xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp (revision 3eaa9deb198a754efe38226024efe9b96e31e281)
1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitSelect function.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CmpInstAnalysis.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Operator.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/User.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/KnownBits.h"
40 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
41 #include <cassert>
42 #include <utility>
43 
44 using namespace llvm;
45 using namespace PatternMatch;
46 
47 #define DEBUG_TYPE "instcombine"
48 
49 static Value *createMinMax(InstCombiner::BuilderTy &Builder,
50                            SelectPatternFlavor SPF, Value *A, Value *B) {
51   CmpInst::Predicate Pred = getMinMaxPred(SPF);
52   assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
53   return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
54 }
55 
56 /// Replace a select operand based on an equality comparison with the identity
57 /// constant of a binop.
58 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
59                                             const TargetLibraryInfo &TLI) {
60   // The select condition must be an equality compare with a constant operand.
61   Value *X;
62   Constant *C;
63   CmpInst::Predicate Pred;
64   if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
65     return nullptr;
66 
67   bool IsEq;
68   if (ICmpInst::isEquality(Pred))
69     IsEq = Pred == ICmpInst::ICMP_EQ;
70   else if (Pred == FCmpInst::FCMP_OEQ)
71     IsEq = true;
72   else if (Pred == FCmpInst::FCMP_UNE)
73     IsEq = false;
74   else
75     return nullptr;
76 
77   // A select operand must be a binop.
78   BinaryOperator *BO;
79   if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
80     return nullptr;
81 
82   // The compare constant must be the identity constant for that binop.
83   // If this a floating-point compare with 0.0, any zero constant will do.
84   Type *Ty = BO->getType();
85   Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
86   if (IdC != C) {
87     if (!IdC || !CmpInst::isFPPredicate(Pred))
88       return nullptr;
89     if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
90       return nullptr;
91   }
92 
93   // Last, match the compare variable operand with a binop operand.
94   Value *Y;
95   if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
96     return nullptr;
97   if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
98     return nullptr;
99 
100   // +0.0 compares equal to -0.0, and so it does not behave as required for this
101   // transform. Bail out if we can not exclude that possibility.
102   if (isa<FPMathOperator>(BO))
103     if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
104       return nullptr;
105 
106   // BO = binop Y, X
107   // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
108   // =>
109   // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
110   Sel.setOperand(IsEq ? 1 : 2, Y);
111   return &Sel;
112 }
113 
114 /// This folds:
115 ///  select (icmp eq (and X, C1)), TC, FC
116 ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
117 /// To something like:
118 ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
119 /// Or:
120 ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
121 /// With some variations depending if FC is larger than TC, or the shift
122 /// isn't needed, or the bit widths don't match.
123 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
124                                 InstCombiner::BuilderTy &Builder) {
125   const APInt *SelTC, *SelFC;
126   if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
127       !match(Sel.getFalseValue(), m_APInt(SelFC)))
128     return nullptr;
129 
130   // If this is a vector select, we need a vector compare.
131   Type *SelType = Sel.getType();
132   if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
133     return nullptr;
134 
135   Value *V;
136   APInt AndMask;
137   bool CreateAnd = false;
138   ICmpInst::Predicate Pred = Cmp->getPredicate();
139   if (ICmpInst::isEquality(Pred)) {
140     if (!match(Cmp->getOperand(1), m_Zero()))
141       return nullptr;
142 
143     V = Cmp->getOperand(0);
144     const APInt *AndRHS;
145     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
146       return nullptr;
147 
148     AndMask = *AndRHS;
149   } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
150                                   Pred, V, AndMask)) {
151     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
152     if (!AndMask.isPowerOf2())
153       return nullptr;
154 
155     CreateAnd = true;
156   } else {
157     return nullptr;
158   }
159 
160   // In general, when both constants are non-zero, we would need an offset to
161   // replace the select. This would require more instructions than we started
162   // with. But there's one special-case that we handle here because it can
163   // simplify/reduce the instructions.
164   APInt TC = *SelTC;
165   APInt FC = *SelFC;
166   if (!TC.isNullValue() && !FC.isNullValue()) {
167     // If the select constants differ by exactly one bit and that's the same
168     // bit that is masked and checked by the select condition, the select can
169     // be replaced by bitwise logic to set/clear one bit of the constant result.
170     if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
171       return nullptr;
172     if (CreateAnd) {
173       // If we have to create an 'and', then we must kill the cmp to not
174       // increase the instruction count.
175       if (!Cmp->hasOneUse())
176         return nullptr;
177       V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
178     }
179     bool ExtraBitInTC = TC.ugt(FC);
180     if (Pred == ICmpInst::ICMP_EQ) {
181       // If the masked bit in V is clear, clear or set the bit in the result:
182       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
183       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
184       Constant *C = ConstantInt::get(SelType, TC);
185       return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
186     }
187     if (Pred == ICmpInst::ICMP_NE) {
188       // If the masked bit in V is set, set or clear the bit in the result:
189       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
190       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
191       Constant *C = ConstantInt::get(SelType, FC);
192       return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
193     }
194     llvm_unreachable("Only expecting equality predicates");
195   }
196 
197   // Make sure one of the select arms is a power-of-2.
198   if (!TC.isPowerOf2() && !FC.isPowerOf2())
199     return nullptr;
200 
201   // Determine which shift is needed to transform result of the 'and' into the
202   // desired result.
203   const APInt &ValC = !TC.isNullValue() ? TC : FC;
204   unsigned ValZeros = ValC.logBase2();
205   unsigned AndZeros = AndMask.logBase2();
206 
207   // Insert the 'and' instruction on the input to the truncate.
208   if (CreateAnd)
209     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
210 
211   // If types don't match, we can still convert the select by introducing a zext
212   // or a trunc of the 'and'.
213   if (ValZeros > AndZeros) {
214     V = Builder.CreateZExtOrTrunc(V, SelType);
215     V = Builder.CreateShl(V, ValZeros - AndZeros);
216   } else if (ValZeros < AndZeros) {
217     V = Builder.CreateLShr(V, AndZeros - ValZeros);
218     V = Builder.CreateZExtOrTrunc(V, SelType);
219   } else {
220     V = Builder.CreateZExtOrTrunc(V, SelType);
221   }
222 
223   // Okay, now we know that everything is set up, we just don't know whether we
224   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
225   bool ShouldNotVal = !TC.isNullValue();
226   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
227   if (ShouldNotVal)
228     V = Builder.CreateXor(V, ValC);
229 
230   return V;
231 }
232 
233 /// We want to turn code that looks like this:
234 ///   %C = or %A, %B
235 ///   %D = select %cond, %C, %A
236 /// into:
237 ///   %C = select %cond, %B, 0
238 ///   %D = or %A, %C
239 ///
240 /// Assuming that the specified instruction is an operand to the select, return
241 /// a bitmask indicating which operands of this instruction are foldable if they
242 /// equal the other incoming value of the select.
243 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
244   switch (I->getOpcode()) {
245   case Instruction::Add:
246   case Instruction::Mul:
247   case Instruction::And:
248   case Instruction::Or:
249   case Instruction::Xor:
250     return 3;              // Can fold through either operand.
251   case Instruction::Sub:   // Can only fold on the amount subtracted.
252   case Instruction::Shl:   // Can only fold on the shift amount.
253   case Instruction::LShr:
254   case Instruction::AShr:
255     return 1;
256   default:
257     return 0;              // Cannot fold
258   }
259 }
260 
261 /// For the same transformation as the previous function, return the identity
262 /// constant that goes into the select.
263 static APInt getSelectFoldableConstant(BinaryOperator *I) {
264   switch (I->getOpcode()) {
265   default: llvm_unreachable("This cannot happen!");
266   case Instruction::Add:
267   case Instruction::Sub:
268   case Instruction::Or:
269   case Instruction::Xor:
270   case Instruction::Shl:
271   case Instruction::LShr:
272   case Instruction::AShr:
273     return APInt::getNullValue(I->getType()->getScalarSizeInBits());
274   case Instruction::And:
275     return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits());
276   case Instruction::Mul:
277     return APInt(I->getType()->getScalarSizeInBits(), 1);
278   }
279 }
280 
281 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
282 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI,
283                                           Instruction *FI) {
284   // Don't break up min/max patterns. The hasOneUse checks below prevent that
285   // for most cases, but vector min/max with bitcasts can be transformed. If the
286   // one-use restrictions are eased for other patterns, we still don't want to
287   // obfuscate min/max.
288   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
289        match(&SI, m_SMax(m_Value(), m_Value())) ||
290        match(&SI, m_UMin(m_Value(), m_Value())) ||
291        match(&SI, m_UMax(m_Value(), m_Value()))))
292     return nullptr;
293 
294   // If this is a cast from the same type, merge.
295   Value *Cond = SI.getCondition();
296   Type *CondTy = Cond->getType();
297   if (TI->getNumOperands() == 1 && TI->isCast()) {
298     Type *FIOpndTy = FI->getOperand(0)->getType();
299     if (TI->getOperand(0)->getType() != FIOpndTy)
300       return nullptr;
301 
302     // The select condition may be a vector. We may only change the operand
303     // type if the vector width remains the same (and matches the condition).
304     if (CondTy->isVectorTy()) {
305       if (!FIOpndTy->isVectorTy())
306         return nullptr;
307       if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())
308         return nullptr;
309 
310       // TODO: If the backend knew how to deal with casts better, we could
311       // remove this limitation. For now, there's too much potential to create
312       // worse codegen by promoting the select ahead of size-altering casts
313       // (PR28160).
314       //
315       // Note that ValueTracking's matchSelectPattern() looks through casts
316       // without checking 'hasOneUse' when it matches min/max patterns, so this
317       // transform may end up happening anyway.
318       if (TI->getOpcode() != Instruction::BitCast &&
319           (!TI->hasOneUse() || !FI->hasOneUse()))
320         return nullptr;
321     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
322       // TODO: The one-use restrictions for a scalar select could be eased if
323       // the fold of a select in visitLoadInst() was enhanced to match a pattern
324       // that includes a cast.
325       return nullptr;
326     }
327 
328     // Fold this by inserting a select from the input values.
329     Value *NewSI =
330         Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
331                              SI.getName() + ".v", &SI);
332     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
333                             TI->getType());
334   }
335 
336   // Cond ? -X : -Y --> -(Cond ? X : Y)
337   Value *X, *Y;
338   if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
339       (TI->hasOneUse() || FI->hasOneUse())) {
340     Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
341     // TODO: Remove the hack for the binop form when the unary op is optimized
342     //       properly with all IR passes.
343     if (TI->getOpcode() != Instruction::FNeg)
344       return BinaryOperator::CreateFNegFMF(NewSel, cast<BinaryOperator>(TI));
345     return UnaryOperator::CreateFNeg(NewSel);
346   }
347 
348   // Only handle binary operators (including two-operand getelementptr) with
349   // one-use here. As with the cast case above, it may be possible to relax the
350   // one-use constraint, but that needs be examined carefully since it may not
351   // reduce the total number of instructions.
352   if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
353       (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
354       !TI->hasOneUse() || !FI->hasOneUse())
355     return nullptr;
356 
357   // Figure out if the operations have any operands in common.
