xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp (revision 35c0a8c449fd2b7f75029ebed5e10852240f0865)
1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitSelect function.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/CmpInstAnalysis.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/OverflowInstAnalysis.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/KnownBits.h"
42 #include "llvm/Transforms/InstCombine/InstCombiner.h"
43 #include <cassert>
44 #include <utility>
45 
46 #define DEBUG_TYPE "instcombine"
47 #include "llvm/Transforms/Utils/InstructionWorklist.h"
48 
49 using namespace llvm;
50 using namespace PatternMatch;
51 
52 
53 /// Replace a select operand based on an equality comparison with the identity
54 /// constant of a binop.
55 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
56                                             const TargetLibraryInfo &TLI,
57                                             InstCombinerImpl &IC) {
58   // The select condition must be an equality compare with a constant operand.
59   Value *X;
60   Constant *C;
61   CmpInst::Predicate Pred;
62   if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
63     return nullptr;
64 
65   bool IsEq;
66   if (ICmpInst::isEquality(Pred))
67     IsEq = Pred == ICmpInst::ICMP_EQ;
68   else if (Pred == FCmpInst::FCMP_OEQ)
69     IsEq = true;
70   else if (Pred == FCmpInst::FCMP_UNE)
71     IsEq = false;
72   else
73     return nullptr;
74 
75   // A select operand must be a binop.
76   BinaryOperator *BO;
77   if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
78     return nullptr;
79 
80   // The compare constant must be the identity constant for that binop.
81   // If this a floating-point compare with 0.0, any zero constant will do.
82   Type *Ty = BO->getType();
83   Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
84   if (IdC != C) {
85     if (!IdC || !CmpInst::isFPPredicate(Pred))
86       return nullptr;
87     if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
88       return nullptr;
89   }
90 
91   // Last, match the compare variable operand with a binop operand.
92   Value *Y;
93   if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
94     return nullptr;
95   if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
96     return nullptr;
97 
98   // +0.0 compares equal to -0.0, and so it does not behave as required for this
99   // transform. Bail out if we can not exclude that possibility.
100   if (isa<FPMathOperator>(BO))
101     if (!BO->hasNoSignedZeros() &&
102         !cannotBeNegativeZero(Y, 0,
103                               IC.getSimplifyQuery().getWithInstruction(&Sel)))
104       return nullptr;
105 
106   // BO = binop Y, X
107   // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
108   // =>
109   // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
110   return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
111 }
112 
113 /// This folds:
114 ///  select (icmp eq (and X, C1)), TC, FC
115 ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
116 /// To something like:
117 ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
118 /// Or:
119 ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
120 /// With some variations depending if FC is larger than TC, or the shift
121 /// isn't needed, or the bit widths don't match.
122 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
123                                 InstCombiner::BuilderTy &Builder) {
124   const APInt *SelTC, *SelFC;
125   if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
126       !match(Sel.getFalseValue(), m_APInt(SelFC)))
127     return nullptr;
128 
129   // If this is a vector select, we need a vector compare.
130   Type *SelType = Sel.getType();
131   if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
132     return nullptr;
133 
134   Value *V;
135   APInt AndMask;
136   bool CreateAnd = false;
137   ICmpInst::Predicate Pred = Cmp->getPredicate();
138   if (ICmpInst::isEquality(Pred)) {
139     if (!match(Cmp->getOperand(1), m_Zero()))
140       return nullptr;
141 
142     V = Cmp->getOperand(0);
143     const APInt *AndRHS;
144     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
145       return nullptr;
146 
147     AndMask = *AndRHS;
148   } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
149                                   Pred, V, AndMask)) {
150     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
151     if (!AndMask.isPowerOf2())
152       return nullptr;
153 
154     CreateAnd = true;
155   } else {
156     return nullptr;
157   }
158 
159   // In general, when both constants are non-zero, we would need an offset to
160   // replace the select. This would require more instructions than we started
161   // with. But there's one special-case that we handle here because it can
162   // simplify/reduce the instructions.
163   APInt TC = *SelTC;
164   APInt FC = *SelFC;
165   if (!TC.isZero() && !FC.isZero()) {
166     // If the select constants differ by exactly one bit and that's the same
167     // bit that is masked and checked by the select condition, the select can
168     // be replaced by bitwise logic to set/clear one bit of the constant result.
169     if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
170       return nullptr;
171     if (CreateAnd) {
172       // If we have to create an 'and', then we must kill the cmp to not
173       // increase the instruction count.
174       if (!Cmp->hasOneUse())
175         return nullptr;
176       V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
177     }
178     bool ExtraBitInTC = TC.ugt(FC);
179     if (Pred == ICmpInst::ICMP_EQ) {
180       // If the masked bit in V is clear, clear or set the bit in the result:
181       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
182       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
183       Constant *C = ConstantInt::get(SelType, TC);
184       return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
185     }
186     if (Pred == ICmpInst::ICMP_NE) {
187       // If the masked bit in V is set, set or clear the bit in the result:
188       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
189       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
190       Constant *C = ConstantInt::get(SelType, FC);
191       return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
192     }
193     llvm_unreachable("Only expecting equality predicates");
194   }
195 
196   // Make sure one of the select arms is a power-of-2.
197   if (!TC.isPowerOf2() && !FC.isPowerOf2())
198     return nullptr;
199 
200   // Determine which shift is needed to transform result of the 'and' into the
201   // desired result.
202   const APInt &ValC = !TC.isZero() ? TC : FC;
203   unsigned ValZeros = ValC.logBase2();
204   unsigned AndZeros = AndMask.logBase2();
205   bool ShouldNotVal = !TC.isZero();
206   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
207 
208   // If we would need to create an 'and' + 'shift' + 'xor' to replace a 'select'
209   // + 'icmp', then this transformation would result in more instructions and
210   // potentially interfere with other folding.
211   if (CreateAnd && ShouldNotVal && ValZeros != AndZeros)
212     return nullptr;
213 
214   // Insert the 'and' instruction on the input to the truncate.
215   if (CreateAnd)
216     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
217 
218   // If types don't match, we can still convert the select by introducing a zext
219   // or a trunc of the 'and'.
220   if (ValZeros > AndZeros) {
221     V = Builder.CreateZExtOrTrunc(V, SelType);
222     V = Builder.CreateShl(V, ValZeros - AndZeros);
223   } else if (ValZeros < AndZeros) {
224     V = Builder.CreateLShr(V, AndZeros - ValZeros);
225     V = Builder.CreateZExtOrTrunc(V, SelType);
226   } else {
227     V = Builder.CreateZExtOrTrunc(V, SelType);
228   }
229 
230   // Okay, now we know that everything is set up, we just don't know whether we
231   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
232   if (ShouldNotVal)
233     V = Builder.CreateXor(V, ValC);
234 
235   return V;
236 }
237 
238 /// We want to turn code that looks like this:
239 ///   %C = or %A, %B
240 ///   %D = select %cond, %C, %A
241 /// into:
242 ///   %C = select %cond, %B, 0
243 ///   %D = or %A, %C
244 ///
245 /// Assuming that the specified instruction is an operand to the select, return
246 /// a bitmask indicating which operands of this instruction are foldable if they
247 /// equal the other incoming value of the select.
248 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
249   switch (I->getOpcode()) {
250   case Instruction::Add:
251   case Instruction::FAdd:
252   case Instruction::Mul:
253   case Instruction::FMul:
254   case Instruction::And:
255   case Instruction::Or:
256   case Instruction::Xor:
257     return 3;              // Can fold through either operand.
258   case Instruction::Sub:   // Can only fold on the amount subtracted.
259   case Instruction::FSub:
260   case Instruction::FDiv:  // Can only fold on the divisor amount.
261   case Instruction::Shl:   // Can only fold on the shift amount.
262   case Instruction::LShr:
263   case Instruction::AShr:
264     return 1;
265   default:
266     return 0;              // Cannot fold
267   }
268 }
269 
270 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
271 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI,
272                                               Instruction *FI) {
273   // Don't break up min/max patterns. The hasOneUse checks below prevent that
274   // for most cases, but vector min/max with bitcasts can be transformed. If the
275   // one-use restrictions are eased for other patterns, we still don't want to
276   // obfuscate min/max.
277   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
278        match(&SI, m_SMax(m_Value(), m_Value())) ||
279        match(&SI, m_UMin(m_Value(), m_Value())) ||
280        match(&SI, m_UMax(m_Value(), m_Value()))))
281     return nullptr;
282 
283   // If this is a cast from the same type, merge.
284   Value *Cond = SI.getCondition();
285   Type *CondTy = Cond->getType();
286   if (TI->getNumOperands() == 1 && TI->isCast()) {
287     Type *FIOpndTy = FI->getOperand(0)->getType();
288     if (TI->getOperand(0)->getType() != FIOpndTy)
289       return nullptr;
290 
291     // The select condition may be a vector. We may only change the operand
292     // type if the vector width remains the same (and matches the condition).
293     if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
294       if (!FIOpndTy->isVectorTy() ||
295           CondVTy->getElementCount() !=
296               cast<VectorType>(FIOpndTy)->getElementCount())
297         return nullptr;
298 
299       // TODO: If the backend knew how to deal with casts better, we could
300       // remove this limitation. For now, there's too much potential to create
301       // worse codegen by promoting the select ahead of size-altering casts
302       // (PR28160).
303       //
304       // Note that ValueTracking's matchSelectPattern() looks through casts
305       // without checking 'hasOneUse' when it matches min/max patterns, so this
306       // transform may end up happening anyway.
307       if (TI->getOpcode() != Instruction::BitCast &&
308           (!TI->hasOneUse() || !FI->hasOneUse()))
309         return nullptr;
310     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
311       // TODO: The one-use restrictions for a scalar select could be eased if
312       // the fold of a select in visitLoadInst() was enhanced to match a pattern
313       // that includes a cast.
314       return nullptr;
315     }
316 
317     // Fold this by inserting a select from the input values.
318     Value *NewSI =
319         Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
320                              SI.getName() + ".v", &SI);
321     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
322                             TI->getType());
323   }
324 
325   Value *OtherOpT, *OtherOpF;
326   bool MatchIsOpZero;
327   auto getCommonOp = [&](Instruction *TI, Instruction *FI, bool Commute,
328                          bool Swapped = false) -> Value * {
329     assert(!(Commute && Swapped) &&
330            "Commute and Swapped can't set at the same time");
331     if (!Swapped) {
332       if (TI->getOperand(0) == FI->getOperand(0)) {
333         OtherOpT = TI->getOperand(1);
334         OtherOpF = FI->getOperand(1);
335         MatchIsOpZero = true;
336         return TI->getOperand(0);
337       } else if (TI->getOperand(1) == FI->getOperand(1)) {
338         OtherOpT = TI->getOperand(0);
339         OtherOpF = FI->getOperand(0);
340         MatchIsOpZero = false;
341         return TI->getOperand(1);
342       }
343     }
344 
345     if (!Commute && !Swapped)
346       return nullptr;
347 
348     // If we are allowing commute or swap of operands, then
349     // allow a cross-operand match. In that case, MatchIsOpZero
350     // means that TI's operand 0 (FI's operand 1) is the common op.
351     if (TI->getOperand(0) == FI->getOperand(1)) {
352       OtherOpT = TI->getOperand(1);
353       OtherOpF = FI->getOperand(0);
354       MatchIsOpZero = true;
355       return TI->getOperand(0);
356     } else if (TI->getOperand(1) == FI->getOperand(0)) {
357       OtherOpT = TI->getOperand(0);
358       OtherOpF = FI->getOperand(1);
359       MatchIsOpZero = false;
360       return TI->getOperand(1);
361     }
362     return nullptr;
363   };
364 
365   if (TI->hasOneUse() || FI->hasOneUse()) {
366     // Cond ? -X : -Y --> -(Cond ? X : Y)
367     Value *X, *Y;
368     if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y)))) {
369       // Intersect FMF from the fneg instructions and union those with the
370       // select.
371       FastMathFlags FMF = TI->getFastMathFlags();
372       FMF &= FI->getFastMathFlags();
373       FMF |= SI.getFastMathFlags();
374       Value *NewSel =
375           Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
376       if (auto *NewSelI = dyn_cast<Instruction>(NewSel))
377         NewSelI->setFastMathFlags(FMF);
378       Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel);
379       NewFNeg->setFastMathFlags(FMF);
380       return NewFNeg;
381     }
382 
383     // Min/max intrinsic with a common operand can have the common operand
384     // pulled after the select. This is the same transform as below for binops,
385     // but specialized for intrinsic matching and without the restrictive uses
386     // clause.
387     auto *TII = dyn_cast<IntrinsicInst>(TI);
388     auto *FII = dyn_cast<IntrinsicInst>(FI);
389     if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID()) {
390       if (match(TII, m_MaxOrMin(m_Value(), m_Value()))) {
391         if (Value *MatchOp = getCommonOp(TI, FI, true)) {
392           Value *NewSel =
393               Builder.CreateSelect(Cond, OtherOpT, OtherOpF, "minmaxop", &SI);
394           return CallInst::Create(TII->getCalledFunction(), {NewSel, MatchOp});
395         }
396       }
397 
398       // select c, (ldexp v, e0), (ldexp v, e1) -> ldexp v, (select c, e0, e1)
399       // select c, (ldexp v0, e), (ldexp v1, e) -> ldexp (select c, v0, v1), e
400       //
401       // select c, (ldexp v0, e0), (ldexp v1, e1) ->
402       //     ldexp (select c, v0, v1), (select c, e0, e1)
403       if (TII->getIntrinsicID() == Intrinsic::ldexp) {
404         Value *LdexpVal0 = TII->getArgOperand(0);
405         Value *LdexpExp0 = TII->getArgOperand(1);
406         Value *LdexpVal1 = FII->getArgOperand(0);
407         Value *LdexpExp1 = FII->getArgOperand(1);
408         if (LdexpExp0->getType() == LdexpExp1->getType()) {
409           FPMathOperator *SelectFPOp = cast<FPMathOperator>(&SI);
410           FastMathFlags FMF = cast<FPMathOperator>(TII)->getFastMathFlags();
411           FMF &= cast<FPMathOperator>(FII)->getFastMathFlags();
412           FMF |= SelectFPOp->getFastMathFlags();
413 
414           Value *SelectVal = Builder.CreateSelect(Cond, LdexpVal0, LdexpVal1);
415           Value *SelectExp = Builder.CreateSelect(Cond, LdexpExp0, LdexpExp1);
416 
417           CallInst *NewLdexp = Builder.CreateIntrinsic(
418               TII->getType(), Intrinsic::ldexp, {SelectVal, SelectExp});
419           NewLdexp->setFastMathFlags(FMF);
420           return replaceInstUsesWith(SI, NewLdexp);
421         }
422       }
423     }
424 
425     // icmp with a common operand also can have the common operand
426     // pulled after the select.
427     ICmpInst::Predicate TPred, FPred;
428     if (match(TI, m_ICmp(TPred, m_Value(), m_Value())) &&
429         match(FI, m_ICmp(FPred, m_Value(), m_Value()))) {
430       if (TPred == FPred || TPred == CmpInst::getSwappedPredicate(FPred)) {
431         bool Swapped = TPred != FPred;
432         if (Value *MatchOp =
433                 getCommonOp(TI, FI, ICmpInst::isEquality(TPred), Swapped)) {
434           Value *NewSel = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
435                                                SI.getName() + ".v", &SI);
436           return new ICmpInst(
437               MatchIsOpZero ? TPred : CmpInst::getSwappedPredicate(TPred),
438               MatchOp, NewSel);
439         }
440       }
441     }
442   }
443 
444   // Only handle binary operators (including two-operand getelementptr) with
445   // one-use here. As with the cast case above, it may be possible to relax the
446   // one-use constraint, but that needs be examined carefully since it may not
447   // reduce the total number of instructions.
448   if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
449       !TI->isSameOperationAs(FI) ||
450       (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
451       !TI->hasOneUse() || !FI->hasOneUse())
452     return nullptr;
453 
454   // Figure out if the operations have any operands in common.
455   Value *MatchOp = getCommonOp(TI, FI, TI->isCommutative());
456   if (!MatchOp)
457     return nullptr;
458 
459   // If the select condition is a vector, the operands of the original select's
460   // operands also must be vectors. This may not be the case for getelementptr
461   // for example.
462   if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
463                                !OtherOpF->getType()->isVectorTy()))
464     return nullptr;
465 
466   // If we are sinking div/rem after a select, we may need to freeze the
467   // condition because div/rem may induce immediate UB with a poison operand.
468   // For example, the following transform is not safe if Cond can ever be poison
469   // because we can replace poison with zero and then we have div-by-zero that
470   // didn't exist in the original code:
471   // Cond ? x/y : x/z --> x / (Cond ? y : z)
472   auto *BO = dyn_cast<BinaryOperator>(TI);
473   if (BO && BO->isIntDivRem() && !isGuaranteedNotToBePoison(Cond)) {
474     // A udiv/urem with a common divisor is safe because UB can only occur with
475     // div-by-zero, and that would be present in the original code.
476     if (BO->getOpcode() == Instruction::SDiv ||
477         BO->getOpcode() == Instruction::SRem || MatchIsOpZero)
478       Cond = Builder.CreateFreeze(Cond);
479   }
480 
481   // If we reach here, they do have operations in common.
482   Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
483                                       SI.getName() + ".v", &SI);
484   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
485   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
486   if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
487     BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
488     NewBO->copyIRFlags(TI);
489     NewBO->andIRFlags(FI);
490     return NewBO;
491   }
492   if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
493     auto *FGEP = cast<GetElementPtrInst>(FI);
494     Type *ElementType = TGEP->getSourceElementType();
495     return GetElementPtrInst::Create(
496         ElementType, Op0, Op1, TGEP->getNoWrapFlags() & FGEP->getNoWrapFlags());
497   }
498   llvm_unreachable("Expected BinaryOperator or GEP");
499   return nullptr;
500 }
501 
502 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
503   if (!C1I.isZero() && !C2I.isZero()) // One side must be zero.
504     return false;
505   return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes();
506 }
507 
508 /// Try to fold the select into one of the operands to allow further
509 /// optimization.
510 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
511                                                 Value *FalseVal) {
512   // See the comment above getSelectFoldableOperands for a description of the
513   // transformation we are doing here.
514   auto TryFoldSelectIntoOp = [&](SelectInst &SI, Value *TrueVal,
515                                  Value *FalseVal,
516                                  bool Swapped) -> Instruction * {
517     auto *TVI = dyn_cast<BinaryOperator>(TrueVal);
518     if (!TVI || !TVI->hasOneUse() || isa<Constant>(FalseVal))
519       return nullptr;
520 
521     unsigned SFO = getSelectFoldableOperands(TVI);
522     unsigned OpToFold = 0;
523     if ((SFO & 1) && FalseVal == TVI->getOperand(0))
524       OpToFold = 1;
525     else if ((SFO & 2) && FalseVal == TVI->getOperand(1))
526       OpToFold = 2;
527 
528     if (!OpToFold)
529       return nullptr;
530 
531     // TODO: We probably ought to revisit cases where the select and FP
532     // instructions have different flags and add tests to ensure the
533     // behaviour is correct.
534     FastMathFlags FMF;
535     if (isa<FPMathOperator>(&SI))
536       FMF = SI.getFastMathFlags();
537     Constant *C = ConstantExpr::getBinOpIdentity(
538         TVI->getOpcode(), TVI->getType(), true, FMF.noSignedZeros());
539     Value *OOp = TVI->getOperand(2 - OpToFold);
540     // Avoid creating select between 2 constants unless it's selecting
541     // between 0, 1 and -1.
542     const APInt *OOpC;
543     bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
544     if (isa<Constant>(OOp) &&
545         (!OOpIsAPInt || !isSelect01(C->getUniqueInteger(), *OOpC)))
546       return nullptr;
547 
548     // If the false value is a NaN then we have that the floating point math
549     // operation in the transformed code may not preserve the exact NaN
550     // bit-pattern -- e.g. `fadd sNaN, 0.0 -> qNaN`.
551     // This makes the transformation incorrect since the original program would
552     // have preserved the exact NaN bit-pattern.
553     // Avoid the folding if the false value might be a NaN.
