 322 (TI->hasOneUse() || FI->hasOneUse())) { 323 // Intersect FMF from the fneg instructions and union those with the select. 324 FastMathFlags FMF = TI->getFastMathFlags(); 325 FMF &= FI->getFastMathFlags(); 326 FMF |= SI.getFastMathFlags(); 327 Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI); 328 if (auto *NewSelI = dyn_cast<Instruction>(NewSel)) 329 NewSelI->setFastMathFlags(FMF); 330 Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel); 331 NewFNeg->setFastMathFlags(FMF); 332 return NewFNeg; 333 } 334 335 // Min/max intrinsic with a common operand can have the common operand pulled 336 // after the select. This is the same transform as below for binops, but 337 // specialized for intrinsic matching and without the restrictive uses clause. 338 auto *TII = dyn_cast<IntrinsicInst>(TI); 339 auto *FII = dyn_cast<IntrinsicInst>(FI); 340 if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID() && 341 (TII->hasOneUse() || FII->hasOneUse())) { 342 Value *T0, *T1, *F0, *F1; 343 if (match(TII, m_MaxOrMin(m_Value(T0), m_Value(T1))) && 344 match(FII, m_MaxOrMin(m_Value(F0), m_Value(F1)))) { 345 if (T0 == F0) { 346 Value *NewSel = Builder.CreateSelect(Cond, T1, F1, "minmaxop", &SI); 347 return CallInst::Create(TII->getCalledFunction(), {NewSel, T0}); 348 } 349 if (T0 == F1) { 350 Value *NewSel = Builder.CreateSelect(Cond, T1, F0, "minmaxop", &SI); 351 return CallInst::Create(TII->getCalledFunction(), {NewSel, T0}); 352 } 353 if (T1 == F0) { 354 Value *NewSel = Builder.CreateSelect(Cond, T0, F1, "minmaxop", &SI); 355 return CallInst::Create(TII->getCalledFunction(), {NewSel, T1}); 356 } 357 if (T1 == F1) { 358 Value *NewSel = Builder.CreateSelect(Cond, T0, F0, "minmaxop", &SI); 359 return CallInst::Create(TII->getCalledFunction(), {NewSel, T1}); 360 } 361 } 362 } 363 364 // Only handle binary operators (including two-operand getelementptr) with 365 // one-use here. As with the cast case above, it may be possible to relax the 366 // one-use constraint, but that needs be examined carefully since it may not 367 // reduce the total number of instructions. 368 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 369 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 370 !TI->hasOneUse() || !FI->hasOneUse()) 371 return nullptr; 372 373 // Figure out if the operations have any operands in common. 374 Value *MatchOp, *OtherOpT, *OtherOpF; 375 bool MatchIsOpZero; 376 if (TI->getOperand(0) == FI->getOperand(0)) { 377 MatchOp = TI->getOperand(0); 378 OtherOpT = TI->getOperand(1); 379 OtherOpF = FI->getOperand(1); 380 MatchIsOpZero = true; 381 } else if (TI->getOperand(1) == FI->getOperand(1)) { 382 MatchOp = TI->getOperand(1); 383 OtherOpT = TI->getOperand(0); 384 OtherOpF = FI->getOperand(0); 385 MatchIsOpZero = false; 386 } else if (!TI->isCommutative()) { 387 return nullptr; 388 } else if (TI->getOperand(0) == FI->getOperand(1)) { 389 MatchOp = TI->getOperand(0); 390 OtherOpT = TI->getOperand(1); 391 OtherOpF = FI->getOperand(0); 392 MatchIsOpZero = true; 393 } else if (TI->getOperand(1) == FI->getOperand(0)) { 394 MatchOp = TI->getOperand(1); 395 OtherOpT = TI->getOperand(0); 396 OtherOpF = FI->getOperand(1); 397 MatchIsOpZero = true; 398 } else { 399 return nullptr; 400 } 401 402 // If the select condition is a vector, the operands of the original select's 403 // operands also must be vectors. This may not be the case for getelementptr 404 // for example. 405 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() || 406 !OtherOpF->getType()->isVectorTy())) 407 return nullptr; 408 409 // If we reach here, they do have operations in common. 410 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 411 SI.getName() + ".v", &SI); 412 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 413 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 414 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 415 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 416 NewBO->copyIRFlags(TI); 417 NewBO->andIRFlags(FI); 418 return NewBO; 419 } 420 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 421 auto *FGEP = cast<GetElementPtrInst>(FI); 422 Type *ElementType = TGEP->getResultElementType(); 423 return TGEP->isInBounds() && FGEP->isInBounds() 424 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 425 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 426 } 427 llvm_unreachable("Expected BinaryOperator or GEP"); 428 return nullptr; 429 } 430 431 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 432 if (!C1I.isZero() && !C2I.isZero()) // One side must be zero. 433 return false; 434 return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes(); 435 } 436 437 /// Try to fold the select into one of the operands to allow further 438 /// optimization. 439 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 440 Value *FalseVal) { 441 // See the comment above GetSelectFoldableOperands for a description of the 442 // transformation we are doing here. 443 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 444 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 445 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 446 unsigned OpToFold = 0; 447 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 448 OpToFold = 1; 449 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 450 OpToFold = 2; 451 } 452 453 if (OpToFold) { 454 Constant *C = ConstantExpr::getBinOpIdentity(TVI->getOpcode(), 455 TVI->getType(), true); 456 Value *OOp = TVI->getOperand(2-OpToFold); 457 // Avoid creating select between 2 constants unless it's selecting 458 // between 0, 1 and -1. 459 const APInt *OOpC; 460 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 461 if (!isa<Constant>(OOp) || 462 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) { 463 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 464 NewSel->takeName(TVI); 465 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), 466 FalseVal, NewSel); 467 BO->copyIRFlags(TVI); 468 return BO; 469 } 470 } 471 } 472 } 473 } 474 475 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { 476 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { 477 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 478 unsigned OpToFold = 0; 479 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 480 OpToFold = 1; 481 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 482 OpToFold = 2; 483 } 484 485 if (OpToFold) { 486 Constant *C = ConstantExpr::getBinOpIdentity(FVI->getOpcode(), 487 FVI->getType(), true); 488 Value *OOp = FVI->getOperand(2-OpToFold); 489 // Avoid creating select between 2 constants unless it's selecting 490 // between 0, 1 and -1. 491 const APInt *OOpC; 492 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 493 if (!isa<Constant>(OOp) || 494 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) { 495 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 496 NewSel->takeName(FVI); 497 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), 498 TrueVal, NewSel); 499 BO->copyIRFlags(FVI); 500 return BO; 501 } 502 } 503 } 504 } 505 } 506 507 return nullptr; 508 } 509 510 /// We want to turn: 511 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 512 /// into: 513 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 514 /// Note: 515 /// Z may be 0 if lshr is missing. 516 /// Worst-case scenario is that we will replace 5 instructions with 5 different 517 /// instructions, but we got rid of select. 518 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 519 Value *TVal, Value *FVal, 520 InstCombiner::BuilderTy &Builder) { 521 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 522 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 523 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 524 return nullptr; 525 526 // The TrueVal has general form of: and %B, 1 527 Value *B; 528 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 529 return nullptr; 530 531 // Where %B may be optionally shifted: lshr %X, %Z. 532 Value *X, *Z; 533 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 534 if (!HasShift) 535 X = B; 536 537 Value *Y; 538 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 539 return nullptr; 540 541 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 542 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 543 Constant *One = ConstantInt::get(SelType, 1); 544 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 545 Value *FullMask = Builder.CreateOr(Y, MaskB); 546 Value *MaskedX = Builder.CreateAnd(X, FullMask); 547 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 548 return new ZExtInst(ICmpNeZero, SelType); 549 } 550 551 /// We want to turn: 552 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 553 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0 554 /// into: 555 /// ashr (X, Y) 556 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, 557 Value *FalseVal, 558 InstCombiner::BuilderTy &Builder) { 559 ICmpInst::Predicate Pred = IC->getPredicate(); 560 Value *CmpLHS = IC->getOperand(0); 561 Value *CmpRHS = IC->getOperand(1); 562 if (!CmpRHS->getType()->isIntOrIntVectorTy()) 563 return nullptr; 564 565 Value *X, *Y; 566 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits(); 567 if ((Pred != ICmpInst::ICMP_SGT || 568 !match(CmpRHS, 569 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) && 570 (Pred != ICmpInst::ICMP_SLT || 571 !match(CmpRHS, 572 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0))))) 573 return nullptr; 574 575 // Canonicalize so that ashr is in FalseVal. 576 if (Pred == ICmpInst::ICMP_SLT) 577 std::swap(TrueVal, FalseVal); 578 579 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) && 580 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) && 581 match(CmpLHS, m_Specific(X))) { 582 const auto *Ashr = cast<Instruction>(FalseVal); 583 // if lshr is not exact and ashr is, this new ashr must not be exact. 584 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact(); 585 return Builder.CreateAShr(X, Y, IC->getName(), IsExact); 586 } 587 588 return nullptr; 589 } 590 591 /// We want to turn: 592 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 593 /// into: 594 /// (or (shl (and X, C1), C3), Y) 595 /// iff: 596 /// C1 and C2 are both powers of 2 597 /// where: 598 /// C3 = Log(C2) - Log(C1) 599 /// 600 /// This transform handles cases where: 601 /// 1. The icmp predicate is inverted 602 /// 2. The select operands are reversed 603 /// 3. The magnitude of C2 and C1 are flipped 604 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 605 Value *FalseVal, 606 InstCombiner::BuilderTy &Builder) { 607 // Only handle integer compares. Also, if this is a vector select, we need a 608 // vector compare. 609 if (!TrueVal->getType()->isIntOrIntVectorTy() || 610 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 611 return nullptr; 612 613 Value *CmpLHS = IC->getOperand(0); 614 Value *CmpRHS = IC->getOperand(1); 615 616 Value *V; 617 unsigned C1Log; 618 bool IsEqualZero; 619 bool NeedAnd = false; 620 if (IC->isEquality()) { 621 if (!match(CmpRHS, m_Zero())) 622 return nullptr; 623 624 const APInt *C1; 625 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 626 return nullptr; 627 628 V = CmpLHS; 629 C1Log = C1->logBase2(); 630 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 631 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 632 IC->getPredicate() == ICmpInst::ICMP_SGT) { 633 // We also need to recognize (icmp slt (trunc (X)), 0) and 634 // (icmp sgt (trunc (X)), -1). 635 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 636 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 637 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 638 return nullptr; 639 640 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 641 return nullptr; 642 643 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 644 NeedAnd = true; 645 } else { 646 return nullptr; 647 } 648 649 const APInt *C2; 650 bool OrOnTrueVal = false; 651 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 652 if (!OrOnFalseVal) 653 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 654 655 if (!OrOnFalseVal && !OrOnTrueVal) 656 return nullptr; 657 658 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 659 660 unsigned C2Log = C2->logBase2(); 661 662 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 663 bool NeedShift = C1Log != C2Log; 664 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 665 V->getType()->getScalarSizeInBits(); 666 667 // Make sure we don't create more instructions than we save. 668 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 669 if ((NeedShift + NeedXor + NeedZExtTrunc) > 670 (IC->hasOneUse() + Or->hasOneUse())) 671 return nullptr; 672 673 if (NeedAnd) { 674 // Insert the AND instruction on the input to the truncate. 675 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 676 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 677 } 678 679 if (C2Log > C1Log) { 680 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 681 V = Builder.CreateShl(V, C2Log - C1Log); 682 } else if (C1Log > C2Log) { 683 V = Builder.CreateLShr(V, C1Log - C2Log); 684 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 685 } else 686 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 687 688 if (NeedXor) 689 V = Builder.CreateXor(V, *C2); 690 691 return Builder.CreateOr(V, Y); 692 } 693 694 /// Canonicalize a set or clear of a masked set of constant bits to 695 /// select-of-constants form. 696 static Instruction *foldSetClearBits(SelectInst &Sel, 697 InstCombiner::BuilderTy &Builder) { 698 Value *Cond = Sel.getCondition(); 699 Value *T = Sel.getTrueValue(); 700 Value *F = Sel.getFalseValue(); 701 Type *Ty = Sel.getType(); 702 Value *X; 703 const APInt *NotC, *C; 704 705 // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C) 706 if (match(T, m_And(m_Value(X), m_APInt(NotC))) && 707 match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 708 Constant *Zero = ConstantInt::getNullValue(Ty); 709 Constant *OrC = ConstantInt::get(Ty, *C); 710 Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel); 711 return BinaryOperator::CreateOr(T, NewSel); 712 } 713 714 // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0) 715 if (match(F, m_And(m_Value(X), m_APInt(NotC))) && 716 match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 717 Constant *Zero = ConstantInt::getNullValue(Ty); 718 Constant *OrC = ConstantInt::get(Ty, *C); 719 Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel); 720 return BinaryOperator::CreateOr(F, NewSel); 721 } 722 723 return nullptr; 724 } 725 726 // select (x == 0), 0, x * y --> freeze(y) * x 727 // select (y == 0), 0, x * y --> freeze(x) * y 728 // select (x == 0), undef, x * y --> freeze(y) * x 729 // select (x == undef), 0, x * y --> freeze(y) * x 730 // Usage of mul instead of 0 will make the result more poisonous, 731 // so the operand that was not checked in the condition should be frozen. 