358   Value *MatchOp, *OtherOpT, *OtherOpF;
359   bool MatchIsOpZero;
360   if (TI->getOperand(0) == FI->getOperand(0)) {
361     MatchOp  = TI->getOperand(0);
362     OtherOpT = TI->getOperand(1);
363     OtherOpF = FI->getOperand(1);
364     MatchIsOpZero = true;
365   } else if (TI->getOperand(1) == FI->getOperand(1)) {
366     MatchOp  = TI->getOperand(1);
367     OtherOpT = TI->getOperand(0);
368     OtherOpF = FI->getOperand(0);
369     MatchIsOpZero = false;
370   } else if (!TI->isCommutative()) {
371     return nullptr;
372   } else if (TI->getOperand(0) == FI->getOperand(1)) {
373     MatchOp  = TI->getOperand(0);
374     OtherOpT = TI->getOperand(1);
375     OtherOpF = FI->getOperand(0);
376     MatchIsOpZero = true;
377   } else if (TI->getOperand(1) == FI->getOperand(0)) {
378     MatchOp  = TI->getOperand(1);
379     OtherOpT = TI->getOperand(0);
380     OtherOpF = FI->getOperand(1);
381     MatchIsOpZero = true;
382   } else {
383     return nullptr;
384   }
385 
386   // If the select condition is a vector, the operands of the original select's
387   // operands also must be vectors. This may not be the case for getelementptr
388   // for example.
389   if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
390                                !OtherOpF->getType()->isVectorTy()))
391     return nullptr;
392 
393   // If we reach here, they do have operations in common.
394   Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
395                                       SI.getName() + ".v", &SI);
396   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
397   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
398   if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
399     BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
400     NewBO->copyIRFlags(TI);
401     NewBO->andIRFlags(FI);
402     return NewBO;
403   }
404   if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
405     auto *FGEP = cast<GetElementPtrInst>(FI);
406     Type *ElementType = TGEP->getResultElementType();
407     return TGEP->isInBounds() && FGEP->isInBounds()
408                ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
409                : GetElementPtrInst::Create(ElementType, Op0, {Op1});
410   }
411   llvm_unreachable("Expected BinaryOperator or GEP");
412   return nullptr;
413 }
414 
415 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
416   if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero.
417     return false;
418   return C1I.isOneValue() || C1I.isAllOnesValue() ||
419          C2I.isOneValue() || C2I.isAllOnesValue();
420 }
421 
422 /// Try to fold the select into one of the operands to allow further
423 /// optimization.
424 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
425                                             Value *FalseVal) {
426   // See the comment above GetSelectFoldableOperands for a description of the
427   // transformation we are doing here.
428   if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
429     if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
430       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
431         unsigned OpToFold = 0;
432         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
433           OpToFold = 1;
434         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
435           OpToFold = 2;
436         }
437 
438         if (OpToFold) {
439           APInt CI = getSelectFoldableConstant(TVI);
440           Value *OOp = TVI->getOperand(2-OpToFold);
441           // Avoid creating select between 2 constants unless it's selecting
442           // between 0, 1 and -1.
443           const APInt *OOpC;
444           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
445           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
446             Value *C = ConstantInt::get(OOp->getType(), CI);
447             Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
448             NewSel->takeName(TVI);
449             BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
450                                                         FalseVal, NewSel);
451             BO->copyIRFlags(TVI);
452             return BO;
453           }
454         }
455       }
456     }
457   }
458 
459   if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
460     if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
461       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
462         unsigned OpToFold = 0;
463         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
464           OpToFold = 1;
465         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
466           OpToFold = 2;
467         }
468 
469         if (OpToFold) {
470           APInt CI = getSelectFoldableConstant(FVI);
471           Value *OOp = FVI->getOperand(2-OpToFold);
472           // Avoid creating select between 2 constants unless it's selecting
473           // between 0, 1 and -1.
474           const APInt *OOpC;
475           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
476           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
477             Value *C = ConstantInt::get(OOp->getType(), CI);
478             Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
479             NewSel->takeName(FVI);
480             BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
481                                                         TrueVal, NewSel);
482             BO->copyIRFlags(FVI);
483             return BO;
484           }
485         }
486       }
487     }
488   }
489 
490   return nullptr;
491 }
492 
493 /// We want to turn:
494 ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
495 /// into:
496 ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
497 /// Note:
498 ///   Z may be 0 if lshr is missing.
499 /// Worst-case scenario is that we will replace 5 instructions with 5 different
500 /// instructions, but we got rid of select.
501 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
502                                          Value *TVal, Value *FVal,
503                                          InstCombiner::BuilderTy &Builder) {
504   if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
505         Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
506         match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
507     return nullptr;
508 
509   // The TrueVal has general form of:  and %B, 1
510   Value *B;
511   if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
512     return nullptr;
513 
514   // Where %B may be optionally shifted:  lshr %X, %Z.
515   Value *X, *Z;
516   const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
517   if (!HasShift)
518     X = B;
519 
520   Value *Y;
521   if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
522     return nullptr;
523 
524   // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
525   // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
526   Constant *One = ConstantInt::get(SelType, 1);
527   Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
528   Value *FullMask = Builder.CreateOr(Y, MaskB);
529   Value *MaskedX = Builder.CreateAnd(X, FullMask);
530   Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
531   return new ZExtInst(ICmpNeZero, SelType);
532 }
533 
534 /// We want to turn:
535 ///   (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
536 ///   (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
537 /// into:
538 ///   ashr (X, Y)
539 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
540                                      Value *FalseVal,
541                                      InstCombiner::BuilderTy &Builder) {
542   ICmpInst::Predicate Pred = IC->getPredicate();
543   Value *CmpLHS = IC->getOperand(0);
544   Value *CmpRHS = IC->getOperand(1);
545   if (!CmpRHS->getType()->isIntOrIntVectorTy())
546     return nullptr;
547 
548   Value *X, *Y;
549   unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
550   if ((Pred != ICmpInst::ICMP_SGT ||
551        !match(CmpRHS,
552               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
553       (Pred != ICmpInst::ICMP_SLT ||
554        !match(CmpRHS,
555               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
556     return nullptr;
557 
558   // Canonicalize so that ashr is in FalseVal.
559   if (Pred == ICmpInst::ICMP_SLT)
560     std::swap(TrueVal, FalseVal);
561 
562   if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
563       match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
564       match(CmpLHS, m_Specific(X))) {
565     const auto *Ashr = cast<Instruction>(FalseVal);
566     // if lshr is not exact and ashr is, this new ashr must not be exact.
567     bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
568     return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
569   }
570 
571   return nullptr;
572 }
573 
574 /// We want to turn:
575 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
576 /// into:
577 ///   (or (shl (and X, C1), C3), Y)
578 /// iff:
579 ///   C1 and C2 are both powers of 2
580 /// where:
581 ///   C3 = Log(C2) - Log(C1)
582 ///
583 /// This transform handles cases where:
584 /// 1. The icmp predicate is inverted
585 /// 2. The select operands are reversed
586 /// 3. The magnitude of C2 and C1 are flipped
587 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
588                                   Value *FalseVal,
589                                   InstCombiner::BuilderTy &Builder) {
590   // Only handle integer compares. Also, if this is a vector select, we need a
591   // vector compare.
592   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
593       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
594     return nullptr;
595 
596   Value *CmpLHS = IC->getOperand(0);
597   Value *CmpRHS = IC->getOperand(1);
598 
599   Value *V;
600   unsigned C1Log;
601   bool IsEqualZero;
602   bool NeedAnd = false;
603   if (IC->isEquality()) {
604     if (!match(CmpRHS, m_Zero()))
605       return nullptr;
606 
607     const APInt *C1;
608     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
609       return nullptr;
610 
611     V = CmpLHS;
612     C1Log = C1->logBase2();
613     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
614   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
615              IC->getPredicate() == ICmpInst::ICMP_SGT) {
616     // We also need to recognize (icmp slt (trunc (X)), 0) and
617     // (icmp sgt (trunc (X)), -1).
618     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
619     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
620         (!IsEqualZero && !match(CmpRHS, m_Zero())))
621       return nullptr;
622 
623     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
624       return nullptr;
625 
626     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
627     NeedAnd = true;
628   } else {
629     return nullptr;
630   }
631 
632   const APInt *C2;
633   bool OrOnTrueVal = false;
634   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
635   if (!OrOnFalseVal)
636     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
637 
638   if (!OrOnFalseVal && !OrOnTrueVal)
639     return nullptr;
640 
641   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
642 
643   unsigned C2Log = C2->logBase2();
644 
645   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
646   bool NeedShift = C1Log != C2Log;
647   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
648                        V->getType()->getScalarSizeInBits();
649 
650   // Make sure we don't create more instructions than we save.
651   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
652   if ((NeedShift + NeedXor + NeedZExtTrunc) >
653       (IC->hasOneUse() + Or->hasOneUse()))
654     return nullptr;
655 
656   if (NeedAnd) {
657     // Insert the AND instruction on the input to the truncate.
658     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
659     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
660   }
661 
662   if (C2Log > C1Log) {
663     V = Builder.CreateZExtOrTrunc(V, Y->getType());
664     V = Builder.CreateShl(V, C2Log - C1Log);
665   } else if (C1Log > C2Log) {
666     V = Builder.CreateLShr(V, C1Log - C2Log);
667     V = Builder.CreateZExtOrTrunc(V, Y->getType());
668   } else
669     V = Builder.CreateZExtOrTrunc(V, Y->getType());
670 
671   if (NeedXor)
672     V = Builder.CreateXor(V, *C2);
673 
674   return Builder.CreateOr(V, Y);
675 }
676 
677 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
678 /// There are 8 commuted/swapped variants of this pattern.
679 /// TODO: Also support a - UMIN(a,b) patterns.
680 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
681                                             const Value *TrueVal,
682                                             const Value *FalseVal,
683                                             InstCombiner::BuilderTy &Builder) {
684   ICmpInst::Predicate Pred = ICI->getPredicate();
685   if (!ICmpInst::isUnsigned(Pred))
686     return nullptr;
687 
688   // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
689   if (match(TrueVal, m_Zero())) {
690     Pred = ICmpInst::getInversePredicate(Pred);
691     std::swap(TrueVal, FalseVal);
692   }
693   if (!match(FalseVal, m_Zero()))
694     return nullptr;
695 
696   Value *A = ICI->getOperand(0);
697   Value *B = ICI->getOperand(1);
698   if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
699     // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
700     std::swap(A, B);
701     Pred = ICmpInst::getSwappedPredicate(Pred);
702   }
703 
704   assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
705          "Unexpected isUnsigned predicate!");
706 
707   // Ensure the sub is of the form:
708   //  (a > b) ? a - b : 0 -> usub.sat(a, b)
709   //  (a > b) ? b - a : 0 -> -usub.sat(a, b)
710   // Checking for both a-b and a+(-b) as a constant.
711   bool IsNegative = false;
712   const APInt *C;
713   if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
714       (match(A, m_APInt(C)) &&
715        match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
716     IsNegative = true;
717   else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
718            !(match(B, m_APInt(C)) &&
719              match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
720     return nullptr;
721 
722   // If we are adding a negate and the sub and icmp are used anywhere else, we
723   // would end up with more instructions.
724   if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
725     return nullptr;
726 
727   // (a > b) ? a - b : 0 -> usub.sat(a, b)
728   // (a > b) ? b - a : 0 -> -usub.sat(a, b)
729   Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
730   if (IsNegative)
731     Result = Builder.CreateNeg(Result);
732   return Result;
733 }
734 
735 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
736                                        InstCombiner::BuilderTy &Builder) {
737   if (!Cmp->hasOneUse())
738     return nullptr;
739 
740   // Match unsigned saturated add with constant.
741   Value *Cmp0 = Cmp->getOperand(0);
742   Value *Cmp1 = Cmp->getOperand(1);
743   ICmpInst::Predicate Pred = Cmp->getPredicate();
744   Value *X;
745   const APInt *C, *CmpC;
746   if (Pred == ICmpInst::ICMP_ULT &&
747       match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
748       match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
749     // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
750     return Builder.CreateBinaryIntrinsic(
751         Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
752   }
753 
754   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
755   // There are 8 commuted variants.