554     if (isa<FPMathOperator>(&SI) &&
555         !computeKnownFPClass(FalseVal, FMF, fcNan, &SI).isKnownNeverNaN())
556       return nullptr;
557 
558     Value *NewSel = Builder.CreateSelect(SI.getCondition(), Swapped ? C : OOp,
559                                          Swapped ? OOp : C, "", &SI);
560     if (isa<FPMathOperator>(&SI))
561       cast<Instruction>(NewSel)->setFastMathFlags(FMF);
562     NewSel->takeName(TVI);
563     BinaryOperator *BO =
564         BinaryOperator::Create(TVI->getOpcode(), FalseVal, NewSel);
565     BO->copyIRFlags(TVI);
566     return BO;
567   };
568 
569   if (Instruction *R = TryFoldSelectIntoOp(SI, TrueVal, FalseVal, false))
570     return R;
571 
572   if (Instruction *R = TryFoldSelectIntoOp(SI, FalseVal, TrueVal, true))
573     return R;
574 
575   return nullptr;
576 }
577 
578 /// We want to turn:
579 ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
580 /// into:
581 ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
582 /// Note:
583 ///   Z may be 0 if lshr is missing.
584 /// Worst-case scenario is that we will replace 5 instructions with 5 different
585 /// instructions, but we got rid of select.
586 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
587                                          Value *TVal, Value *FVal,
588                                          InstCombiner::BuilderTy &Builder) {
589   if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
590         Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
591         match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
592     return nullptr;
593 
594   // The TrueVal has general form of:  and %B, 1
595   Value *B;
596   if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
597     return nullptr;
598 
599   // Where %B may be optionally shifted:  lshr %X, %Z.
600   Value *X, *Z;
601   const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
602 
603   // The shift must be valid.
604   // TODO: This restricts the fold to constant shift amounts. Is there a way to
605   //       handle variable shifts safely? PR47012
606   if (HasShift &&
607       !match(Z, m_SpecificInt_ICMP(CmpInst::ICMP_ULT,
608                                    APInt(SelType->getScalarSizeInBits(),
609                                          SelType->getScalarSizeInBits()))))
610     return nullptr;
611 
612   if (!HasShift)
613     X = B;
614 
615   Value *Y;
616   if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
617     return nullptr;
618 
619   // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
620   // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
621   Constant *One = ConstantInt::get(SelType, 1);
622   Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
623   Value *FullMask = Builder.CreateOr(Y, MaskB);
624   Value *MaskedX = Builder.CreateAnd(X, FullMask);
625   Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
626   return new ZExtInst(ICmpNeZero, SelType);
627 }
628 
629 /// We want to turn:
630 ///   (select (icmp eq (and X, C1), 0), 0, (shl [nsw/nuw] X, C2));
631 ///   iff C1 is a mask and the number of its leading zeros is equal to C2
632 /// into:
633 ///   shl X, C2
634 static Value *foldSelectICmpAndZeroShl(const ICmpInst *Cmp, Value *TVal,
635                                        Value *FVal,
636                                        InstCombiner::BuilderTy &Builder) {
637   ICmpInst::Predicate Pred;
638   Value *AndVal;
639   if (!match(Cmp, m_ICmp(Pred, m_Value(AndVal), m_Zero())))
640     return nullptr;
641 
642   if (Pred == ICmpInst::ICMP_NE) {
643     Pred = ICmpInst::ICMP_EQ;
644     std::swap(TVal, FVal);
645   }
646 
647   Value *X;
648   const APInt *C2, *C1;
649   if (Pred != ICmpInst::ICMP_EQ ||
650       !match(AndVal, m_And(m_Value(X), m_APInt(C1))) ||
651       !match(TVal, m_Zero()) || !match(FVal, m_Shl(m_Specific(X), m_APInt(C2))))
652     return nullptr;
653 
654   if (!C1->isMask() ||
655       C1->countLeadingZeros() != static_cast<unsigned>(C2->getZExtValue()))
656     return nullptr;
657 
658   auto *FI = dyn_cast<Instruction>(FVal);
659   if (!FI)
660     return nullptr;
661 
662   FI->setHasNoSignedWrap(false);
663   FI->setHasNoUnsignedWrap(false);
664   return FVal;
665 }
666 
667 /// We want to turn:
668 ///   (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
669 ///   (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
670 /// into:
671 ///   ashr (X, Y)
672 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
673                                      Value *FalseVal,
674                                      InstCombiner::BuilderTy &Builder) {
675   ICmpInst::Predicate Pred = IC->getPredicate();
676   Value *CmpLHS = IC->getOperand(0);
677   Value *CmpRHS = IC->getOperand(1);
678   if (!CmpRHS->getType()->isIntOrIntVectorTy())
679     return nullptr;
680 
681   Value *X, *Y;
682   unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
683   if ((Pred != ICmpInst::ICMP_SGT ||
684        !match(CmpRHS,
685               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
686       (Pred != ICmpInst::ICMP_SLT ||
687        !match(CmpRHS,
688               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
689     return nullptr;
690 
691   // Canonicalize so that ashr is in FalseVal.
692   if (Pred == ICmpInst::ICMP_SLT)
693     std::swap(TrueVal, FalseVal);
694 
695   if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
696       match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
697       match(CmpLHS, m_Specific(X))) {
698     const auto *Ashr = cast<Instruction>(FalseVal);
699     // if lshr is not exact and ashr is, this new ashr must not be exact.
700     bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
701     return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
702   }
703 
704   return nullptr;
705 }
706 
707 /// We want to turn:
708 ///   (select (icmp eq (and X, C1), 0), Y, (BinOp Y, C2))
709 /// into:
710 ///   IF C2 u>= C1
711 ///     (BinOp Y, (shl (and X, C1), C3))
712 ///   ELSE
713 ///     (BinOp Y, (lshr (and X, C1), C3))
714 /// iff:
715 ///   0 on the RHS is the identity value (i.e add, xor, shl, etc...)
716 ///   C1 and C2 are both powers of 2
717 /// where:
718 ///   IF C2 u>= C1
719 ///     C3 = Log(C2) - Log(C1)
720 ///   ELSE
721 ///     C3 = Log(C1) - Log(C2)
722 ///
723 /// This transform handles cases where:
724 /// 1. The icmp predicate is inverted
725 /// 2. The select operands are reversed
726 /// 3. The magnitude of C2 and C1 are flipped
727 static Value *foldSelectICmpAndBinOp(const ICmpInst *IC, Value *TrueVal,
728                                   Value *FalseVal,
729                                   InstCombiner::BuilderTy &Builder) {
730   // Only handle integer compares. Also, if this is a vector select, we need a
731   // vector compare.
732   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
733      TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
734     return nullptr;
735 
736   Value *CmpLHS = IC->getOperand(0);
737   Value *CmpRHS = IC->getOperand(1);
738 
739   unsigned C1Log;
740   bool NeedAnd = false;
741   CmpInst::Predicate Pred = IC->getPredicate();
742   if (IC->isEquality()) {
743     if (!match(CmpRHS, m_Zero()))
744       return nullptr;
745 
746     const APInt *C1;
747     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
748       return nullptr;
749 
750     C1Log = C1->logBase2();
751   } else {
752     APInt C1;
753     if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CmpLHS, C1) ||
754         !C1.isPowerOf2())
755       return nullptr;
756 
757     C1Log = C1.logBase2();
758     NeedAnd = true;
759   }
760 
761   Value *Y, *V = CmpLHS;
762   BinaryOperator *BinOp;
763   const APInt *C2;
764   bool NeedXor;
765   if (match(FalseVal, m_BinOp(m_Specific(TrueVal), m_Power2(C2)))) {
766     Y = TrueVal;
767     BinOp = cast<BinaryOperator>(FalseVal);
768     NeedXor = Pred == ICmpInst::ICMP_NE;
769   } else if (match(TrueVal, m_BinOp(m_Specific(FalseVal), m_Power2(C2)))) {
770     Y = FalseVal;
771     BinOp = cast<BinaryOperator>(TrueVal);
772     NeedXor = Pred == ICmpInst::ICMP_EQ;
773   } else {
774     return nullptr;
775   }
776 
777   // Check that 0 on RHS is identity value for this binop.
778   auto *IdentityC =
779       ConstantExpr::getBinOpIdentity(BinOp->getOpcode(), BinOp->getType(),
780                                      /*AllowRHSConstant*/ true);
781   if (IdentityC == nullptr || !IdentityC->isNullValue())
782     return nullptr;
783 
784   unsigned C2Log = C2->logBase2();
785 
786   bool NeedShift = C1Log != C2Log;
787   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
788                        V->getType()->getScalarSizeInBits();
789 
790   // Make sure we don't create more instructions than we save.
791   if ((NeedShift + NeedXor + NeedZExtTrunc + NeedAnd) >
792       (IC->hasOneUse() + BinOp->hasOneUse()))
793     return nullptr;
794 
795   if (NeedAnd) {
796     // Insert the AND instruction on the input to the truncate.
797     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
798     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
799   }
800 
801   if (C2Log > C1Log) {
802     V = Builder.CreateZExtOrTrunc(V, Y->getType());
803     V = Builder.CreateShl(V, C2Log - C1Log);
804   } else if (C1Log > C2Log) {
805     V = Builder.CreateLShr(V, C1Log - C2Log);
806     V = Builder.CreateZExtOrTrunc(V, Y->getType());
807   } else
808     V = Builder.CreateZExtOrTrunc(V, Y->getType());
809 
810   if (NeedXor)
811     V = Builder.CreateXor(V, *C2);
812 
813   return Builder.CreateBinOp(BinOp->getOpcode(), Y, V);
814 }
815 
816 /// Canonicalize a set or clear of a masked set of constant bits to
817 /// select-of-constants form.
818 static Instruction *foldSetClearBits(SelectInst &Sel,
819                                      InstCombiner::BuilderTy &Builder) {
820   Value *Cond = Sel.getCondition();
821   Value *T = Sel.getTrueValue();
822   Value *F = Sel.getFalseValue();
823   Type *Ty = Sel.getType();
824   Value *X;
825   const APInt *NotC, *C;
826 
827   // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C)
828   if (match(T, m_And(m_Value(X), m_APInt(NotC))) &&
829       match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
830     Constant *Zero = ConstantInt::getNullValue(Ty);
831     Constant *OrC = ConstantInt::get(Ty, *C);
832     Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel);
833     return BinaryOperator::CreateOr(T, NewSel);
834   }
835 
836   // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0)
837   if (match(F, m_And(m_Value(X), m_APInt(NotC))) &&
838       match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
839     Constant *Zero = ConstantInt::getNullValue(Ty);
840     Constant *OrC = ConstantInt::get(Ty, *C);
841     Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel);
842     return BinaryOperator::CreateOr(F, NewSel);
843   }
844 
845   return nullptr;
846 }
847 
848 //   select (x == 0), 0, x * y --> freeze(y) * x
849 //   select (y == 0), 0, x * y --> freeze(x) * y
850 //   select (x == 0), undef, x * y --> freeze(y) * x
851 //   select (x == undef), 0, x * y --> freeze(y) * x
852 // Usage of mul instead of 0 will make the result more poisonous,
853 // so the operand that was not checked in the condition should be frozen.
854 // The latter folding is applied only when a constant compared with x is
855 // is a vector consisting of 0 and undefs. If a constant compared with x
856 // is a scalar undefined value or undefined vector then an expression
857 // should be already folded into a constant.
858 static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) {
859   auto *CondVal = SI.getCondition();
860   auto *TrueVal = SI.getTrueValue();
861   auto *FalseVal = SI.getFalseValue();
862   Value *X, *Y;
863   ICmpInst::Predicate Predicate;
864 
865   // Assuming that constant compared with zero is not undef (but it may be
866   // a vector with some undef elements). Otherwise (when a constant is undef)
867   // the select expression should be already simplified.
868   if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) ||
869       !ICmpInst::isEquality(Predicate))
870     return nullptr;
871 
872   if (Predicate == ICmpInst::ICMP_NE)
873     std::swap(TrueVal, FalseVal);
874 
875   // Check that TrueVal is a constant instead of matching it with m_Zero()
876   // to handle the case when it is a scalar undef value or a vector containing
877   // non-zero elements that are masked by undef elements in the compare
878   // constant.
879   auto *TrueValC = dyn_cast<Constant>(TrueVal);
880   if (TrueValC == nullptr ||
881       !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) ||
882       !isa<Instruction>(FalseVal))
883     return nullptr;
884 
885   auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1));
886   auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC);
887   // If X is compared with 0 then TrueVal could be either zero or undef.
888   // m_Zero match vectors containing some undef elements, but for scalars
889   // m_Undef should be used explicitly.
890   if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef()))
891     return nullptr;
892 
893   auto *FalseValI = cast<Instruction>(FalseVal);
894   auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"),
895                                      FalseValI->getIterator());
896   IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY);
897   return IC.replaceInstUsesWith(SI, FalseValI);
898 }
899 
900 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
901 /// There are 8 commuted/swapped variants of this pattern.
902 /// TODO: Also support a - UMIN(a,b) patterns.
903 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
904                                             const Value *TrueVal,
905                                             const Value *FalseVal,
906                                             InstCombiner::BuilderTy &Builder) {
907   ICmpInst::Predicate Pred = ICI->getPredicate();
908   Value *A = ICI->getOperand(0);
909   Value *B = ICI->getOperand(1);
910 
911   // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
912   // (a == 0) ? 0 : a - 1 -> (a != 0) ? a - 1 : 0
913   if (match(TrueVal, m_Zero())) {
914     Pred = ICmpInst::getInversePredicate(Pred);
915     std::swap(TrueVal, FalseVal);
916   }
917 
918   if (!match(FalseVal, m_Zero()))
919     return nullptr;
920 
921   // ugt 0 is canonicalized to ne 0 and requires special handling
922   // (a != 0) ? a + -1 : 0 -> usub.sat(a, 1)
923   if (Pred == ICmpInst::ICMP_NE) {
924     if (match(B, m_Zero()) && match(TrueVal, m_Add(m_Specific(A), m_AllOnes())))
925       return Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A,
926                                            ConstantInt::get(A->getType(), 1));
927     return nullptr;
928   }
929 
930   if (!ICmpInst::isUnsigned(Pred))
931     return nullptr;
932 
933   if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
934     // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
935     std::swap(A, B);
936     Pred = ICmpInst::getSwappedPredicate(Pred);
937   }
938 
939   assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
940          "Unexpected isUnsigned predicate!");
941 
942   // Ensure the sub is of the form:
943   //  (a > b) ? a - b : 0 -> usub.sat(a, b)
944   //  (a > b) ? b - a : 0 -> -usub.sat(a, b)
945   // Checking for both a-b and a+(-b) as a constant.
946   bool IsNegative = false;
947   const APInt *C;
948   if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
949       (match(A, m_APInt(C)) &&
950        match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
951     IsNegative = true;
952   else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
953            !(match(B, m_APInt(C)) &&
954              match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
955     return nullptr;
956 
957   // If we are adding a negate and the sub and icmp are used anywhere else, we
958   // would end up with more instructions.
959   if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
960     return nullptr;
961 
962   // (a > b) ? a - b : 0 -> usub.sat(a, b)
963   // (a > b) ? b - a : 0 -> -usub.sat(a, b)
964   Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
965   if (IsNegative)
966     Result = Builder.CreateNeg(Result);
967   return Result;
968 }
969 
970 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
971                                        InstCombiner::BuilderTy &Builder) {
972   if (!Cmp->hasOneUse())
973     return nullptr;
974 
975   // Match unsigned saturated add with constant.
976   Value *Cmp0 = Cmp->getOperand(0);
977   Value *Cmp1 = Cmp->getOperand(1);
978   ICmpInst::Predicate Pred = Cmp->getPredicate();
979   Value *X;
980   const APInt *C, *CmpC;
981   if (Pred == ICmpInst::ICMP_ULT &&
982       match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
983       match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
984     // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
985     return Builder.CreateBinaryIntrinsic(
986         Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
987   }
988 
989   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
990   // There are 8 commuted variants.
991   // Canonicalize -1 (saturated result) to true value of the select.
992   if (match(FVal, m_AllOnes())) {
993     std::swap(TVal, FVal);
994     Pred = CmpInst::getInversePredicate(Pred);
995   }
996   if (!match(TVal, m_AllOnes()))
997     return nullptr;
998 
999   // Canonicalize predicate to less-than or less-or-equal-than.
1000   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
1001     std::swap(Cmp0, Cmp1);
1002     Pred = CmpInst::getSwappedPredicate(Pred);
1003   }
1004   if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE)
1005     return nullptr;
1006 
1007   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
1008   // Strictness of the comparison is irrelevant.
1009   Value *Y;
1010   if (match(Cmp0, m_Not(m_Value(X))) &&
1011       match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
1012     // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
1013     // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
1014     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
1015   }
1016   // The 'not' op may be included in the sum but not the compare.
1017   // Strictness of the comparison is irrelevant.
1018   X = Cmp0;
1019   Y = Cmp1;
1020   if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
1021     // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
1022     // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
1023     BinaryOperator *BO = cast<BinaryOperator>(FVal);
1024     return Builder.CreateBinaryIntrinsic(
1025         Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
1026   }
1027   // The overflow may be detected via the add wrapping round.
1028   // This is only valid for strict comparison!
1029   if (Pred == ICmpInst::ICMP_ULT &&
1030       match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
1031       match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
1032     // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
1033     // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
1034     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
1035   }
1036 
1037   return nullptr;
1038 }
1039 
1040 /// Try to match patterns with select and subtract as absolute difference.
1041 static Value *foldAbsDiff(ICmpInst *Cmp, Value *TVal, Value *FVal,
1042                           InstCombiner::BuilderTy &Builder) {
1043   auto *TI = dyn_cast<Instruction>(TVal);
1044   auto *FI = dyn_cast<Instruction>(FVal);
1045   if (!TI || !FI)
1046     return nullptr;
1047 
1048   // Normalize predicate to gt/lt rather than ge/le.
1049   ICmpInst::Predicate Pred = Cmp->getStrictPredicate();
1050   Value *A = Cmp->getOperand(0);
1051   Value *B = Cmp->getOperand(1);
1052 
1053   // Normalize "A - B" as the true value of the select.
1054   if (match(FI, m_Sub(m_Specific(A), m_Specific(B)))) {
1055     std::swap(FI, TI);
1056     Pred = ICmpInst::getSwappedPredicate(Pred);
1057   }
1058 
1059   // With any pair of no-wrap subtracts:
1060   // (A > B) ? (A - B) : (B - A) --> abs(A - B)
1061   if (Pred == CmpInst::ICMP_SGT &&
1062       match(TI, m_Sub(m_Specific(A), m_Specific(B))) &&
1063       match(FI, m_Sub(m_Specific(B), m_Specific(A))) &&
1064       (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap()) &&
1065       (FI->hasNoSignedWrap() || FI->hasNoUnsignedWrap())) {
1066     // The remaining subtract is not "nuw" any more.
1067     // If there's one use of the subtract (no other use than the use we are
1068     // about to replace), then we know that the sub is "nsw" in this context
1069     // even if it was only "nuw" before. If there's another use, then we can't
1070     // add "nsw" to the existing instruction because it may not be safe in the
1071     // other user's context.
1072     TI->setHasNoUnsignedWrap(false);
1073     if (!TI->hasNoSignedWrap())
1074       TI->setHasNoSignedWrap(TI->hasOneUse());
1075     return Builder.CreateBinaryIntrinsic(Intrinsic::abs, TI, Builder.getTrue());
1076   }
1077 
1078   return nullptr;
1079 }
1080 
1081 /// Fold the following code sequence:
1082 /// \code
1083 ///   int a = ctlz(x & -x);
1084 //    x ? 31 - a : a;
1085 //    // or
1086 //    x ? 31 - a : 32;
1087 /// \code
1088 ///
1089 /// into:
1090 ///   cttz(x)
1091 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
1092                                          Value *FalseVal,
1093                                          InstCombiner::BuilderTy &Builder) {
1094   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
1095   if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
1096     return nullptr;
1097 
1098   if (ICI->getPredicate() == ICmpInst::ICMP_NE)
1099     std::swap(TrueVal, FalseVal);
1100 
1101   Value *Ctlz;
1102   if (!match(FalseVal,
1103              m_Xor(m_Value(Ctlz), m_SpecificInt(BitWidth - 1))))
1104     return nullptr;
1105 
1106   if (!match(Ctlz, m_Intrinsic<Intrinsic::ctlz>()))
1107     return nullptr;
1108 
1109   if (TrueVal != Ctlz && !match(TrueVal, m_SpecificInt(BitWidth)))
1110     return nullptr;
1111 
1112   Value *X = ICI->getOperand(0);
1113   auto *II = cast<IntrinsicInst>(Ctlz);
1114   if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
1115     return nullptr;
1116 
1117   Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
1118                                           II->getType());
1119   return CallInst::Create(F, {X, II->getArgOperand(1)});
1120 }
1121 
1122 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
1123 /// call to cttz/ctlz with flag 'is_zero_poison' cleared.