732 // The latter folding is applied only when a constant compared with x is 733 // is a vector consisting of 0 and undefs. If a constant compared with x 734 // is a scalar undefined value or undefined vector then an expression 735 // should be already folded into a constant. 736 static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) { 737 auto *CondVal = SI.getCondition(); 738 auto *TrueVal = SI.getTrueValue(); 739 auto *FalseVal = SI.getFalseValue(); 740 Value *X, *Y; 741 ICmpInst::Predicate Predicate; 742 743 // Assuming that constant compared with zero is not undef (but it may be 744 // a vector with some undef elements). Otherwise (when a constant is undef) 745 // the select expression should be already simplified. 746 if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) || 747 !ICmpInst::isEquality(Predicate)) 748 return nullptr; 749 750 if (Predicate == ICmpInst::ICMP_NE) 751 std::swap(TrueVal, FalseVal); 752 753 // Check that TrueVal is a constant instead of matching it with m_Zero() 754 // to handle the case when it is a scalar undef value or a vector containing 755 // non-zero elements that are masked by undef elements in the compare 756 // constant. 757 auto *TrueValC = dyn_cast<Constant>(TrueVal); 758 if (TrueValC == nullptr || 759 !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) || 760 !isa<Instruction>(FalseVal)) 761 return nullptr; 762 763 auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1)); 764 auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC); 765 // If X is compared with 0 then TrueVal could be either zero or undef. 766 // m_Zero match vectors containing some undef elements, but for scalars 767 // m_Undef should be used explicitly. 768 if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef())) 769 return nullptr; 770 771 auto *FalseValI = cast<Instruction>(FalseVal); 772 auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"), 773 *FalseValI); 774 IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY); 775 return IC.replaceInstUsesWith(SI, FalseValI); 776 } 777 778 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). 779 /// There are 8 commuted/swapped variants of this pattern. 780 /// TODO: Also support a - UMIN(a,b) patterns. 781 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 782 const Value *TrueVal, 783 const Value *FalseVal, 784 InstCombiner::BuilderTy &Builder) { 785 ICmpInst::Predicate Pred = ICI->getPredicate(); 786 if (!ICmpInst::isUnsigned(Pred)) 787 return nullptr; 788 789 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 790 if (match(TrueVal, m_Zero())) { 791 Pred = ICmpInst::getInversePredicate(Pred); 792 std::swap(TrueVal, FalseVal); 793 } 794 if (!match(FalseVal, m_Zero())) 795 return nullptr; 796 797 Value *A = ICI->getOperand(0); 798 Value *B = ICI->getOperand(1); 799 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 800 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 801 std::swap(A, B); 802 Pred = ICmpInst::getSwappedPredicate(Pred); 803 } 804 805 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 806 "Unexpected isUnsigned predicate!"); 807 808 // Ensure the sub is of the form: 809 // (a > b) ? a - b : 0 -> usub.sat(a, b) 810 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 811 // Checking for both a-b and a+(-b) as a constant. 812 bool IsNegative = false; 813 const APInt *C; 814 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) || 815 (match(A, m_APInt(C)) && 816 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C))))) 817 IsNegative = true; 818 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) && 819 !(match(B, m_APInt(C)) && 820 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C))))) 821 return nullptr; 822 823 // If we are adding a negate and the sub and icmp are used anywhere else, we 824 // would end up with more instructions. 825 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse()) 826 return nullptr; 827 828 // (a > b) ? a - b : 0 -> usub.sat(a, b) 829 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 830 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); 831 if (IsNegative) 832 Result = Builder.CreateNeg(Result); 833 return Result; 834 } 835 836 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, 837 InstCombiner::BuilderTy &Builder) { 838 if (!Cmp->hasOneUse()) 839 return nullptr; 840 841 // Match unsigned saturated add with constant. 842 Value *Cmp0 = Cmp->getOperand(0); 843 Value *Cmp1 = Cmp->getOperand(1); 844 ICmpInst::Predicate Pred = Cmp->getPredicate(); 845 Value *X; 846 const APInt *C, *CmpC; 847 if (Pred == ICmpInst::ICMP_ULT && 848 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 && 849 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) { 850 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C) 851 return Builder.CreateBinaryIntrinsic( 852 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C)); 853 } 854 855 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 856 // There are 8 commuted variants. 857 // Canonicalize -1 (saturated result) to true value of the select. 858 if (match(FVal, m_AllOnes())) { 859 std::swap(TVal, FVal); 860 Pred = CmpInst::getInversePredicate(Pred); 861 } 862 if (!match(TVal, m_AllOnes())) 863 return nullptr; 864 865 // Canonicalize predicate to less-than or less-or-equal-than. 866 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 867 std::swap(Cmp0, Cmp1); 868 Pred = CmpInst::getSwappedPredicate(Pred); 869 } 870 if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE) 871 return nullptr; 872 873 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 874 // Strictness of the comparison is irrelevant. 875 Value *Y; 876 if (match(Cmp0, m_Not(m_Value(X))) && 877 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { 878 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 879 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) 880 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); 881 } 882 // The 'not' op may be included in the sum but not the compare. 883 // Strictness of the comparison is irrelevant. 884 X = Cmp0; 885 Y = Cmp1; 886 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) { 887 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) 888 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) 889 BinaryOperator *BO = cast<BinaryOperator>(FVal); 890 return Builder.CreateBinaryIntrinsic( 891 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); 892 } 893 // The overflow may be detected via the add wrapping round. 894 // This is only valid for strict comparison! 895 if (Pred == ICmpInst::ICMP_ULT && 896 match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) && 897 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) { 898 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y) 899 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 900 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y); 901 } 902 903 return nullptr; 904 } 905 906 /// Fold the following code sequence: 907 /// \code 908 /// int a = ctlz(x & -x); 909 // x ? 31 - a : a; 910 /// \code 911 /// 912 /// into: 913 /// cttz(x) 914 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal, 915 Value *FalseVal, 916 InstCombiner::BuilderTy &Builder) { 917 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 918 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero())) 919 return nullptr; 920 921 if (ICI->getPredicate() == ICmpInst::ICMP_NE) 922 std::swap(TrueVal, FalseVal); 923 924 if (!match(FalseVal, 925 m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1)))) 926 return nullptr; 927 928 if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>())) 929 return nullptr; 930 931 Value *X = ICI->getOperand(0); 932 auto *II = cast<IntrinsicInst>(TrueVal); 933 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X))))) 934 return nullptr; 935 936 Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz, 937 II->getType()); 938 return CallInst::Create(F, {X, II->getArgOperand(1)}); 939 } 940 941 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 942 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 943 /// 944 /// For example, we can fold the following code sequence: 945 /// \code 946 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 947 /// %1 = icmp ne i32 %x, 0 948 /// %2 = select i1 %1, i32 %0, i32 32 949 /// \code 950 /// 951 /// into: 952 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 953 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 954 InstCombiner::BuilderTy &Builder) { 955 ICmpInst::Predicate Pred = ICI->getPredicate(); 956 Value *CmpLHS = ICI->getOperand(0); 957 Value *CmpRHS = ICI->getOperand(1); 958 959 // Check if the condition value compares a value for equality against zero. 960 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 961 return nullptr; 962 963 Value *SelectArg = FalseVal; 964 Value *ValueOnZero = TrueVal; 965 if (Pred == ICmpInst::ICMP_NE) 966 std::swap(SelectArg, ValueOnZero); 967 968 // Skip zero extend/truncate. 969 Value *Count = nullptr; 970 if (!match(SelectArg, m_ZExt(m_Value(Count))) && 971 !match(SelectArg, m_Trunc(m_Value(Count)))) 972 Count = SelectArg; 973 974 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 975 // input to the cttz/ctlz is used as LHS for the compare instruction. 976 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) && 977 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) 978 return nullptr; 979 980 IntrinsicInst *II = cast<IntrinsicInst>(Count); 981 982 // Check if the value propagated on zero is a constant number equal to the 983 // sizeof in bits of 'Count'. 984 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 985 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 986 // Explicitly clear the 'undef_on_zero' flag. It's always valid to go from 987 // true to false on this flag, so we can replace it for all users. 988 II->setArgOperand(1, ConstantInt::getFalse(II->getContext())); 989 return SelectArg; 990 } 991 992 // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional 993 // zext/trunc) have one use (ending at the select), the cttz/ctlz result will 994 // not be used if the input is zero. Relax to 'undef_on_zero' for that case. 995 if (II->hasOneUse() && SelectArg->hasOneUse() && 996 !match(II->getArgOperand(1), m_One())) 997 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 998 999 return nullptr; 1000 } 1001 1002 /// Return true if we find and adjust an icmp+select pattern where the compare 1003 /// is with a constant that can be incremented or decremented to match the 1004 /// minimum or maximum idiom. 1005 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 1006 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1007 Value *CmpLHS = Cmp.getOperand(0); 1008 Value *CmpRHS = Cmp.getOperand(1); 1009 Value *TrueVal = Sel.getTrueValue(); 1010 Value *FalseVal = Sel.getFalseValue(); 1011 1012 // We may move or edit the compare, so make sure the select is the only user. 1013 const APInt *CmpC; 1014 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 1015 return false; 1016 1017 // These transforms only work for selects of integers or vector selects of 1018 // integer vectors. 1019 Type *SelTy = Sel.getType(); 1020 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 1021 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 1022 return false; 1023 1024 Constant *AdjustedRHS; 1025 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 1026 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 1027 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 1028 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 1029 else 1030 return false; 1031 1032 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 1033 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 1034 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 1035 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 1036 ; // Nothing to do here. Values match without any sign/zero extension. 1037 } 1038 // Types do not match. Instead of calculating this with mixed types, promote 1039 // all to the larger type. This enables scalar evolution to analyze this 1040 // expression. 1041 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 1042 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 1043 1044 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 1045 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 1046 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 1047 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 1048 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 1049 CmpLHS = TrueVal; 1050 AdjustedRHS = SextRHS; 1051 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 1052 SextRHS == TrueVal) { 1053 CmpLHS = FalseVal; 1054 AdjustedRHS = SextRHS; 1055 } else if (Cmp.isUnsigned()) { 1056 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 1057 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 1058 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 1059 // zext + signed compare cannot be changed: 1060 // 0xff <s 0x00, but 0x00ff >s 0x0000 1061 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 1062 CmpLHS = TrueVal; 1063 AdjustedRHS = ZextRHS; 1064 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 1065 ZextRHS == TrueVal) { 1066 CmpLHS = FalseVal; 1067 AdjustedRHS = ZextRHS; 1068 } else { 1069 return false; 1070 } 1071 } else { 1072 return false; 1073 } 1074 } else { 1075 return false; 1076 } 1077 1078 Pred = ICmpInst::getSwappedPredicate(Pred); 1079 CmpRHS = AdjustedRHS; 1080 std::swap(FalseVal, TrueVal); 1081 Cmp.setPredicate(Pred); 1082 Cmp.setOperand(0, CmpLHS); 1083 Cmp.setOperand(1, CmpRHS); 1084 Sel.setOperand(1, TrueVal); 1085 Sel.setOperand(2, FalseVal); 1086 Sel.swapProfMetadata(); 1087 1088 // Move the compare instruction right before the select instruction. Otherwise 1089 // the sext/zext value may be defined after the compare instruction uses it. 1090 Cmp.moveBefore(&Sel); 1091 1092 return true; 1093 } 1094 1095 /// If this is an integer min/max (icmp + select) with a constant operand, 1096 /// create the canonical icmp for the min/max operation and canonicalize the 1097 /// constant to the 'false' operand of the select: 1098 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 1099 /// Note: if C1 != C2, this will change the icmp constant to the existing 1100 /// constant operand of the select. 1101 static Instruction *canonicalizeMinMaxWithConstant(SelectInst &Sel, 1102 ICmpInst &Cmp, 1103 InstCombinerImpl &IC) { 1104 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1105 return nullptr; 1106 1107 // Canonicalize the compare predicate based on whether we have min or max. 1108 Value *LHS, *RHS; 1109 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 1110 if (!SelectPatternResult::isMinOrMax(SPR.Flavor)) 1111 return nullptr; 1112 1113 // Is this already canonical? 