756   // Canonicalize -1 (saturated result) to true value of the select. Just
757   // swapping the compare operands is legal, because the selected value is the
758   // same in case of equality, so we can interchange u< and u<=.
759   if (match(FVal, m_AllOnes())) {
760     std::swap(TVal, FVal);
761     std::swap(Cmp0, Cmp1);
762   }
763   if (!match(TVal, m_AllOnes()))
764     return nullptr;
765 
766   // Canonicalize predicate to 'ULT'.
767   if (Pred == ICmpInst::ICMP_UGT) {
768     Pred = ICmpInst::ICMP_ULT;
769     std::swap(Cmp0, Cmp1);
770   }
771   if (Pred != ICmpInst::ICMP_ULT)
772     return nullptr;
773 
774   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
775   Value *Y;
776   if (match(Cmp0, m_Not(m_Value(X))) &&
777       match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
778     // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
779     // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
780     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
781   }
782   // The 'not' op may be included in the sum but not the compare.
783   X = Cmp0;
784   Y = Cmp1;
785   if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
786     // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
787     // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
788     BinaryOperator *BO = cast<BinaryOperator>(FVal);
789     return Builder.CreateBinaryIntrinsic(
790         Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
791   }
792   // The overflow may be detected via the add wrapping round.
793   if (match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
794       match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
795     // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
796     // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
797     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
798   }
799 
800   return nullptr;
801 }
802 
803 /// Fold the following code sequence:
804 /// \code
805 ///   int a = ctlz(x & -x);
806 //    x ? 31 - a : a;
807 /// \code
808 ///
809 /// into:
810 ///   cttz(x)
811 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
812                                          Value *FalseVal,
813                                          InstCombiner::BuilderTy &Builder) {
814   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
815   if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
816     return nullptr;
817 
818   if (ICI->getPredicate() == ICmpInst::ICMP_NE)
819     std::swap(TrueVal, FalseVal);
820 
821   if (!match(FalseVal,
822              m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
823     return nullptr;
824 
825   if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
826     return nullptr;
827 
828   Value *X = ICI->getOperand(0);
829   auto *II = cast<IntrinsicInst>(TrueVal);
830   if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
831     return nullptr;
832 
833   Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
834                                           II->getType());
835   return CallInst::Create(F, {X, II->getArgOperand(1)});
836 }
837 
838 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
839 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
840 ///
841 /// For example, we can fold the following code sequence:
842 /// \code
843 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
844 ///   %1 = icmp ne i32 %x, 0
845 ///   %2 = select i1 %1, i32 %0, i32 32
846 /// \code
847 ///
848 /// into:
849 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
850 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
851                                  InstCombiner::BuilderTy &Builder) {
852   ICmpInst::Predicate Pred = ICI->getPredicate();
853   Value *CmpLHS = ICI->getOperand(0);
854   Value *CmpRHS = ICI->getOperand(1);
855 
856   // Check if the condition value compares a value for equality against zero.
857   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
858     return nullptr;
859 
860   Value *Count = FalseVal;
861   Value *ValueOnZero = TrueVal;
862   if (Pred == ICmpInst::ICMP_NE)
863     std::swap(Count, ValueOnZero);
864 
865   // Skip zero extend/truncate.
866   Value *V = nullptr;
867   if (match(Count, m_ZExt(m_Value(V))) ||
868       match(Count, m_Trunc(m_Value(V))))
869     Count = V;
870 
871   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
872   // input to the cttz/ctlz is used as LHS for the compare instruction.
873   if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
874       !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
875     return nullptr;
876 
877   IntrinsicInst *II = cast<IntrinsicInst>(Count);
878 
879   // Check if the value propagated on zero is a constant number equal to the
880   // sizeof in bits of 'Count'.
881   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
882   if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
883     // Explicitly clear the 'undef_on_zero' flag.
884     IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
885     NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext()));
886     Builder.Insert(NewI);
887     return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType());
888   }
889 
890   // If the ValueOnZero is not the bitwidth, we can at least make use of the
891   // fact that the cttz/ctlz result will not be used if the input is zero, so
892   // it's okay to relax it to undef for that case.
893   if (II->hasOneUse() && !match(II->getArgOperand(1), m_One()))
894     II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
895 
896   return nullptr;
897 }
898 
899 /// Return true if we find and adjust an icmp+select pattern where the compare
900 /// is with a constant that can be incremented or decremented to match the
901 /// minimum or maximum idiom.
902 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
903   ICmpInst::Predicate Pred = Cmp.getPredicate();
904   Value *CmpLHS = Cmp.getOperand(0);
905   Value *CmpRHS = Cmp.getOperand(1);
906   Value *TrueVal = Sel.getTrueValue();
907   Value *FalseVal = Sel.getFalseValue();
908 
909   // We may move or edit the compare, so make sure the select is the only user.
910   const APInt *CmpC;
911   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
912     return false;
913 
914   // These transforms only work for selects of integers or vector selects of
915   // integer vectors.
916   Type *SelTy = Sel.getType();
917   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
918   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
919     return false;
920 
921   Constant *AdjustedRHS;
922   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
923     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
924   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
925     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
926   else
927     return false;
928 
929   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
930   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
931   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
932       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
933     ; // Nothing to do here. Values match without any sign/zero extension.
934   }
935   // Types do not match. Instead of calculating this with mixed types, promote
936   // all to the larger type. This enables scalar evolution to analyze this
937   // expression.
938   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
939     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
940 
941     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
942     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
943     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
944     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
945     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
946       CmpLHS = TrueVal;
947       AdjustedRHS = SextRHS;
948     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
949                SextRHS == TrueVal) {
950       CmpLHS = FalseVal;
951       AdjustedRHS = SextRHS;
952     } else if (Cmp.isUnsigned()) {
953       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
954       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
955       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
956       // zext + signed compare cannot be changed:
957       //    0xff <s 0x00, but 0x00ff >s 0x0000
958       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
959         CmpLHS = TrueVal;
960         AdjustedRHS = ZextRHS;
961       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
962                  ZextRHS == TrueVal) {
963         CmpLHS = FalseVal;
964         AdjustedRHS = ZextRHS;
965       } else {
966         return false;
967       }
968     } else {
969       return false;
970     }
971   } else {
972     return false;
973   }
974 
975   Pred = ICmpInst::getSwappedPredicate(Pred);
976   CmpRHS = AdjustedRHS;
977   std::swap(FalseVal, TrueVal);
978   Cmp.setPredicate(Pred);
979   Cmp.setOperand(0, CmpLHS);
980   Cmp.setOperand(1, CmpRHS);
981   Sel.setOperand(1, TrueVal);
982   Sel.setOperand(2, FalseVal);
983   Sel.swapProfMetadata();
984 
985   // Move the compare instruction right before the select instruction. Otherwise
986   // the sext/zext value may be defined after the compare instruction uses it.
987   Cmp.moveBefore(&Sel);
988 
989   return true;
990 }
991 
992 /// If this is an integer min/max (icmp + select) with a constant operand,
993 /// create the canonical icmp for the min/max operation and canonicalize the
994 /// constant to the 'false' operand of the select:
995 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
996 /// Note: if C1 != C2, this will change the icmp constant to the existing
997 /// constant operand of the select.
998 static Instruction *
999 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp,
1000                                InstCombiner::BuilderTy &Builder) {
1001   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
1002     return nullptr;
1003 
1004   // Canonicalize the compare predicate based on whether we have min or max.
1005   Value *LHS, *RHS;
1006   SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
1007   if (!SelectPatternResult::isMinOrMax(SPR.Flavor))
1008     return nullptr;
1009 
1010   // Is this already canonical?
1011   ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
1012   if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
1013       Cmp.getPredicate() == CanonicalPred)
1014     return nullptr;
1015 
1016   // Create the canonical compare and plug it into the select.
1017   Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS));
1018 
1019   // If the select operands did not change, we're done.
1020   if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
1021     return &Sel;
1022 
1023   // If we are swapping the select operands, swap the metadata too.
1024   assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
1025          "Unexpected results from matchSelectPattern");
1026   Sel.swapValues();
1027   Sel.swapProfMetadata();
1028   return &Sel;
1029 }
1030 
1031 /// There are many select variants for each of ABS/NABS.
1032 /// In matchSelectPattern(), there are different compare constants, compare
1033 /// predicates/operands and select operands.
1034 /// In isKnownNegation(), there are different formats of negated operands.
1035 /// Canonicalize all these variants to 1 pattern.
1036 /// This makes CSE more likely.
1037 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
1038                                         InstCombiner::BuilderTy &Builder) {
1039   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
1040     return nullptr;
1041 
1042   // Choose a sign-bit check for the compare (likely simpler for codegen).
1043   // ABS:  (X <s 0) ? -X : X
1044   // NABS: (X <s 0) ? X : -X
1045   Value *LHS, *RHS;
1046   SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
1047   if (SPF != SelectPatternFlavor::SPF_ABS &&
1048       SPF != SelectPatternFlavor::SPF_NABS)
1049     return nullptr;
1050 
1051   Value *TVal = Sel.getTrueValue();
1052   Value *FVal = Sel.getFalseValue();
1053   assert(isKnownNegation(TVal, FVal) &&
1054          "Unexpected result from matchSelectPattern");
1055 
1056   // The compare may use the negated abs()/nabs() operand, or it may use
1057   // negation in non-canonical form such as: sub A, B.
1058   bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) ||
1059                           match(Cmp.getOperand(0), m_Neg(m_Specific(FVal)));
1060 
1061   bool CmpCanonicalized = !CmpUsesNegatedOp &&
1062                           match(Cmp.getOperand(1), m_ZeroInt()) &&
1063                           Cmp.getPredicate() == ICmpInst::ICMP_SLT;
1064   bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS)));
1065 
1066   // Is this already canonical?
1067   if (CmpCanonicalized && RHSCanonicalized)
1068     return nullptr;
1069 
1070   // If RHS is used by other instructions except compare and select, don't
1071   // canonicalize it to not increase the instruction count.
1072   if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp)))
1073     return nullptr;
1074 
1075   // Create the canonical compare: icmp slt LHS 0.
1076   if (!CmpCanonicalized) {
1077     Cmp.setPredicate(ICmpInst::ICMP_SLT);
1078     Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType()));
1079     if (CmpUsesNegatedOp)
1080       Cmp.setOperand(0, LHS);
1081   }
1082 
1083   // Create the canonical RHS: RHS = sub (0, LHS).
1084   if (!RHSCanonicalized) {
1085     assert(RHS->hasOneUse() && "RHS use number is not right");
1086     RHS = Builder.CreateNeg(LHS);
1087     if (TVal == LHS) {
1088       Sel.setFalseValue(RHS);
1089       FVal = RHS;
1090     } else {
1091       Sel.setTrueValue(RHS);
1092       TVal = RHS;
1093     }
1094   }
1095 
1096   // If the select operands do not change, we're done.
1097   if (SPF == SelectPatternFlavor::SPF_NABS) {
1098     if (TVal == LHS)
1099       return &Sel;
1100     assert(FVal == LHS && "Unexpected results from matchSelectPattern");
1101   } else {
1102     if (FVal == LHS)
1103       return &Sel;
1104     assert(TVal == LHS && "Unexpected results from matchSelectPattern");
1105   }
1106 
1107   // We are swapping the select operands, so swap the metadata too.
1108   Sel.swapValues();
1109   Sel.swapProfMetadata();
1110   return &Sel;
1111 }
1112 
1113 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *ReplaceOp,
1114                                      const SimplifyQuery &Q) {
1115   // If this is a binary operator, try to simplify it with the replaced op
1116   // because we know Op and ReplaceOp are equivalant.