1124 ///
1125 /// For example, we can fold the following code sequence:
1126 /// \code
1127 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
1128 ///   %1 = icmp ne i32 %x, 0
1129 ///   %2 = select i1 %1, i32 %0, i32 32
1130 /// \code
1131 ///
1132 /// into:
1133 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
1134 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
1135                                  InstCombinerImpl &IC) {
1136   ICmpInst::Predicate Pred = ICI->getPredicate();
1137   Value *CmpLHS = ICI->getOperand(0);
1138   Value *CmpRHS = ICI->getOperand(1);
1139 
1140   // Check if the select condition compares a value for equality.
1141   if (!ICI->isEquality())
1142     return nullptr;
1143 
1144   Value *SelectArg = FalseVal;
1145   Value *ValueOnZero = TrueVal;
1146   if (Pred == ICmpInst::ICMP_NE)
1147     std::swap(SelectArg, ValueOnZero);
1148 
1149   // Skip zero extend/truncate.
1150   Value *Count = nullptr;
1151   if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
1152       !match(SelectArg, m_Trunc(m_Value(Count))))
1153     Count = SelectArg;
1154 
1155   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
1156   // input to the cttz/ctlz is used as LHS for the compare instruction.
1157   Value *X;
1158   if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Value(X))) &&
1159       !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Value(X))))
1160     return nullptr;
1161 
1162   // (X == 0) ? BitWidth : ctz(X)
1163   // (X == -1) ? BitWidth : ctz(~X)
1164   if ((X != CmpLHS || !match(CmpRHS, m_Zero())) &&
1165       (!match(X, m_Not(m_Specific(CmpLHS))) || !match(CmpRHS, m_AllOnes())))
1166     return nullptr;
1167 
1168   IntrinsicInst *II = cast<IntrinsicInst>(Count);
1169 
1170   // Check if the value propagated on zero is a constant number equal to the
1171   // sizeof in bits of 'Count'.
1172   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
1173   if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
1174     // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from
1175     // true to false on this flag, so we can replace it for all users.
1176     II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
1177     // A range annotation on the intrinsic may no longer be valid.
1178     II->dropPoisonGeneratingAnnotations();
1179     IC.addToWorklist(II);
1180     return SelectArg;
1181   }
1182 
1183   // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional
1184   // zext/trunc) have one use (ending at the select), the cttz/ctlz result will
1185   // not be used if the input is zero. Relax to 'zero is poison' for that case.
1186   if (II->hasOneUse() && SelectArg->hasOneUse() &&
1187       !match(II->getArgOperand(1), m_One()))
1188     II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
1189 
1190   return nullptr;
1191 }
1192 
1193 static Value *canonicalizeSPF(ICmpInst &Cmp, Value *TrueVal, Value *FalseVal,
1194                               InstCombinerImpl &IC) {
1195   Value *LHS, *RHS;
1196   // TODO: What to do with pointer min/max patterns?
1197   if (!TrueVal->getType()->isIntOrIntVectorTy())
1198     return nullptr;
1199 
1200   SelectPatternFlavor SPF =
1201       matchDecomposedSelectPattern(&Cmp, TrueVal, FalseVal, LHS, RHS).Flavor;
1202   if (SPF == SelectPatternFlavor::SPF_ABS ||
1203       SPF == SelectPatternFlavor::SPF_NABS) {
1204     if (!Cmp.hasOneUse() && !RHS->hasOneUse())
1205       return nullptr; // TODO: Relax this restriction.
1206 
1207     // Note that NSW flag can only be propagated for normal, non-negated abs!
1208     bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS &&
1209                           match(RHS, m_NSWNeg(m_Specific(LHS)));
1210     Constant *IntMinIsPoisonC =
1211         ConstantInt::get(Type::getInt1Ty(Cmp.getContext()), IntMinIsPoison);
1212     Value *Abs =
1213         IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC);
1214 
1215     if (SPF == SelectPatternFlavor::SPF_NABS)
1216       return IC.Builder.CreateNeg(Abs); // Always without NSW flag!
1217     return Abs;
1218   }
1219 
1220   if (SelectPatternResult::isMinOrMax(SPF)) {
1221     Intrinsic::ID IntrinsicID;
1222     switch (SPF) {
1223     case SelectPatternFlavor::SPF_UMIN:
1224       IntrinsicID = Intrinsic::umin;
1225       break;
1226     case SelectPatternFlavor::SPF_UMAX:
1227       IntrinsicID = Intrinsic::umax;
1228       break;
1229     case SelectPatternFlavor::SPF_SMIN:
1230       IntrinsicID = Intrinsic::smin;
1231       break;
1232     case SelectPatternFlavor::SPF_SMAX:
1233       IntrinsicID = Intrinsic::smax;
1234       break;
1235     default:
1236       llvm_unreachable("Unexpected SPF");
1237     }
1238     return IC.Builder.CreateBinaryIntrinsic(IntrinsicID, LHS, RHS);
1239   }
1240 
1241   return nullptr;
1242 }
1243 
1244 bool InstCombinerImpl::replaceInInstruction(Value *V, Value *Old, Value *New,
1245                                             unsigned Depth) {
1246   // Conservatively limit replacement to two instructions upwards.
1247   if (Depth == 2)
1248     return false;
1249 
1250   assert(!isa<Constant>(Old) && "Only replace non-constant values");
1251 
1252   auto *I = dyn_cast<Instruction>(V);
1253   if (!I || !I->hasOneUse() ||
1254       !isSafeToSpeculativelyExecuteWithVariableReplaced(I))
1255     return false;
1256 
1257   bool Changed = false;
1258   for (Use &U : I->operands()) {
1259     if (U == Old) {
1260       replaceUse(U, New);
1261       Worklist.add(I);
1262       Changed = true;
1263     } else {
1264       Changed |= replaceInInstruction(U, Old, New, Depth + 1);
1265     }
1266   }
1267   return Changed;
1268 }
1269 
1270 /// If we have a select with an equality comparison, then we know the value in
1271 /// one of the arms of the select. See if substituting this value into an arm
1272 /// and simplifying the result yields the same value as the other arm.
1273 ///
1274 /// To make this transform safe, we must drop poison-generating flags
1275 /// (nsw, etc) if we simplified to a binop because the select may be guarding
1276 /// that poison from propagating. If the existing binop already had no
1277 /// poison-generating flags, then this transform can be done by instsimplify.
1278 ///
1279 /// Consider:
1280 ///   %cmp = icmp eq i32 %x, 2147483647
1281 ///   %add = add nsw i32 %x, 1
1282 ///   %sel = select i1 %cmp, i32 -2147483648, i32 %add
1283 ///
1284 /// We can't replace %sel with %add unless we strip away the flags.
1285 /// TODO: Wrapping flags could be preserved in some cases with better analysis.
1286 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel,
1287                                                           ICmpInst &Cmp) {
1288   if (!Cmp.isEquality())
1289     return nullptr;
1290 
1291   // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1292   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1293   bool Swapped = false;
1294   if (Cmp.getPredicate() == ICmpInst::ICMP_NE) {
1295     std::swap(TrueVal, FalseVal);
1296     Swapped = true;
1297   }
1298 
1299   Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1300   auto ReplaceOldOpWithNewOp = [&](Value *OldOp,
1301                                    Value *NewOp) -> Instruction * {
1302     // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand.
1303     // Take care to avoid replacing X == Y ? X : Z with X == Y ? Y : Z, as that
1304     // would lead to an infinite replacement cycle.
1305     // If we will be able to evaluate f(Y) to a constant, we can allow undef,
1306     // otherwise Y cannot be undef as we might pick different values for undef
1307     // in the icmp and in f(Y).
1308     if (TrueVal == OldOp)
1309       return nullptr;
1310 
1311     if (Value *V = simplifyWithOpReplaced(TrueVal, OldOp, NewOp, SQ,
1312                                           /* AllowRefinement=*/true)) {
1313       // Need some guarantees about the new simplified op to ensure we don't inf
1314       // loop.
1315       // If we simplify to a constant, replace if we aren't creating new undef.
1316       if (match(V, m_ImmConstant()) &&
1317           isGuaranteedNotToBeUndef(V, SQ.AC, &Sel, &DT))
1318         return replaceOperand(Sel, Swapped ? 2 : 1, V);
1319 
1320       // If NewOp is a constant and OldOp is not replace iff NewOp doesn't
1321       // contain and undef elements.
1322       if (match(NewOp, m_ImmConstant()) || NewOp == V) {
1323         if (isGuaranteedNotToBeUndef(NewOp, SQ.AC, &Sel, &DT))
1324           return replaceOperand(Sel, Swapped ? 2 : 1, V);
1325         return nullptr;
1326       }
1327     }
1328 
1329     // Even if TrueVal does not simplify, we can directly replace a use of
1330     // CmpLHS with CmpRHS, as long as the instruction is not used anywhere
1331     // else and is safe to speculatively execute (we may end up executing it
1332     // with different operands, which should not cause side-effects or trigger
1333     // undefined behavior). Only do this if CmpRHS is a constant, as
1334     // profitability is not clear for other cases.
1335     // FIXME: Support vectors.
1336     if (OldOp == CmpLHS && match(NewOp, m_ImmConstant()) &&
1337         !match(OldOp, m_Constant()) && !Cmp.getType()->isVectorTy() &&
1338         isGuaranteedNotToBeUndef(NewOp, SQ.AC, &Sel, &DT))
1339       if (replaceInInstruction(TrueVal, OldOp, NewOp))
1340         return &Sel;
1341     return nullptr;
1342   };
1343 
1344   if (Instruction *R = ReplaceOldOpWithNewOp(CmpLHS, CmpRHS))
1345     return R;
1346   if (Instruction *R = ReplaceOldOpWithNewOp(CmpRHS, CmpLHS))
1347     return R;
1348 
1349   auto *FalseInst = dyn_cast<Instruction>(FalseVal);
1350   if (!FalseInst)
1351     return nullptr;
1352 
1353   // InstSimplify already performed this fold if it was possible subject to
1354   // current poison-generating flags. Check whether dropping poison-generating
1355   // flags enables the transform.
1356 
1357   // Try each equivalence substitution possibility.
1358   // We have an 'EQ' comparison, so the select's false value will propagate.
1359   // Example:
1360   // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1361   SmallVector<Instruction *> DropFlags;
1362   if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ,
1363                              /* AllowRefinement */ false,
1364                              &DropFlags) == TrueVal ||
1365       simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ,
1366                              /* AllowRefinement */ false,
1367                              &DropFlags) == TrueVal) {
1368     for (Instruction *I : DropFlags) {
1369       I->dropPoisonGeneratingAnnotations();
1370       Worklist.add(I);
1371     }
1372 
1373     return replaceInstUsesWith(Sel, FalseVal);
1374   }
1375 
1376   return nullptr;
1377 }
1378 
1379 // See if this is a pattern like:
1380 //   %old_cmp1 = icmp slt i32 %x, C2
1381 //   %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1382 //   %old_x_offseted = add i32 %x, C1
1383 //   %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1384 //   %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1385 // This can be rewritten as more canonical pattern:
1386 //   %new_cmp1 = icmp slt i32 %x, -C1
1387 //   %new_cmp2 = icmp sge i32 %x, C0-C1
1388 //   %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1389 //   %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1390 // Iff -C1 s<= C2 s<= C0-C1
1391 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1392 //      SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
1393 static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1394                                     InstCombiner::BuilderTy &Builder,
1395                                     InstCombiner &IC) {
1396   Value *X = Sel0.getTrueValue();
1397   Value *Sel1 = Sel0.getFalseValue();
1398 
1399   // First match the condition of the outermost select.
1400   // Said condition must be one-use.
1401   if (!Cmp0.hasOneUse())
1402     return nullptr;
1403   ICmpInst::Predicate Pred0 = Cmp0.getPredicate();
1404   Value *Cmp00 = Cmp0.getOperand(0);
1405   Constant *C0;
1406   if (!match(Cmp0.getOperand(1),
1407              m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
1408     return nullptr;
1409 
1410   if (!isa<SelectInst>(Sel1)) {
1411     Pred0 = ICmpInst::getInversePredicate(Pred0);
1412     std::swap(X, Sel1);
1413   }
1414 
1415   // Canonicalize Cmp0 into ult or uge.
1416   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1417   switch (Pred0) {
1418   case ICmpInst::Predicate::ICMP_ULT:
1419   case ICmpInst::Predicate::ICMP_UGE:
1420     // Although icmp ult %x, 0 is an unusual thing to try and should generally
1421     // have been simplified, it does not verify with undef inputs so ensure we
1422     // are not in a strange state.
1423     if (!match(C0, m_SpecificInt_ICMP(
1424                        ICmpInst::Predicate::ICMP_NE,
1425                        APInt::getZero(C0->getType()->getScalarSizeInBits()))))
1426       return nullptr;
1427     break; // Great!
1428   case ICmpInst::Predicate::ICMP_ULE:
1429   case ICmpInst::Predicate::ICMP_UGT:
1430     // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment
1431     // C0, which again means it must not have any all-ones elements.
1432     if (!match(C0,
1433                m_SpecificInt_ICMP(
1434                    ICmpInst::Predicate::ICMP_NE,
1435                    APInt::getAllOnes(C0->getType()->getScalarSizeInBits()))))
1436       return nullptr; // Can't do, have all-ones element[s].
1437     Pred0 = ICmpInst::getFlippedStrictnessPredicate(Pred0);
1438     C0 = InstCombiner::AddOne(C0);
1439     break;
1440   default:
1441     return nullptr; // Unknown predicate.
1442   }
1443 
1444   // Now that we've canonicalized the ICmp, we know the X we expect;
1445   // the select in other hand should be one-use.
1446   if (!Sel1->hasOneUse())
1447     return nullptr;
1448 
1449   // If the types do not match, look through any truncs to the underlying
1450   // instruction.
1451   if (Cmp00->getType() != X->getType() && X->hasOneUse())
1452     match(X, m_TruncOrSelf(m_Value(X)));
1453 
1454   // We now can finish matching the condition of the outermost select:
1455   // it should either be the X itself, or an addition of some constant to X.
1456   Constant *C1;
1457   if (Cmp00 == X)
1458     C1 = ConstantInt::getNullValue(X->getType());
1459   else if (!match(Cmp00,
1460                   m_Add(m_Specific(X),
1461                         m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
1462     return nullptr;
1463 
1464   Value *Cmp1;
1465   ICmpInst::Predicate Pred1;
1466   Constant *C2;
1467   Value *ReplacementLow, *ReplacementHigh;
1468   if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1469                             m_Value(ReplacementHigh))) ||
1470       !match(Cmp1,
1471              m_ICmp(Pred1, m_Specific(X),
1472                     m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
1473     return nullptr;
1474 
1475   if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1476     return nullptr; // Not enough one-use instructions for the fold.
1477   // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1478   //        two comparisons we'll need to build.
1479 
1480   // Canonicalize Cmp1 into the form we expect.
1481   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1482   switch (Pred1) {
1483   case ICmpInst::Predicate::ICMP_SLT:
1484     break;
1485   case ICmpInst::Predicate::ICMP_SLE:
1486     // We'd have to increment C2 by one, and for that it must not have signed
1487     // max element, but then it would have been canonicalized to 'slt' before
1488     // we get here. So we can't do anything useful with 'sle'.
1489     return nullptr;
1490   case ICmpInst::Predicate::ICMP_SGT:
1491     // We want to canonicalize it to 'slt', so we'll need to increment C2,
1492     // which again means it must not have any signed max elements.
1493     if (!match(C2,
1494                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1495                                   APInt::getSignedMaxValue(
1496                                       C2->getType()->getScalarSizeInBits()))))
1497       return nullptr; // Can't do, have signed max element[s].
1498     C2 = InstCombiner::AddOne(C2);
1499     [[fallthrough]];
1500   case ICmpInst::Predicate::ICMP_SGE:
1501     // Also non-canonical, but here we don't need to change C2,
1502     // so we don't have any restrictions on C2, so we can just handle it.
1503     Pred1 = ICmpInst::Predicate::ICMP_SLT;
1504     std::swap(ReplacementLow, ReplacementHigh);
1505     break;
1506   default:
1507     return nullptr; // Unknown predicate.
1508   }
1509   assert(Pred1 == ICmpInst::Predicate::ICMP_SLT &&
1510          "Unexpected predicate type.");
1511 
1512   // The thresholds of this clamp-like pattern.
1513   auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1514   auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1515 
1516   assert((Pred0 == ICmpInst::Predicate::ICMP_ULT ||
1517           Pred0 == ICmpInst::Predicate::ICMP_UGE) &&
1518          "Unexpected predicate type.");
1519   if (Pred0 == ICmpInst::Predicate::ICMP_UGE)
1520     std::swap(ThresholdLowIncl, ThresholdHighExcl);
1521 
1522   // The fold has a precondition 1: C2 s>= ThresholdLow
1523   auto *Precond1 = ConstantFoldCompareInstOperands(
1524       ICmpInst::Predicate::ICMP_SGE, C2, ThresholdLowIncl, IC.getDataLayout());
1525   if (!Precond1 || !match(Precond1, m_One()))
1526     return nullptr;
1527   // The fold has a precondition 2: C2 s<= ThresholdHigh
1528   auto *Precond2 = ConstantFoldCompareInstOperands(
1529       ICmpInst::Predicate::ICMP_SLE, C2, ThresholdHighExcl, IC.getDataLayout());
1530   if (!Precond2 || !match(Precond2, m_One()))
1531     return nullptr;
1532 
1533   // If we are matching from a truncated input, we need to sext the
1534   // ReplacementLow and ReplacementHigh values. Only do the transform if they
1535   // are free to extend due to being constants.
1536   if (X->getType() != Sel0.getType()) {
1537     Constant *LowC, *HighC;
1538     if (!match(ReplacementLow, m_ImmConstant(LowC)) ||
1539         !match(ReplacementHigh, m_ImmConstant(HighC)))
1540       return nullptr;
1541     const DataLayout &DL = Sel0.getDataLayout();
1542     ReplacementLow =
1543         ConstantFoldCastOperand(Instruction::SExt, LowC, X->getType(), DL);
1544     ReplacementHigh =
1545         ConstantFoldCastOperand(Instruction::SExt, HighC, X->getType(), DL);
1546     assert(ReplacementLow && ReplacementHigh &&
1547            "Constant folding of ImmConstant cannot fail");
1548   }
1549 
1550   // All good, finally emit the new pattern.
1551   Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1552   Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1553   Value *MaybeReplacedLow =
1554       Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1555 
1556   // Create the final select. If we looked through a truncate above, we will
1557   // need to retruncate the result.
1558   Value *MaybeReplacedHigh = Builder.CreateSelect(
1559       ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1560   return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType());
1561 }
1562 
1563 // If we have
1564 //  %cmp = icmp [canonical predicate] i32 %x, C0
1565 //  %r = select i1 %cmp, i32 %y, i32 C1
1566 // Where C0 != C1 and %x may be different from %y, see if the constant that we
1567 // will have if we flip the strictness of the predicate (i.e. without changing
1568 // the result) is identical to the C1 in select. If it matches we can change
1569 // original comparison to one with swapped predicate, reuse the constant,
1570 // and swap the hands of select.
1571 static Instruction *
1572 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
1573                                          InstCombinerImpl &IC) {
1574   ICmpInst::Predicate Pred;
1575   Value *X;
1576   Constant *C0;
1577   if (!match(&Cmp, m_OneUse(m_ICmp(
1578                        Pred, m_Value(X),
1579                        m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
1580     return nullptr;
1581 
1582   // If comparison predicate is non-relational, we won't be able to do anything.