1114 ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor); 1115 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && 1116 Cmp.getPredicate() == CanonicalPred) 1117 return nullptr; 1118 1119 // Bail out on unsimplified X-0 operand (due to some worklist management bug), 1120 // as this may cause an infinite combine loop. Let the sub be folded first. 1121 if (match(LHS, m_Sub(m_Value(), m_Zero())) || 1122 match(RHS, m_Sub(m_Value(), m_Zero()))) 1123 return nullptr; 1124 1125 // Create the canonical compare and plug it into the select. 1126 IC.replaceOperand(Sel, 0, IC.Builder.CreateICmp(CanonicalPred, LHS, RHS)); 1127 1128 // If the select operands did not change, we're done. 1129 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) 1130 return &Sel; 1131 1132 // If we are swapping the select operands, swap the metadata too. 1133 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && 1134 "Unexpected results from matchSelectPattern"); 1135 Sel.swapValues(); 1136 Sel.swapProfMetadata(); 1137 return &Sel; 1138 } 1139 1140 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp, 1141 InstCombinerImpl &IC) { 1142 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1143 return nullptr; 1144 1145 Value *LHS, *RHS; 1146 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; 1147 if (SPF != SelectPatternFlavor::SPF_ABS && 1148 SPF != SelectPatternFlavor::SPF_NABS) 1149 return nullptr; 1150 1151 // Note that NSW flag can only be propagated for normal, non-negated abs! 1152 bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS && 1153 match(RHS, m_NSWNeg(m_Specific(LHS))); 1154 Constant *IntMinIsPoisonC = 1155 ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison); 1156 Instruction *Abs = 1157 IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC); 1158 1159 if (SPF == SelectPatternFlavor::SPF_NABS) 1160 return BinaryOperator::CreateNeg(Abs); // Always without NSW flag! 1161 1162 return IC.replaceInstUsesWith(Sel, Abs); 1163 } 1164 1165 /// If we have a select with an equality comparison, then we know the value in 1166 /// one of the arms of the select. See if substituting this value into an arm 1167 /// and simplifying the result yields the same value as the other arm. 1168 /// 1169 /// To make this transform safe, we must drop poison-generating flags 1170 /// (nsw, etc) if we simplified to a binop because the select may be guarding 1171 /// that poison from propagating. If the existing binop already had no 1172 /// poison-generating flags, then this transform can be done by instsimplify. 1173 /// 1174 /// Consider: 1175 /// %cmp = icmp eq i32 %x, 2147483647 1176 /// %add = add nsw i32 %x, 1 1177 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add 1178 /// 1179 /// We can't replace %sel with %add unless we strip away the flags. 1180 /// TODO: Wrapping flags could be preserved in some cases with better analysis. 1181 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel, 1182 ICmpInst &Cmp) { 1183 // Value equivalence substitution requires an all-or-nothing replacement. 1184 // It does not make sense for a vector compare where each lane is chosen 1185 // independently. 1186 if (!Cmp.isEquality() || Cmp.getType()->isVectorTy()) 1187 return nullptr; 1188 1189 // Canonicalize the pattern to ICMP_EQ by swapping the select operands. 1190 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 1191 bool Swapped = false; 1192 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) { 1193 std::swap(TrueVal, FalseVal); 1194 Swapped = true; 1195 } 1196 1197 // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand. 1198 // Make sure Y cannot be undef though, as we might pick different values for 1199 // undef in the icmp and in f(Y). Additionally, take care to avoid replacing 1200 // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite 1201 // replacement cycle. 1202 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1); 1203 if (TrueVal != CmpLHS && 1204 isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) { 1205 if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ, 1206 /* AllowRefinement */ true)) 1207 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1208 1209 // Even if TrueVal does not simplify, we can directly replace a use of 1210 // CmpLHS with CmpRHS, as long as the instruction is not used anywhere 1211 // else and is safe to speculatively execute (we may end up executing it 1212 // with different operands, which should not cause side-effects or trigger 1213 // undefined behavior). Only do this if CmpRHS is a constant, as 1214 // profitability is not clear for other cases. 1215 // FIXME: The replacement could be performed recursively. 1216 if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant())) 1217 if (auto *I = dyn_cast<Instruction>(TrueVal)) 1218 if (I->hasOneUse() && isSafeToSpeculativelyExecute(I)) 1219 for (Use &U : I->operands()) 1220 if (U == CmpLHS) { 1221 replaceUse(U, CmpRHS); 1222 return &Sel; 1223 } 1224 } 1225 if (TrueVal != CmpRHS && 1226 isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT)) 1227 if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ, 1228 /* AllowRefinement */ true)) 1229 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1230 1231 auto *FalseInst = dyn_cast<Instruction>(FalseVal); 1232 if (!FalseInst) 1233 return nullptr; 1234 1235 // InstSimplify already performed this fold if it was possible subject to 1236 // current poison-generating flags. Try the transform again with 1237 // poison-generating flags temporarily dropped. 1238 bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false; 1239 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) { 1240 WasNUW = OBO->hasNoUnsignedWrap(); 1241 WasNSW = OBO->hasNoSignedWrap(); 1242 FalseInst->setHasNoUnsignedWrap(false); 1243 FalseInst->setHasNoSignedWrap(false); 1244 } 1245 if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) { 1246 WasExact = PEO->isExact(); 1247 FalseInst->setIsExact(false); 1248 } 1249 if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) { 1250 WasInBounds = GEP->isInBounds(); 1251 GEP->setIsInBounds(false); 1252 } 1253 1254 // Try each equivalence substitution possibility. 1255 // We have an 'EQ' comparison, so the select's false value will propagate. 1256 // Example: 1257 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1 1258 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ, 1259 /* AllowRefinement */ false) == TrueVal || 1260 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ, 1261 /* AllowRefinement */ false) == TrueVal) { 1262 return replaceInstUsesWith(Sel, FalseVal); 1263 } 1264 1265 // Restore poison-generating flags if the transform did not apply. 1266 if (WasNUW) 1267 FalseInst->setHasNoUnsignedWrap(); 1268 if (WasNSW) 1269 FalseInst->setHasNoSignedWrap(); 1270 if (WasExact) 1271 FalseInst->setIsExact(); 1272 if (WasInBounds) 1273 cast<GetElementPtrInst>(FalseInst)->setIsInBounds(); 1274 1275 return nullptr; 1276 } 1277 1278 // See if this is a pattern like: 1279 // %old_cmp1 = icmp slt i32 %x, C2 1280 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high 1281 // %old_x_offseted = add i32 %x, C1 1282 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0 1283 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement 1284 // This can be rewritten as more canonical pattern: 1285 // %new_cmp1 = icmp slt i32 %x, -C1 1286 // %new_cmp2 = icmp sge i32 %x, C0-C1 1287 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x 1288 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low 1289 // Iff -C1 s<= C2 s<= C0-C1 1290 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result) 1291 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.) 1292 static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0, 1293 InstCombiner::BuilderTy &Builder) { 1294 Value *X = Sel0.getTrueValue(); 1295 Value *Sel1 = Sel0.getFalseValue(); 1296 1297 // First match the condition of the outermost select. 1298 // Said condition must be one-use. 1299 if (!Cmp0.hasOneUse()) 1300 return nullptr; 1301 ICmpInst::Predicate Pred0 = Cmp0.getPredicate(); 1302 Value *Cmp00 = Cmp0.getOperand(0); 1303 Constant *C0; 1304 if (!match(Cmp0.getOperand(1), 1305 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))) 1306 return nullptr; 1307 1308 if (!isa<SelectInst>(Sel1)) { 1309 Pred0 = ICmpInst::getInversePredicate(Pred0); 1310 std::swap(X, Sel1); 1311 } 1312 1313 // Canonicalize Cmp0 into ult or uge. 1314 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1315 switch (Pred0) { 1316 case ICmpInst::Predicate::ICMP_ULT: 1317 case ICmpInst::Predicate::ICMP_UGE: 1318 // Although icmp ult %x, 0 is an unusual thing to try and should generally 1319 // have been simplified, it does not verify with undef inputs so ensure we 1320 // are not in a strange state. 1321 if (!match(C0, m_SpecificInt_ICMP( 1322 ICmpInst::Predicate::ICMP_NE, 1323 APInt::getZero(C0->getType()->getScalarSizeInBits())))) 1324 return nullptr; 1325 break; // Great! 1326 case ICmpInst::Predicate::ICMP_ULE: 1327 case ICmpInst::Predicate::ICMP_UGT: 1328 // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment 1329 // C0, which again means it must not have any all-ones elements. 1330 if (!match(C0, 1331 m_SpecificInt_ICMP( 1332 ICmpInst::Predicate::ICMP_NE, 1333 APInt::getAllOnes(C0->getType()->getScalarSizeInBits())))) 1334 return nullptr; // Can't do, have all-ones element[s]. 1335 C0 = InstCombiner::AddOne(C0); 1336 break; 1337 default: 1338 return nullptr; // Unknown predicate. 1339 } 1340 1341 // Now that we've canonicalized the ICmp, we know the X we expect; 1342 // the select in other hand should be one-use. 1343 if (!Sel1->hasOneUse()) 1344 return nullptr; 1345 1346 // If the types do not match, look through any truncs to the underlying 1347 // instruction. 1348 if (Cmp00->getType() != X->getType() && X->hasOneUse()) 1349 match(X, m_TruncOrSelf(m_Value(X))); 1350 1351 // We now can finish matching the condition of the outermost select: 1352 // it should either be the X itself, or an addition of some constant to X. 1353 Constant *C1; 1354 if (Cmp00 == X) 1355 C1 = ConstantInt::getNullValue(X->getType()); 1356 else if (!match(Cmp00, 1357 m_Add(m_Specific(X), 1358 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1))))) 1359 return nullptr; 1360 1361 Value *Cmp1; 1362 ICmpInst::Predicate Pred1; 1363 Constant *C2; 1364 Value *ReplacementLow, *ReplacementHigh; 1365 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow), 1366 m_Value(ReplacementHigh))) || 1367 !match(Cmp1, 1368 m_ICmp(Pred1, m_Specific(X), 1369 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2))))) 1370 return nullptr; 1371 1372 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse())) 1373 return nullptr; // Not enough one-use instructions for the fold. 1374 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of 1375 // two comparisons we'll need to build. 1376 1377 // Canonicalize Cmp1 into the form we expect. 1378 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1379 switch (Pred1) { 1380 case ICmpInst::Predicate::ICMP_SLT: 1381 break; 1382 case ICmpInst::Predicate::ICMP_SLE: 1383 // We'd have to increment C2 by one, and for that it must not have signed 1384 // max element, but then it would have been canonicalized to 'slt' before 1385 // we get here. So we can't do anything useful with 'sle'. 1386 return nullptr; 1387 case ICmpInst::Predicate::ICMP_SGT: 1388 // We want to canonicalize it to 'slt', so we'll need to increment C2, 1389 // which again means it must not have any signed max elements. 1390 if (!match(C2, 1391 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1392 APInt::getSignedMaxValue( 1393 C2->getType()->getScalarSizeInBits())))) 1394 return nullptr; // Can't do, have signed max element[s]. 1395 C2 = InstCombiner::AddOne(C2); 1396 LLVM_FALLTHROUGH; 1397 case ICmpInst::Predicate::ICMP_SGE: 1398 // Also non-canonical, but here we don't need to change C2, 1399 // so we don't have any restrictions on C2, so we can just handle it. 1400 std::swap(ReplacementLow, ReplacementHigh); 1401 break; 1402 default: 1403 return nullptr; // Unknown predicate. 1404 } 1405 1406 // The thresholds of this clamp-like pattern. 1407 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1); 1408 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1); 1409 if (Pred0 == ICmpInst::Predicate::ICMP_UGE) 1410 std::swap(ThresholdLowIncl, ThresholdHighExcl); 1411 1412 // The fold has a precondition 1: C2 s>= ThresholdLow 1413 auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2, 1414 ThresholdLowIncl); 1415 if (!match(Precond1, m_One())) 1416 return nullptr; 1417 // The fold has a precondition 2: C2 s<= ThresholdHigh 1418 auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2, 1419 ThresholdHighExcl); 1420 if (!match(Precond2, m_One())) 1421 return nullptr; 1422 1423 // If we are matching from a truncated input, we need to sext the 1424 // ReplacementLow and ReplacementHigh values. Only do the transform if they 1425 // are free to extend due to being constants. 1426 if (X->getType() != Sel0.getType()) { 1427 Constant *LowC, *HighC; 1428 if (!match(ReplacementLow, m_ImmConstant(LowC)) || 1429 !match(ReplacementHigh, m_ImmConstant(HighC))) 1430 return nullptr; 1431 ReplacementLow = ConstantExpr::getSExt(LowC, X->getType()); 1432 ReplacementHigh = ConstantExpr::getSExt(HighC, X->getType()); 1433 } 1434 1435 // All good, finally emit the new pattern. 1436 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl); 1437 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl); 1438 Value *MaybeReplacedLow = 1439 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X); 1440 1441 // Create the final select. If we looked through a truncate above, we will 1442 // need to retruncate the result. 1443 Value *MaybeReplacedHigh = Builder.CreateSelect( 1444 ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow); 1445 return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType()); 1446 } 1447 1448 // If we have 1449 // %cmp = icmp [canonical predicate] i32 %x, C0 1450 // %r = select i1 %cmp, i32 %y, i32 C1 1451 // Where C0 != C1 and %x may be different from %y, see if the constant that we 1452 // will have if we flip the strictness of the predicate (i.e. without changing 1453 // the result) is identical to the C1 in select. If it matches we can change 1454 // original comparison to one with swapped predicate, reuse the constant, 1455 // and swap the hands of select. 