1117   // For example: V = X + 1, Op = X, ReplaceOp = 42
1118   // Simplifies as: add(42, 1) --> 43
1119   if (auto *BO = dyn_cast<BinaryOperator>(V)) {
1120     if (BO->getOperand(0) == Op)
1121       return SimplifyBinOp(BO->getOpcode(), ReplaceOp, BO->getOperand(1), Q);
1122     if (BO->getOperand(1) == Op)
1123       return SimplifyBinOp(BO->getOpcode(), BO->getOperand(0), ReplaceOp, Q);
1124   }
1125 
1126   return nullptr;
1127 }
1128 
1129 /// If we have a select with an equality comparison, then we know the value in
1130 /// one of the arms of the select. See if substituting this value into an arm
1131 /// and simplifying the result yields the same value as the other arm.
1132 ///
1133 /// To make this transform safe, we must drop poison-generating flags
1134 /// (nsw, etc) if we simplified to a binop because the select may be guarding
1135 /// that poison from propagating. If the existing binop already had no
1136 /// poison-generating flags, then this transform can be done by instsimplify.
1137 ///
1138 /// Consider:
1139 ///   %cmp = icmp eq i32 %x, 2147483647
1140 ///   %add = add nsw i32 %x, 1
1141 ///   %sel = select i1 %cmp, i32 -2147483648, i32 %add
1142 ///
1143 /// We can't replace %sel with %add unless we strip away the flags.
1144 /// TODO: Wrapping flags could be preserved in some cases with better analysis.
1145 static Value *foldSelectValueEquivalence(SelectInst &Sel, ICmpInst &Cmp,
1146                                          const SimplifyQuery &Q) {
1147   if (!Cmp.isEquality())
1148     return nullptr;
1149 
1150   // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1151   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1152   if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1153     std::swap(TrueVal, FalseVal);
1154 
1155   // Try each equivalence substitution possibility.
1156   // We have an 'EQ' comparison, so the select's false value will propagate.
1157   // Example:
1158   // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1159   // (X == 42) ? (X + 1) : 43 --> (X == 42) ? (42 + 1) : 43 --> 43
1160   Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1161   if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q) == TrueVal ||
1162       simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q) == TrueVal ||
1163       simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q) == FalseVal ||
1164       simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q) == FalseVal) {
1165     if (auto *FalseInst = dyn_cast<Instruction>(FalseVal))
1166       FalseInst->dropPoisonGeneratingFlags();
1167     return FalseVal;
1168   }
1169   return nullptr;
1170 }
1171 
1172 // See if this is a pattern like:
1173 //   %old_cmp1 = icmp slt i32 %x, C2
1174 //   %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1175 //   %old_x_offseted = add i32 %x, C1
1176 //   %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1177 //   %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1178 // This can be rewritten as more canonical pattern:
1179 //   %new_cmp1 = icmp slt i32 %x, -C1
1180 //   %new_cmp2 = icmp sge i32 %x, C0-C1
1181 //   %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1182 //   %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1183 // Iff -C1 s<= C2 s<= C0-C1
1184 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1185 //      SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
1186 static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1187                                           InstCombiner::BuilderTy &Builder) {
1188   Value *X = Sel0.getTrueValue();
1189   Value *Sel1 = Sel0.getFalseValue();
1190 
1191   // First match the condition of the outermost select.
1192   // Said condition must be one-use.
1193   if (!Cmp0.hasOneUse())
1194     return nullptr;
1195   Value *Cmp00 = Cmp0.getOperand(0);
1196   Constant *C0;
1197   if (!match(Cmp0.getOperand(1),
1198              m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
1199     return nullptr;
1200   // Canonicalize Cmp0 into the form we expect.
1201   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1202   switch (Cmp0.getPredicate()) {
1203   case ICmpInst::Predicate::ICMP_ULT:
1204     break; // Great!
1205   case ICmpInst::Predicate::ICMP_ULE:
1206     // We'd have to increment C0 by one, and for that it must not have all-ones
1207     // element, but then it would have been canonicalized to 'ult' before
1208     // we get here. So we can't do anything useful with 'ule'.
1209     return nullptr;
1210   case ICmpInst::Predicate::ICMP_UGT:
1211     // We want to canonicalize it to 'ult', so we'll need to increment C0,
1212     // which again means it must not have any all-ones elements.
1213     if (!match(C0,
1214                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1215                                   APInt::getAllOnesValue(
1216                                       C0->getType()->getScalarSizeInBits()))))
1217       return nullptr; // Can't do, have all-ones element[s].
1218     C0 = AddOne(C0);
1219     std::swap(X, Sel1);
1220     break;
1221   case ICmpInst::Predicate::ICMP_UGE:
1222     // The only way we'd get this predicate if this `icmp` has extra uses,
1223     // but then we won't be able to do this fold.
1224     return nullptr;
1225   default:
1226     return nullptr; // Unknown predicate.
1227   }
1228 
1229   // Now that we've canonicalized the ICmp, we know the X we expect;
1230   // the select in other hand should be one-use.
1231   if (!Sel1->hasOneUse())
1232     return nullptr;
1233 
1234   // We now can finish matching the condition of the outermost select:
1235   // it should either be the X itself, or an addition of some constant to X.
1236   Constant *C1;
1237   if (Cmp00 == X)
1238     C1 = ConstantInt::getNullValue(Sel0.getType());
1239   else if (!match(Cmp00,
1240                   m_Add(m_Specific(X),
1241                         m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
1242     return nullptr;
1243 
1244   Value *Cmp1;
1245   ICmpInst::Predicate Pred1;
1246   Constant *C2;
1247   Value *ReplacementLow, *ReplacementHigh;
1248   if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1249                             m_Value(ReplacementHigh))) ||
1250       !match(Cmp1,
1251              m_ICmp(Pred1, m_Specific(X),
1252                     m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
1253     return nullptr;
1254 
1255   if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1256     return nullptr; // Not enough one-use instructions for the fold.
1257   // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1258   //        two comparisons we'll need to build.
1259 
1260   // Canonicalize Cmp1 into the form we expect.
1261   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1262   switch (Pred1) {
1263   case ICmpInst::Predicate::ICMP_SLT:
1264     break;
1265   case ICmpInst::Predicate::ICMP_SLE:
1266     // We'd have to increment C2 by one, and for that it must not have signed
1267     // max element, but then it would have been canonicalized to 'slt' before
1268     // we get here. So we can't do anything useful with 'sle'.
1269     return nullptr;
1270   case ICmpInst::Predicate::ICMP_SGT:
1271     // We want to canonicalize it to 'slt', so we'll need to increment C2,
1272     // which again means it must not have any signed max elements.
1273     if (!match(C2,
1274                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1275                                   APInt::getSignedMaxValue(
1276                                       C2->getType()->getScalarSizeInBits()))))
1277       return nullptr; // Can't do, have signed max element[s].
1278     C2 = AddOne(C2);
1279     LLVM_FALLTHROUGH;
1280   case ICmpInst::Predicate::ICMP_SGE:
1281     // Also non-canonical, but here we don't need to change C2,
1282     // so we don't have any restrictions on C2, so we can just handle it.
1283     std::swap(ReplacementLow, ReplacementHigh);
1284     break;
1285   default:
1286     return nullptr; // Unknown predicate.
1287   }
1288 
1289   // The thresholds of this clamp-like pattern.
1290   auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1291   auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1292 
1293   // The fold has a precondition 1: C2 s>= ThresholdLow
1294   auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
1295                                          ThresholdLowIncl);
1296   if (!match(Precond1, m_One()))
1297     return nullptr;
1298   // The fold has a precondition 2: C2 s<= ThresholdHigh
1299   auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
1300                                          ThresholdHighExcl);
1301   if (!match(Precond2, m_One()))
1302     return nullptr;
1303 
1304   // All good, finally emit the new pattern.
1305   Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1306   Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1307   Value *MaybeReplacedLow =
1308       Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1309   Instruction *MaybeReplacedHigh =
1310       SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1311 
1312   return MaybeReplacedHigh;
1313 }
1314 
1315 // If we have
1316 //  %cmp = icmp [canonical predicate] i32 %x, C0
1317 //  %r = select i1 %cmp, i32 %y, i32 C1
1318 // Where C0 != C1 and %x may be different from %y, see if the constant that we
1319 // will have if we flip the strictness of the predicate (i.e. without changing
1320 // the result) is identical to the C1 in select. If it matches we can change
1321 // original comparison to one with swapped predicate, reuse the constant,
1322 // and swap the hands of select.
1323 static Instruction *
1324 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
1325                                          InstCombiner::BuilderTy &Builder) {
1326   ICmpInst::Predicate Pred;
1327   Value *X;
1328   Constant *C0;
1329   if (!match(&Cmp, m_OneUse(m_ICmp(
1330                        Pred, m_Value(X),
1331                        m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
1332     return nullptr;
1333 
1334   // If comparison predicate is non-relational, we won't be able to do anything.
1335   if (ICmpInst::isEquality(Pred))
1336     return nullptr;
1337 
1338   // If comparison predicate is non-canonical, then we certainly won't be able
1339   // to make it canonical; canonicalizeCmpWithConstant() already tried.
1340   if (!isCanonicalPredicate(Pred))
1341     return nullptr;
1342 
1343   // If the [input] type of comparison and select type are different, lets abort
1344   // for now. We could try to compare constants with trunc/[zs]ext though.
1345   if (C0->getType() != Sel.getType())
1346     return nullptr;
1347 
1348   // FIXME: are there any magic icmp predicate+constant pairs we must not touch?
1349 
1350   Value *SelVal0, *SelVal1; // We do not care which one is from where.
1351   match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
1352   // At least one of these values we are selecting between must be a constant
1353   // else we'll never succeed.
1354   if (!match(SelVal0, m_AnyIntegralConstant()) &&
1355       !match(SelVal1, m_AnyIntegralConstant()))
1356     return nullptr;
1357 
1358   // Does this constant C match any of the `select` values?
1359   auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
1360     return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
1361   };
1362 
1363   // If C0 *already* matches true/false value of select, we are done.
1364   if (MatchesSelectValue(C0))
1365     return nullptr;
1366 
1367   // Check the constant we'd have with flipped-strictness predicate.
1368   auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, C0);
1369   if (!FlippedStrictness)
1370     return nullptr;
1371 
1372   // If said constant doesn't match either, then there is no hope,
1373   if (!MatchesSelectValue(FlippedStrictness->second))
1374     return nullptr;
1375 
1376   // It matched! Lets insert the new comparison just before select.
1377   InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
1378   Builder.SetInsertPoint(&Sel);
1379 
1380   Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
1381   Value *NewCmp = Builder.CreateICmp(Pred, X, FlippedStrictness->second,
1382                                      Cmp.getName() + ".inv");
1383   Sel.setCondition(NewCmp);
1384   Sel.swapValues();
1385   Sel.swapProfMetadata();
1386 
1387   return &Sel;
1388 }
1389 
1390 /// Visit a SelectInst that has an ICmpInst as its first operand.
1391 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI,
1392                                                   ICmpInst *ICI) {
1393   if (Value *V = foldSelectValueEquivalence(SI, *ICI, SQ))
1394     return replaceInstUsesWith(SI, V);
1395 
1396   if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder))
1397     return NewSel;
1398 
1399   if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder))
1400     return NewAbs;
1401 
1402   if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder))
1403     return NewAbs;
1404 
1405   if (Instruction *NewSel =
1406           tryToReuseConstantFromSelectInComparison(SI, *ICI, Builder))
1407     return NewSel;
1408 
1409   bool Changed = adjustMinMax(SI, *ICI);
1410 
1411   if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1412     return replaceInstUsesWith(SI, V);
1413 
1414   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1415   Value *TrueVal = SI.getTrueValue();
1416   Value *FalseVal = SI.getFalseValue();
1417   ICmpInst::Predicate Pred = ICI->getPredicate();
1418   Value *CmpLHS = ICI->getOperand(0);
1419   Value *CmpRHS = ICI->getOperand(1);
1420   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
1421     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1422       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1423       SI.setOperand(1, CmpRHS);
1424       Changed = true;
1425     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1426       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1427       SI.setOperand(2, CmpRHS);
1428       Changed = true;
1429     }
1430   }
1431 
1432   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1433   // decomposeBitTestICmp() might help.