1583   if (ICmpInst::isEquality(Pred))
1584     return nullptr;
1585 
1586   // If comparison predicate is non-canonical, then we certainly won't be able
1587   // to make it canonical; canonicalizeCmpWithConstant() already tried.
1588   if (!InstCombiner::isCanonicalPredicate(Pred))
1589     return nullptr;
1590 
1591   // If the [input] type of comparison and select type are different, lets abort
1592   // for now. We could try to compare constants with trunc/[zs]ext though.
1593   if (C0->getType() != Sel.getType())
1594     return nullptr;
1595 
1596   // ULT with 'add' of a constant is canonical. See foldICmpAddConstant().
1597   // FIXME: Are there more magic icmp predicate+constant pairs we must avoid?
1598   //        Or should we just abandon this transform entirely?
1599   if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant())))
1600     return nullptr;
1601 
1602 
1603   Value *SelVal0, *SelVal1; // We do not care which one is from where.
1604   match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
1605   // At least one of these values we are selecting between must be a constant
1606   // else we'll never succeed.
1607   if (!match(SelVal0, m_AnyIntegralConstant()) &&
1608       !match(SelVal1, m_AnyIntegralConstant()))
1609     return nullptr;
1610 
1611   // Does this constant C match any of the `select` values?
1612   auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
1613     return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
1614   };
1615 
1616   // If C0 *already* matches true/false value of select, we are done.
1617   if (MatchesSelectValue(C0))
1618     return nullptr;
1619 
1620   // Check the constant we'd have with flipped-strictness predicate.
1621   auto FlippedStrictness =
1622       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0);
1623   if (!FlippedStrictness)
1624     return nullptr;
1625 
1626   // If said constant doesn't match either, then there is no hope,
1627   if (!MatchesSelectValue(FlippedStrictness->second))
1628     return nullptr;
1629 
1630   // It matched! Lets insert the new comparison just before select.
1631   InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
1632   IC.Builder.SetInsertPoint(&Sel);
1633 
1634   Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
1635   Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
1636                                         Cmp.getName() + ".inv");
1637   IC.replaceOperand(Sel, 0, NewCmp);
1638   Sel.swapValues();
1639   Sel.swapProfMetadata();
1640 
1641   return &Sel;
1642 }
1643 
1644 static Instruction *foldSelectZeroOrOnes(ICmpInst *Cmp, Value *TVal,
1645                                          Value *FVal,
1646                                          InstCombiner::BuilderTy &Builder) {
1647   if (!Cmp->hasOneUse())
1648     return nullptr;
1649 
1650   const APInt *CmpC;
1651   if (!match(Cmp->getOperand(1), m_APIntAllowPoison(CmpC)))
1652     return nullptr;
1653 
1654   // (X u< 2) ? -X : -1 --> sext (X != 0)
1655   Value *X = Cmp->getOperand(0);
1656   if (Cmp->getPredicate() == ICmpInst::ICMP_ULT && *CmpC == 2 &&
1657       match(TVal, m_Neg(m_Specific(X))) && match(FVal, m_AllOnes()))
1658     return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType());
1659 
1660   // (X u> 1) ? -1 : -X --> sext (X != 0)
1661   if (Cmp->getPredicate() == ICmpInst::ICMP_UGT && *CmpC == 1 &&
1662       match(FVal, m_Neg(m_Specific(X))) && match(TVal, m_AllOnes()))
1663     return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType());
1664 
1665   return nullptr;
1666 }
1667 
1668 static Value *foldSelectInstWithICmpConst(SelectInst &SI, ICmpInst *ICI,
1669                                           InstCombiner::BuilderTy &Builder) {
1670   const APInt *CmpC;
1671   Value *V;
1672   CmpInst::Predicate Pred;
1673   if (!match(ICI, m_ICmp(Pred, m_Value(V), m_APInt(CmpC))))
1674     return nullptr;
1675 
1676   // Match clamp away from min/max value as a max/min operation.
1677   Value *TVal = SI.getTrueValue();
1678   Value *FVal = SI.getFalseValue();
1679   if (Pred == ICmpInst::ICMP_EQ && V == FVal) {
1680     // (V == UMIN) ? UMIN+1 : V --> umax(V, UMIN+1)
1681     if (CmpC->isMinValue() && match(TVal, m_SpecificInt(*CmpC + 1)))
1682       return Builder.CreateBinaryIntrinsic(Intrinsic::umax, V, TVal);
1683     // (V == UMAX) ? UMAX-1 : V --> umin(V, UMAX-1)
1684     if (CmpC->isMaxValue() && match(TVal, m_SpecificInt(*CmpC - 1)))
1685       return Builder.CreateBinaryIntrinsic(Intrinsic::umin, V, TVal);
1686     // (V == SMIN) ? SMIN+1 : V --> smax(V, SMIN+1)
1687     if (CmpC->isMinSignedValue() && match(TVal, m_SpecificInt(*CmpC + 1)))
1688       return Builder.CreateBinaryIntrinsic(Intrinsic::smax, V, TVal);
1689     // (V == SMAX) ? SMAX-1 : V --> smin(V, SMAX-1)
1690     if (CmpC->isMaxSignedValue() && match(TVal, m_SpecificInt(*CmpC - 1)))
1691       return Builder.CreateBinaryIntrinsic(Intrinsic::smin, V, TVal);
1692   }
1693 
1694   BinaryOperator *BO;
1695   const APInt *C;
1696   CmpInst::Predicate CPred;
1697   if (match(&SI, m_Select(m_Specific(ICI), m_APInt(C), m_BinOp(BO))))
1698     CPred = ICI->getPredicate();
1699   else if (match(&SI, m_Select(m_Specific(ICI), m_BinOp(BO), m_APInt(C))))
1700     CPred = ICI->getInversePredicate();
1701   else
1702     return nullptr;
1703 
1704   const APInt *BinOpC;
1705   if (!match(BO, m_BinOp(m_Specific(V), m_APInt(BinOpC))))
1706     return nullptr;
1707 
1708   ConstantRange R = ConstantRange::makeExactICmpRegion(CPred, *CmpC)
1709                         .binaryOp(BO->getOpcode(), *BinOpC);
1710   if (R == *C) {
1711     BO->dropPoisonGeneratingFlags();
1712     return BO;
1713   }
1714   return nullptr;
1715 }
1716 
1717 static Instruction *foldSelectICmpEq(SelectInst &SI, ICmpInst *ICI,
1718                                      InstCombinerImpl &IC) {
1719   ICmpInst::Predicate Pred = ICI->getPredicate();
1720   if (!ICmpInst::isEquality(Pred))
1721     return nullptr;
1722 
1723   Value *TrueVal = SI.getTrueValue();
1724   Value *FalseVal = SI.getFalseValue();
1725   Value *CmpLHS = ICI->getOperand(0);
1726   Value *CmpRHS = ICI->getOperand(1);
1727 
1728   if (Pred == ICmpInst::ICMP_NE)
1729     std::swap(TrueVal, FalseVal);
1730 
1731   // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1732   // specific handling for Bitwise operation.
1733   // x&y -> (x|y) ^ (x^y)  or  (x|y) & ~(x^y)
1734   // x|y -> (x&y) | (x^y)  or  (x&y) ^  (x^y)
1735   // x^y -> (x|y) ^ (x&y)  or  (x|y) & ~(x&y)
1736   Value *X, *Y;
1737   if (!match(CmpLHS, m_BitwiseLogic(m_Value(X), m_Value(Y))) ||
1738       !match(TrueVal, m_c_BitwiseLogic(m_Specific(X), m_Specific(Y))))
1739     return nullptr;
1740 
1741   const unsigned AndOps = Instruction::And, OrOps = Instruction::Or,
1742                  XorOps = Instruction::Xor, NoOps = 0;
1743   enum NotMask { None = 0, NotInner, NotRHS };
1744 
1745   auto matchFalseVal = [&](unsigned OuterOpc, unsigned InnerOpc,
1746                            unsigned NotMask) {
1747     auto matchInner = m_c_BinOp(InnerOpc, m_Specific(X), m_Specific(Y));
1748     if (OuterOpc == NoOps)
1749       return match(CmpRHS, m_Zero()) && match(FalseVal, matchInner);
1750 
1751     if (NotMask == NotInner) {
1752       return match(FalseVal, m_c_BinOp(OuterOpc, m_NotForbidPoison(matchInner),
1753                                        m_Specific(CmpRHS)));
1754     } else if (NotMask == NotRHS) {
1755       return match(FalseVal, m_c_BinOp(OuterOpc, matchInner,
1756                                        m_NotForbidPoison(m_Specific(CmpRHS))));
1757     } else {
1758       return match(FalseVal,
1759                    m_c_BinOp(OuterOpc, matchInner, m_Specific(CmpRHS)));
1760     }
1761   };
1762 
1763   // (X&Y)==C ? X|Y : X^Y -> (X^Y)|C : X^Y  or (X^Y)^ C : X^Y
1764   // (X&Y)==C ? X^Y : X|Y -> (X|Y)^C : X|Y  or (X|Y)&~C : X|Y
1765   if (match(CmpLHS, m_And(m_Value(X), m_Value(Y)))) {
1766     if (match(TrueVal, m_c_Or(m_Specific(X), m_Specific(Y)))) {
1767       // (X&Y)==C ? X|Y : (X^Y)|C -> (X^Y)|C : (X^Y)|C -> (X^Y)|C
1768       // (X&Y)==C ? X|Y : (X^Y)^C -> (X^Y)^C : (X^Y)^C -> (X^Y)^C
1769       if (matchFalseVal(OrOps, XorOps, None) ||
1770           matchFalseVal(XorOps, XorOps, None))
1771         return IC.replaceInstUsesWith(SI, FalseVal);
1772     } else if (match(TrueVal, m_c_Xor(m_Specific(X), m_Specific(Y)))) {
1773       // (X&Y)==C ? X^Y : (X|Y)^ C -> (X|Y)^ C : (X|Y)^ C -> (X|Y)^ C
1774       // (X&Y)==C ? X^Y : (X|Y)&~C -> (X|Y)&~C : (X|Y)&~C -> (X|Y)&~C
1775       if (matchFalseVal(XorOps, OrOps, None) ||
1776           matchFalseVal(AndOps, OrOps, NotRHS))
1777         return IC.replaceInstUsesWith(SI, FalseVal);
1778     }
1779   }
1780 
1781   // (X|Y)==C ? X&Y : X^Y -> (X^Y)^C : X^Y  or  ~(X^Y)&C : X^Y
1782   // (X|Y)==C ? X^Y : X&Y -> (X&Y)^C : X&Y  or  ~(X&Y)&C : X&Y
1783   if (match(CmpLHS, m_Or(m_Value(X), m_Value(Y)))) {
1784     if (match(TrueVal, m_c_And(m_Specific(X), m_Specific(Y)))) {
1785       // (X|Y)==C ? X&Y: (X^Y)^C -> (X^Y)^C: (X^Y)^C ->  (X^Y)^C
1786       // (X|Y)==C ? X&Y:~(X^Y)&C ->~(X^Y)&C:~(X^Y)&C -> ~(X^Y)&C
1787       if (matchFalseVal(XorOps, XorOps, None) ||
1788           matchFalseVal(AndOps, XorOps, NotInner))
1789         return IC.replaceInstUsesWith(SI, FalseVal);
1790     } else if (match(TrueVal, m_c_Xor(m_Specific(X), m_Specific(Y)))) {
1791       // (X|Y)==C ? X^Y : (X&Y)^C ->  (X&Y)^C : (X&Y)^C ->  (X&Y)^C
1792       // (X|Y)==C ? X^Y :~(X&Y)&C -> ~(X&Y)&C :~(X&Y)&C -> ~(X&Y)&C
1793       if (matchFalseVal(XorOps, AndOps, None) ||
1794           matchFalseVal(AndOps, AndOps, NotInner))
1795         return IC.replaceInstUsesWith(SI, FalseVal);
1796     }
1797   }
1798 
1799   // (X^Y)==C ? X&Y : X|Y -> (X|Y)^C : X|Y  or (X|Y)&~C : X|Y
1800   // (X^Y)==C ? X|Y : X&Y -> (X&Y)|C : X&Y  or (X&Y)^ C : X&Y
1801   if (match(CmpLHS, m_Xor(m_Value(X), m_Value(Y)))) {
1802     if ((match(TrueVal, m_c_And(m_Specific(X), m_Specific(Y))))) {
1803       // (X^Y)==C ? X&Y : (X|Y)^C -> (X|Y)^C
1804       // (X^Y)==C ? X&Y : (X|Y)&~C -> (X|Y)&~C
1805       if (matchFalseVal(XorOps, OrOps, None) ||
1806           matchFalseVal(AndOps, OrOps, NotRHS))
1807         return IC.replaceInstUsesWith(SI, FalseVal);
1808     } else if (match(TrueVal, m_c_Or(m_Specific(X), m_Specific(Y)))) {
1809       // (X^Y)==C ? (X|Y) : (X&Y)|C -> (X&Y)|C
1810       // (X^Y)==C ? (X|Y) : (X&Y)^C -> (X&Y)^C
1811       if (matchFalseVal(OrOps, AndOps, None) ||
1812           matchFalseVal(XorOps, AndOps, None))
1813         return IC.replaceInstUsesWith(SI, FalseVal);
1814     }
1815   }
1816 
1817   return nullptr;
1818 }
1819 
1820 /// Visit a SelectInst that has an ICmpInst as its first operand.
1821 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI,
1822                                                       ICmpInst *ICI) {
1823   if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI))
1824     return NewSel;
1825 
1826   if (Value *V =
1827           canonicalizeSPF(*ICI, SI.getTrueValue(), SI.getFalseValue(), *this))
1828     return replaceInstUsesWith(SI, V);
1829 
1830   if (Value *V = foldSelectInstWithICmpConst(SI, ICI, Builder))
1831     return replaceInstUsesWith(SI, V);
1832 
1833   if (Value *V = canonicalizeClampLike(SI, *ICI, Builder, *this))
1834     return replaceInstUsesWith(SI, V);
1835 
1836   if (Instruction *NewSel =
1837           tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
1838     return NewSel;
1839 
1840   if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1841     return replaceInstUsesWith(SI, V);
1842 
1843   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1844   bool Changed = false;
1845   Value *TrueVal = SI.getTrueValue();
1846   Value *FalseVal = SI.getFalseValue();
1847   ICmpInst::Predicate Pred = ICI->getPredicate();
1848   Value *CmpLHS = ICI->getOperand(0);
1849   Value *CmpRHS = ICI->getOperand(1);
1850   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS) && !isa<Constant>(CmpLHS)) {
1851     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1852       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1853       replaceOperand(SI, 1, CmpRHS);
1854       Changed = true;
1855     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1856       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1857       replaceOperand(SI, 2, CmpRHS);
1858       Changed = true;
1859     }
1860   }
1861 
1862   if (Instruction *NewSel = foldSelectICmpEq(SI, ICI, *this))
1863     return NewSel;
1864 
1865   // Canonicalize a signbit condition to use zero constant by swapping:
1866   // (CmpLHS > -1) ? TV : FV --> (CmpLHS < 0) ? FV : TV
1867   // To avoid conflicts (infinite loops) with other canonicalizations, this is
1868   // not applied with any constant select arm.
1869   if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes()) &&
1870       !match(TrueVal, m_Constant()) && !match(FalseVal, m_Constant()) &&
1871       ICI->hasOneUse()) {
1872     InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
1873     Builder.SetInsertPoint(&SI);
1874     Value *IsNeg = Builder.CreateIsNeg(CmpLHS, ICI->getName());
1875     replaceOperand(SI, 0, IsNeg);
1876     SI.swapValues();
1877     SI.swapProfMetadata();
1878     return &SI;
1879   }
1880 
1881   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1882   // decomposeBitTestICmp() might help.
1883   if (TrueVal->getType()->isIntOrIntVectorTy()) {
1884     unsigned BitWidth =
1885         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1886     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1887     Value *X;
1888     const APInt *Y, *C;
1889     bool TrueWhenUnset;
1890     bool IsBitTest = false;
1891     if (ICmpInst::isEquality(Pred) &&
1892         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1893         match(CmpRHS, m_Zero())) {
1894       IsBitTest = true;
1895       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1896     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1897       X = CmpLHS;
1898       Y = &MinSignedValue;
1899       IsBitTest = true;
1900       TrueWhenUnset = false;
1901     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1902       X = CmpLHS;
1903       Y = &MinSignedValue;
1904       IsBitTest = true;
1905       TrueWhenUnset = true;
1906     }
1907     if (IsBitTest) {
1908       Value *V = nullptr;
1909       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
1910       if (TrueWhenUnset && TrueVal == X &&
1911           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1912         V = Builder.CreateAnd(X, ~(*Y));
1913       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
1914       else if (!TrueWhenUnset && FalseVal == X &&
1915                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1916         V = Builder.CreateAnd(X, ~(*Y));
1917       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
1918       else if (TrueWhenUnset && FalseVal == X &&
1919                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1920         V = Builder.CreateOr(X, *Y);
1921       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
1922       else if (!TrueWhenUnset && TrueVal == X &&
1923                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1924         V = Builder.CreateOr(X, *Y);
1925 
1926       if (V)
1927         return replaceInstUsesWith(SI, V);
1928     }
1929   }
1930 
1931   if (Instruction *V =
1932           foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1933     return V;
1934 
1935   if (Value *V = foldSelectICmpAndZeroShl(ICI, TrueVal, FalseVal, Builder))
1936     return replaceInstUsesWith(SI, V);
1937 
1938   if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
1939     return V;
1940 
1941   if (Instruction *V = foldSelectZeroOrOnes(ICI, TrueVal, FalseVal, Builder))
1942     return V;
1943 
1944   if (Value *V = foldSelectICmpAndBinOp(ICI, TrueVal, FalseVal, Builder))
1945     return replaceInstUsesWith(SI, V);
1946 
1947   if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1948     return replaceInstUsesWith(SI, V);
1949 
1950   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, *this))
1951     return replaceInstUsesWith(SI, V);
1952 
1953   if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1954     return replaceInstUsesWith(SI, V);
1955 
1956   if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1957     return replaceInstUsesWith(SI, V);
1958 
1959   if (Value *V = foldAbsDiff(ICI, TrueVal, FalseVal, Builder))
1960     return replaceInstUsesWith(SI, V);
1961 
1962   return Changed ? &SI : nullptr;
1963 }
1964 
1965 /// SI is a select whose condition is a PHI node (but the two may be in
1966 /// different blocks). See if the true/false values (V) are live in all of the
1967 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1968 ///
1969 ///   X = phi [ C1, BB1], [C2, BB2]
1970 ///   Y = add
1971 ///   Z = select X, Y, 0
1972 ///
1973 /// because Y is not live in BB1/BB2.
1974 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1975                                                    const SelectInst &SI) {
1976   // If the value is a non-instruction value like a constant or argument, it
1977   // can always be mapped.
1978   const Instruction *I = dyn_cast<Instruction>(V);
1979   if (!I) return true;
1980 
1981   // If V is a PHI node defined in the same block as the condition PHI, we can
1982   // map the arguments.
1983   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1984 
1985   if (const PHINode *VP = dyn_cast<PHINode>(I))
1986     if (VP->getParent() == CondPHI->getParent())
1987       return true;
1988 
1989   // Otherwise, if the PHI and select are defined in the same block and if V is
1990   // defined in a different block, then we can transform it.
1991   if (SI.getParent() == CondPHI->getParent() &&
1992       I->getParent() != CondPHI->getParent())
1993     return true;
1994 
1995   // Otherwise we have a 'hard' case and we can't tell without doing more
1996   // detailed dominator based analysis, punt.
1997   return false;
1998 }
1999 
2000 /// We have an SPF (e.g. a min or max) of an SPF of the form:
2001 ///   SPF2(SPF1(A, B), C)
2002 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner,
2003                                             SelectPatternFlavor SPF1, Value *A,
2004                                             Value *B, Instruction &Outer,
2005                                             SelectPatternFlavor SPF2,
2006                                             Value *C) {
2007   if (Outer.getType() != Inner->getType())
2008     return nullptr;
2009 
2010   if (C == A || C == B) {
2011     // MAX(MAX(A, B), B) -> MAX(A, B)
2012     // MIN(MIN(a, b), a) -> MIN(a, b)
2013     // TODO: This could be done in instsimplify.