1456 static Instruction * 1457 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp, 1458 InstCombinerImpl &IC) { 1459 ICmpInst::Predicate Pred; 1460 Value *X; 1461 Constant *C0; 1462 if (!match(&Cmp, m_OneUse(m_ICmp( 1463 Pred, m_Value(X), 1464 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))))) 1465 return nullptr; 1466 1467 // If comparison predicate is non-relational, we won't be able to do anything. 1468 if (ICmpInst::isEquality(Pred)) 1469 return nullptr; 1470 1471 // If comparison predicate is non-canonical, then we certainly won't be able 1472 // to make it canonical; canonicalizeCmpWithConstant() already tried. 1473 if (!InstCombiner::isCanonicalPredicate(Pred)) 1474 return nullptr; 1475 1476 // If the [input] type of comparison and select type are different, lets abort 1477 // for now. We could try to compare constants with trunc/[zs]ext though. 1478 if (C0->getType() != Sel.getType()) 1479 return nullptr; 1480 1481 // FIXME: are there any magic icmp predicate+constant pairs we must not touch? 1482 1483 Value *SelVal0, *SelVal1; // We do not care which one is from where. 1484 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1))); 1485 // At least one of these values we are selecting between must be a constant 1486 // else we'll never succeed. 1487 if (!match(SelVal0, m_AnyIntegralConstant()) && 1488 !match(SelVal1, m_AnyIntegralConstant())) 1489 return nullptr; 1490 1491 // Does this constant C match any of the `select` values? 1492 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) { 1493 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1); 1494 }; 1495 1496 // If C0 *already* matches true/false value of select, we are done. 1497 if (MatchesSelectValue(C0)) 1498 return nullptr; 1499 1500 // Check the constant we'd have with flipped-strictness predicate. 1501 auto FlippedStrictness = 1502 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0); 1503 if (!FlippedStrictness) 1504 return nullptr; 1505 1506 // If said constant doesn't match either, then there is no hope, 1507 if (!MatchesSelectValue(FlippedStrictness->second)) 1508 return nullptr; 1509 1510 // It matched! Lets insert the new comparison just before select. 1511 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder); 1512 IC.Builder.SetInsertPoint(&Sel); 1513 1514 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped. 1515 Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second, 1516 Cmp.getName() + ".inv"); 1517 IC.replaceOperand(Sel, 0, NewCmp); 1518 Sel.swapValues(); 1519 Sel.swapProfMetadata(); 1520 1521 return &Sel; 1522 } 1523 1524 /// Visit a SelectInst that has an ICmpInst as its first operand. 1525 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI, 1526 ICmpInst *ICI) { 1527 if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI)) 1528 return NewSel; 1529 1530 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *this)) 1531 return NewSel; 1532 1533 if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, *this)) 1534 return NewAbs; 1535 1536 if (Value *V = canonicalizeClampLike(SI, *ICI, Builder)) 1537 return replaceInstUsesWith(SI, V); 1538 1539 if (Instruction *NewSel = 1540 tryToReuseConstantFromSelectInComparison(SI, *ICI, *this)) 1541 return NewSel; 1542 1543 bool Changed = adjustMinMax(SI, *ICI); 1544 1545 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 1546 return replaceInstUsesWith(SI, V); 1547 1548 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 1549 Value *TrueVal = SI.getTrueValue(); 1550 Value *FalseVal = SI.getFalseValue(); 1551 ICmpInst::Predicate Pred = ICI->getPredicate(); 1552 Value *CmpLHS = ICI->getOperand(0); 1553 Value *CmpRHS = ICI->getOperand(1); 1554 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 1555 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 1556 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 1557 SI.setOperand(1, CmpRHS); 1558 Changed = true; 1559 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 1560 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 1561 SI.setOperand(2, CmpRHS); 1562 Changed = true; 1563 } 1564 } 1565 1566 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 1567 // decomposeBitTestICmp() might help. 1568 { 1569 unsigned BitWidth = 1570 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 1571 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 1572 Value *X; 1573 const APInt *Y, *C; 1574 bool TrueWhenUnset; 1575 bool IsBitTest = false; 1576 if (ICmpInst::isEquality(Pred) && 1577 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 1578 match(CmpRHS, m_Zero())) { 1579 IsBitTest = true; 1580 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 1581 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 1582 X = CmpLHS; 1583 Y = &MinSignedValue; 1584 IsBitTest = true; 1585 TrueWhenUnset = false; 1586 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 1587 X = CmpLHS; 1588 Y = &MinSignedValue; 1589 IsBitTest = true; 1590 TrueWhenUnset = true; 1591 } 1592 if (IsBitTest) { 1593 Value *V = nullptr; 1594 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1595 if (TrueWhenUnset && TrueVal == X && 1596 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1597 V = Builder.CreateAnd(X, ~(*Y)); 1598 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1599 else if (!TrueWhenUnset && FalseVal == X && 1600 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1601 V = Builder.CreateAnd(X, ~(*Y)); 1602 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1603 else if (TrueWhenUnset && FalseVal == X && 1604 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1605 V = Builder.CreateOr(X, *Y); 1606 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1607 else if (!TrueWhenUnset && TrueVal == X && 1608 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1609 V = Builder.CreateOr(X, *Y); 1610 1611 if (V) 1612 return replaceInstUsesWith(SI, V); 1613 } 1614 } 1615 1616 if (Instruction *V = 1617 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1618 return V; 1619 1620 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder)) 1621 return V; 1622 1623 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 1624 return replaceInstUsesWith(SI, V); 1625 1626 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder)) 1627 return replaceInstUsesWith(SI, V); 1628 1629 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 1630 return replaceInstUsesWith(SI, V); 1631 1632 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1633 return replaceInstUsesWith(SI, V); 1634 1635 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) 1636 return replaceInstUsesWith(SI, V); 1637 1638 return Changed ? &SI : nullptr; 1639 } 1640 1641 /// SI is a select whose condition is a PHI node (but the two may be in 1642 /// different blocks). See if the true/false values (V) are live in all of the 1643 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1644 /// 1645 /// X = phi [ C1, BB1], [C2, BB2] 1646 /// Y = add 1647 /// Z = select X, Y, 0 1648 /// 1649 /// because Y is not live in BB1/BB2. 1650 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1651 const SelectInst &SI) { 1652 // If the value is a non-instruction value like a constant or argument, it 1653 // can always be mapped. 1654 const Instruction *I = dyn_cast<Instruction>(V); 1655 if (!I) return true; 1656 1657 // If V is a PHI node defined in the same block as the condition PHI, we can 1658 // map the arguments. 1659 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1660 1661 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1662 if (VP->getParent() == CondPHI->getParent()) 1663 return true; 1664 1665 // Otherwise, if the PHI and select are defined in the same block and if V is 1666 // defined in a different block, then we can transform it. 1667 if (SI.getParent() == CondPHI->getParent() && 1668 I->getParent() != CondPHI->getParent()) 1669 return true; 1670 1671 // Otherwise we have a 'hard' case and we can't tell without doing more 1672 // detailed dominator based analysis, punt. 1673 return false; 1674 } 1675 1676 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1677 /// SPF2(SPF1(A, B), C) 1678 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner, 1679 SelectPatternFlavor SPF1, Value *A, 1680 Value *B, Instruction &Outer, 1681 SelectPatternFlavor SPF2, 1682 Value *C) { 1683 if (Outer.getType() != Inner->getType()) 1684 return nullptr; 1685 1686 if (C == A || C == B) { 1687 // MAX(MAX(A, B), B) -> MAX(A, B) 1688 // MIN(MIN(a, b), a) -> MIN(a, b) 1689 // TODO: This could be done in instsimplify. 1690 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 1691 return replaceInstUsesWith(Outer, Inner); 1692 1693 // MAX(MIN(a, b), a) -> a 1694 // MIN(MAX(a, b), a) -> a 1695 // TODO: This could be done in instsimplify. 1696 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 1697 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 1698 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 1699 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 1700 return replaceInstUsesWith(Outer, C); 1701 } 1702 1703 if (SPF1 == SPF2) { 1704 const APInt *CB, *CC; 1705 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 1706 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 1707 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 1708 // TODO: This could be done in instsimplify. 1709 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 1710 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 1711 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 1712 (SPF1 == SPF_SMAX && CB->sge(*CC))) 1713 return replaceInstUsesWith(Outer, Inner); 1714 1715 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 1716 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 1717 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 1718 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 1719 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 1720 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 1721 Outer.replaceUsesOfWith(Inner, A); 1722 return &Outer; 1723 } 1724 } 1725 } 1726 1727 // max(max(A, B), min(A, B)) --> max(A, B) 1728 // min(min(A, B), max(A, B)) --> min(A, B) 1729 // TODO: This could be done in instsimplify. 1730 if (SPF1 == SPF2 && 1731 ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) || 1732 (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) || 1733 (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) || 1734 (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B)))))) 1735 return replaceInstUsesWith(Outer, Inner); 1736 1737 // ABS(ABS(X)) -> ABS(X) 1738 // NABS(NABS(X)) -> NABS(X) 1739 // TODO: This could be done in instsimplify. 1740 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 1741 return replaceInstUsesWith(Outer, Inner); 1742 } 1743 1744 // ABS(NABS(X)) -> ABS(X) 1745 // NABS(ABS(X)) -> NABS(X) 1746 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 1747 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 1748 SelectInst *SI = cast<SelectInst>(Inner); 1749 Value *NewSI = 1750 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 1751 SI->getTrueValue(), SI->getName(), SI); 1752 return replaceInstUsesWith(Outer, NewSI); 1753 } 1754 1755 auto IsFreeOrProfitableToInvert = 1756 [&](Value *V, Value *&NotV, bool &ElidesXor) { 1757 if (match(V, m_Not(m_Value(NotV)))) { 1758 // If V has at most 2 uses then we can get rid of the xor operation 1759 // entirely. 1760 ElidesXor |= !V->hasNUsesOrMore(3); 1761 return true; 1762 } 1763 1764 if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) { 1765 NotV = nullptr; 1766 return true; 1767 } 1768 1769 return false; 1770 }; 1771 1772 Value *NotA, *NotB, *NotC; 1773 bool ElidesXor = false; 1774 1775 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 1776 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 1777 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 1778 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 1779 // 1780 // This transform is performance neutral if we can elide at least one xor from 1781 // the set of three operands, since we'll be tacking on an xor at the very 1782 // end. 1783 if (SelectPatternResult::isMinOrMax(SPF1) && 1784 SelectPatternResult::isMinOrMax(SPF2) && 1785 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 1786 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 1787 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 1788 if (!NotA) 1789 NotA = Builder.CreateNot(A); 1790 if (!NotB) 1791 NotB = Builder.CreateNot(B); 1792 if (!NotC) 1793 NotC = Builder.CreateNot(C); 1794 1795 Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA, 1796 NotB); 1797 Value *NewOuter = Builder.CreateNot( 1798 createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC)); 1799 return replaceInstUsesWith(Outer, NewOuter); 1800 } 1801 1802 return nullptr; 1803 } 1804 1805 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1806 /// This is even legal for FP. 1807 static Instruction *foldAddSubSelect(SelectInst &SI, 1808 InstCombiner::BuilderTy &Builder) { 1809 Value *CondVal = SI.getCondition(); 1810 Value *TrueVal = SI.getTrueValue(); 1811 Value *FalseVal = SI.getFalseValue(); 1812 auto *TI = dyn_cast<Instruction>(TrueVal); 1813 auto *FI = dyn_cast<Instruction>(FalseVal); 1814 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1815 return nullptr; 1816 1817 Instruction *AddOp = nullptr, *SubOp = nullptr; 1818 if ((TI->getOpcode() == Instruction::Sub && 1819 FI->getOpcode() == Instruction::Add) || 1820 (TI->getOpcode() == Instruction::FSub && 1821 FI->getOpcode() == Instruction::FAdd)) { 1822 AddOp = FI; 1823 SubOp = TI; 1824 } else if ((FI->getOpcode() == Instruction::Sub && 1825 TI->getOpcode() == Instruction::Add) || 1826 (FI->getOpcode() == Instruction::FSub && 1827 TI->getOpcode() == Instruction::FAdd)) { 1828 AddOp = TI; 1829 SubOp = FI; 1830 } 1831 1832 if (AddOp) { 1833 Value *OtherAddOp = nullptr; 1834 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1835 OtherAddOp = AddOp->getOperand(1); 1836 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1837 OtherAddOp = AddOp->getOperand(0); 1838 } 1839 1840 if (OtherAddOp) { 1841 // So at this point we know we have (Y -> OtherAddOp): 1842 // select C, (add X, Y), (sub X, Z) 1843 Value *NegVal; // Compute -Z 1844 if (SI.getType()->isFPOrFPVectorTy()) { 1845 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1846 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1847 FastMathFlags Flags = AddOp->getFastMathFlags(); 1848 Flags &= SubOp->getFastMathFlags(); 1849 NegInst->setFastMathFlags(Flags); 1850 } 1851 } else { 1852 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1853 } 1854 1855 Value *NewTrueOp = OtherAddOp; 1856 Value *NewFalseOp = NegVal; 1857 if (AddOp != TI) 1858 std::swap(NewTrueOp, NewFalseOp); 1859 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1860 SI.getName() + ".p", &SI); 1861 1862 if (SI.getType()->isFPOrFPVectorTy()) { 1863 Instruction *RI = 1864 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1865 1866 FastMathFlags Flags = AddOp->getFastMathFlags(); 1867 Flags &= SubOp->getFastMathFlags(); 1868 RI->setFastMathFlags(Flags); 1869 return RI; 1870 } else 1871 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1872 } 1873 } 1874 return nullptr; 1875 } 1876 1877 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1878 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1879 /// Along with a number of patterns similar to: 1880 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1881 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1882 static Instruction * 1883 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) { 1884 Value *CondVal = SI.getCondition(); 1885 Value *TrueVal = SI.getTrueValue(); 1886 Value *FalseVal = SI.getFalseValue(); 1887 1888 WithOverflowInst *II; 1889 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) || 1890 !match(FalseVal, m_ExtractValue<0>(m_Specific(II)))) 1891 return nullptr; 1892 1893 Value *X = II->getLHS(); 1894 Value *Y = II->getRHS(); 1895 1896 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) { 1897 Type *Ty = Limit->getType(); 1898 1899 ICmpInst::Predicate Pred; 1900 Value *TrueVal, *FalseVal, *Op; 1901 const APInt *C; 1902 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)), 1903 m_Value(TrueVal), m_Value(FalseVal)))) 1904 return false; 1905 1906 auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); }; 1907 auto IsMinMax = [&](Value *Min, Value *Max) { 1908 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 1909 APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 1910 return match(Min, m_SpecificInt(MinVal)) && 1911 match(Max, m_SpecificInt(MaxVal)); 1912 }; 1913 1914 if (Op != X && Op != Y) 1915 return false; 1916 1917 if (IsAdd) { 1918 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1919 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1920 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1921 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1922 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1923 IsMinMax(TrueVal, FalseVal)) 1924 return true; 1925 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1926 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1927 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1928 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1929 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1930 IsMinMax(FalseVal, TrueVal)) 1931 return true; 1932 } else { 1933 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1934 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1935 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) && 1936 IsMinMax(TrueVal, FalseVal)) 1937 return true; 1938 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1939 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1940 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) && 1941 IsMinMax(FalseVal, TrueVal)) 1942 return true; 1943 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1944 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1945 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1946 IsMinMax(FalseVal, TrueVal)) 1947 return true; 1948 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1949 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1950 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1951 IsMinMax(TrueVal, FalseVal)) 1952 return true; 1953 } 1954 1955 return false; 1956 }; 1957 1958 Intrinsic::ID NewIntrinsicID; 1959 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow && 1960 match(TrueVal, m_AllOnes())) 1961 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1962 NewIntrinsicID = Intrinsic::uadd_sat; 1963 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow && 1964 match(TrueVal, m_Zero())) 1965 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1966 NewIntrinsicID = Intrinsic::usub_sat; 1967 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow && 1968 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true)) 1969 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1970 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1971 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1972 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1973 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1974 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1975 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1976 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1977 NewIntrinsicID = Intrinsic::sadd_sat; 1978 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow && 1979 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false)) 1980 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1981 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1982 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1983 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1984 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1985 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1986 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1987 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1988 NewIntrinsicID = Intrinsic::ssub_sat; 1989 else 1990 return nullptr; 1991 1992 Function *F = 1993 Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType()); 1994 return CallInst::Create(F, {X, Y}); 1995 } 1996 1997 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) { 1998 Constant *C; 1999 if (!match(Sel.getTrueValue(), m_Constant(C)) && 2000 !match(Sel.getFalseValue(), m_Constant(C))) 2001 return nullptr; 2002 2003 Instruction *ExtInst; 2004 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 2005 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 2006 return nullptr; 2007 2008 auto ExtOpcode = ExtInst->getOpcode(); 2009 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 2010 return nullptr; 2011 2012 // If we are extending from a boolean type or if we can create a select that 2013 // has the same size operands as its condition, try to narrow the select. 2014 Value *X = ExtInst->getOperand(0); 2015 Type *SmallType = X->getType(); 2016 Value *Cond = Sel.getCondition(); 2017 auto *Cmp = dyn_cast<CmpInst>(Cond); 2018 if (!SmallType->isIntOrIntVectorTy(1) && 2019 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 2020 return nullptr; 2021 2022 // If the constant is the same after truncation to the smaller type and 2023 // extension to the original type, we can narrow the select. 2024 Type *SelType = Sel.getType(); 2025 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 2026 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 2027 if (ExtC == C && ExtInst->hasOneUse()) { 2028 Value *TruncCVal = cast<Value>(TruncC); 2029 if (ExtInst == Sel.getFalseValue()) 2030 std::swap(X, TruncCVal); 2031 2032 // select Cond, (ext X), C --> ext(select Cond, X, C') 2033 // select Cond, C, (ext X) --> ext(select Cond, C', X) 2034 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 2035 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 2036 } 2037 2038 // If one arm of the select is the extend of the condition, replace that arm 2039 // with the extension of the appropriate known bool value. 2040 if (Cond == X) { 2041 if (ExtInst == Sel.getTrueValue()) { 2042 // select X, (sext X), C --> select X, -1, C 2043 // select X, (zext X), C --> select X, 1, C 2044 Constant *One = ConstantInt::getTrue(SmallType); 2045 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 2046 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 2047 } else { 2048 // select X, C, (sext X) --> select X, C, 0 2049 // select X, C, (zext X) --> select X, C, 0 2050 Constant *Zero = ConstantInt::getNullValue(SelType); 2051 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 2052 } 2053 } 2054 2055 return nullptr; 2056 } 2057 2058 /// Try to transform a vector select with a constant condition vector into a 2059 /// shuffle for easier combining with other shuffles and insert/extract. 2060 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 2061 Value *CondVal = SI.getCondition(); 2062 Constant *CondC; 2063 auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType()); 2064 if (!CondValTy || !match(CondVal, m_Constant(CondC))) 2065 return nullptr; 2066 2067 unsigned NumElts = CondValTy->getNumElements(); 2068 SmallVector<int, 16> Mask; 2069 Mask.reserve(NumElts); 2070 for (unsigned i = 0; i != NumElts; ++i) { 2071 Constant *Elt = CondC->getAggregateElement(i); 2072 if (!Elt) 2073 return nullptr; 2074 2075 if (Elt->isOneValue()) { 2076 // If the select condition element is true, choose from the 1st vector. 2077 Mask.push_back(i); 2078 } else if (Elt->isNullValue()) { 2079 // If the select condition element is false, choose from the 2nd vector. 2080 Mask.push_back(i + NumElts); 2081 } else if (isa<UndefValue>(Elt)) { 2082 // Undef in a select condition (choose one of the operands) does not mean 2083 // the same thing as undef in a shuffle mask (any value is acceptable), so 2084 // give up. 2085 return nullptr; 2086 } else { 2087 // Bail out on a constant expression. 2088 return nullptr; 2089 } 2090 } 2091 2092 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask); 2093 } 2094 2095 /// If we have a select of vectors with a scalar condition, try to convert that 2096 /// to a vector select by splatting the condition. A splat may get folded with 2097 /// other operations in IR and having all operands of a select be vector types 2098 /// is likely better for vector codegen. 2099 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel, 2100 InstCombinerImpl &IC) { 2101 auto *Ty = dyn_cast<VectorType>(Sel.getType()); 2102 if (!Ty) 2103 return nullptr; 2104 2105 // We can replace a single-use extract with constant index. 2106 Value *Cond = Sel.getCondition(); 2107 if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt())))) 2108 return nullptr; 2109 2110 // select (extelt V, Index), T, F --> select (splat V, Index), T, F 2111 // Splatting the extracted condition reduces code (we could directly create a 2112 // splat shuffle of the source vector to eliminate the intermediate step). 2113 return IC.replaceOperand( 2114 Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond)); 2115 } 2116 2117 /// Reuse bitcasted operands between a compare and select: 2118 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2119 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 2120 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 2121 InstCombiner::BuilderTy &Builder) { 2122 Value *Cond = Sel.getCondition(); 2123 Value *TVal = Sel.getTrueValue(); 2124 Value *FVal = Sel.getFalseValue(); 2125 2126 CmpInst::Predicate Pred; 2127 Value *A, *B; 2128 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 2129 return nullptr; 2130 2131 // The select condition is a compare instruction. If the select's true/false 2132 // values are already the same as the compare operands, there's nothing to do. 2133 if (TVal == A || TVal == B || FVal == A || FVal == B) 2134 return nullptr; 2135 2136 Value *C, *D; 2137 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 2138 return nullptr; 2139 2140 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 2141 Value *TSrc, *FSrc; 2142 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 2143 !match(FVal, m_BitCast(m_Value(FSrc)))) 2144 return nullptr; 2145 2146 // If the select true/false values are *different bitcasts* of the same source 2147 // operands, make the select operands the same as the compare operands and 2148 // cast the result. This is the canonical select form for min/max. 2149 Value *NewSel; 2150 if (TSrc == C && FSrc == D) { 2151 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2152 // bitcast (select (cmp A, B), A, B) 2153 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 2154 } else if (TSrc == D && FSrc == C) { 2155 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 2156 // bitcast (select (cmp A, B), B, A) 2157 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 2158 } else { 2159 return nullptr; 2160 } 2161 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 2162 } 2163 2164 /// Try to eliminate select instructions that test the returned flag of cmpxchg 2165 /// instructions. 2166 /// 2167 /// If a select instruction tests the returned flag of a cmpxchg instruction and 2168 /// selects between the returned value of the cmpxchg instruction its compare 2169 /// operand, the result of the select will always be equal to its false value. 2170 /// For example: 2171 /// 2172 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2173 /// %1 = extractvalue { i64, i1 } %0, 1 2174 /// %2 = extractvalue { i64, i1 } %0, 0 2175 /// %3 = select i1 %1, i64 %compare, i64 %2 2176 /// ret i64 %3 2177 /// 2178 /// The returned value of the cmpxchg instruction (%2) is the original value 2179 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 2180 /// must have been equal to %compare. Thus, the result of the select is always 2181 /// equal to %2, and the code can be simplified to: 2182 /// 2183 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2184 /// %1 = extractvalue { i64, i1 } %0, 0 2185 /// ret i64 %1 2186 /// 2187 static Value *foldSelectCmpXchg(SelectInst &SI) { 2188 // A helper that determines if V is an extractvalue instruction whose 2189 // aggregate operand is a cmpxchg instruction and whose single index is equal 2190 // to I. If such conditions are true, the helper returns the cmpxchg 2191 // instruction; otherwise, a nullptr is returned. 2192 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 2193 auto *Extract = dyn_cast<ExtractValueInst>(V); 2194 if (!Extract) 2195 return nullptr; 2196 if (Extract->getIndices()[0] != I) 2197 return nullptr; 2198 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 2199 }; 2200 2201 // If the select has a single user, and this user is a select instruction that 2202 // we can simplify, skip the cmpxchg simplification for now. 2203 if (SI.hasOneUse()) 2204 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 2205 if (Select->getCondition() == SI.getCondition()) 2206 if (Select->getFalseValue() == SI.getTrueValue() || 2207 Select->getTrueValue() == SI.getFalseValue()) 2208 return nullptr; 2209 2210 // Ensure the select condition is the returned flag of a cmpxchg instruction. 2211 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 2212 if (!CmpXchg) 2213 return nullptr; 2214 2215 // Check the true value case: The true value of the select is the returned 2216 // value of the same cmpxchg used by the condition, and the false value is the 2217 // cmpxchg instruction's compare operand. 