1434   {
1435     unsigned BitWidth =
1436         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1437     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1438     Value *X;
1439     const APInt *Y, *C;
1440     bool TrueWhenUnset;
1441     bool IsBitTest = false;
1442     if (ICmpInst::isEquality(Pred) &&
1443         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1444         match(CmpRHS, m_Zero())) {
1445       IsBitTest = true;
1446       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1447     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1448       X = CmpLHS;
1449       Y = &MinSignedValue;
1450       IsBitTest = true;
1451       TrueWhenUnset = false;
1452     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1453       X = CmpLHS;
1454       Y = &MinSignedValue;
1455       IsBitTest = true;
1456       TrueWhenUnset = true;
1457     }
1458     if (IsBitTest) {
1459       Value *V = nullptr;
1460       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
1461       if (TrueWhenUnset && TrueVal == X &&
1462           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1463         V = Builder.CreateAnd(X, ~(*Y));
1464       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
1465       else if (!TrueWhenUnset && FalseVal == X &&
1466                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1467         V = Builder.CreateAnd(X, ~(*Y));
1468       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
1469       else if (TrueWhenUnset && FalseVal == X &&
1470                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1471         V = Builder.CreateOr(X, *Y);
1472       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
1473       else if (!TrueWhenUnset && TrueVal == X &&
1474                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1475         V = Builder.CreateOr(X, *Y);
1476 
1477       if (V)
1478         return replaceInstUsesWith(SI, V);
1479     }
1480   }
1481 
1482   if (Instruction *V =
1483           foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1484     return V;
1485 
1486   if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
1487     return V;
1488 
1489   if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1490     return replaceInstUsesWith(SI, V);
1491 
1492   if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1493     return replaceInstUsesWith(SI, V);
1494 
1495   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1496     return replaceInstUsesWith(SI, V);
1497 
1498   if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1499     return replaceInstUsesWith(SI, V);
1500 
1501   if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1502     return replaceInstUsesWith(SI, V);
1503 
1504   return Changed ? &SI : nullptr;
1505 }
1506 
1507 /// SI is a select whose condition is a PHI node (but the two may be in
1508 /// different blocks). See if the true/false values (V) are live in all of the
1509 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1510 ///
1511 ///   X = phi [ C1, BB1], [C2, BB2]
1512 ///   Y = add
1513 ///   Z = select X, Y, 0
1514 ///
1515 /// because Y is not live in BB1/BB2.
1516 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1517                                                    const SelectInst &SI) {
1518   // If the value is a non-instruction value like a constant or argument, it
1519   // can always be mapped.
1520   const Instruction *I = dyn_cast<Instruction>(V);
1521   if (!I) return true;
1522 
1523   // If V is a PHI node defined in the same block as the condition PHI, we can
1524   // map the arguments.
1525   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1526 
1527   if (const PHINode *VP = dyn_cast<PHINode>(I))
1528     if (VP->getParent() == CondPHI->getParent())
1529       return true;
1530 
1531   // Otherwise, if the PHI and select are defined in the same block and if V is
1532   // defined in a different block, then we can transform it.
1533   if (SI.getParent() == CondPHI->getParent() &&
1534       I->getParent() != CondPHI->getParent())
1535     return true;
1536 
1537   // Otherwise we have a 'hard' case and we can't tell without doing more
1538   // detailed dominator based analysis, punt.
1539   return false;
1540 }
1541 
1542 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1543 ///   SPF2(SPF1(A, B), C)
1544 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner,
1545                                         SelectPatternFlavor SPF1,
1546                                         Value *A, Value *B,
1547                                         Instruction &Outer,
1548                                         SelectPatternFlavor SPF2, Value *C) {
1549   if (Outer.getType() != Inner->getType())
1550     return nullptr;
1551 
1552   if (C == A || C == B) {
1553     // MAX(MAX(A, B), B) -> MAX(A, B)
1554     // MIN(MIN(a, b), a) -> MIN(a, b)
1555     // TODO: This could be done in instsimplify.
1556     if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1557       return replaceInstUsesWith(Outer, Inner);
1558 
1559     // MAX(MIN(a, b), a) -> a
1560     // MIN(MAX(a, b), a) -> a
1561     // TODO: This could be done in instsimplify.
1562     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
1563         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
1564         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
1565         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
1566       return replaceInstUsesWith(Outer, C);
1567   }
1568 
1569   if (SPF1 == SPF2) {
1570     const APInt *CB, *CC;
1571     if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
1572       // MIN(MIN(A, 23), 97) -> MIN(A, 23)
1573       // MAX(MAX(A, 97), 23) -> MAX(A, 97)
1574       // TODO: This could be done in instsimplify.
1575       if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
1576           (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
1577           (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
1578           (SPF1 == SPF_SMAX && CB->sge(*CC)))
1579         return replaceInstUsesWith(Outer, Inner);
1580 
1581       // MIN(MIN(A, 97), 23) -> MIN(A, 23)
1582       // MAX(MAX(A, 23), 97) -> MAX(A, 97)
1583       if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
1584           (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
1585           (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
1586           (SPF1 == SPF_SMAX && CB->slt(*CC))) {
1587         Outer.replaceUsesOfWith(Inner, A);
1588         return &Outer;
1589       }
1590     }
1591   }
1592 
1593   // max(max(A, B), min(A, B)) --> max(A, B)
1594   // min(min(A, B), max(A, B)) --> min(A, B)
1595   // TODO: This could be done in instsimplify.
1596   if (SPF1 == SPF2 &&
1597       ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) ||
1598        (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) ||
1599        (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) ||
1600        (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B))))))
1601     return replaceInstUsesWith(Outer, Inner);
1602 
1603   // ABS(ABS(X)) -> ABS(X)
1604   // NABS(NABS(X)) -> NABS(X)
1605   // TODO: This could be done in instsimplify.
1606   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
1607     return replaceInstUsesWith(Outer, Inner);
1608   }
1609 
1610   // ABS(NABS(X)) -> ABS(X)
1611   // NABS(ABS(X)) -> NABS(X)
1612   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
1613       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
1614     SelectInst *SI = cast<SelectInst>(Inner);
1615     Value *NewSI =
1616         Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
1617                              SI->getTrueValue(), SI->getName(), SI);
1618     return replaceInstUsesWith(Outer, NewSI);
1619   }
1620 
1621   auto IsFreeOrProfitableToInvert =
1622       [&](Value *V, Value *&NotV, bool &ElidesXor) {
1623     if (match(V, m_Not(m_Value(NotV)))) {
1624       // If V has at most 2 uses then we can get rid of the xor operation
1625       // entirely.
1626       ElidesXor |= !V->hasNUsesOrMore(3);
1627       return true;
1628     }
1629 
1630     if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) {
1631       NotV = nullptr;
1632       return true;
1633     }
1634 
1635     return false;
1636   };
1637 
1638   Value *NotA, *NotB, *NotC;
1639   bool ElidesXor = false;
1640 
1641   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
1642   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
1643   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
1644   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
1645   //
1646   // This transform is performance neutral if we can elide at least one xor from
1647   // the set of three operands, since we'll be tacking on an xor at the very
1648   // end.
1649   if (SelectPatternResult::isMinOrMax(SPF1) &&
1650       SelectPatternResult::isMinOrMax(SPF2) &&
1651       IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
1652       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
1653       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
1654     if (!NotA)
1655       NotA = Builder.CreateNot(A);
1656     if (!NotB)
1657       NotB = Builder.CreateNot(B);
1658     if (!NotC)
1659       NotC = Builder.CreateNot(C);
1660 
1661     Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
1662                                    NotB);
1663     Value *NewOuter = Builder.CreateNot(
1664         createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
1665     return replaceInstUsesWith(Outer, NewOuter);
1666   }
1667 
1668   return nullptr;
1669 }
1670 
1671 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1672 /// This is even legal for FP.
1673 static Instruction *foldAddSubSelect(SelectInst &SI,
1674                                      InstCombiner::BuilderTy &Builder) {
1675   Value *CondVal = SI.getCondition();
1676   Value *TrueVal = SI.getTrueValue();
1677   Value *FalseVal = SI.getFalseValue();
1678   auto *TI = dyn_cast<Instruction>(TrueVal);
1679   auto *FI = dyn_cast<Instruction>(FalseVal);
1680   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1681     return nullptr;
1682 
1683   Instruction *AddOp = nullptr, *SubOp = nullptr;
1684   if ((TI->getOpcode() == Instruction::Sub &&
1685        FI->getOpcode() == Instruction::Add) ||
1686       (TI->getOpcode() == Instruction::FSub &&
1687        FI->getOpcode() == Instruction::FAdd)) {
1688     AddOp = FI;
1689     SubOp = TI;
1690   } else if ((FI->getOpcode() == Instruction::Sub &&
1691               TI->getOpcode() == Instruction::Add) ||
1692              (FI->getOpcode() == Instruction::FSub &&
1693               TI->getOpcode() == Instruction::FAdd)) {
1694     AddOp = TI;
1695     SubOp = FI;
1696   }
1697 
1698   if (AddOp) {
1699     Value *OtherAddOp = nullptr;
1700     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1701       OtherAddOp = AddOp->getOperand(1);
1702     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1703       OtherAddOp = AddOp->getOperand(0);
1704     }
1705 
1706     if (OtherAddOp) {
1707       // So at this point we know we have (Y -> OtherAddOp):
1708       //        select C, (add X, Y), (sub X, Z)
1709       Value *NegVal; // Compute -Z
1710       if (SI.getType()->isFPOrFPVectorTy()) {
1711         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1712         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1713           FastMathFlags Flags = AddOp->getFastMathFlags();
1714           Flags &= SubOp->getFastMathFlags();
1715           NegInst->setFastMathFlags(Flags);
1716         }
1717       } else {
1718         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1719       }
1720 
1721       Value *NewTrueOp = OtherAddOp;
1722       Value *NewFalseOp = NegVal;
1723       if (AddOp != TI)
1724         std::swap(NewTrueOp, NewFalseOp);
1725       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1726                                            SI.getName() + ".p", &SI);
1727 
1728       if (SI.getType()->isFPOrFPVectorTy()) {
1729         Instruction *RI =
1730             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1731 
1732         FastMathFlags Flags = AddOp->getFastMathFlags();
1733         Flags &= SubOp->getFastMathFlags();
1734         RI->setFastMathFlags(Flags);
1735         return RI;
1736       } else
1737         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1738     }
1739   }
1740   return nullptr;
1741 }
1742 
1743 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1744 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1745 /// Along with a number of patterns similar to:
1746 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1747 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1748 static Instruction *
1749 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
1750   Value *CondVal = SI.getCondition();
1751   Value *TrueVal = SI.getTrueValue();
1752   Value *FalseVal = SI.getFalseValue();
1753 
1754   WithOverflowInst *II;
1755   if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
1756       !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
1757     return nullptr;
1758 
1759   Value *X = II->getLHS();
1760   Value *Y = II->getRHS();
1761 
1762   auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
1763     Type *Ty = Limit->getType();
1764 
1765     ICmpInst::Predicate Pred;
1766     Value *TrueVal, *FalseVal, *Op;
1767     const APInt *C;
1768     if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
1769                                m_Value(TrueVal), m_Value(FalseVal))))
1770       return false;
1771 
1772     auto IsZeroOrOne = [](const APInt &C) {
1773       return C.isNullValue() || C.isOneValue();
1774     };
1775     auto IsMinMax = [&](Value *Min, Value *Max) {
1776       APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
1777       APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
1778       return match(Min, m_SpecificInt(MinVal)) &&
1779              match(Max, m_SpecificInt(MaxVal));
1780     };
1781 
1782     if (Op != X && Op != Y)
1783       return false;
1784 
1785     if (IsAdd) {
1786       // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1787       // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1788       // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1789       // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1790       if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1791           IsMinMax(TrueVal, FalseVal))
1792         return true;
1793       // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1794       // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1795       // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1796       // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1797       if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1798           IsMinMax(FalseVal, TrueVal))
1799         return true;
1800     } else {
1801       // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1802       // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1803       if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
1804           IsMinMax(TrueVal, FalseVal))
1805         return true;
1806       // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1807       // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1808       if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
1809           IsMinMax(FalseVal, TrueVal))
1810         return true;
1811       // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1812       // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1813       if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1814           IsMinMax(FalseVal, TrueVal))
1815         return true;
1816       // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1817       // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1818       if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1819           IsMinMax(TrueVal, FalseVal))
1820         return true;
1821     }
1822 
1823     return false;
1824   };
1825 
1826   Intrinsic::ID NewIntrinsicID;
1827   if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
1828       match(TrueVal, m_AllOnes()))
1829     // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1830     NewIntrinsicID = Intrinsic::uadd_sat;
1831   else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
1832            match(TrueVal, m_Zero()))
1833     // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1834     NewIntrinsicID = Intrinsic::usub_sat;
1835   else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
1836            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
1837     // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1838     // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1839     // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1840     // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1841     // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1842     // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1843     // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1844     // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1845     NewIntrinsicID = Intrinsic::sadd_sat;
1846   else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
1847            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
1848     // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1849     // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1850     // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1851     // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1852     // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1853     // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1854     // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1855     // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1856     NewIntrinsicID = Intrinsic::ssub_sat;
1857   else
1858     return nullptr;
1859 
1860   Function *F =
1861       Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
1862   return CallInst::Create(F, {X, Y});
1863 }
1864 
1865 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) {
1866   Constant *C;
1867   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
1868       !match(Sel.getFalseValue(), m_Constant(C)))
1869     return nullptr;
1870 
1871   Instruction *ExtInst;
1872   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
1873       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
1874     return nullptr;
1875 
1876   auto ExtOpcode = ExtInst->getOpcode();
1877   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
1878     return nullptr;
1879 
1880   // If we are extending from a boolean type or if we can create a select that
1881   // has the same size operands as its condition, try to narrow the select.