2014     if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
2015       return replaceInstUsesWith(Outer, Inner);
2016   }
2017 
2018   return nullptr;
2019 }
2020 
2021 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
2022 /// This is even legal for FP.
2023 static Instruction *foldAddSubSelect(SelectInst &SI,
2024                                      InstCombiner::BuilderTy &Builder) {
2025   Value *CondVal = SI.getCondition();
2026   Value *TrueVal = SI.getTrueValue();
2027   Value *FalseVal = SI.getFalseValue();
2028   auto *TI = dyn_cast<Instruction>(TrueVal);
2029   auto *FI = dyn_cast<Instruction>(FalseVal);
2030   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
2031     return nullptr;
2032 
2033   Instruction *AddOp = nullptr, *SubOp = nullptr;
2034   if ((TI->getOpcode() == Instruction::Sub &&
2035        FI->getOpcode() == Instruction::Add) ||
2036       (TI->getOpcode() == Instruction::FSub &&
2037        FI->getOpcode() == Instruction::FAdd)) {
2038     AddOp = FI;
2039     SubOp = TI;
2040   } else if ((FI->getOpcode() == Instruction::Sub &&
2041               TI->getOpcode() == Instruction::Add) ||
2042              (FI->getOpcode() == Instruction::FSub &&
2043               TI->getOpcode() == Instruction::FAdd)) {
2044     AddOp = TI;
2045     SubOp = FI;
2046   }
2047 
2048   if (AddOp) {
2049     Value *OtherAddOp = nullptr;
2050     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
2051       OtherAddOp = AddOp->getOperand(1);
2052     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
2053       OtherAddOp = AddOp->getOperand(0);
2054     }
2055 
2056     if (OtherAddOp) {
2057       // So at this point we know we have (Y -> OtherAddOp):
2058       //        select C, (add X, Y), (sub X, Z)
2059       Value *NegVal; // Compute -Z
2060       if (SI.getType()->isFPOrFPVectorTy()) {
2061         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
2062         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
2063           FastMathFlags Flags = AddOp->getFastMathFlags();
2064           Flags &= SubOp->getFastMathFlags();
2065           NegInst->setFastMathFlags(Flags);
2066         }
2067       } else {
2068         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
2069       }
2070 
2071       Value *NewTrueOp = OtherAddOp;
2072       Value *NewFalseOp = NegVal;
2073       if (AddOp != TI)
2074         std::swap(NewTrueOp, NewFalseOp);
2075       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
2076                                            SI.getName() + ".p", &SI);
2077 
2078       if (SI.getType()->isFPOrFPVectorTy()) {
2079         Instruction *RI =
2080             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
2081 
2082         FastMathFlags Flags = AddOp->getFastMathFlags();
2083         Flags &= SubOp->getFastMathFlags();
2084         RI->setFastMathFlags(Flags);
2085         return RI;
2086       } else
2087         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
2088     }
2089   }
2090   return nullptr;
2091 }
2092 
2093 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
2094 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
2095 /// Along with a number of patterns similar to:
2096 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2097 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2098 static Instruction *
2099 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
2100   Value *CondVal = SI.getCondition();
2101   Value *TrueVal = SI.getTrueValue();
2102   Value *FalseVal = SI.getFalseValue();
2103 
2104   WithOverflowInst *II;
2105   if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
2106       !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
2107     return nullptr;
2108 
2109   Value *X = II->getLHS();
2110   Value *Y = II->getRHS();
2111 
2112   auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
2113     Type *Ty = Limit->getType();
2114 
2115     ICmpInst::Predicate Pred;
2116     Value *TrueVal, *FalseVal, *Op;
2117     const APInt *C;
2118     if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
2119                                m_Value(TrueVal), m_Value(FalseVal))))
2120       return false;
2121 
2122     auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); };
2123     auto IsMinMax = [&](Value *Min, Value *Max) {
2124       APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
2125       APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
2126       return match(Min, m_SpecificInt(MinVal)) &&
2127              match(Max, m_SpecificInt(MaxVal));
2128     };
2129 
2130     if (Op != X && Op != Y)
2131       return false;
2132 
2133     if (IsAdd) {
2134       // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2135       // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2136       // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2137       // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2138       if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
2139           IsMinMax(TrueVal, FalseVal))
2140         return true;
2141       // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2142       // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2143       // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2144       // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2145       if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
2146           IsMinMax(FalseVal, TrueVal))
2147         return true;
2148     } else {
2149       // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2150       // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2151       if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
2152           IsMinMax(TrueVal, FalseVal))
2153         return true;
2154       // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2155       // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2156       if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
2157           IsMinMax(FalseVal, TrueVal))
2158         return true;
2159       // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2160       // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2161       if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
2162           IsMinMax(FalseVal, TrueVal))
2163         return true;
2164       // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2165       // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2166       if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
2167           IsMinMax(TrueVal, FalseVal))
2168         return true;
2169     }
2170 
2171     return false;
2172   };
2173 
2174   Intrinsic::ID NewIntrinsicID;
2175   if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
2176       match(TrueVal, m_AllOnes()))
2177     // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
2178     NewIntrinsicID = Intrinsic::uadd_sat;
2179   else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
2180            match(TrueVal, m_Zero()))
2181     // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
2182     NewIntrinsicID = Intrinsic::usub_sat;
2183   else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
2184            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
2185     // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2186     // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2187     // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2188     // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2189     // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2190     // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2191     // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2192     // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2193     NewIntrinsicID = Intrinsic::sadd_sat;
2194   else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
2195            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
2196     // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2197     // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2198     // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2199     // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2200     // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2201     // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2202     // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2203     // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2204     NewIntrinsicID = Intrinsic::ssub_sat;
2205   else
2206     return nullptr;
2207 
2208   Function *F =
2209       Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
2210   return CallInst::Create(F, {X, Y});
2211 }
2212 
2213 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) {
2214   Constant *C;
2215   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
2216       !match(Sel.getFalseValue(), m_Constant(C)))
2217     return nullptr;
2218 
2219   Instruction *ExtInst;
2220   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
2221       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
2222     return nullptr;
2223 
2224   auto ExtOpcode = ExtInst->getOpcode();
2225   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
2226     return nullptr;
2227 
2228   // If we are extending from a boolean type or if we can create a select that
2229   // has the same size operands as its condition, try to narrow the select.
2230   Value *X = ExtInst->getOperand(0);
2231   Type *SmallType = X->getType();
2232   Value *Cond = Sel.getCondition();
2233   auto *Cmp = dyn_cast<CmpInst>(Cond);
2234   if (!SmallType->isIntOrIntVectorTy(1) &&
2235       (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
2236     return nullptr;
2237 
2238   // If the constant is the same after truncation to the smaller type and
2239   // extension to the original type, we can narrow the select.
2240   Type *SelType = Sel.getType();
2241   Constant *TruncC = getLosslessTrunc(C, SmallType, ExtOpcode);
2242   if (TruncC && ExtInst->hasOneUse()) {
2243     Value *TruncCVal = cast<Value>(TruncC);
2244     if (ExtInst == Sel.getFalseValue())
2245       std::swap(X, TruncCVal);
2246 
2247     // select Cond, (ext X), C --> ext(select Cond, X, C')
2248     // select Cond, C, (ext X) --> ext(select Cond, C', X)
2249     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
2250     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
2251   }
2252 
2253   return nullptr;
2254 }
2255 
2256 /// Try to transform a vector select with a constant condition vector into a
2257 /// shuffle for easier combining with other shuffles and insert/extract.
2258 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
2259   Value *CondVal = SI.getCondition();
2260   Constant *CondC;
2261   auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType());
2262   if (!CondValTy || !match(CondVal, m_Constant(CondC)))
2263     return nullptr;
2264 
2265   unsigned NumElts = CondValTy->getNumElements();
2266   SmallVector<int, 16> Mask;
2267   Mask.reserve(NumElts);
2268   for (unsigned i = 0; i != NumElts; ++i) {
2269     Constant *Elt = CondC->getAggregateElement(i);
2270     if (!Elt)
2271       return nullptr;
2272 
2273     if (Elt->isOneValue()) {
2274       // If the select condition element is true, choose from the 1st vector.
2275       Mask.push_back(i);
2276     } else if (Elt->isNullValue()) {
2277       // If the select condition element is false, choose from the 2nd vector.
2278       Mask.push_back(i + NumElts);
2279     } else if (isa<UndefValue>(Elt)) {
2280       // Undef in a select condition (choose one of the operands) does not mean
2281       // the same thing as undef in a shuffle mask (any value is acceptable), so
2282       // give up.
2283       return nullptr;
2284     } else {
2285       // Bail out on a constant expression.
2286       return nullptr;
2287     }
2288   }
2289 
2290   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask);
2291 }
2292 
2293 /// If we have a select of vectors with a scalar condition, try to convert that
2294 /// to a vector select by splatting the condition. A splat may get folded with
2295 /// other operations in IR and having all operands of a select be vector types
2296 /// is likely better for vector codegen.
2297 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel,
2298                                                    InstCombinerImpl &IC) {
2299   auto *Ty = dyn_cast<VectorType>(Sel.getType());
2300   if (!Ty)
2301     return nullptr;
2302 
2303   // We can replace a single-use extract with constant index.
2304   Value *Cond = Sel.getCondition();
2305   if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt()))))
2306     return nullptr;
2307 
2308   // select (extelt V, Index), T, F --> select (splat V, Index), T, F
2309   // Splatting the extracted condition reduces code (we could directly create a
2310   // splat shuffle of the source vector to eliminate the intermediate step).
2311   return IC.replaceOperand(
2312       Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond));
2313 }
2314 
2315 /// Reuse bitcasted operands between a compare and select:
2316 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2317 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
2318 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
2319                                           InstCombiner::BuilderTy &Builder) {
2320   Value *Cond = Sel.getCondition();
2321   Value *TVal = Sel.getTrueValue();
2322   Value *FVal = Sel.getFalseValue();
2323 
2324   CmpInst::Predicate Pred;
2325   Value *A, *B;
2326   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
2327     return nullptr;
2328 
2329   // The select condition is a compare instruction. If the select's true/false
2330   // values are already the same as the compare operands, there's nothing to do.
2331   if (TVal == A || TVal == B || FVal == A || FVal == B)
2332     return nullptr;
2333 
2334   Value *C, *D;
2335   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
2336     return nullptr;
2337 
2338   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
2339   Value *TSrc, *FSrc;
2340   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
2341       !match(FVal, m_BitCast(m_Value(FSrc))))
2342     return nullptr;
2343 
2344   // If the select true/false values are *different bitcasts* of the same source
2345   // operands, make the select operands the same as the compare operands and
2346   // cast the result. This is the canonical select form for min/max.
2347   Value *NewSel;
2348   if (TSrc == C && FSrc == D) {
2349     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2350     // bitcast (select (cmp A, B), A, B)
2351     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
2352   } else if (TSrc == D && FSrc == C) {
2353     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
2354     // bitcast (select (cmp A, B), B, A)
2355     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
2356   } else {
2357     return nullptr;
2358   }
2359   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
2360 }
2361 
2362 /// Try to eliminate select instructions that test the returned flag of cmpxchg
2363 /// instructions.
2364 ///
2365 /// If a select instruction tests the returned flag of a cmpxchg instruction and
2366 /// selects between the returned value of the cmpxchg instruction its compare
2367 /// operand, the result of the select will always be equal to its false value.
2368 /// For example:
2369 ///
2370 ///   %cmpxchg = cmpxchg ptr %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2371 ///   %val = extractvalue { i64, i1 } %cmpxchg, 0
2372 ///   %success = extractvalue { i64, i1 } %cmpxchg, 1
2373 ///   %sel = select i1 %success, i64 %compare, i64 %val
2374 ///   ret i64 %sel
2375 ///
2376 /// The returned value of the cmpxchg instruction (%val) is the original value
2377 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %val
2378 /// must have been equal to %compare. Thus, the result of the select is always
2379 /// equal to %val, and the code can be simplified to:
2380 ///
2381 ///   %cmpxchg = cmpxchg ptr %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2382 ///   %val = extractvalue { i64, i1 } %cmpxchg, 0
2383 ///   ret i64 %val
2384 ///
2385 static Value *foldSelectCmpXchg(SelectInst &SI) {
2386   // A helper that determines if V is an extractvalue instruction whose
2387   // aggregate operand is a cmpxchg instruction and whose single index is equal
2388   // to I. If such conditions are true, the helper returns the cmpxchg
2389   // instruction; otherwise, a nullptr is returned.
2390   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
2391     auto *Extract = dyn_cast<ExtractValueInst>(V);
2392     if (!Extract)
2393       return nullptr;
2394     if (Extract->getIndices()[0] != I)
2395       return nullptr;
2396     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
2397   };
2398 
2399   // If the select has a single user, and this user is a select instruction that
2400   // we can simplify, skip the cmpxchg simplification for now.
2401   if (SI.hasOneUse())
2402     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
2403       if (Select->getCondition() == SI.getCondition())
2404         if (Select->getFalseValue() == SI.getTrueValue() ||
2405             Select->getTrueValue() == SI.getFalseValue())
2406           return nullptr;
2407 
2408   // Ensure the select condition is the returned flag of a cmpxchg instruction.
2409   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
2410   if (!CmpXchg)
2411     return nullptr;
2412 
2413   // Check the true value case: The true value of the select is the returned
2414   // value of the same cmpxchg used by the condition, and the false value is the
2415   // cmpxchg instruction's compare operand.
2416   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
2417     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue())
2418       return SI.getFalseValue();
2419 
2420   // Check the false value case: The false value of the select is the returned
2421   // value of the same cmpxchg used by the condition, and the true value is the
2422   // cmpxchg instruction's compare operand.
2423   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
2424     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue())
2425       return SI.getFalseValue();
2426 
2427   return nullptr;
2428 }
2429 
2430 /// Try to reduce a funnel/rotate pattern that includes a compare and select
2431 /// into a funnel shift intrinsic. Example:
2432 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2433 ///              --> call llvm.fshl.i32(a, a, b)
2434 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c)))
2435 ///                 --> call llvm.fshl.i32(a, b, c)
2436 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c)))
2437 ///                 --> call llvm.fshr.i32(a, b, c)
2438 static Instruction *foldSelectFunnelShift(SelectInst &Sel,
2439                                           InstCombiner::BuilderTy &Builder) {
2440   // This must be a power-of-2 type for a bitmasking transform to be valid.
2441   unsigned Width = Sel.getType()->getScalarSizeInBits();
2442   if (!isPowerOf2_32(Width))
2443     return nullptr;
2444 
2445   BinaryOperator *Or0, *Or1;
2446   if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
2447     return nullptr;
2448 
2449   Value *SV0, *SV1, *SA0, *SA1;
2450   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0),
2451                                           m_ZExtOrSelf(m_Value(SA0))))) ||
2452       !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1),
2453                                           m_ZExtOrSelf(m_Value(SA1))))) ||
2454       Or0->getOpcode() == Or1->getOpcode())
2455     return nullptr;
2456 
2457   // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)).
2458   if (Or0->getOpcode() == BinaryOperator::LShr) {
2459     std::swap(Or0, Or1);
2460     std::swap(SV0, SV1);
2461     std::swap(SA0, SA1);
2462   }
2463   assert(Or0->getOpcode() == BinaryOperator::Shl &&
2464          Or1->getOpcode() == BinaryOperator::LShr &&
2465          "Illegal or(shift,shift) pair");
2466 
2467   // Check the shift amounts to see if they are an opposite pair.
2468   Value *ShAmt;
2469   if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
2470     ShAmt = SA0;
2471   else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
2472     ShAmt = SA1;
2473   else
2474     return nullptr;
2475 
2476   // We should now have this pattern:
2477   // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1))
2478   // The false value of the select must be a funnel-shift of the true value:
2479   // IsFShl -> TVal must be SV0 else TVal must be SV1.
2480   bool IsFshl = (ShAmt == SA0);
2481   Value *TVal = Sel.getTrueValue();
2482   if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
2483     return nullptr;
2484 
2485   // Finally, see if the select is filtering out a shift-by-zero.
2486   Value *Cond = Sel.getCondition();
2487   ICmpInst::Predicate Pred;
2488   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
2489       Pred != ICmpInst::ICMP_EQ)
2490     return nullptr;
2491 
2492   // If this is not a rotate then the select was blocking poison from the
2493   // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
2494   if (SV0 != SV1) {
2495     if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1))
2496       SV1 = Builder.CreateFreeze(SV1);
2497     else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0))
2498       SV0 = Builder.CreateFreeze(SV0);
2499   }
2500 
2501   // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2502   // Convert to funnel shift intrinsic.
2503   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2504   Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
2505   ShAmt = Builder.CreateZExt(ShAmt, Sel.getType());
2506   return CallInst::Create(F, { SV0, SV1, ShAmt });
2507 }
2508 
2509 static Instruction *foldSelectToCopysign(SelectInst &Sel,
2510                                          InstCombiner::BuilderTy &Builder) {
2511   Value *Cond = Sel.getCondition();
2512   Value *TVal = Sel.getTrueValue();
2513   Value *FVal = Sel.getFalseValue();
2514   Type *SelType = Sel.getType();
2515 
2516   // Match select ?, TC, FC where the constants are equal but negated.
2517   // TODO: Generalize to handle a negated variable operand?
2518   const APFloat *TC, *FC;
2519   if (!match(TVal, m_APFloatAllowPoison(TC)) ||
2520       !match(FVal, m_APFloatAllowPoison(FC)) ||
2521       !abs(*TC).bitwiseIsEqual(abs(*FC)))
2522     return nullptr;
2523 
2524   assert(TC != FC && "Expected equal select arms to simplify");
2525 
2526   Value *X;
2527   const APInt *C;
2528   bool IsTrueIfSignSet;
2529   ICmpInst::Predicate Pred;
2530   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_ElementWiseBitCast(m_Value(X)),
2531                                    m_APInt(C)))) ||
2532       !isSignBitCheck(Pred, *C, IsTrueIfSignSet) || X->getType() != SelType)
2533     return nullptr;
2534 
2535   // If needed, negate the value that will be the sign argument of the copysign:
2536   // (bitcast X) <  0 ? -TC :  TC --> copysign(TC,  X)
2537   // (bitcast X) <  0 ?  TC : -TC --> copysign(TC, -X)
2538   // (bitcast X) >= 0 ? -TC :  TC --> copysign(TC, -X)
2539   // (bitcast X) >= 0 ?  TC : -TC --> copysign(TC,  X)
2540   // Note: FMF from the select can not be propagated to the new instructions.
2541   if (IsTrueIfSignSet ^ TC->isNegative())
2542     X = Builder.CreateFNeg(X);
2543 
2544   // Canonicalize the magnitude argument as the positive constant since we do
2545   // not care about its sign.