2218 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 2219 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) 2220 return SI.getFalseValue(); 2221 2222 // Check the false value case: The false value of the select is the returned 2223 // value of the same cmpxchg used by the condition, and the true value is the 2224 // cmpxchg instruction's compare operand. 2225 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 2226 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) 2227 return SI.getFalseValue(); 2228 2229 return nullptr; 2230 } 2231 2232 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X, 2233 Value *Y, 2234 InstCombiner::BuilderTy &Builder) { 2235 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern"); 2236 bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN || 2237 SPF == SelectPatternFlavor::SPF_UMAX; 2238 // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change 2239 // the constant value check to an assert. 2240 Value *A; 2241 const APInt *C1, *C2; 2242 if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) && 2243 match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) { 2244 // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1 2245 // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1 2246 Value *NewMinMax = createMinMax(Builder, SPF, A, 2247 ConstantInt::get(X->getType(), *C2 - *C1)); 2248 return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax, 2249 ConstantInt::get(X->getType(), *C1)); 2250 } 2251 2252 if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) && 2253 match(Y, m_APInt(C2)) && X->hasNUses(2)) { 2254 bool Overflow; 2255 APInt Diff = C2->ssub_ov(*C1, Overflow); 2256 if (!Overflow) { 2257 // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1 2258 // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1 2259 Value *NewMinMax = createMinMax(Builder, SPF, A, 2260 ConstantInt::get(X->getType(), Diff)); 2261 return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax, 2262 ConstantInt::get(X->getType(), *C1)); 2263 } 2264 } 2265 2266 return nullptr; 2267 } 2268 2269 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value. 2270 Instruction *InstCombinerImpl::matchSAddSubSat(Instruction &MinMax1) { 2271 Type *Ty = MinMax1.getType(); 2272 2273 // We are looking for a tree of: 2274 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B)))) 2275 // Where the min and max could be reversed 2276 Instruction *MinMax2; 2277 BinaryOperator *AddSub; 2278 const APInt *MinValue, *MaxValue; 2279 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) { 2280 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue)))) 2281 return nullptr; 2282 } else if (match(&MinMax1, 2283 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) { 2284 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue)))) 2285 return nullptr; 2286 } else 2287 return nullptr; 2288 2289 // Check that the constants clamp a saturate, and that the new type would be 2290 // sensible to convert to. 2291 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1) 2292 return nullptr; 2293 // In what bitwidth can this be treated as saturating arithmetics? 2294 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1; 2295 // FIXME: This isn't quite right for vectors, but using the scalar type is a 2296 // good first approximation for what should be done there. 2297 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth)) 2298 return nullptr; 2299 2300 // Also make sure that the number of uses is as expected. The 3 is for the 2301 // the two items of the compare and the select, or 2 from a min/max. 2302 unsigned ExpUses = isa<IntrinsicInst>(MinMax1) ? 2 : 3; 2303 if (MinMax2->hasNUsesOrMore(ExpUses) || AddSub->hasNUsesOrMore(ExpUses)) 2304 return nullptr; 2305 2306 // Create the new type (which can be a vector type) 2307 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth); 2308 2309 Intrinsic::ID IntrinsicID; 2310 if (AddSub->getOpcode() == Instruction::Add) 2311 IntrinsicID = Intrinsic::sadd_sat; 2312 else if (AddSub->getOpcode() == Instruction::Sub) 2313 IntrinsicID = Intrinsic::ssub_sat; 2314 else 2315 return nullptr; 2316 2317 // The two operands of the add/sub must be nsw-truncatable to the NewTy. This 2318 // is usually achieved via a sext from a smaller type. 2319 if (ComputeMinSignedBits(AddSub->getOperand(0), 0, AddSub) > NewBitWidth || 2320 ComputeMinSignedBits(AddSub->getOperand(1), 0, AddSub) > NewBitWidth) 2321 return nullptr; 2322 2323 // Finally create and return the sat intrinsic, truncated to the new type 2324 Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy); 2325 Value *AT = Builder.CreateTrunc(AddSub->getOperand(0), NewTy); 2326 Value *BT = Builder.CreateTrunc(AddSub->getOperand(1), NewTy); 2327 Value *Sat = Builder.CreateCall(F, {AT, BT}); 2328 return CastInst::Create(Instruction::SExt, Sat, Ty); 2329 } 2330 2331 /// Reduce a sequence of min/max with a common operand. 2332 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS, 2333 Value *RHS, 2334 InstCombiner::BuilderTy &Builder) { 2335 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"); 2336 // TODO: Allow FP min/max with nnan/nsz. 2337 if (!LHS->getType()->isIntOrIntVectorTy()) 2338 return nullptr; 2339 2340 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 2341 Value *A, *B, *C, *D; 2342 SelectPatternResult L = matchSelectPattern(LHS, A, B); 2343 SelectPatternResult R = matchSelectPattern(RHS, C, D); 2344 if (SPF != L.Flavor || L.Flavor != R.Flavor) 2345 return nullptr; 2346 2347 // Look for a common operand. The use checks are different than usual because 2348 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by 2349 // the select. 2350 Value *MinMaxOp = nullptr; 2351 Value *ThirdOp = nullptr; 2352 if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) { 2353 // If the LHS is only used in this chain and the RHS is used outside of it, 2354 // reuse the RHS min/max because that will eliminate the LHS. 2355 if (D == A || C == A) { 2356 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 2357 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 2358 MinMaxOp = RHS; 2359 ThirdOp = B; 2360 } else if (D == B || C == B) { 2361 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 2362 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 2363 MinMaxOp = RHS; 2364 ThirdOp = A; 2365 } 2366 } else if (!RHS->hasNUsesOrMore(3)) { 2367 // Reuse the LHS. This will eliminate the RHS. 2368 if (D == A || D == B) { 2369 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 2370 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 2371 MinMaxOp = LHS; 2372 ThirdOp = C; 2373 } else if (C == A || C == B) { 2374 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 2375 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 2376 MinMaxOp = LHS; 2377 ThirdOp = D; 2378 } 2379 } 2380 if (!MinMaxOp || !ThirdOp) 2381 return nullptr; 2382 2383 CmpInst::Predicate P = getMinMaxPred(SPF); 2384 Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp); 2385 return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp); 2386 } 2387 2388 /// Try to reduce a funnel/rotate pattern that includes a compare and select 2389 /// into a funnel shift intrinsic. Example: 2390 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 2391 /// --> call llvm.fshl.i32(a, a, b) 2392 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c))) 2393 /// --> call llvm.fshl.i32(a, b, c) 2394 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c))) 2395 /// --> call llvm.fshr.i32(a, b, c) 2396 static Instruction *foldSelectFunnelShift(SelectInst &Sel, 2397 InstCombiner::BuilderTy &Builder) { 2398 // This must be a power-of-2 type for a bitmasking transform to be valid. 2399 unsigned Width = Sel.getType()->getScalarSizeInBits(); 2400 if (!isPowerOf2_32(Width)) 2401 return nullptr; 2402 2403 BinaryOperator *Or0, *Or1; 2404 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 2405 return nullptr; 2406 2407 Value *SV0, *SV1, *SA0, *SA1; 2408 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0), 2409 m_ZExtOrSelf(m_Value(SA0))))) || 2410 !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1), 2411 m_ZExtOrSelf(m_Value(SA1))))) || 2412 Or0->getOpcode() == Or1->getOpcode()) 2413 return nullptr; 2414 2415 // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)). 2416 if (Or0->getOpcode() == BinaryOperator::LShr) { 2417 std::swap(Or0, Or1); 2418 std::swap(SV0, SV1); 2419 std::swap(SA0, SA1); 2420 } 2421 assert(Or0->getOpcode() == BinaryOperator::Shl && 2422 Or1->getOpcode() == BinaryOperator::LShr && 2423 "Illegal or(shift,shift) pair"); 2424 2425 // Check the shift amounts to see if they are an opposite pair. 2426 Value *ShAmt; 2427 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 2428 ShAmt = SA0; 2429 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 2430 ShAmt = SA1; 2431 else 2432 return nullptr; 2433 2434 // We should now have this pattern: 2435 // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1)) 2436 // The false value of the select must be a funnel-shift of the true value: 2437 // IsFShl -> TVal must be SV0 else TVal must be SV1. 2438 bool IsFshl = (ShAmt == SA0); 2439 Value *TVal = Sel.getTrueValue(); 2440 if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1)) 2441 return nullptr; 2442 2443 // Finally, see if the select is filtering out a shift-by-zero. 2444 Value *Cond = Sel.getCondition(); 2445 ICmpInst::Predicate Pred; 2446 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || 2447 Pred != ICmpInst::ICMP_EQ) 2448 return nullptr; 2449 2450 // If this is not a rotate then the select was blocking poison from the 2451 // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it. 2452 if (SV0 != SV1) { 2453 if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1)) 2454 SV1 = Builder.CreateFreeze(SV1); 2455 else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0)) 2456 SV0 = Builder.CreateFreeze(SV0); 2457 } 2458 2459 // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way. 2460 // Convert to funnel shift intrinsic. 2461 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 2462 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); 2463 ShAmt = Builder.CreateZExt(ShAmt, Sel.getType()); 2464 return CallInst::Create(F, { SV0, SV1, ShAmt }); 2465 } 2466 2467 static Instruction *foldSelectToCopysign(SelectInst &Sel, 2468 InstCombiner::BuilderTy &Builder) { 2469 Value *Cond = Sel.getCondition(); 2470 Value *TVal = Sel.getTrueValue(); 2471 Value *FVal = Sel.getFalseValue(); 2472 Type *SelType = Sel.getType(); 2473 2474 // Match select ?, TC, FC where the constants are equal but negated. 2475 // TODO: Generalize to handle a negated variable operand? 2476 const APFloat *TC, *FC; 2477 if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) || 2478 !abs(*TC).bitwiseIsEqual(abs(*FC))) 2479 return nullptr; 2480 2481 assert(TC != FC && "Expected equal select arms to simplify"); 2482 2483 Value *X; 2484 const APInt *C; 2485 bool IsTrueIfSignSet; 2486 ICmpInst::Predicate Pred; 2487 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) || 2488 !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) || 2489 X->getType() != SelType) 2490 return nullptr; 2491 2492 // If needed, negate the value that will be the sign argument of the copysign: 2493 // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X) 2494 // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X) 2495 // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X) 2496 // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X) 2497 if (IsTrueIfSignSet ^ TC->isNegative()) 2498 X = Builder.CreateFNegFMF(X, &Sel); 2499 2500 // Canonicalize the magnitude argument as the positive constant since we do 2501 // not care about its sign. 2502 Value *MagArg = TC->isNegative() ? FVal : TVal; 2503 Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign, 2504 Sel.getType()); 2505 Instruction *CopySign = CallInst::Create(F, { MagArg, X }); 2506 CopySign->setFastMathFlags(Sel.getFastMathFlags()); 2507 return CopySign; 2508 } 2509 2510 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) { 2511 auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType()); 2512 if (!VecTy) 2513 return nullptr; 2514 2515 unsigned NumElts = VecTy->getNumElements(); 2516 APInt UndefElts(NumElts, 0); 2517 APInt AllOnesEltMask(APInt::getAllOnes(NumElts)); 2518 if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) { 2519 if (V != &Sel) 2520 return replaceInstUsesWith(Sel, V); 2521 return &Sel; 2522 } 2523 2524 // A select of a "select shuffle" with a common operand can be rearranged 2525 // to select followed by "select shuffle". Because of poison, this only works 2526 // in the case of a shuffle with no undefined mask elements. 2527 Value *Cond = Sel.getCondition(); 2528 Value *TVal = Sel.getTrueValue(); 2529 Value *FVal = Sel.getFalseValue(); 2530 Value *X, *Y; 2531 ArrayRef<int> Mask; 2532 if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2533 !is_contained(Mask, UndefMaskElem) && 2534 cast<ShuffleVectorInst>(TVal)->isSelect()) { 2535 if (X == FVal) { 2536 // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X) 2537 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2538 return new ShuffleVectorInst(X, NewSel, Mask); 2539 } 2540 if (Y == FVal) { 2541 // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y 2542 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2543 return new ShuffleVectorInst(NewSel, Y, Mask); 2544 } 2545 } 2546 if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2547 !is_contained(Mask, UndefMaskElem) && 2548 cast<ShuffleVectorInst>(FVal)->isSelect()) { 2549 if (X == TVal) { 2550 // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y) 2551 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2552 return new ShuffleVectorInst(X, NewSel, Mask); 2553 } 2554 if (Y == TVal) { 2555 // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y 2556 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2557 return new ShuffleVectorInst(NewSel, Y, Mask); 2558 } 2559 } 2560 2561 return nullptr; 2562 } 2563 2564 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB, 2565 const DominatorTree &DT, 2566 InstCombiner::BuilderTy &Builder) { 2567 // Find the block's immediate dominator that ends with a conditional branch 2568 // that matches select's condition (maybe inverted). 2569 auto *IDomNode = DT[BB]->getIDom(); 2570 if (!IDomNode) 2571 return nullptr; 2572 BasicBlock *IDom = IDomNode->getBlock(); 2573 2574 Value *Cond = Sel.getCondition(); 2575 Value *IfTrue, *IfFalse; 2576 BasicBlock *TrueSucc, *FalseSucc; 2577 if (match(IDom->getTerminator(), 2578 m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc), 2579 m_BasicBlock(FalseSucc)))) { 2580 IfTrue = Sel.getTrueValue(); 2581 IfFalse = Sel.getFalseValue(); 2582 } else if (match(IDom->getTerminator(), 2583 m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc), 2584 m_BasicBlock(FalseSucc)))) { 2585 IfTrue = Sel.getFalseValue(); 2586 IfFalse = Sel.getTrueValue(); 2587 } else 2588 return nullptr; 2589 2590 // Make sure the branches are actually different. 