1882   Value *X = ExtInst->getOperand(0);
1883   Type *SmallType = X->getType();
1884   Value *Cond = Sel.getCondition();
1885   auto *Cmp = dyn_cast<CmpInst>(Cond);
1886   if (!SmallType->isIntOrIntVectorTy(1) &&
1887       (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
1888     return nullptr;
1889 
1890   // If the constant is the same after truncation to the smaller type and
1891   // extension to the original type, we can narrow the select.
1892   Type *SelType = Sel.getType();
1893   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
1894   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
1895   if (ExtC == C) {
1896     Value *TruncCVal = cast<Value>(TruncC);
1897     if (ExtInst == Sel.getFalseValue())
1898       std::swap(X, TruncCVal);
1899 
1900     // select Cond, (ext X), C --> ext(select Cond, X, C')
1901     // select Cond, C, (ext X) --> ext(select Cond, C', X)
1902     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
1903     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
1904   }
1905 
1906   // If one arm of the select is the extend of the condition, replace that arm
1907   // with the extension of the appropriate known bool value.
1908   if (Cond == X) {
1909     if (ExtInst == Sel.getTrueValue()) {
1910       // select X, (sext X), C --> select X, -1, C
1911       // select X, (zext X), C --> select X,  1, C
1912       Constant *One = ConstantInt::getTrue(SmallType);
1913       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
1914       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
1915     } else {
1916       // select X, C, (sext X) --> select X, C, 0
1917       // select X, C, (zext X) --> select X, C, 0
1918       Constant *Zero = ConstantInt::getNullValue(SelType);
1919       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
1920     }
1921   }
1922 
1923   return nullptr;
1924 }
1925 
1926 /// Try to transform a vector select with a constant condition vector into a
1927 /// shuffle for easier combining with other shuffles and insert/extract.
1928 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
1929   Value *CondVal = SI.getCondition();
1930   Constant *CondC;
1931   if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
1932     return nullptr;
1933 
1934   unsigned NumElts = CondVal->getType()->getVectorNumElements();
1935   SmallVector<Constant *, 16> Mask;
1936   Mask.reserve(NumElts);
1937   Type *Int32Ty = Type::getInt32Ty(CondVal->getContext());
1938   for (unsigned i = 0; i != NumElts; ++i) {
1939     Constant *Elt = CondC->getAggregateElement(i);
1940     if (!Elt)
1941       return nullptr;
1942 
1943     if (Elt->isOneValue()) {
1944       // If the select condition element is true, choose from the 1st vector.
1945       Mask.push_back(ConstantInt::get(Int32Ty, i));
1946     } else if (Elt->isNullValue()) {
1947       // If the select condition element is false, choose from the 2nd vector.
1948       Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts));
1949     } else if (isa<UndefValue>(Elt)) {
1950       // Undef in a select condition (choose one of the operands) does not mean
1951       // the same thing as undef in a shuffle mask (any value is acceptable), so
1952       // give up.
1953       return nullptr;
1954     } else {
1955       // Bail out on a constant expression.
1956       return nullptr;
1957     }
1958   }
1959 
1960   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(),
1961                                ConstantVector::get(Mask));
1962 }
1963 
1964 /// If we have a select of vectors with a scalar condition, try to convert that
1965 /// to a vector select by splatting the condition. A splat may get folded with
1966 /// other operations in IR and having all operands of a select be vector types
1967 /// is likely better for vector codegen.
1968 static Instruction *canonicalizeScalarSelectOfVecs(
1969     SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
1970   Type *Ty = Sel.getType();
1971   if (!Ty->isVectorTy())
1972     return nullptr;
1973 
1974   // We can replace a single-use extract with constant index.
1975   Value *Cond = Sel.getCondition();
1976   if (!match(Cond, m_OneUse(m_ExtractElement(m_Value(), m_ConstantInt()))))
1977     return nullptr;
1978 
1979   // select (extelt V, Index), T, F --> select (splat V, Index), T, F
1980   // Splatting the extracted condition reduces code (we could directly create a
1981   // splat shuffle of the source vector to eliminate the intermediate step).
1982   unsigned NumElts = Ty->getVectorNumElements();
1983   Value *SplatCond = Builder.CreateVectorSplat(NumElts, Cond);
1984   Sel.setCondition(SplatCond);
1985   return &Sel;
1986 }
1987 
1988 /// Reuse bitcasted operands between a compare and select:
1989 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1990 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
1991 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
1992                                           InstCombiner::BuilderTy &Builder) {
1993   Value *Cond = Sel.getCondition();
1994   Value *TVal = Sel.getTrueValue();
1995   Value *FVal = Sel.getFalseValue();
1996 
1997   CmpInst::Predicate Pred;
1998   Value *A, *B;
1999   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
2000     return nullptr;
2001 
2002   // The select condition is a compare instruction. If the select's true/false
2003   // values are already the same as the compare operands, there's nothing to do.
2004   if (TVal == A || TVal == B || FVal == A || FVal == B)
2005     return nullptr;
2006 
2007   Value *C, *D;
2008   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
2009     return nullptr;
2010 
2011   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
2012   Value *TSrc, *FSrc;
2013   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
2014       !match(FVal, m_BitCast(m_Value(FSrc))))
2015     return nullptr;
2016 
2017   // If the select true/false values are *different bitcasts* of the same source
2018   // operands, make the select operands the same as the compare operands and
2019   // cast the result. This is the canonical select form for min/max.
2020   Value *NewSel;
2021   if (TSrc == C && FSrc == D) {
2022     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2023     // bitcast (select (cmp A, B), A, B)
2024     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
2025   } else if (TSrc == D && FSrc == C) {
2026     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
2027     // bitcast (select (cmp A, B), B, A)
2028     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
2029   } else {
2030     return nullptr;
2031   }
2032   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
2033 }
2034 
2035 /// Try to eliminate select instructions that test the returned flag of cmpxchg
2036 /// instructions.
2037 ///
2038 /// If a select instruction tests the returned flag of a cmpxchg instruction and
2039 /// selects between the returned value of the cmpxchg instruction its compare
2040 /// operand, the result of the select will always be equal to its false value.
2041 /// For example:
2042 ///
2043 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2044 ///   %1 = extractvalue { i64, i1 } %0, 1
2045 ///   %2 = extractvalue { i64, i1 } %0, 0
2046 ///   %3 = select i1 %1, i64 %compare, i64 %2
2047 ///   ret i64 %3
2048 ///
2049 /// The returned value of the cmpxchg instruction (%2) is the original value
2050 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
2051 /// must have been equal to %compare. Thus, the result of the select is always
2052 /// equal to %2, and the code can be simplified to:
2053 ///
2054 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2055 ///   %1 = extractvalue { i64, i1 } %0, 0
2056 ///   ret i64 %1
2057 ///
2058 static Instruction *foldSelectCmpXchg(SelectInst &SI) {
2059   // A helper that determines if V is an extractvalue instruction whose
2060   // aggregate operand is a cmpxchg instruction and whose single index is equal
2061   // to I. If such conditions are true, the helper returns the cmpxchg
2062   // instruction; otherwise, a nullptr is returned.
2063   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
2064     auto *Extract = dyn_cast<ExtractValueInst>(V);
2065     if (!Extract)
2066       return nullptr;
2067     if (Extract->getIndices()[0] != I)
2068       return nullptr;
2069     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
2070   };
2071 
2072   // If the select has a single user, and this user is a select instruction that
2073   // we can simplify, skip the cmpxchg simplification for now.
2074   if (SI.hasOneUse())
2075     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
2076       if (Select->getCondition() == SI.getCondition())
2077         if (Select->getFalseValue() == SI.getTrueValue() ||
2078             Select->getTrueValue() == SI.getFalseValue())
2079           return nullptr;
2080 
2081   // Ensure the select condition is the returned flag of a cmpxchg instruction.
2082   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
2083   if (!CmpXchg)
2084     return nullptr;
2085 
2086   // Check the true value case: The true value of the select is the returned
2087   // value of the same cmpxchg used by the condition, and the false value is the
2088   // cmpxchg instruction's compare operand.
2089   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
2090     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) {
2091       SI.setTrueValue(SI.getFalseValue());
2092       return &SI;
2093     }
2094 
2095   // Check the false value case: The false value of the select is the returned
2096   // value of the same cmpxchg used by the condition, and the true value is the
2097   // cmpxchg instruction's compare operand.
2098   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
2099     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) {
2100       SI.setTrueValue(SI.getFalseValue());
2101       return &SI;
2102     }
2103 
2104   return nullptr;
2105 }
2106 
2107 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X,
2108                                        Value *Y,
2109                                        InstCombiner::BuilderTy &Builder) {
2110   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern");
2111   bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN ||
2112                     SPF == SelectPatternFlavor::SPF_UMAX;
2113   // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change
2114   // the constant value check to an assert.