2546   Value *MagArg = ConstantFP::get(SelType, abs(*TC));
2547   Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign,
2548                                           Sel.getType());
2549   return CallInst::Create(F, { MagArg, X });
2550 }
2551 
2552 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) {
2553   if (!isa<VectorType>(Sel.getType()))
2554     return nullptr;
2555 
2556   Value *Cond = Sel.getCondition();
2557   Value *TVal = Sel.getTrueValue();
2558   Value *FVal = Sel.getFalseValue();
2559   Value *C, *X, *Y;
2560 
2561   if (match(Cond, m_VecReverse(m_Value(C)))) {
2562     auto createSelReverse = [&](Value *C, Value *X, Value *Y) {
2563       Value *V = Builder.CreateSelect(C, X, Y, Sel.getName(), &Sel);
2564       if (auto *I = dyn_cast<Instruction>(V))
2565         I->copyIRFlags(&Sel);
2566       Module *M = Sel.getModule();
2567       Function *F =
2568           Intrinsic::getDeclaration(M, Intrinsic::vector_reverse, V->getType());
2569       return CallInst::Create(F, V);
2570     };
2571 
2572     if (match(TVal, m_VecReverse(m_Value(X)))) {
2573       // select rev(C), rev(X), rev(Y) --> rev(select C, X, Y)
2574       if (match(FVal, m_VecReverse(m_Value(Y))) &&
2575           (Cond->hasOneUse() || TVal->hasOneUse() || FVal->hasOneUse()))
2576         return createSelReverse(C, X, Y);
2577 
2578       // select rev(C), rev(X), FValSplat --> rev(select C, X, FValSplat)
2579       if ((Cond->hasOneUse() || TVal->hasOneUse()) && isSplatValue(FVal))
2580         return createSelReverse(C, X, FVal);
2581     }
2582     // select rev(C), TValSplat, rev(Y) --> rev(select C, TValSplat, Y)
2583     else if (isSplatValue(TVal) && match(FVal, m_VecReverse(m_Value(Y))) &&
2584              (Cond->hasOneUse() || FVal->hasOneUse()))
2585       return createSelReverse(C, TVal, Y);
2586   }
2587 
2588   auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType());
2589   if (!VecTy)
2590     return nullptr;
2591 
2592   unsigned NumElts = VecTy->getNumElements();
2593   APInt PoisonElts(NumElts, 0);
2594   APInt AllOnesEltMask(APInt::getAllOnes(NumElts));
2595   if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, PoisonElts)) {
2596     if (V != &Sel)
2597       return replaceInstUsesWith(Sel, V);
2598     return &Sel;
2599   }
2600 
2601   // A select of a "select shuffle" with a common operand can be rearranged
2602   // to select followed by "select shuffle". Because of poison, this only works
2603   // in the case of a shuffle with no undefined mask elements.
2604   ArrayRef<int> Mask;
2605   if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2606       !is_contained(Mask, PoisonMaskElem) &&
2607       cast<ShuffleVectorInst>(TVal)->isSelect()) {
2608     if (X == FVal) {
2609       // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X)
2610       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2611       return new ShuffleVectorInst(X, NewSel, Mask);
2612     }
2613     if (Y == FVal) {
2614       // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y
2615       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2616       return new ShuffleVectorInst(NewSel, Y, Mask);
2617     }
2618   }
2619   if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2620       !is_contained(Mask, PoisonMaskElem) &&
2621       cast<ShuffleVectorInst>(FVal)->isSelect()) {
2622     if (X == TVal) {
2623       // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y)
2624       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2625       return new ShuffleVectorInst(X, NewSel, Mask);
2626     }
2627     if (Y == TVal) {
2628       // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y
2629       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2630       return new ShuffleVectorInst(NewSel, Y, Mask);
2631     }
2632   }
2633 
2634   return nullptr;
2635 }
2636 
2637 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB,
2638                                         const DominatorTree &DT,
2639                                         InstCombiner::BuilderTy &Builder) {
2640   // Find the block's immediate dominator that ends with a conditional branch
2641   // that matches select's condition (maybe inverted).
2642   auto *IDomNode = DT[BB]->getIDom();
2643   if (!IDomNode)
2644     return nullptr;
2645   BasicBlock *IDom = IDomNode->getBlock();
2646 
2647   Value *Cond = Sel.getCondition();
2648   Value *IfTrue, *IfFalse;
2649   BasicBlock *TrueSucc, *FalseSucc;
2650   if (match(IDom->getTerminator(),
2651             m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc),
2652                  m_BasicBlock(FalseSucc)))) {
2653     IfTrue = Sel.getTrueValue();
2654     IfFalse = Sel.getFalseValue();
2655   } else if (match(IDom->getTerminator(),
2656                    m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc),
2657                         m_BasicBlock(FalseSucc)))) {
2658     IfTrue = Sel.getFalseValue();
2659     IfFalse = Sel.getTrueValue();
2660   } else
2661     return nullptr;
2662 
2663   // Make sure the branches are actually different.
2664   if (TrueSucc == FalseSucc)
2665     return nullptr;
2666 
2667   // We want to replace select %cond, %a, %b with a phi that takes value %a
2668   // for all incoming edges that are dominated by condition `%cond == true`,
2669   // and value %b for edges dominated by condition `%cond == false`. If %a
2670   // or %b are also phis from the same basic block, we can go further and take
2671   // their incoming values from the corresponding blocks.
2672   BasicBlockEdge TrueEdge(IDom, TrueSucc);
2673   BasicBlockEdge FalseEdge(IDom, FalseSucc);
2674   DenseMap<BasicBlock *, Value *> Inputs;
2675   for (auto *Pred : predecessors(BB)) {
2676     // Check implication.
2677     BasicBlockEdge Incoming(Pred, BB);
2678     if (DT.dominates(TrueEdge, Incoming))
2679       Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred);
2680     else if (DT.dominates(FalseEdge, Incoming))
2681       Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred);
2682     else
2683       return nullptr;
2684     // Check availability.
2685     if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred]))
2686       if (!DT.dominates(Insn, Pred->getTerminator()))
2687         return nullptr;
2688   }
2689 
2690   Builder.SetInsertPoint(BB, BB->begin());
2691   auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size());
2692   for (auto *Pred : predecessors(BB))
2693     PN->addIncoming(Inputs[Pred], Pred);
2694   PN->takeName(&Sel);
2695   return PN;
2696 }
2697 
2698 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT,
2699                                     InstCombiner::BuilderTy &Builder) {
2700   // Try to replace this select with Phi in one of these blocks.
2701   SmallSetVector<BasicBlock *, 4> CandidateBlocks;
2702   CandidateBlocks.insert(Sel.getParent());
2703   for (Value *V : Sel.operands())
2704     if (auto *I = dyn_cast<Instruction>(V))
2705       CandidateBlocks.insert(I->getParent());
2706 
2707   for (BasicBlock *BB : CandidateBlocks)
2708     if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
2709       return PN;
2710   return nullptr;
2711 }
2712 
2713 /// Tries to reduce a pattern that arises when calculating the remainder of the
2714 /// Euclidean division. When the divisor is a power of two and is guaranteed not
2715 /// to be negative, a signed remainder can be folded with a bitwise and.
2716 ///
2717 /// (x % n) < 0 ? (x % n) + n : (x % n)
2718 ///    -> x & (n - 1)
2719 static Instruction *foldSelectWithSRem(SelectInst &SI, InstCombinerImpl &IC,
2720                                        IRBuilderBase &Builder) {
2721   Value *CondVal = SI.getCondition();
2722   Value *TrueVal = SI.getTrueValue();
2723   Value *FalseVal = SI.getFalseValue();
2724 
2725   ICmpInst::Predicate Pred;
2726   Value *Op, *RemRes, *Remainder;
2727   const APInt *C;
2728   bool TrueIfSigned = false;
2729 
2730   if (!(match(CondVal, m_ICmp(Pred, m_Value(RemRes), m_APInt(C))) &&
2731         isSignBitCheck(Pred, *C, TrueIfSigned)))
2732     return nullptr;
2733 
2734   // If the sign bit is not set, we have a SGE/SGT comparison, and the operands
2735   // of the select are inverted.
2736   if (!TrueIfSigned)
2737     std::swap(TrueVal, FalseVal);
2738 
2739   auto FoldToBitwiseAnd = [&](Value *Remainder) -> Instruction * {
2740     Value *Add = Builder.CreateAdd(
2741         Remainder, Constant::getAllOnesValue(RemRes->getType()));
2742     return BinaryOperator::CreateAnd(Op, Add);
2743   };
2744 
2745   // Match the general case:
2746   // %rem = srem i32 %x, %n
2747   // %cnd = icmp slt i32 %rem, 0
2748   // %add = add i32 %rem, %n
2749   // %sel = select i1 %cnd, i32 %add, i32 %rem
2750   if (match(TrueVal, m_Add(m_Specific(RemRes), m_Value(Remainder))) &&
2751       match(RemRes, m_SRem(m_Value(Op), m_Specific(Remainder))) &&
2752       IC.isKnownToBeAPowerOfTwo(Remainder, /*OrZero*/ true) &&
2753       FalseVal == RemRes)
2754     return FoldToBitwiseAnd(Remainder);
2755 
2756   // Match the case where the one arm has been replaced by constant 1:
2757   // %rem = srem i32 %n, 2
2758   // %cnd = icmp slt i32 %rem, 0
2759   // %sel = select i1 %cnd, i32 1, i32 %rem
2760   if (match(TrueVal, m_One()) &&
2761       match(RemRes, m_SRem(m_Value(Op), m_SpecificInt(2))) &&
2762       FalseVal == RemRes)
2763     return FoldToBitwiseAnd(ConstantInt::get(RemRes->getType(), 2));
2764 
2765   return nullptr;
2766 }
2767 
2768 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
2769   FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition());
2770   if (!FI)
2771     return nullptr;
2772 
2773   Value *Cond = FI->getOperand(0);
2774   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
2775 
2776   //   select (freeze(x == y)), x, y --> y
2777   //   select (freeze(x != y)), x, y --> x
2778   // The freeze should be only used by this select. Otherwise, remaining uses of
2779   // the freeze can observe a contradictory value.
2780   //   c = freeze(x == y)   ; Let's assume that y = poison & x = 42; c is 0 or 1
2781   //   a = select c, x, y   ;
2782   //   f(a, c)              ; f(poison, 1) cannot happen, but if a is folded
2783   //                        ; to y, this can happen.
2784   CmpInst::Predicate Pred;
2785   if (FI->hasOneUse() &&
2786       match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) &&
2787       (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) {
2788     return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
2789   }
2790 
2791   return nullptr;
2792 }
2793 
2794 /// Given that \p CondVal is known to be \p CondIsTrue, try to simplify \p SI.
2795 static Value *simplifyNestedSelectsUsingImpliedCond(SelectInst &SI,
2796                                                     Value *CondVal,
2797                                                     bool CondIsTrue,
2798                                                     const DataLayout &DL) {
2799   Value *InnerCondVal = SI.getCondition();
2800   Value *InnerTrueVal = SI.getTrueValue();
2801   Value *InnerFalseVal = SI.getFalseValue();
2802   assert(CondVal->getType() == InnerCondVal->getType() &&
2803          "The type of inner condition must match with the outer.");
2804   if (auto Implied = isImpliedCondition(CondVal, InnerCondVal, DL, CondIsTrue))
2805     return *Implied ? InnerTrueVal : InnerFalseVal;
2806   return nullptr;
2807 }
2808 
2809 Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op,
2810                                                                  SelectInst &SI,
2811                                                                  bool IsAnd) {
2812   assert(Op->getType()->isIntOrIntVectorTy(1) &&
2813          "Op must be either i1 or vector of i1.");
2814   if (SI.getCondition()->getType() != Op->getType())
2815     return nullptr;
2816   if (Value *V = simplifyNestedSelectsUsingImpliedCond(SI, Op, IsAnd, DL))
2817     return SelectInst::Create(Op,
2818                               IsAnd ? V : ConstantInt::getTrue(Op->getType()),
2819                               IsAnd ? ConstantInt::getFalse(Op->getType()) : V);
2820   return nullptr;
2821 }
2822 
2823 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2824 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work.
2825 static Instruction *foldSelectWithFCmpToFabs(SelectInst &SI,
2826                                              InstCombinerImpl &IC) {
2827   Value *CondVal = SI.getCondition();
2828 
2829   bool ChangedFMF = false;
2830   for (bool Swap : {false, true}) {
2831     Value *TrueVal = SI.getTrueValue();
2832     Value *X = SI.getFalseValue();
2833     CmpInst::Predicate Pred;
2834 
2835     if (Swap)
2836       std::swap(TrueVal, X);
2837 
2838     if (!match(CondVal, m_FCmp(Pred, m_Specific(X), m_AnyZeroFP())))
2839       continue;
2840 
2841     // fold (X <= +/-0.0) ? (0.0 - X) : X to fabs(X), when 'Swap' is false
2842     // fold (X >  +/-0.0) ? X : (0.0 - X) to fabs(X), when 'Swap' is true
2843     if (match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) {
2844       if (!Swap && (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2845         Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2846         return IC.replaceInstUsesWith(SI, Fabs);
2847       }
2848       if (Swap && (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2849         Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2850         return IC.replaceInstUsesWith(SI, Fabs);
2851       }
2852     }
2853 
2854     if (!match(TrueVal, m_FNeg(m_Specific(X))))
2855       return nullptr;
2856 
2857     // Forward-propagate nnan and ninf from the fneg to the select.
2858     // If all inputs are not those values, then the select is not either.
2859     // Note: nsz is defined differently, so it may not be correct to propagate.
2860     FastMathFlags FMF = cast<FPMathOperator>(TrueVal)->getFastMathFlags();
2861     if (FMF.noNaNs() && !SI.hasNoNaNs()) {
2862       SI.setHasNoNaNs(true);
2863       ChangedFMF = true;
2864     }
2865     if (FMF.noInfs() && !SI.hasNoInfs()) {
2866       SI.setHasNoInfs(true);
2867       ChangedFMF = true;
2868     }
2869 
2870     // With nsz, when 'Swap' is false:
2871     // fold (X < +/-0.0) ? -X : X or (X <= +/-0.0) ? -X : X to fabs(X)
2872     // fold (X > +/-0.0) ? -X : X or (X >= +/-0.0) ? -X : X to -fabs(x)
2873     // when 'Swap' is true:
2874     // fold (X > +/-0.0) ? X : -X or (X >= +/-0.0) ? X : -X to fabs(X)
2875     // fold (X < +/-0.0) ? X : -X or (X <= +/-0.0) ? X : -X to -fabs(X)
2876     //
2877     // Note: We require "nnan" for this fold because fcmp ignores the signbit
2878     //       of NAN, but IEEE-754 specifies the signbit of NAN values with
2879     //       fneg/fabs operations.
2880     if (!SI.hasNoSignedZeros() || !SI.hasNoNaNs())
2881       return nullptr;
2882 
2883     if (Swap)
2884       Pred = FCmpInst::getSwappedPredicate(Pred);
2885 
2886     bool IsLTOrLE = Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2887                     Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE;
2888     bool IsGTOrGE = Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2889                     Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE;
2890 
2891     if (IsLTOrLE) {
2892       Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2893       return IC.replaceInstUsesWith(SI, Fabs);
2894     }
2895     if (IsGTOrGE) {
2896       Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2897       Instruction *NewFNeg = UnaryOperator::CreateFNeg(Fabs);
2898       NewFNeg->setFastMathFlags(SI.getFastMathFlags());
2899       return NewFNeg;
2900     }
2901   }
2902 
2903   // Match select with (icmp slt (bitcast X to int), 0)
2904   //                or (icmp sgt (bitcast X to int), -1)
2905 
2906   for (bool Swap : {false, true}) {
2907     Value *TrueVal = SI.getTrueValue();
2908     Value *X = SI.getFalseValue();
2909 
2910     if (Swap)
2911       std::swap(TrueVal, X);
2912 
2913     CmpInst::Predicate Pred;
2914     const APInt *C;
2915     bool TrueIfSigned;
2916     if (!match(CondVal,
2917                m_ICmp(Pred, m_ElementWiseBitCast(m_Specific(X)), m_APInt(C))) ||
2918         !isSignBitCheck(Pred, *C, TrueIfSigned))
2919       continue;
2920     if (!match(TrueVal, m_FNeg(m_Specific(X))))
2921       return nullptr;
2922     if (Swap == TrueIfSigned && !CondVal->hasOneUse() && !TrueVal->hasOneUse())
2923       return nullptr;
2924 
2925     // Fold (IsNeg ? -X : X) or (!IsNeg ? X : -X) to fabs(X)
2926     // Fold (IsNeg ? X : -X) or (!IsNeg ? -X : X) to -fabs(X)
2927     Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2928     if (Swap != TrueIfSigned)
2929       return IC.replaceInstUsesWith(SI, Fabs);
2930     return UnaryOperator::CreateFNegFMF(Fabs, &SI);
2931   }
2932 
2933   return ChangedFMF ? &SI : nullptr;
2934 }
2935 
2936 // Match the following IR pattern:
2937 //   %x.lowbits = and i8 %x, %lowbitmask
2938 //   %x.lowbits.are.zero = icmp eq i8 %x.lowbits, 0
2939 //   %x.biased = add i8 %x, %bias
2940 //   %x.biased.highbits = and i8 %x.biased, %highbitmask
2941 //   %x.roundedup = select i1 %x.lowbits.are.zero, i8 %x, i8 %x.biased.highbits
2942 // Define:
2943 //   %alignment = add i8 %lowbitmask, 1
2944 // Iff 1. an %alignment is a power-of-two (aka, %lowbitmask is a low bit mask)
2945 // and 2. %bias is equal to either %lowbitmask or %alignment,
2946 // and 3. %highbitmask is equal to ~%lowbitmask (aka, to -%alignment)
2947 // then this pattern can be transformed into:
2948 //   %x.offset = add i8 %x, %lowbitmask
2949 //   %x.roundedup = and i8 %x.offset, %highbitmask
2950 static Value *
2951 foldRoundUpIntegerWithPow2Alignment(SelectInst &SI,
2952                                     InstCombiner::BuilderTy &Builder) {
2953   Value *Cond = SI.getCondition();
2954   Value *X = SI.getTrueValue();
2955   Value *XBiasedHighBits = SI.getFalseValue();
2956 
2957   ICmpInst::Predicate Pred;
2958   Value *XLowBits;
2959   if (!match(Cond, m_ICmp(Pred, m_Value(XLowBits), m_ZeroInt())) ||
2960       !ICmpInst::isEquality(Pred))
2961     return nullptr;
2962 
2963   if (Pred == ICmpInst::Predicate::ICMP_NE)
2964     std::swap(X, XBiasedHighBits);
2965 
2966   // FIXME: we could support non non-splats here.
2967 
2968   const APInt *LowBitMaskCst;
2969   if (!match(XLowBits, m_And(m_Specific(X), m_APIntAllowPoison(LowBitMaskCst))))
2970     return nullptr;
2971 
2972   // Match even if the AND and ADD are swapped.
2973   const APInt *BiasCst, *HighBitMaskCst;
2974   if (!match(XBiasedHighBits,
2975              m_And(m_Add(m_Specific(X), m_APIntAllowPoison(BiasCst)),
2976                    m_APIntAllowPoison(HighBitMaskCst))) &&
2977       !match(XBiasedHighBits,
2978              m_Add(m_And(m_Specific(X), m_APIntAllowPoison(HighBitMaskCst)),
2979                    m_APIntAllowPoison(BiasCst))))
2980     return nullptr;
2981 
2982   if (!LowBitMaskCst->isMask())
2983     return nullptr;
2984 
2985   APInt InvertedLowBitMaskCst = ~*LowBitMaskCst;
2986   if (InvertedLowBitMaskCst != *HighBitMaskCst)
2987     return nullptr;
2988 
2989   APInt AlignmentCst = *LowBitMaskCst + 1;
2990 
2991   if (*BiasCst != AlignmentCst && *BiasCst != *LowBitMaskCst)
2992     return nullptr;
2993 
2994   if (!XBiasedHighBits->hasOneUse()) {
2995     // We can't directly return XBiasedHighBits if it is more poisonous.
2996     if (*BiasCst == *LowBitMaskCst && impliesPoison(XBiasedHighBits, X))
2997       return XBiasedHighBits;
2998     return nullptr;
2999   }
3000 
3001   // FIXME: could we preserve undef's here?