2591 if (TrueSucc == FalseSucc) 2592 return nullptr; 2593 2594 // We want to replace select %cond, %a, %b with a phi that takes value %a 2595 // for all incoming edges that are dominated by condition `%cond == true`, 2596 // and value %b for edges dominated by condition `%cond == false`. If %a 2597 // or %b are also phis from the same basic block, we can go further and take 2598 // their incoming values from the corresponding blocks. 2599 BasicBlockEdge TrueEdge(IDom, TrueSucc); 2600 BasicBlockEdge FalseEdge(IDom, FalseSucc); 2601 DenseMap<BasicBlock *, Value *> Inputs; 2602 for (auto *Pred : predecessors(BB)) { 2603 // Check implication. 2604 BasicBlockEdge Incoming(Pred, BB); 2605 if (DT.dominates(TrueEdge, Incoming)) 2606 Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred); 2607 else if (DT.dominates(FalseEdge, Incoming)) 2608 Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred); 2609 else 2610 return nullptr; 2611 // Check availability. 2612 if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred])) 2613 if (!DT.dominates(Insn, Pred->getTerminator())) 2614 return nullptr; 2615 } 2616 2617 Builder.SetInsertPoint(&*BB->begin()); 2618 auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size()); 2619 for (auto *Pred : predecessors(BB)) 2620 PN->addIncoming(Inputs[Pred], Pred); 2621 PN->takeName(&Sel); 2622 return PN; 2623 } 2624 2625 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT, 2626 InstCombiner::BuilderTy &Builder) { 2627 // Try to replace this select with Phi in one of these blocks. 2628 SmallSetVector<BasicBlock *, 4> CandidateBlocks; 2629 CandidateBlocks.insert(Sel.getParent()); 2630 for (Value *V : Sel.operands()) 2631 if (auto *I = dyn_cast<Instruction>(V)) 2632 CandidateBlocks.insert(I->getParent()); 2633 2634 for (BasicBlock *BB : CandidateBlocks) 2635 if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder)) 2636 return PN; 2637 return nullptr; 2638 } 2639 2640 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) { 2641 FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition()); 2642 if (!FI) 2643 return nullptr; 2644 2645 Value *Cond = FI->getOperand(0); 2646 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 2647 2648 // select (freeze(x == y)), x, y --> y 2649 // select (freeze(x != y)), x, y --> x 2650 // The freeze should be only used by this select. Otherwise, remaining uses of 2651 // the freeze can observe a contradictory value. 2652 // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1 2653 // a = select c, x, y ; 2654 // f(a, c) ; f(poison, 1) cannot happen, but if a is folded 2655 // ; to y, this can happen. 2656 CmpInst::Predicate Pred; 2657 if (FI->hasOneUse() && 2658 match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) && 2659 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) { 2660 return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal; 2661 } 2662 2663 return nullptr; 2664 } 2665 2666 Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op, 2667 SelectInst &SI, 2668 bool IsAnd) { 2669 Value *CondVal = SI.getCondition(); 2670 Value *A = SI.getTrueValue(); 2671 Value *B = SI.getFalseValue(); 2672 2673 assert(Op->getType()->isIntOrIntVectorTy(1) && 2674 "Op must be either i1 or vector of i1."); 2675 2676 Optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd); 2677 if (!Res) 2678 return nullptr; 2679 2680 Value *Zero = Constant::getNullValue(A->getType()); 2681 Value *One = Constant::getAllOnesValue(A->getType()); 2682 2683 if (*Res == true) { 2684 if (IsAnd) 2685 // select op, (select cond, A, B), false => select op, A, false 2686 // and op, (select cond, A, B) => select op, A, false 2687 // if op = true implies condval = true. 2688 return SelectInst::Create(Op, A, Zero); 2689 else 2690 // select op, true, (select cond, A, B) => select op, true, A 2691 // or op, (select cond, A, B) => select op, true, A 2692 // if op = false implies condval = true. 2693 return SelectInst::Create(Op, One, A); 2694 } else { 2695 if (IsAnd) 2696 // select op, (select cond, A, B), false => select op, B, false 2697 // and op, (select cond, A, B) => select op, B, false 2698 // if op = true implies condval = false. 2699 return SelectInst::Create(Op, B, Zero); 2700 else 2701 // select op, true, (select cond, A, B) => select op, true, B 2702 // or op, (select cond, A, B) => select op, true, B 2703 // if op = false implies condval = false. 2704 return SelectInst::Create(Op, One, B); 2705 } 2706 } 2707 2708 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) { 2709 Value *CondVal = SI.getCondition(); 2710 Value *TrueVal = SI.getTrueValue(); 2711 Value *FalseVal = SI.getFalseValue(); 2712 Type *SelType = SI.getType(); 2713 2714 // FIXME: Remove this workaround when freeze related patches are done. 2715 // For select with undef operand which feeds into an equality comparison, 2716 // don't simplify it so loop unswitch can know the equality comparison 2717 // may have an undef operand. This is a workaround for PR31652 caused by 2718 // descrepancy about branch on undef between LoopUnswitch and GVN. 2719 if (match(TrueVal, m_Undef()) || match(FalseVal, m_Undef())) { 2720 if (llvm::any_of(SI.users(), [&](User *U) { 2721 ICmpInst *CI = dyn_cast<ICmpInst>(U); 2722 if (CI && CI->isEquality()) 2723 return true; 2724 return false; 2725 })) { 2726 return nullptr; 2727 } 2728 } 2729 2730 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 2731 SQ.getWithInstruction(&SI))) 2732 return replaceInstUsesWith(SI, V); 2733 2734 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 2735 return I; 2736 2737 if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this)) 2738 return I; 2739 2740 CmpInst::Predicate Pred; 2741 2742 // Avoid potential infinite loops by checking for non-constant condition. 2743 // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()? 2744 // Scalar select must have simplified? 2745 if (SelType->isIntOrIntVectorTy(1) && !isa<Constant>(CondVal) && 2746 TrueVal->getType() == CondVal->getType()) { 2747 // Folding select to and/or i1 isn't poison safe in general. impliesPoison 2748 // checks whether folding it does not convert a well-defined value into 2749 // poison. 2750 if (match(TrueVal, m_One()) && impliesPoison(FalseVal, CondVal)) { 2751 // Change: A = select B, true, C --> A = or B, C 2752 return BinaryOperator::CreateOr(CondVal, FalseVal); 2753 } 2754 if (match(FalseVal, m_Zero()) && impliesPoison(TrueVal, CondVal)) { 2755 // Change: A = select B, C, false --> A = and B, C 2756 return BinaryOperator::CreateAnd(CondVal, TrueVal); 2757 } 2758 2759 auto *One = ConstantInt::getTrue(SelType); 2760 auto *Zero = ConstantInt::getFalse(SelType); 2761 2762 // We match the "full" 0 or 1 constant here to avoid a potential infinite 2763 // loop with vectors that may have undefined/poison elements. 2764 // select a, false, b -> select !a, b, false 2765 if (match(TrueVal, m_Specific(Zero))) { 2766 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2767 return SelectInst::Create(NotCond, FalseVal, Zero); 2768 } 2769 // select a, b, true -> select !a, true, b 2770 if (match(FalseVal, m_Specific(One))) { 2771 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2772 return SelectInst::Create(NotCond, One, TrueVal); 2773 } 2774 2775 // select a, a, b -> select a, true, b 2776 if (CondVal == TrueVal) 2777 return replaceOperand(SI, 1, One); 2778 // select a, b, a -> select a, b, false 2779 if (CondVal == FalseVal) 2780 return replaceOperand(SI, 2, Zero); 2781 2782 // select a, !a, b -> select !a, b, false 2783 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 2784 return SelectInst::Create(TrueVal, FalseVal, Zero); 2785 // select a, b, !a -> select !a, true, b 2786 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 2787 return SelectInst::Create(FalseVal, One, TrueVal); 2788 2789 Value *A, *B; 2790 2791 // DeMorgan in select form: !a && !b --> !(a || b) 2792 // select !a, !b, false --> not (select a, true, b) 2793 if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) && 2794 (CondVal->hasOneUse() || TrueVal->hasOneUse()) && 2795 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr())) 2796 return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B)); 2797 2798 // DeMorgan in select form: !a || !b --> !(a && b) 2799 // select !a, true, !b --> not (select a, b, false) 2800 if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) && 2801 (CondVal->hasOneUse() || FalseVal->hasOneUse()) && 2802 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr())) 2803 return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero)); 2804 2805 // select (select a, true, b), true, b -> select a, true, b 2806 if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2807 match(TrueVal, m_One()) && match(FalseVal, m_Specific(B))) 2808 return replaceOperand(SI, 0, A); 2809 // select (select a, b, false), b, false -> select a, b, false 2810 if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) && 2811 match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero())) 2812 return replaceOperand(SI, 0, A); 2813 2814 if (!SelType->isVectorTy()) { 2815 if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal, One, SQ, 2816 /* AllowRefinement */ true)) 2817 return replaceOperand(SI, 1, S); 2818 if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal, Zero, SQ, 2819 /* AllowRefinement */ true)) 2820 return replaceOperand(SI, 2, S); 2821 } 2822 2823 if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) { 2824 Use *Y = nullptr; 2825 bool IsAnd = match(FalseVal, m_Zero()) ? true : false; 2826 Value *Op1 = IsAnd ? TrueVal : FalseVal; 2827 if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) { 2828 auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr"); 2829 InsertNewInstBefore(FI, *cast<Instruction>(Y->getUser())); 2830 replaceUse(*Y, FI); 2831 return replaceInstUsesWith(SI, Op1); 2832 } 2833 2834 if (auto *Op1SI = dyn_cast<SelectInst>(Op1)) 2835 if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI, 2836 /* IsAnd */ IsAnd)) 2837 return I; 2838 2839 if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal)) { 2840 if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1)) { 2841 if (auto *V = foldAndOrOfICmpsOfAndWithPow2(ICmp0, ICmp1, &SI, IsAnd, 2842 /* IsLogical */ true)) 2843 return replaceInstUsesWith(SI, V); 2844 2845 if (auto *V = foldEqOfParts(ICmp0, ICmp1, IsAnd)) 2846 return replaceInstUsesWith(SI, V); 2847 } 2848 } 2849 } 2850 2851 // select (select a, true, b), c, false -> select a, c, false 2852 // select c, (select a, true, b), false -> select c, a, false 2853 // if c implies that b is false. 2854 if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2855 match(FalseVal, m_Zero())) { 2856 Optional<bool> Res = isImpliedCondition(TrueVal, B, DL); 2857 if (Res && *Res == false) 2858 return replaceOperand(SI, 0, A); 2859 } 2860 if (match(TrueVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2861 match(FalseVal, m_Zero())) { 2862 Optional<bool> Res = isImpliedCondition(CondVal, B, DL); 2863 if (Res && *Res == false) 2864 return replaceOperand(SI, 1, A); 2865 } 2866 // select c, true, (select a, b, false) -> select c, true, a 2867 // select (select a, b, false), true, c -> select a, true, c 2868 // if c = false implies that b = true 2869 if (match(TrueVal, m_One()) && 2870 match(FalseVal, m_Select(m_Value(A), m_Value(B), m_Zero()))) { 2871 Optional<bool> Res = isImpliedCondition(CondVal, B, DL, false); 2872 if (Res && *Res == true) 2873 return replaceOperand(SI, 2, A); 2874 } 2875 if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) && 2876 match(TrueVal, m_One())) { 2877 Optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false); 2878 if (Res && *Res == true) 2879 return replaceOperand(SI, 0, A); 2880 } 2881 2882 // sel (sel c, a, false), true, (sel !c, b, false) -> sel c, a, b 2883 // sel (sel !c, a, false), true, (sel c, b, false) -> sel c, b, a 2884 Value *C1, *C2; 2885 if (match(CondVal, m_Select(m_Value(C1), m_Value(A), m_Zero())) && 2886 match(TrueVal, m_One()) && 2887 match(FalseVal, m_Select(m_Value(C2), m_Value(B), m_Zero()))) { 2888 if (match(C2, m_Not(m_Specific(C1)))) // first case 2889 return SelectInst::Create(C1, A, B); 2890 else if (match(C1, m_Not(m_Specific(C2)))) // second case 2891 return SelectInst::Create(C2, B, A); 2892 } 2893 } 2894 2895 // Selecting between two integer or vector splat integer constants? 2896 // 2897 // Note that we don't handle a scalar select of vectors: 2898 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 2899 // because that may need 3 instructions to splat the condition value: 2900 // extend, insertelement, shufflevector. 2901 // 2902 // Do not handle i1 TrueVal and FalseVal otherwise would result in 2903 // zext/sext i1 to i1. 2904 if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) && 2905 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 2906 // select C, 1, 0 -> zext C to int 2907 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 2908 return new ZExtInst(CondVal, SelType); 2909 2910 // select C, -1, 0 -> sext C to int 2911 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 2912 return new SExtInst(CondVal, SelType); 2913 2914 // select C, 0, 1 -> zext !C to int 2915 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 2916 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2917 return new ZExtInst(NotCond, SelType); 2918 } 2919 2920 // select C, 0, -1 -> sext !C to int 2921 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 2922 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2923 return new SExtInst(NotCond, SelType); 2924 } 2925 } 2926 2927 if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) { 2928 Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1); 2929 // Are we selecting a value based on a comparison of the two values? 2930 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) || 2931 (Cmp0 == FalseVal && Cmp1 == TrueVal)) { 2932 // Canonicalize to use ordered comparisons by swapping the select 2933 // operands. 2934 // 2935 // e.g. 2936 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 2937 if (FCmp->hasOneUse() && FCmpInst::isUnordered(FCmp->getPredicate())) { 2938 FCmpInst::Predicate InvPred = FCmp->getInversePredicate(); 2939 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2940 // FIXME: The FMF should propagate from the select, not the fcmp. 2941 Builder.setFastMathFlags(FCmp->getFastMathFlags()); 2942 Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1, 2943 FCmp->getName() + ".inv"); 2944 Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal); 2945 return replaceInstUsesWith(SI, NewSel); 2946 } 2947 2948 // NOTE: if we wanted to, this is where to detect MIN/MAX 2949 } 2950 } 2951 2952 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 2953 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. 