2115   Value *A;
2116   const APInt *C1, *C2;
2117   if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) &&
2118       match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) {
2119     // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1
2120     // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1
2121     Value *NewMinMax = createMinMax(Builder, SPF, A,
2122                                     ConstantInt::get(X->getType(), *C2 - *C1));
2123     return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax,
2124                                      ConstantInt::get(X->getType(), *C1));
2125   }
2126 
2127   if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) &&
2128       match(Y, m_APInt(C2)) && X->hasNUses(2)) {
2129     bool Overflow;
2130     APInt Diff = C2->ssub_ov(*C1, Overflow);
2131     if (!Overflow) {
2132       // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1
2133       // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1
2134       Value *NewMinMax = createMinMax(Builder, SPF, A,
2135                                       ConstantInt::get(X->getType(), Diff));
2136       return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax,
2137                                        ConstantInt::get(X->getType(), *C1));
2138     }
2139   }
2140 
2141   return nullptr;
2142 }
2143 
2144 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
2145 Instruction *InstCombiner::matchSAddSubSat(SelectInst &MinMax1) {
2146   Type *Ty = MinMax1.getType();
2147 
2148   // We are looking for a tree of:
2149   // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
2150   // Where the min and max could be reversed
2151   Instruction *MinMax2;
2152   BinaryOperator *AddSub;
2153   const APInt *MinValue, *MaxValue;
2154   if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
2155     if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
2156       return nullptr;
2157   } else if (match(&MinMax1,
2158                    m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
2159     if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
2160       return nullptr;
2161   } else
2162     return nullptr;
2163 
2164   // Check that the constants clamp a saturate, and that the new type would be
2165   // sensible to convert to.
2166   if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
2167     return nullptr;
2168   // In what bitwidth can this be treated as saturating arithmetics?
2169   unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
2170   // FIXME: This isn't quite right for vectors, but using the scalar type is a
2171   // good first approximation for what should be done there.
2172   if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
2173     return nullptr;
2174 
2175   // Also make sure that the number of uses is as expected. The "3"s are for the
2176   // the two items of min/max (the compare and the select).
2177   if (MinMax2->hasNUsesOrMore(3) || AddSub->hasNUsesOrMore(3))
2178     return nullptr;
2179 
2180   // Create the new type (which can be a vector type)
2181   Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
2182   // Match the two extends from the add/sub
2183   Value *A, *B;
2184   if(!match(AddSub, m_BinOp(m_SExt(m_Value(A)), m_SExt(m_Value(B)))))
2185     return nullptr;
2186   // And check the incoming values are of a type smaller than or equal to the
2187   // size of the saturation. Otherwise the higher bits can cause different
2188   // results.
2189   if (A->getType()->getScalarSizeInBits() > NewBitWidth ||
2190       B->getType()->getScalarSizeInBits() > NewBitWidth)
2191     return nullptr;
2192 
2193   Intrinsic::ID IntrinsicID;
2194   if (AddSub->getOpcode() == Instruction::Add)
2195     IntrinsicID = Intrinsic::sadd_sat;
2196   else if (AddSub->getOpcode() == Instruction::Sub)
2197     IntrinsicID = Intrinsic::ssub_sat;
2198   else
2199     return nullptr;
2200 
2201   // Finally create and return the sat intrinsic, truncated to the new type
2202   Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
2203   Value *AT = Builder.CreateSExt(A, NewTy);
2204   Value *BT = Builder.CreateSExt(B, NewTy);
2205   Value *Sat = Builder.CreateCall(F, {AT, BT});
2206   return CastInst::Create(Instruction::SExt, Sat, Ty);
2207 }
2208 
2209 /// Reduce a sequence of min/max with a common operand.
2210 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
2211                                         Value *RHS,
2212                                         InstCombiner::BuilderTy &Builder) {
2213   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
2214   // TODO: Allow FP min/max with nnan/nsz.
2215   if (!LHS->getType()->isIntOrIntVectorTy())
2216     return nullptr;
2217 
2218   // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
2219   Value *A, *B, *C, *D;
2220   SelectPatternResult L = matchSelectPattern(LHS, A, B);
2221   SelectPatternResult R = matchSelectPattern(RHS, C, D);
2222   if (SPF != L.Flavor || L.Flavor != R.Flavor)
2223     return nullptr;
2224 
2225   // Look for a common operand. The use checks are different than usual because
2226   // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
2227   // the select.
2228   Value *MinMaxOp = nullptr;
2229   Value *ThirdOp = nullptr;
2230   if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
2231     // If the LHS is only used in this chain and the RHS is used outside of it,
2232     // reuse the RHS min/max because that will eliminate the LHS.
2233     if (D == A || C == A) {
2234       // min(min(a, b), min(c, a)) --> min(min(c, a), b)
2235       // min(min(a, b), min(a, d)) --> min(min(a, d), b)
2236       MinMaxOp = RHS;
2237       ThirdOp = B;
2238     } else if (D == B || C == B) {
2239       // min(min(a, b), min(c, b)) --> min(min(c, b), a)
2240       // min(min(a, b), min(b, d)) --> min(min(b, d), a)
2241       MinMaxOp = RHS;
2242       ThirdOp = A;
2243     }
2244   } else if (!RHS->hasNUsesOrMore(3)) {
2245     // Reuse the LHS. This will eliminate the RHS.
2246     if (D == A || D == B) {
2247       // min(min(a, b), min(c, a)) --> min(min(a, b), c)
2248       // min(min(a, b), min(c, b)) --> min(min(a, b), c)
2249       MinMaxOp = LHS;
2250       ThirdOp = C;
2251     } else if (C == A || C == B) {
2252       // min(min(a, b), min(b, d)) --> min(min(a, b), d)
2253       // min(min(a, b), min(c, b)) --> min(min(a, b), d)
2254       MinMaxOp = LHS;
2255       ThirdOp = D;
2256     }
2257   }
2258   if (!MinMaxOp || !ThirdOp)
2259     return nullptr;
2260 
2261   CmpInst::Predicate P = getMinMaxPred(SPF);
2262   Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
2263   return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
2264 }
2265 
2266 /// Try to reduce a rotate pattern that includes a compare and select into a
2267 /// funnel shift intrinsic. Example:
2268 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2269 ///              --> call llvm.fshl.i32(a, a, b)
2270 static Instruction *foldSelectRotate(SelectInst &Sel) {
2271   // The false value of the select must be a rotate of the true value.
2272   Value *Or0, *Or1;
2273   if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
2274     return nullptr;
2275 
2276   Value *TVal = Sel.getTrueValue();
2277   Value *SA0, *SA1;
2278   if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA0)))) ||
2279       !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA1)))))
2280     return nullptr;
2281 
2282   auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
2283   auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
2284   if (ShiftOpcode0 == ShiftOpcode1)
2285     return nullptr;
2286 
2287   // We have one of these patterns so far:
2288   // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1))
2289   // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1))
2290   // This must be a power-of-2 rotate for a bitmasking transform to be valid.
2291   unsigned Width = Sel.getType()->getScalarSizeInBits();
2292   if (!isPowerOf2_32(Width))
2293     return nullptr;
2294 
2295   // Check the shift amounts to see if they are an opposite pair.
2296   Value *ShAmt;
2297   if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
2298     ShAmt = SA0;
2299   else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
2300     ShAmt = SA1;
2301   else
2302     return nullptr;
2303 
2304   // Finally, see if the select is filtering out a shift-by-zero.
2305   Value *Cond = Sel.getCondition();
2306   ICmpInst::Predicate Pred;
2307   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
2308       Pred != ICmpInst::ICMP_EQ)
2309     return nullptr;
2310 
2311   // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2312   // Convert to funnel shift intrinsic.
2313   bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) ||
2314                 (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl);
2315   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2316   Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
2317   return IntrinsicInst::Create(F, { TVal, TVal, ShAmt });
2318 }
2319 
2320 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
2321   Value *CondVal = SI.getCondition();
2322   Value *TrueVal = SI.getTrueValue();
2323   Value *FalseVal = SI.getFalseValue();
2324   Type *SelType = SI.getType();
2325 
2326   // FIXME: Remove this workaround when freeze related patches are done.
2327   // For select with undef operand which feeds into an equality comparison,
2328   // don't simplify it so loop unswitch can know the equality comparison
2329   // may have an undef operand. This is a workaround for PR31652 caused by
2330   // descrepancy about branch on undef between LoopUnswitch and GVN.
2331   if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) {
2332     if (llvm::any_of(SI.users(), [&](User *U) {
2333           ICmpInst *CI = dyn_cast<ICmpInst>(U);
2334           if (CI && CI->isEquality())
2335             return true;
2336           return false;
2337         })) {
2338       return nullptr;
2339     }
2340   }
2341 
2342   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
2343                                     SQ.getWithInstruction(&SI)))
2344     return replaceInstUsesWith(SI, V);
2345 
2346   if (Instruction *I = canonicalizeSelectToShuffle(SI))
2347     return I;
2348 
2349   if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, Builder))
2350     return I;
2351 
2352   // Canonicalize a one-use integer compare with a non-canonical predicate by
2353   // inverting the predicate and swapping the select operands. This matches a
2354   // compare canonicalization for conditional branches.
2355   // TODO: Should we do the same for FP compares?
2356   CmpInst::Predicate Pred;
2357   if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) &&
2358       !isCanonicalPredicate(Pred)) {
2359     // Swap true/false values and condition.
2360     CmpInst *Cond = cast<CmpInst>(CondVal);
2361     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2362     SI.setOperand(1, FalseVal);
2363     SI.setOperand(2, TrueVal);
2364     SI.swapProfMetadata();
2365     Worklist.Add(Cond);
2366     return &SI;
2367   }
2368 
2369   if (SelType->isIntOrIntVectorTy(1) &&
2370       TrueVal->getType() == CondVal->getType()) {
2371     if (match(TrueVal, m_One())) {
2372       // Change: A = select B, true, C --> A = or B, C
2373       return BinaryOperator::CreateOr(CondVal, FalseVal);
2374     }
2375     if (match(TrueVal, m_Zero())) {
2376       // Change: A = select B, false, C --> A = and !B, C
2377       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2378       return BinaryOperator::CreateAnd(NotCond, FalseVal);
2379     }
2380     if (match(FalseVal, m_Zero())) {
2381       // Change: A = select B, C, false --> A = and B, C
2382       return BinaryOperator::CreateAnd(CondVal, TrueVal);
2383     }
2384     if (match(FalseVal, m_One())) {
2385       // Change: A = select B, C, true --> A = or !B, C
2386       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2387       return BinaryOperator::CreateOr(NotCond, TrueVal);
2388     }
2389 
2390     // select a, a, b  -> a | b
2391     // select a, b, a  -> a & b
2392     if (CondVal == TrueVal)
2393       return BinaryOperator::CreateOr(CondVal, FalseVal);
2394     if (CondVal == FalseVal)
2395       return BinaryOperator::CreateAnd(CondVal, TrueVal);
2396 
2397     // select a, ~a, b -> (~a) & b
2398     // select a, b, ~a -> (~a) | b
2399     if (match(TrueVal, m_Not(m_Specific(CondVal))))
2400       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
2401     if (match(FalseVal, m_Not(m_Specific(CondVal))))
2402       return BinaryOperator::CreateOr(TrueVal, FalseVal);
2403   }
2404 
2405   // Selecting between two integer or vector splat integer constants?
2406   //
2407   // Note that we don't handle a scalar select of vectors:
2408   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
2409   // because that may need 3 instructions to splat the condition value:
2410   // extend, insertelement, shufflevector.
2411   if (SelType->isIntOrIntVectorTy() &&
2412       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
2413     // select C, 1, 0 -> zext C to int
2414     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
2415       return new ZExtInst(CondVal, SelType);
2416 
2417     // select C, -1, 0 -> sext C to int
2418     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
2419       return new SExtInst(CondVal, SelType);
2420 
2421     // select C, 0, 1 -> zext !C to int
2422     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
2423       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2424       return new ZExtInst(NotCond, SelType);
2425     }
2426 
2427     // select C, 0, -1 -> sext !C to int
2428     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
2429       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2430       return new SExtInst(NotCond, SelType);
2431     }
2432   }
2433 
2434   // See if we are selecting two values based on a comparison of the two values.