3002   Type *Ty = X->getType();
3003   Value *XOffset = Builder.CreateAdd(X, ConstantInt::get(Ty, *LowBitMaskCst),
3004                                      X->getName() + ".biased");
3005   Value *R = Builder.CreateAnd(XOffset, ConstantInt::get(Ty, *HighBitMaskCst));
3006   R->takeName(&SI);
3007   return R;
3008 }
3009 
3010 namespace {
3011 struct DecomposedSelect {
3012   Value *Cond = nullptr;
3013   Value *TrueVal = nullptr;
3014   Value *FalseVal = nullptr;
3015 };
3016 } // namespace
3017 
3018 /// Folds patterns like:
3019 ///   select c2 (select c1 a b) (select c1 b a)
3020 /// into:
3021 ///   select (xor c1 c2) b a
3022 static Instruction *
3023 foldSelectOfSymmetricSelect(SelectInst &OuterSelVal,
3024                             InstCombiner::BuilderTy &Builder) {
3025 
3026   Value *OuterCond, *InnerCond, *InnerTrueVal, *InnerFalseVal;
3027   if (!match(
3028           &OuterSelVal,
3029           m_Select(m_Value(OuterCond),
3030                    m_OneUse(m_Select(m_Value(InnerCond), m_Value(InnerTrueVal),
3031                                      m_Value(InnerFalseVal))),
3032                    m_OneUse(m_Select(m_Deferred(InnerCond),
3033                                      m_Deferred(InnerFalseVal),
3034                                      m_Deferred(InnerTrueVal))))))
3035     return nullptr;
3036 
3037   if (OuterCond->getType() != InnerCond->getType())
3038     return nullptr;
3039 
3040   Value *Xor = Builder.CreateXor(InnerCond, OuterCond);
3041   return SelectInst::Create(Xor, InnerFalseVal, InnerTrueVal);
3042 }
3043 
3044 /// Look for patterns like
3045 ///   %outer.cond = select i1 %inner.cond, i1 %alt.cond, i1 false
3046 ///   %inner.sel = select i1 %inner.cond, i8 %inner.sel.t, i8 %inner.sel.f
3047 ///   %outer.sel = select i1 %outer.cond, i8 %outer.sel.t, i8 %inner.sel
3048 /// and rewrite it as
3049 ///   %inner.sel = select i1 %cond.alternative, i8 %sel.outer.t, i8 %sel.inner.t
3050 ///   %sel.outer = select i1 %cond.inner, i8 %inner.sel, i8 %sel.inner.f
3051 static Instruction *foldNestedSelects(SelectInst &OuterSelVal,
3052                                       InstCombiner::BuilderTy &Builder) {
3053   // We must start with a `select`.
3054   DecomposedSelect OuterSel;
3055   match(&OuterSelVal,
3056         m_Select(m_Value(OuterSel.Cond), m_Value(OuterSel.TrueVal),
3057                  m_Value(OuterSel.FalseVal)));
3058 
3059   // Canonicalize inversion of the outermost `select`'s condition.
3060   if (match(OuterSel.Cond, m_Not(m_Value(OuterSel.Cond))))
3061     std::swap(OuterSel.TrueVal, OuterSel.FalseVal);
3062 
3063   // The condition of the outermost select must be an `and`/`or`.
3064   if (!match(OuterSel.Cond, m_c_LogicalOp(m_Value(), m_Value())))
3065     return nullptr;
3066 
3067   // Depending on the logical op, inner select might be in different hand.
3068   bool IsAndVariant = match(OuterSel.Cond, m_LogicalAnd());
3069   Value *InnerSelVal = IsAndVariant ? OuterSel.FalseVal : OuterSel.TrueVal;
3070 
3071   // Profitability check - avoid increasing instruction count.
3072   if (none_of(ArrayRef<Value *>({OuterSelVal.getCondition(), InnerSelVal}),
3073               [](Value *V) { return V->hasOneUse(); }))
3074     return nullptr;
3075 
3076   // The appropriate hand of the outermost `select` must be a select itself.
3077   DecomposedSelect InnerSel;
3078   if (!match(InnerSelVal,
3079              m_Select(m_Value(InnerSel.Cond), m_Value(InnerSel.TrueVal),
3080                       m_Value(InnerSel.FalseVal))))
3081     return nullptr;
3082 
3083   // Canonicalize inversion of the innermost `select`'s condition.
3084   if (match(InnerSel.Cond, m_Not(m_Value(InnerSel.Cond))))
3085     std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
3086 
3087   Value *AltCond = nullptr;
3088   auto matchOuterCond = [OuterSel, IsAndVariant, &AltCond](auto m_InnerCond) {
3089     // An unsimplified select condition can match both LogicalAnd and LogicalOr
3090     // (select true, true, false). Since below we assume that LogicalAnd implies
3091     // InnerSel match the FVal and vice versa for LogicalOr, we can't match the
3092     // alternative pattern here.
3093     return IsAndVariant ? match(OuterSel.Cond,
3094                                 m_c_LogicalAnd(m_InnerCond, m_Value(AltCond)))
3095                         : match(OuterSel.Cond,
3096                                 m_c_LogicalOr(m_InnerCond, m_Value(AltCond)));
3097   };
3098 
3099   // Finally, match the condition that was driving the outermost `select`,
3100   // it should be a logical operation between the condition that was driving
3101   // the innermost `select` (after accounting for the possible inversions
3102   // of the condition), and some other condition.
3103   if (matchOuterCond(m_Specific(InnerSel.Cond))) {
3104     // Done!
3105   } else if (Value * NotInnerCond; matchOuterCond(m_CombineAnd(
3106                  m_Not(m_Specific(InnerSel.Cond)), m_Value(NotInnerCond)))) {
3107     // Done!
3108     std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
3109     InnerSel.Cond = NotInnerCond;
3110   } else // Not the pattern we were looking for.
3111     return nullptr;
3112 
3113   Value *SelInner = Builder.CreateSelect(
3114       AltCond, IsAndVariant ? OuterSel.TrueVal : InnerSel.FalseVal,
3115       IsAndVariant ? InnerSel.TrueVal : OuterSel.FalseVal);
3116   SelInner->takeName(InnerSelVal);
3117   return SelectInst::Create(InnerSel.Cond,
3118                             IsAndVariant ? SelInner : InnerSel.TrueVal,
3119                             !IsAndVariant ? SelInner : InnerSel.FalseVal);
3120 }
3121 
3122 Instruction *InstCombinerImpl::foldSelectOfBools(SelectInst &SI) {
3123   Value *CondVal = SI.getCondition();
3124   Value *TrueVal = SI.getTrueValue();
3125   Value *FalseVal = SI.getFalseValue();
3126   Type *SelType = SI.getType();
3127 
3128   // Avoid potential infinite loops by checking for non-constant condition.
3129   // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()?
3130   //       Scalar select must have simplified?
3131   if (!SelType->isIntOrIntVectorTy(1) || isa<Constant>(CondVal) ||
3132       TrueVal->getType() != CondVal->getType())
3133     return nullptr;
3134 
3135   auto *One = ConstantInt::getTrue(SelType);
3136   auto *Zero = ConstantInt::getFalse(SelType);
3137   Value *A, *B, *C, *D;
3138 
3139   // Folding select to and/or i1 isn't poison safe in general. impliesPoison
3140   // checks whether folding it does not convert a well-defined value into
3141   // poison.
3142   if (match(TrueVal, m_One())) {
3143     if (impliesPoison(FalseVal, CondVal)) {
3144       // Change: A = select B, true, C --> A = or B, C
3145       return BinaryOperator::CreateOr(CondVal, FalseVal);
3146     }
3147 
3148     if (match(CondVal, m_OneUse(m_Select(m_Value(A), m_One(), m_Value(B)))) &&
3149         impliesPoison(FalseVal, B)) {
3150       // (A || B) || C --> A || (B | C)
3151       return replaceInstUsesWith(
3152           SI, Builder.CreateLogicalOr(A, Builder.CreateOr(B, FalseVal)));
3153     }
3154 
3155     if (auto *LHS = dyn_cast<FCmpInst>(CondVal))
3156       if (auto *RHS = dyn_cast<FCmpInst>(FalseVal))
3157         if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ false,
3158                                         /*IsSelectLogical*/ true))
3159           return replaceInstUsesWith(SI, V);
3160 
3161     // (A && B) || (C && B) --> (A || C) && B
3162     if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) &&
3163         match(FalseVal, m_LogicalAnd(m_Value(C), m_Value(D))) &&
3164         (CondVal->hasOneUse() || FalseVal->hasOneUse())) {
3165       bool CondLogicAnd = isa<SelectInst>(CondVal);
3166       bool FalseLogicAnd = isa<SelectInst>(FalseVal);
3167       auto AndFactorization = [&](Value *Common, Value *InnerCond,
3168                                   Value *InnerVal,
3169                                   bool SelFirst = false) -> Instruction * {
3170         Value *InnerSel = Builder.CreateSelect(InnerCond, One, InnerVal);
3171         if (SelFirst)
3172           std::swap(Common, InnerSel);
3173         if (FalseLogicAnd || (CondLogicAnd && Common == A))
3174           return SelectInst::Create(Common, InnerSel, Zero);
3175         else
3176           return BinaryOperator::CreateAnd(Common, InnerSel);
3177       };
3178 
3179       if (A == C)
3180         return AndFactorization(A, B, D);
3181       if (A == D)
3182         return AndFactorization(A, B, C);
3183       if (B == C)
3184         return AndFactorization(B, A, D);
3185       if (B == D)
3186         return AndFactorization(B, A, C, CondLogicAnd && FalseLogicAnd);
3187     }
3188   }
3189 
3190   if (match(FalseVal, m_Zero())) {
3191     if (impliesPoison(TrueVal, CondVal)) {
3192       // Change: A = select B, C, false --> A = and B, C
3193       return BinaryOperator::CreateAnd(CondVal, TrueVal);
3194     }
3195 
3196     if (match(CondVal, m_OneUse(m_Select(m_Value(A), m_Value(B), m_Zero()))) &&
3197         impliesPoison(TrueVal, B)) {
3198       // (A && B) && C --> A && (B & C)
3199       return replaceInstUsesWith(
3200           SI, Builder.CreateLogicalAnd(A, Builder.CreateAnd(B, TrueVal)));
3201     }
3202 
3203     if (auto *LHS = dyn_cast<FCmpInst>(CondVal))
3204       if (auto *RHS = dyn_cast<FCmpInst>(TrueVal))
3205         if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ true,
3206                                         /*IsSelectLogical*/ true))
3207           return replaceInstUsesWith(SI, V);
3208 
3209     // (A || B) && (C || B) --> (A && C) || B
3210     if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
3211         match(TrueVal, m_LogicalOr(m_Value(C), m_Value(D))) &&
3212         (CondVal->hasOneUse() || TrueVal->hasOneUse())) {
3213       bool CondLogicOr = isa<SelectInst>(CondVal);
3214       bool TrueLogicOr = isa<SelectInst>(TrueVal);
3215       auto OrFactorization = [&](Value *Common, Value *InnerCond,
3216                                  Value *InnerVal,
3217                                  bool SelFirst = false) -> Instruction * {
3218         Value *InnerSel = Builder.CreateSelect(InnerCond, InnerVal, Zero);
3219         if (SelFirst)
3220           std::swap(Common, InnerSel);
3221         if (TrueLogicOr || (CondLogicOr && Common == A))
3222           return SelectInst::Create(Common, One, InnerSel);
3223         else
3224           return BinaryOperator::CreateOr(Common, InnerSel);
3225       };
3226 
3227       if (A == C)
3228         return OrFactorization(A, B, D);
3229       if (A == D)
3230         return OrFactorization(A, B, C);
3231       if (B == C)
3232         return OrFactorization(B, A, D);
3233       if (B == D)
3234         return OrFactorization(B, A, C, CondLogicOr && TrueLogicOr);
3235     }
3236   }
3237 
3238   // We match the "full" 0 or 1 constant here to avoid a potential infinite
3239   // loop with vectors that may have undefined/poison elements.
3240   // select a, false, b -> select !a, b, false
3241   if (match(TrueVal, m_Specific(Zero))) {
3242     Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
3243     return SelectInst::Create(NotCond, FalseVal, Zero);
3244   }
3245   // select a, b, true -> select !a, true, b
3246   if (match(FalseVal, m_Specific(One))) {
3247     Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
3248     return SelectInst::Create(NotCond, One, TrueVal);
3249   }
3250 
3251   // DeMorgan in select form: !a && !b --> !(a || b)
3252   // select !a, !b, false --> not (select a, true, b)
3253   if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
3254       (CondVal->hasOneUse() || TrueVal->hasOneUse()) &&
3255       !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
3256     return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B));
3257 
3258   // DeMorgan in select form: !a || !b --> !(a && b)
3259   // select !a, true, !b --> not (select a, b, false)
3260   if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
3261       (CondVal->hasOneUse() || FalseVal->hasOneUse()) &&
3262       !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
3263     return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero));
3264 
3265   // select (select a, true, b), true, b -> select a, true, b
3266   if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
3267       match(TrueVal, m_One()) && match(FalseVal, m_Specific(B)))
3268     return replaceOperand(SI, 0, A);
3269   // select (select a, b, false), b, false -> select a, b, false
3270   if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
3271       match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero()))
3272     return replaceOperand(SI, 0, A);
3273 
3274   // ~(A & B) & (A | B) --> A ^ B
3275   if (match(&SI, m_c_LogicalAnd(m_Not(m_LogicalAnd(m_Value(A), m_Value(B))),
3276                                 m_c_LogicalOr(m_Deferred(A), m_Deferred(B)))))
3277     return BinaryOperator::CreateXor(A, B);
3278 
3279   // select (~a | c), a, b -> select a, (select c, true, b), false
3280   if (match(CondVal,
3281             m_OneUse(m_c_Or(m_Not(m_Specific(TrueVal)), m_Value(C))))) {
3282     Value *OrV = Builder.CreateSelect(C, One, FalseVal);
3283     return SelectInst::Create(TrueVal, OrV, Zero);
3284   }
3285   // select (c & b), a, b -> select b, (select ~c, true, a), false
3286   if (match(CondVal, m_OneUse(m_c_And(m_Value(C), m_Specific(FalseVal))))) {
3287     if (Value *NotC = getFreelyInverted(C, C->hasOneUse(), &Builder)) {
3288       Value *OrV = Builder.CreateSelect(NotC, One, TrueVal);
3289       return SelectInst::Create(FalseVal, OrV, Zero);
3290     }
3291   }
3292   // select (a | c), a, b -> select a, true, (select ~c, b, false)
3293   if (match(CondVal, m_OneUse(m_c_Or(m_Specific(TrueVal), m_Value(C))))) {
3294     if (Value *NotC = getFreelyInverted(C, C->hasOneUse(), &Builder)) {
3295       Value *AndV = Builder.CreateSelect(NotC, FalseVal, Zero);
3296       return SelectInst::Create(TrueVal, One, AndV);
3297     }
3298   }
3299   // select (c & ~b), a, b -> select b, true, (select c, a, false)
3300   if (match(CondVal,
3301             m_OneUse(m_c_And(m_Value(C), m_Not(m_Specific(FalseVal)))))) {
3302     Value *AndV = Builder.CreateSelect(C, TrueVal, Zero);
3303     return SelectInst::Create(FalseVal, One, AndV);
3304   }
3305 
3306   if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) {
3307     Use *Y = nullptr;
3308     bool IsAnd = match(FalseVal, m_Zero()) ? true : false;
3309     Value *Op1 = IsAnd ? TrueVal : FalseVal;
3310     if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) {
3311       auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr");
3312       InsertNewInstBefore(FI, cast<Instruction>(Y->getUser())->getIterator());
3313       replaceUse(*Y, FI);
3314       return replaceInstUsesWith(SI, Op1);
3315     }
3316 
3317     if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal))
3318       if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1))
3319         if (auto *V = foldAndOrOfICmps(ICmp0, ICmp1, SI, IsAnd,
3320                                        /* IsLogical */ true))
3321           return replaceInstUsesWith(SI, V);
3322   }
3323 
3324   // select (a || b), c, false -> select a, c, false
3325   // select c, (a || b), false -> select c, a, false
3326   //   if c implies that b is false.
3327   if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
3328       match(FalseVal, m_Zero())) {
3329     std::optional<bool> Res = isImpliedCondition(TrueVal, B, DL);
3330     if (Res && *Res == false)
3331       return replaceOperand(SI, 0, A);
3332   }
3333   if (match(TrueVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
3334       match(FalseVal, m_Zero())) {
3335     std::optional<bool> Res = isImpliedCondition(CondVal, B, DL);
3336     if (Res && *Res == false)
3337       return replaceOperand(SI, 1, A);
3338   }
3339   // select c, true, (a && b)  -> select c, true, a
3340   // select (a && b), true, c  -> select a, true, c
3341   //   if c = false implies that b = true
3342   if (match(TrueVal, m_One()) &&
3343       match(FalseVal, m_LogicalAnd(m_Value(A), m_Value(B)))) {
3344     std::optional<bool> Res = isImpliedCondition(CondVal, B, DL, false);
3345     if (Res && *Res == true)
3346       return replaceOperand(SI, 2, A);
3347   }
3348   if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) &&
3349       match(TrueVal, m_One())) {
3350     std::optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false);
3351     if (Res && *Res == true)
3352       return replaceOperand(SI, 0, A);
3353   }
3354 
3355   if (match(TrueVal, m_One())) {
3356     Value *C;
3357 
3358     // (C && A) || (!C && B) --> sel C, A, B
3359     // (A && C) || (!C && B) --> sel C, A, B
3360     // (C && A) || (B && !C) --> sel C, A, B
3361     // (A && C) || (B && !C) --> sel C, A, B (may require freeze)
3362     if (match(FalseVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(B))) &&
3363         match(CondVal, m_c_LogicalAnd(m_Specific(C), m_Value(A)))) {
3364       auto *SelCond = dyn_cast<SelectInst>(CondVal);
3365       auto *SelFVal = dyn_cast<SelectInst>(FalseVal);
3366       bool MayNeedFreeze = SelCond && SelFVal &&
3367                            match(SelFVal->getTrueValue(),
3368                                  m_Not(m_Specific(SelCond->getTrueValue())));
3369       if (MayNeedFreeze)
3370         C = Builder.CreateFreeze(C);
3371       return SelectInst::Create(C, A, B);
3372     }
3373 
3374     // (!C && A) || (C && B) --> sel C, B, A
3375     // (A && !C) || (C && B) --> sel C, B, A
3376     // (!C && A) || (B && C) --> sel C, B, A
3377     // (A && !C) || (B && C) --> sel C, B, A (may require freeze)
3378     if (match(CondVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(A))) &&
3379         match(FalseVal, m_c_LogicalAnd(m_Specific(C), m_Value(B)))) {
3380       auto *SelCond = dyn_cast<SelectInst>(CondVal);
3381       auto *SelFVal = dyn_cast<SelectInst>(FalseVal);
3382       bool MayNeedFreeze = SelCond && SelFVal &&
3383                            match(SelCond->getTrueValue(),
3384                                  m_Not(m_Specific(SelFVal->getTrueValue())));
3385       if (MayNeedFreeze)
3386         C = Builder.CreateFreeze(C);
3387       return SelectInst::Create(C, B, A);
3388     }
3389   }
3390 
3391   return nullptr;
3392 }
3393 
3394 // Return true if we can safely remove the select instruction for std::bit_ceil
3395 // pattern.
3396 static bool isSafeToRemoveBitCeilSelect(ICmpInst::Predicate Pred, Value *Cond0,
3397                                         const APInt *Cond1, Value *CtlzOp,
3398                                         unsigned BitWidth,
3399                                         bool &ShouldDropNUW) {
3400   // The challenge in recognizing std::bit_ceil(X) is that the operand is used
3401   // for the CTLZ proper and select condition, each possibly with some
3402   // operation like add and sub.
3403   //
3404   // Our aim is to make sure that -ctlz & (BitWidth - 1) == 0 even when the
3405   // select instruction would select 1, which allows us to get rid of the select
3406   // instruction.
3407   //
3408   // To see if we can do so, we do some symbolic execution with ConstantRange.
3409   // Specifically, we compute the range of values that Cond0 could take when
3410   // Cond == false.  Then we successively transform the range until we obtain
3411   // the range of values that CtlzOp could take.
3412   //
3413   // Conceptually, we follow the def-use chain backward from Cond0 while
3414   // transforming the range for Cond0 until we meet the common ancestor of Cond0
3415   // and CtlzOp.  Then we follow the def-use chain forward until we obtain the
3416   // range for CtlzOp.  That said, we only follow at most one ancestor from
3417   // Cond0.  Likewise, we only follow at most one ancestor from CtrlOp.
3418 
3419   ConstantRange CR = ConstantRange::makeExactICmpRegion(
3420       CmpInst::getInversePredicate(Pred), *Cond1);
3421 
3422   ShouldDropNUW = false;
3423 
3424   // Match the operation that's used to compute CtlzOp from CommonAncestor.  If
3425   // CtlzOp == CommonAncestor, return true as no operation is needed.  If a
3426   // match is found, execute the operation on CR, update CR, and return true.
3427   // Otherwise, return false.