2954 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X) 2955 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2956 match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) && 2957 (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) { 2958 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI); 2959 return replaceInstUsesWith(SI, Fabs); 2960 } 2961 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X) 2962 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2963 match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) && 2964 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) { 2965 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI); 2966 return replaceInstUsesWith(SI, Fabs); 2967 } 2968 // With nnan and nsz: 2969 // (X < +/-0.0) ? -X : X --> fabs(X) 2970 // (X <= +/-0.0) ? -X : X --> fabs(X) 2971 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2972 match(TrueVal, m_FNeg(m_Specific(FalseVal))) && SI.hasNoSignedZeros() && 2973 (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE || 2974 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) { 2975 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI); 2976 return replaceInstUsesWith(SI, Fabs); 2977 } 2978 // With nnan and nsz: 2979 // (X > +/-0.0) ? X : -X --> fabs(X) 2980 // (X >= +/-0.0) ? X : -X --> fabs(X) 2981 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2982 match(FalseVal, m_FNeg(m_Specific(TrueVal))) && SI.hasNoSignedZeros() && 2983 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE || 2984 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) { 2985 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI); 2986 return replaceInstUsesWith(SI, Fabs); 2987 } 2988 2989 // See if we are selecting two values based on a comparison of the two values. 2990 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 2991 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 2992 return Result; 2993 2994 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 2995 return Add; 2996 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder)) 2997 return Add; 2998 if (Instruction *Or = foldSetClearBits(SI, Builder)) 2999 return Or; 3000 if (Instruction *Mul = foldSelectZeroOrMul(SI, *this)) 3001 return Mul; 3002 3003 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 3004 auto *TI = dyn_cast<Instruction>(TrueVal); 3005 auto *FI = dyn_cast<Instruction>(FalseVal); 3006 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 3007 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 3008 return IV; 3009 3010 if (Instruction *I = foldSelectExtConst(SI)) 3011 return I; 3012 3013 // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0)) 3014 // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx)) 3015 auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base, 3016 bool Swap) -> GetElementPtrInst * { 3017 Value *Ptr = Gep->getPointerOperand(); 3018 if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base || 3019 !Gep->hasOneUse()) 3020 return nullptr; 3021 Value *Idx = Gep->getOperand(1); 3022 if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType())) 3023 return nullptr; 3024 Type *ElementType = Gep->getResultElementType(); 3025 Value *NewT = Idx; 3026 Value *NewF = Constant::getNullValue(Idx->getType()); 3027 if (Swap) 3028 std::swap(NewT, NewF); 3029 Value *NewSI = 3030 Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI); 3031 return GetElementPtrInst::Create(ElementType, Ptr, {NewSI}); 3032 }; 3033 if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal)) 3034 if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false)) 3035 return NewGep; 3036 if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal)) 3037 if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true)) 3038 return NewGep; 3039 3040 // See if we can fold the select into one of our operands. 3041 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 3042 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 3043 return FoldI; 3044 3045 Value *LHS, *RHS; 3046 Instruction::CastOps CastOp; 3047 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 3048 auto SPF = SPR.Flavor; 3049 if (SPF) { 3050 Value *LHS2, *RHS2; 3051 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 3052 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 3053 RHS2, SI, SPF, RHS)) 3054 return R; 3055 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 3056 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 3057 RHS2, SI, SPF, LHS)) 3058 return R; 3059 // TODO. 3060 // ABS(-X) -> ABS(X) 3061 } 3062 3063 if (SelectPatternResult::isMinOrMax(SPF)) { 3064 // Canonicalize so that 3065 // - type casts are outside select patterns. 3066 // - float clamp is transformed to min/max pattern 3067 3068 bool IsCastNeeded = LHS->getType() != SelType; 3069 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 3070 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 3071 if (IsCastNeeded || 3072 (LHS->getType()->isFPOrFPVectorTy() && 3073 ((CmpLHS != LHS && CmpLHS != RHS) || 3074 (CmpRHS != LHS && CmpRHS != RHS)))) { 3075 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered); 3076 3077 Value *Cmp; 3078 if (CmpInst::isIntPredicate(MinMaxPred)) { 3079 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS); 3080 } else { 3081 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 3082 auto FMF = 3083 cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 3084 Builder.setFastMathFlags(FMF); 3085 Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS); 3086 } 3087 3088 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 3089 if (!IsCastNeeded) 3090 return replaceInstUsesWith(SI, NewSI); 3091 3092 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 3093 return replaceInstUsesWith(SI, NewCast); 3094 } 3095 3096 // MAX(~a, ~b) -> ~MIN(a, b) 3097 // MAX(~a, C) -> ~MIN(a, ~C) 3098 // MIN(~a, ~b) -> ~MAX(a, b) 3099 // MIN(~a, C) -> ~MAX(a, ~C) 3100 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { 3101 Value *A; 3102 if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) && 3103 !isFreeToInvert(A, A->hasOneUse()) && 3104 // Passing false to only consider m_Not and constants. 3105 isFreeToInvert(Y, false)) { 3106 Value *B = Builder.CreateNot(Y); 3107 Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF), 3108 A, B); 3109 // Copy the profile metadata. 3110 if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) { 3111 cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD); 3112 // Swap the metadata if the operands are swapped. 3113 if (X == SI.getFalseValue() && Y == SI.getTrueValue()) 3114 cast<SelectInst>(NewMinMax)->swapProfMetadata(); 3115 } 3116 3117 return BinaryOperator::CreateNot(NewMinMax); 3118 } 3119 3120 return nullptr; 3121 }; 3122 3123 if (Instruction *I = moveNotAfterMinMax(LHS, RHS)) 3124 return I; 3125 if (Instruction *I = moveNotAfterMinMax(RHS, LHS)) 3126 return I; 3127 3128 if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder)) 3129 return I; 3130 3131 if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder)) 3132 return I; 3133 if (Instruction *I = matchSAddSubSat(SI)) 3134 return I; 3135 } 3136 } 3137 3138 // Canonicalize select of FP values where NaN and -0.0 are not valid as 3139 // minnum/maxnum intrinsics. 3140 if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) { 3141 Value *X, *Y; 3142 if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y)))) 3143 return replaceInstUsesWith( 3144 SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI)); 3145 3146 if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y)))) 3147 return replaceInstUsesWith( 3148 SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI)); 3149 } 3150 3151 // See if we can fold the select into a phi node if the condition is a select. 3152 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 3153 // The true/false values have to be live in the PHI predecessor's blocks. 3154 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 3155 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 3156 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 3157 return NV; 3158 3159 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 3160 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 3161 // select(C, select(C, a, b), c) -> select(C, a, c) 3162 if (TrueSI->getCondition() == CondVal) { 3163 if (SI.getTrueValue() == TrueSI->getTrueValue()) 3164 return nullptr; 3165 return replaceOperand(SI, 1, TrueSI->getTrueValue()); 3166 } 3167 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 3168 // We choose this as normal form to enable folding on the And and 3169 // shortening paths for the values (this helps getUnderlyingObjects() for 3170 // example). 3171 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 3172 Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition()); 3173 replaceOperand(SI, 0, And); 3174 replaceOperand(SI, 1, TrueSI->getTrueValue()); 3175 return &SI; 3176 } 3177 } 3178 } 3179 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 3180 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 3181 // select(C, a, select(C, b, c)) -> select(C, a, c) 3182 if (FalseSI->getCondition() == CondVal) { 3183 if (SI.getFalseValue() == FalseSI->getFalseValue()) 3184 return nullptr; 3185 return replaceOperand(SI, 2, FalseSI->getFalseValue()); 3186 } 3187 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 3188 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 3189 Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition()); 3190 replaceOperand(SI, 0, Or); 3191 replaceOperand(SI, 2, FalseSI->getFalseValue()); 3192 return &SI; 3193 } 3194 } 3195 } 3196 3197 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { 3198 // The select might be preventing a division by 0. 3199 switch (BO->getOpcode()) { 3200 default: 3201 return true; 3202 case Instruction::SRem: 3203 case Instruction::URem: 3204 case Instruction::SDiv: 3205 case Instruction::UDiv: 3206 return false; 3207 } 3208 }; 3209 3210 // Try to simplify a binop sandwiched between 2 selects with the same 3211 // condition. 3212 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 3213 BinaryOperator *TrueBO; 3214 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && 3215 canMergeSelectThroughBinop(TrueBO)) { 3216 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 3217 if (TrueBOSI->getCondition() == CondVal) { 3218 replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue()); 3219 Worklist.push(TrueBO); 3220 return &SI; 3221 } 3222 } 3223 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 3224 if (TrueBOSI->getCondition() == CondVal) { 3225 replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue()); 3226 Worklist.push(TrueBO); 3227 return &SI; 3228 } 3229 } 3230 } 3231 3232 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 3233 BinaryOperator *FalseBO; 3234 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && 3235 canMergeSelectThroughBinop(FalseBO)) { 3236 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 3237 if (FalseBOSI->getCondition() == CondVal) { 3238 replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue()); 3239 Worklist.push(FalseBO); 3240 return &SI; 3241 } 3242 } 3243 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 3244 if (FalseBOSI->getCondition() == CondVal) { 3245 replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue()); 3246 Worklist.push(FalseBO); 3247 return &SI; 3248 } 3249 } 3250 } 3251 3252 Value *NotCond; 3253 if (match(CondVal, m_Not(m_Value(NotCond))) && 3254 !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) { 3255 replaceOperand(SI, 0, NotCond); 3256 SI.swapValues(); 3257 SI.swapProfMetadata(); 3258 return &SI; 3259 } 3260 3261 if (Instruction *I = foldVectorSelect(SI)) 3262 return I; 3263 3264 // If we can compute the condition, there's no need for a select. 3265 // Like the above fold, we are attempting to reduce compile-time cost by 3266 // putting this fold here with limitations rather than in InstSimplify. 3267 // The motivation for this call into value tracking is to take advantage of 3268 // the assumption cache, so make sure that is populated. 3269 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 3270 KnownBits Known(1); 3271 computeKnownBits(CondVal, Known, 0, &SI); 3272 if (Known.One.isOne()) 3273 return replaceInstUsesWith(SI, TrueVal); 3274 if (Known.Zero.isOne()) 3275 return replaceInstUsesWith(SI, FalseVal); 3276 } 3277 3278 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 3279 return BitCastSel; 3280 3281 // Simplify selects that test the returned flag of cmpxchg instructions. 3282 if (Value *V = foldSelectCmpXchg(SI)) 3283 return replaceInstUsesWith(SI, V); 3284 3285 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this)) 3286 return Select; 3287 3288 if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder)) 3289 return Funnel; 3290 3291 if (Instruction *Copysign = foldSelectToCopysign(SI, Builder)) 3292 return Copysign; 3293 3294 if (Instruction *PN = foldSelectToPhi(SI, DT, Builder)) 3295 return replaceInstUsesWith(SI, PN); 3296 3297 if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder)) 3298 return replaceInstUsesWith(SI, Fr); 3299 3300 // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0) 3301 // Load inst is intentionally not checked for hasOneUse() 3302 if (match(FalseVal, m_Zero()) && 3303 match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal), 3304 m_CombineOr(m_Undef(), m_Zero())))) { 3305 auto *MaskedLoad = cast<IntrinsicInst>(TrueVal); 3306 if (isa<UndefValue>(MaskedLoad->getArgOperand(3))) 3307 MaskedLoad->setArgOperand(3, FalseVal /* Zero */); 3308 return replaceInstUsesWith(SI, MaskedLoad); 3309 } 3310 3311 Value *Mask; 3312 if (match(TrueVal, m_Zero()) && 3313 match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask), 3314 m_CombineOr(m_Undef(), m_Zero()))) && 3315 (CondVal->getType() == Mask->getType())) { 3316 // We can remove the select by ensuring the load zeros all lanes the 3317 // select would have. We determine this by proving there is no overlap 3318 // between the load and select masks. 3319 // (i.e (load_mask & select_mask) == 0 == no overlap) 3320 bool CanMergeSelectIntoLoad = false; 3321 if (Value *V = SimplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI))) 3322 CanMergeSelectIntoLoad = match(V, m_Zero()); 3323 3324 if (CanMergeSelectIntoLoad) { 3325 auto *MaskedLoad = cast<IntrinsicInst>(FalseVal); 3326 if (isa<UndefValue>(MaskedLoad->getArgOperand(3))) 3327 MaskedLoad->setArgOperand(3, TrueVal /* Zero */); 3328 return replaceInstUsesWith(SI, MaskedLoad); 3329 } 3330 } 3331 3332 return nullptr; 3333 } 3334