2435   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
2436     Value *Cmp0 = FCI->getOperand(0), *Cmp1 = FCI->getOperand(1);
2437     if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
2438         (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
2439       // Canonicalize to use ordered comparisons by swapping the select
2440       // operands.
2441       //
2442       // e.g.
2443       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
2444       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
2445         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
2446         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2447         // FIXME: The FMF should propagate from the select, not the fcmp.
2448         Builder.setFastMathFlags(FCI->getFastMathFlags());
2449         Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
2450                                             FCI->getName() + ".inv");
2451         Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
2452         return replaceInstUsesWith(SI, NewSel);
2453       }
2454 
2455       // NOTE: if we wanted to, this is where to detect MIN/MAX
2456     }
2457   }
2458 
2459   // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2460   // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We
2461   // also require nnan because we do not want to unintentionally change the
2462   // sign of a NaN value.
2463   // FIXME: These folds should test/propagate FMF from the select, not the
2464   //        fsub or fneg.
2465   // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
2466   Instruction *FSub;
2467   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2468       match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
2469       match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
2470       (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2471     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub);
2472     return replaceInstUsesWith(SI, Fabs);
2473   }
2474   // (X >  +/-0.0) ? X : (0.0 - X) --> fabs(X)
2475   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2476       match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
2477       match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
2478       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2479     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub);
2480     return replaceInstUsesWith(SI, Fabs);
2481   }
2482   // With nnan and nsz:
2483   // (X <  +/-0.0) ? -X : X --> fabs(X)
2484   // (X <= +/-0.0) ? -X : X --> fabs(X)
2485   Instruction *FNeg;
2486   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2487       match(TrueVal, m_FNeg(m_Specific(FalseVal))) &&
2488       match(TrueVal, m_Instruction(FNeg)) &&
2489       FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
2490       (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2491        Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
2492     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg);
2493     return replaceInstUsesWith(SI, Fabs);
2494   }
2495   // With nnan and nsz:
2496   // (X >  +/-0.0) ? X : -X --> fabs(X)
2497   // (X >= +/-0.0) ? X : -X --> fabs(X)
2498   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2499       match(FalseVal, m_FNeg(m_Specific(TrueVal))) &&
2500       match(FalseVal, m_Instruction(FNeg)) &&
2501       FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
2502       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2503        Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
2504     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg);
2505     return replaceInstUsesWith(SI, Fabs);
2506   }
2507 
2508   // See if we are selecting two values based on a comparison of the two values.
2509   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
2510     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
2511       return Result;
2512 
2513   if (Instruction *Add = foldAddSubSelect(SI, Builder))
2514     return Add;
2515   if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
2516     return Add;
2517 
2518   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
2519   auto *TI = dyn_cast<Instruction>(TrueVal);
2520   auto *FI = dyn_cast<Instruction>(FalseVal);
2521   if (TI && FI && TI->getOpcode() == FI->getOpcode())
2522     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
2523       return IV;
2524 
2525   if (Instruction *I = foldSelectExtConst(SI))
2526     return I;
2527 
2528   // See if we can fold the select into one of our operands.
2529   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
2530     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
2531       return FoldI;
2532 
2533     Value *LHS, *RHS;
2534     Instruction::CastOps CastOp;
2535     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
2536     auto SPF = SPR.Flavor;
2537     if (SPF) {
2538       Value *LHS2, *RHS2;
2539       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
2540         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
2541                                           RHS2, SI, SPF, RHS))
2542           return R;
2543       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
2544         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
2545                                           RHS2, SI, SPF, LHS))
2546           return R;
2547       // TODO.
2548       // ABS(-X) -> ABS(X)
2549     }
2550 
2551     if (SelectPatternResult::isMinOrMax(SPF)) {
2552       // Canonicalize so that
2553       // - type casts are outside select patterns.
2554       // - float clamp is transformed to min/max pattern
2555 
2556       bool IsCastNeeded = LHS->getType() != SelType;
2557       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
2558       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
2559       if (IsCastNeeded ||
2560           (LHS->getType()->isFPOrFPVectorTy() &&
2561            ((CmpLHS != LHS && CmpLHS != RHS) ||
2562             (CmpRHS != LHS && CmpRHS != RHS)))) {
2563         CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
2564 
2565         Value *Cmp;
2566         if (CmpInst::isIntPredicate(MinMaxPred)) {
2567           Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
2568         } else {
2569           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2570           auto FMF =
2571               cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
2572           Builder.setFastMathFlags(FMF);
2573           Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
2574         }
2575 
2576         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
2577         if (!IsCastNeeded)
2578           return replaceInstUsesWith(SI, NewSI);
2579 
2580         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
2581         return replaceInstUsesWith(SI, NewCast);
2582       }
2583 
2584       // MAX(~a, ~b) -> ~MIN(a, b)
2585       // MAX(~a, C)  -> ~MIN(a, ~C)
2586       // MIN(~a, ~b) -> ~MAX(a, b)
2587       // MIN(~a, C)  -> ~MAX(a, ~C)
2588       auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
2589         Value *A;
2590         if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
2591             !isFreeToInvert(A, A->hasOneUse()) &&
2592             // Passing false to only consider m_Not and constants.
2593             isFreeToInvert(Y, false)) {
2594           Value *B = Builder.CreateNot(Y);
2595           Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
2596                                           A, B);
2597           // Copy the profile metadata.
2598           if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
2599             cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
2600             // Swap the metadata if the operands are swapped.
2601             if (X == SI.getFalseValue() && Y == SI.getTrueValue())
2602               cast<SelectInst>(NewMinMax)->swapProfMetadata();
2603           }
2604 
2605           return BinaryOperator::CreateNot(NewMinMax);
2606         }
2607 
2608         return nullptr;
2609       };
2610 
2611       if (Instruction *I = moveNotAfterMinMax(LHS, RHS))
2612         return I;
2613       if (Instruction *I = moveNotAfterMinMax(RHS, LHS))
2614         return I;
2615 
2616       if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder))
2617         return I;
2618 
2619       if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
2620         return I;
2621       if (Instruction *I = matchSAddSubSat(SI))
2622         return I;
2623     }
2624   }
2625 
2626   // Canonicalize select of FP values where NaN and -0.0 are not valid as
2627   // minnum/maxnum intrinsics.
2628   if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
2629     Value *X, *Y;
2630     if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
2631       return replaceInstUsesWith(
2632           SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
2633 
2634     if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
2635       return replaceInstUsesWith(
2636           SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
2637   }
2638 
2639   // See if we can fold the select into a phi node if the condition is a select.
2640   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
2641     // The true/false values have to be live in the PHI predecessor's blocks.
2642     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
2643         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
2644       if (Instruction *NV = foldOpIntoPhi(SI, PN))
2645         return NV;
2646 
2647   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
2648     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
2649       // select(C, select(C, a, b), c) -> select(C, a, c)
2650       if (TrueSI->getCondition() == CondVal) {
2651         if (SI.getTrueValue() == TrueSI->getTrueValue())
2652           return nullptr;
2653         SI.setOperand(1, TrueSI->getTrueValue());
2654         return &SI;
2655       }
2656       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
2657       // We choose this as normal form to enable folding on the And and shortening
2658       // paths for the values (this helps GetUnderlyingObjects() for example).
2659       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
2660         Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition());
2661         SI.setOperand(0, And);
2662         SI.setOperand(1, TrueSI->getTrueValue());
2663         return &SI;
2664       }
2665     }
2666   }
2667   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
2668     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
2669       // select(C, a, select(C, b, c)) -> select(C, a, c)
2670       if (FalseSI->getCondition() == CondVal) {
2671         if (SI.getFalseValue() == FalseSI->getFalseValue())
2672           return nullptr;
2673         SI.setOperand(2, FalseSI->getFalseValue());
2674         return &SI;
2675       }
2676       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
2677       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
2678         Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition());
2679         SI.setOperand(0, Or);
2680         SI.setOperand(2, FalseSI->getFalseValue());
2681         return &SI;
2682       }
2683     }
2684   }
2685 
2686   auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
2687     // The select might be preventing a division by 0.
2688     switch (BO->getOpcode()) {
2689     default:
2690       return true;
2691     case Instruction::SRem:
2692     case Instruction::URem:
2693     case Instruction::SDiv:
2694     case Instruction::UDiv:
2695       return false;
2696     }
2697   };
2698 
2699   // Try to simplify a binop sandwiched between 2 selects with the same
2700   // condition.
2701   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
2702   BinaryOperator *TrueBO;
2703   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
2704       canMergeSelectThroughBinop(TrueBO)) {
2705     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
2706       if (TrueBOSI->getCondition() == CondVal) {
2707         TrueBO->setOperand(0, TrueBOSI->getTrueValue());
2708         Worklist.Add(TrueBO);
2709         return &SI;
2710       }
2711     }
2712     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
2713       if (TrueBOSI->getCondition() == CondVal) {
2714         TrueBO->setOperand(1, TrueBOSI->getTrueValue());
2715         Worklist.Add(TrueBO);
2716         return &SI;
2717       }
2718     }
2719   }
2720 
2721   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
2722   BinaryOperator *FalseBO;
2723   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
2724       canMergeSelectThroughBinop(FalseBO)) {
2725     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
2726       if (FalseBOSI->getCondition() == CondVal) {
2727         FalseBO->setOperand(0, FalseBOSI->getFalseValue());
2728         Worklist.Add(FalseBO);
2729         return &SI;
2730       }
2731     }
2732     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
2733       if (FalseBOSI->getCondition() == CondVal) {
2734         FalseBO->setOperand(1, FalseBOSI->getFalseValue());
2735         Worklist.Add(FalseBO);
2736         return &SI;
2737       }
2738     }
2739   }
2740 
2741   Value *NotCond;
2742   if (match(CondVal, m_Not(m_Value(NotCond)))) {
2743     SI.setOperand(0, NotCond);
2744     SI.setOperand(1, FalseVal);
2745     SI.setOperand(2, TrueVal);
2746     SI.swapProfMetadata();
2747     return &SI;
2748   }
2749 
2750   if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) {
2751     unsigned VWidth = VecTy->getNumElements();
2752     APInt UndefElts(VWidth, 0);
2753     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
2754     if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
2755       if (V != &SI)
2756         return replaceInstUsesWith(SI, V);
2757       return &SI;
2758     }
2759   }
2760 
2761   // If we can compute the condition, there's no need for a select.
2762   // Like the above fold, we are attempting to reduce compile-time cost by
2763   // putting this fold here with limitations rather than in InstSimplify.
2764   // The motivation for this call into value tracking is to take advantage of
2765   // the assumption cache, so make sure that is populated.
2766   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
2767     KnownBits Known(1);
2768     computeKnownBits(CondVal, Known, 0, &SI);
2769     if (Known.One.isOneValue())
2770       return replaceInstUsesWith(SI, TrueVal);
2771     if (Known.Zero.isOneValue())
2772       return replaceInstUsesWith(SI, FalseVal);
2773   }
2774 
2775   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
2776     return BitCastSel;
2777 
2778   // Simplify selects that test the returned flag of cmpxchg instructions.
2779   if (Instruction *Select = foldSelectCmpXchg(SI))
2780     return Select;
2781 
2782   if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI))
2783     return Select;
2784 
2785   if (Instruction *Rot = foldSelectRotate(SI))
2786     return Rot;
2787 
2788   return nullptr;
2789 }
2790