3428   auto MatchForward = [&](Value *CommonAncestor) {
3429     const APInt *C = nullptr;
3430     if (CtlzOp == CommonAncestor)
3431       return true;
3432     if (match(CtlzOp, m_Add(m_Specific(CommonAncestor), m_APInt(C)))) {
3433       CR = CR.add(*C);
3434       return true;
3435     }
3436     if (match(CtlzOp, m_Sub(m_APInt(C), m_Specific(CommonAncestor)))) {
3437       ShouldDropNUW = true;
3438       CR = ConstantRange(*C).sub(CR);
3439       return true;
3440     }
3441     if (match(CtlzOp, m_Not(m_Specific(CommonAncestor)))) {
3442       CR = CR.binaryNot();
3443       return true;
3444     }
3445     return false;
3446   };
3447 
3448   const APInt *C = nullptr;
3449   Value *CommonAncestor;
3450   if (MatchForward(Cond0)) {
3451     // Cond0 is either CtlzOp or CtlzOp's parent.  CR has been updated.
3452   } else if (match(Cond0, m_Add(m_Value(CommonAncestor), m_APInt(C)))) {
3453     CR = CR.sub(*C);
3454     if (!MatchForward(CommonAncestor))
3455       return false;
3456     // Cond0's parent is either CtlzOp or CtlzOp's parent.  CR has been updated.
3457   } else {
3458     return false;
3459   }
3460 
3461   // Return true if all the values in the range are either 0 or negative (if
3462   // treated as signed).  We do so by evaluating:
3463   //
3464   //   CR - 1 u>= (1 << BitWidth) - 1.
3465   APInt IntMax = APInt::getSignMask(BitWidth) - 1;
3466   CR = CR.sub(APInt(BitWidth, 1));
3467   return CR.icmp(ICmpInst::ICMP_UGE, IntMax);
3468 }
3469 
3470 // Transform the std::bit_ceil(X) pattern like:
3471 //
3472 //   %dec = add i32 %x, -1
3473 //   %ctlz = tail call i32 @llvm.ctlz.i32(i32 %dec, i1 false)
3474 //   %sub = sub i32 32, %ctlz
3475 //   %shl = shl i32 1, %sub
3476 //   %ugt = icmp ugt i32 %x, 1
3477 //   %sel = select i1 %ugt, i32 %shl, i32 1
3478 //
3479 // into:
3480 //
3481 //   %dec = add i32 %x, -1
3482 //   %ctlz = tail call i32 @llvm.ctlz.i32(i32 %dec, i1 false)
3483 //   %neg = sub i32 0, %ctlz
3484 //   %masked = and i32 %ctlz, 31
3485 //   %shl = shl i32 1, %sub
3486 //
3487 // Note that the select is optimized away while the shift count is masked with
3488 // 31.  We handle some variations of the input operand like std::bit_ceil(X +
3489 // 1).
3490 static Instruction *foldBitCeil(SelectInst &SI, IRBuilderBase &Builder) {
3491   Type *SelType = SI.getType();
3492   unsigned BitWidth = SelType->getScalarSizeInBits();
3493 
3494   Value *FalseVal = SI.getFalseValue();
3495   Value *TrueVal = SI.getTrueValue();
3496   ICmpInst::Predicate Pred;
3497   const APInt *Cond1;
3498   Value *Cond0, *Ctlz, *CtlzOp;
3499   if (!match(SI.getCondition(), m_ICmp(Pred, m_Value(Cond0), m_APInt(Cond1))))
3500     return nullptr;
3501 
3502   if (match(TrueVal, m_One())) {
3503     std::swap(FalseVal, TrueVal);
3504     Pred = CmpInst::getInversePredicate(Pred);
3505   }
3506 
3507   bool ShouldDropNUW;
3508 
3509   if (!match(FalseVal, m_One()) ||
3510       !match(TrueVal,
3511              m_OneUse(m_Shl(m_One(), m_OneUse(m_Sub(m_SpecificInt(BitWidth),
3512                                                     m_Value(Ctlz)))))) ||
3513       !match(Ctlz, m_Intrinsic<Intrinsic::ctlz>(m_Value(CtlzOp), m_Zero())) ||
3514       !isSafeToRemoveBitCeilSelect(Pred, Cond0, Cond1, CtlzOp, BitWidth,
3515                                    ShouldDropNUW))
3516     return nullptr;
3517 
3518   if (ShouldDropNUW)
3519     cast<Instruction>(CtlzOp)->setHasNoUnsignedWrap(false);
3520 
3521   // Build 1 << (-CTLZ & (BitWidth-1)).  The negation likely corresponds to a
3522   // single hardware instruction as opposed to BitWidth - CTLZ, where BitWidth
3523   // is an integer constant.  Masking with BitWidth-1 comes free on some
3524   // hardware as part of the shift instruction.
3525   Value *Neg = Builder.CreateNeg(Ctlz);
3526   Value *Masked =
3527       Builder.CreateAnd(Neg, ConstantInt::get(SelType, BitWidth - 1));
3528   return BinaryOperator::Create(Instruction::Shl, ConstantInt::get(SelType, 1),
3529                                 Masked);
3530 }
3531 
3532 bool InstCombinerImpl::fmulByZeroIsZero(Value *MulVal, FastMathFlags FMF,
3533                                         const Instruction *CtxI) const {
3534   KnownFPClass Known = computeKnownFPClass(MulVal, FMF, fcNegative, CtxI);
3535 
3536   return Known.isKnownNeverNaN() && Known.isKnownNeverInfinity() &&
3537          (FMF.noSignedZeros() || Known.signBitIsZeroOrNaN());
3538 }
3539 
3540 static bool matchFMulByZeroIfResultEqZero(InstCombinerImpl &IC, Value *Cmp0,
3541                                           Value *Cmp1, Value *TrueVal,
3542                                           Value *FalseVal, Instruction &CtxI,
3543                                           bool SelectIsNSZ) {
3544   Value *MulRHS;
3545   if (match(Cmp1, m_PosZeroFP()) &&
3546       match(TrueVal, m_c_FMul(m_Specific(Cmp0), m_Value(MulRHS)))) {
3547     FastMathFlags FMF = cast<FPMathOperator>(TrueVal)->getFastMathFlags();
3548     // nsz must be on the select, it must be ignored on the multiply. We
3549     // need nnan and ninf on the multiply for the other value.
3550     FMF.setNoSignedZeros(SelectIsNSZ);
3551     return IC.fmulByZeroIsZero(MulRHS, FMF, &CtxI);
3552   }
3553 
3554   return false;
3555 }
3556 
3557 /// Check whether the KnownBits of a select arm may be affected by the
3558 /// select condition.
3559 static bool hasAffectedValue(Value *V, SmallPtrSetImpl<Value *> &Affected,
3560                              unsigned Depth) {
3561   if (Depth == MaxAnalysisRecursionDepth)
3562     return false;
3563 
3564   // Ignore the case where the select arm itself is affected. These cases
3565   // are handled more efficiently by other optimizations.
3566   if (Depth != 0 && Affected.contains(V))
3567     return true;
3568 
3569   if (auto *I = dyn_cast<Instruction>(V)) {
3570     if (isa<PHINode>(I)) {
3571       if (Depth == MaxAnalysisRecursionDepth - 1)
3572         return false;
3573       Depth = MaxAnalysisRecursionDepth - 2;
3574     }
3575     return any_of(I->operands(), [&](Value *Op) {
3576       return Op->getType()->isIntOrIntVectorTy() &&
3577              hasAffectedValue(Op, Affected, Depth + 1);
3578     });
3579   }
3580 
3581   return false;
3582 }
3583 
3584 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) {
3585   Value *CondVal = SI.getCondition();
3586   Value *TrueVal = SI.getTrueValue();
3587   Value *FalseVal = SI.getFalseValue();
3588   Type *SelType = SI.getType();
3589 
3590   if (Value *V = simplifySelectInst(CondVal, TrueVal, FalseVal,
3591                                     SQ.getWithInstruction(&SI)))
3592     return replaceInstUsesWith(SI, V);
3593 
3594   if (Instruction *I = canonicalizeSelectToShuffle(SI))
3595     return I;
3596 
3597   if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this))
3598     return I;
3599 
3600   // If the type of select is not an integer type or if the condition and
3601   // the selection type are not both scalar nor both vector types, there is no
3602   // point in attempting to match these patterns.
3603   Type *CondType = CondVal->getType();
3604   if (!isa<Constant>(CondVal) && SelType->isIntOrIntVectorTy() &&
3605       CondType->isVectorTy() == SelType->isVectorTy()) {
3606     if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal,
3607                                           ConstantInt::getTrue(CondType), SQ,
3608                                           /* AllowRefinement */ true))
3609       return replaceOperand(SI, 1, S);
3610 
3611     if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal,
3612                                           ConstantInt::getFalse(CondType), SQ,
3613                                           /* AllowRefinement */ true))
3614       return replaceOperand(SI, 2, S);
3615   }
3616 
3617   if (Instruction *R = foldSelectOfBools(SI))
3618     return R;
3619 
3620   // Selecting between two integer or vector splat integer constants?
3621   //
3622   // Note that we don't handle a scalar select of vectors:
3623   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
3624   // because that may need 3 instructions to splat the condition value:
3625   // extend, insertelement, shufflevector.
3626   //
3627   // Do not handle i1 TrueVal and FalseVal otherwise would result in
3628   // zext/sext i1 to i1.
3629   if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) &&
3630       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
3631     // select C, 1, 0 -> zext C to int
3632     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
3633       return new ZExtInst(CondVal, SelType);
3634 
3635     // select C, -1, 0 -> sext C to int
3636     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
3637       return new SExtInst(CondVal, SelType);
3638 
3639     // select C, 0, 1 -> zext !C to int
3640     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
3641       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
3642       return new ZExtInst(NotCond, SelType);
3643     }
3644 
3645     // select C, 0, -1 -> sext !C to int
3646     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
3647       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
3648       return new SExtInst(NotCond, SelType);
3649     }
3650   }
3651 
3652   auto *SIFPOp = dyn_cast<FPMathOperator>(&SI);
3653 
3654   if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) {
3655     FCmpInst::Predicate Pred = FCmp->getPredicate();
3656     Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1);
3657     // Are we selecting a value based on a comparison of the two values?
3658     if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
3659         (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
3660       // Canonicalize to use ordered comparisons by swapping the select
3661       // operands.
3662       //
3663       // e.g.
3664       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
3665       if (FCmp->hasOneUse() && FCmpInst::isUnordered(Pred)) {
3666         FCmpInst::Predicate InvPred = FCmp->getInversePredicate();
3667         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
3668         // FIXME: The FMF should propagate from the select, not the fcmp.
3669         Builder.setFastMathFlags(FCmp->getFastMathFlags());
3670         Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
3671                                             FCmp->getName() + ".inv");
3672         Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
3673         return replaceInstUsesWith(SI, NewSel);
3674       }
3675     }
3676 
3677     if (SIFPOp) {
3678       // Fold out scale-if-equals-zero pattern.
3679       //
3680       // This pattern appears in code with denormal range checks after it's
3681       // assumed denormals are treated as zero. This drops a canonicalization.
3682 
3683       // TODO: Could relax the signed zero logic. We just need to know the sign
3684       // of the result matches (fmul x, y has the same sign as x).
3685       //
3686       // TODO: Handle always-canonicalizing variant that selects some value or 1
3687       // scaling factor in the fmul visitor.
3688 
3689       // TODO: Handle ldexp too
3690 
3691       Value *MatchCmp0 = nullptr;
3692       Value *MatchCmp1 = nullptr;
3693 
3694       // (select (fcmp [ou]eq x, 0.0), (fmul x, K), x => x
3695       // (select (fcmp [ou]ne x, 0.0), x, (fmul x, K) => x
3696       if (Pred == CmpInst::FCMP_OEQ || Pred == CmpInst::FCMP_UEQ) {
3697         MatchCmp0 = FalseVal;
3698         MatchCmp1 = TrueVal;
3699       } else if (Pred == CmpInst::FCMP_ONE || Pred == CmpInst::FCMP_UNE) {
3700         MatchCmp0 = TrueVal;
3701         MatchCmp1 = FalseVal;
3702       }
3703 
3704       if (Cmp0 == MatchCmp0 &&
3705           matchFMulByZeroIfResultEqZero(*this, Cmp0, Cmp1, MatchCmp1, MatchCmp0,
3706                                         SI, SIFPOp->hasNoSignedZeros()))
3707         return replaceInstUsesWith(SI, Cmp0);
3708     }
3709   }
3710 
3711   if (SIFPOp) {
3712     // TODO: Try to forward-propagate FMF from select arms to the select.
3713 
3714     // Canonicalize select of FP values where NaN and -0.0 are not valid as
3715     // minnum/maxnum intrinsics.
3716     if (SIFPOp->hasNoNaNs() && SIFPOp->hasNoSignedZeros()) {
3717       Value *X, *Y;
3718       if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
3719         return replaceInstUsesWith(
3720             SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
3721 
3722       if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
3723         return replaceInstUsesWith(
3724             SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
3725     }
3726   }
3727 
3728   // Fold selecting to fabs.
3729   if (Instruction *Fabs = foldSelectWithFCmpToFabs(SI, *this))
3730     return Fabs;
3731 
3732   // See if we are selecting two values based on a comparison of the two values.
3733   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
3734     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
3735       return Result;
3736 
3737   if (Instruction *Add = foldAddSubSelect(SI, Builder))
3738     return Add;
3739   if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
3740     return Add;
3741   if (Instruction *Or = foldSetClearBits(SI, Builder))
3742     return Or;
3743   if (Instruction *Mul = foldSelectZeroOrMul(SI, *this))
3744     return Mul;
3745 
3746   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
3747   auto *TI = dyn_cast<Instruction>(TrueVal);
3748   auto *FI = dyn_cast<Instruction>(FalseVal);
3749   if (TI && FI && TI->getOpcode() == FI->getOpcode())
3750     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
3751       return IV;
3752 
3753   if (Instruction *I = foldSelectExtConst(SI))
3754     return I;
3755 
3756   if (Instruction *I = foldSelectWithSRem(SI, *this, Builder))
3757     return I;
3758 
3759   // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))
3760   // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx))
3761   auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base,
3762                                bool Swap) -> GetElementPtrInst * {
3763     Value *Ptr = Gep->getPointerOperand();
3764     if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base ||
3765         !Gep->hasOneUse())
3766       return nullptr;
3767     Value *Idx = Gep->getOperand(1);
3768     if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType()))
3769       return nullptr;
3770     Type *ElementType = Gep->getSourceElementType();
3771     Value *NewT = Idx;
3772     Value *NewF = Constant::getNullValue(Idx->getType());
3773     if (Swap)
3774       std::swap(NewT, NewF);
3775     Value *NewSI =
3776         Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI);
3777     return GetElementPtrInst::Create(ElementType, Ptr, NewSI,
3778                                      Gep->getNoWrapFlags());
3779   };
3780   if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal))
3781     if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false))
3782       return NewGep;
3783   if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal))
3784     if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true))
3785       return NewGep;
3786 
3787   // See if we can fold the select into one of our operands.
3788   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
3789     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
3790       return FoldI;
3791 
3792     Value *LHS, *RHS;
3793     Instruction::CastOps CastOp;
3794     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
3795     auto SPF = SPR.Flavor;
3796     if (SPF) {
3797       Value *LHS2, *RHS2;
3798       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
3799         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
3800                                           RHS2, SI, SPF, RHS))
3801           return R;
3802       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
3803         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
3804                                           RHS2, SI, SPF, LHS))
3805           return R;
3806     }
3807 
3808     if (SelectPatternResult::isMinOrMax(SPF)) {
3809       // Canonicalize so that
3810       // - type casts are outside select patterns.
3811       // - float clamp is transformed to min/max pattern
3812 
3813       bool IsCastNeeded = LHS->getType() != SelType;
3814       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
3815       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
3816       if (IsCastNeeded ||
3817           (LHS->getType()->isFPOrFPVectorTy() &&
3818            ((CmpLHS != LHS && CmpLHS != RHS) ||
3819             (CmpRHS != LHS && CmpRHS != RHS)))) {
3820         CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
3821 
3822         Value *Cmp;
3823         if (CmpInst::isIntPredicate(MinMaxPred)) {
3824           Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
3825         } else {
3826           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
3827           auto FMF =
3828               cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
3829           Builder.setFastMathFlags(FMF);
3830           Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
3831         }
3832 
3833         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
3834         if (!IsCastNeeded)
3835           return replaceInstUsesWith(SI, NewSI);
3836 
3837         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
3838         return replaceInstUsesWith(SI, NewCast);
3839       }
3840     }
3841   }
3842 
3843   // See if we can fold the select into a phi node if the condition is a select.
3844   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
3845     // The true/false values have to be live in the PHI predecessor's blocks.
3846     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
3847         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
3848       if (Instruction *NV = foldOpIntoPhi(SI, PN))
3849         return NV;
3850 
3851   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
3852     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
3853       // Fold nested selects if the inner condition can be implied by the outer
3854       // condition.
3855       if (Value *V = simplifyNestedSelectsUsingImpliedCond(
3856               *TrueSI, CondVal, /*CondIsTrue=*/true, DL))
3857         return replaceOperand(SI, 1, V);
3858 
3859       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
3860       // We choose this as normal form to enable folding on the And and
3861       // shortening paths for the values (this helps getUnderlyingObjects() for
3862       // example).
3863       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
3864         Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition());
3865         replaceOperand(SI, 0, And);
3866         replaceOperand(SI, 1, TrueSI->getTrueValue());
3867         return &SI;
3868       }
3869     }
3870   }
3871   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
3872     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
3873       // Fold nested selects if the inner condition can be implied by the outer
3874       // condition.
3875       if (Value *V = simplifyNestedSelectsUsingImpliedCond(
3876               *FalseSI, CondVal, /*CondIsTrue=*/false, DL))
3877         return replaceOperand(SI, 2, V);
3878 
3879       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
3880       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
3881         Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition());
3882         replaceOperand(SI, 0, Or);
3883         replaceOperand(SI, 2, FalseSI->getFalseValue());
3884         return &SI;
3885       }
3886     }
3887   }
3888 
3889   // Try to simplify a binop sandwiched between 2 selects with the same
3890   // condition. This is not valid for div/rem because the select might be
3891   // preventing a division-by-zero.
3892   // TODO: A div/rem restriction is conservative; use something like
3893   //       isSafeToSpeculativelyExecute().
3894   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
3895   BinaryOperator *TrueBO;
3896   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && !TrueBO->isIntDivRem()) {
3897     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
3898       if (TrueBOSI->getCondition() == CondVal) {
3899         replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue());
3900         Worklist.push(TrueBO);
3901         return &SI;
3902       }
3903     }
3904     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
3905       if (TrueBOSI->getCondition() == CondVal) {
3906         replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue());
3907         Worklist.push(TrueBO);
3908         return &SI;
3909       }
3910     }
3911   }
3912 
3913   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
3914   BinaryOperator *FalseBO;
3915   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && !FalseBO->isIntDivRem()) {
3916     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
3917       if (FalseBOSI->getCondition() == CondVal) {
3918         replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue());
3919         Worklist.push(FalseBO);
3920         return &SI;
3921       }
3922     }
3923     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
3924       if (FalseBOSI->getCondition() == CondVal) {
3925         replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue());
3926         Worklist.push(FalseBO);
3927         return &SI;
3928       }
3929     }
3930   }
3931 
3932   Value *NotCond;
3933   if (match(CondVal, m_Not(m_Value(NotCond))) &&
3934       !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) {
3935     replaceOperand(SI, 0, NotCond);
3936     SI.swapValues();
3937     SI.swapProfMetadata();
3938     return &SI;
3939   }
3940 
3941   if (Instruction *I = foldVectorSelect(SI))
3942     return I;
3943 
3944   // If we can compute the condition, there's no need for a select.
3945   // Like the above fold, we are attempting to reduce compile-time cost by
3946   // putting this fold here with limitations rather than in InstSimplify.
3947   // The motivation for this call into value tracking is to take advantage of
3948   // the assumption cache, so make sure that is populated.
3949   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
3950     KnownBits Known(1);
3951     computeKnownBits(CondVal, Known, 0, &SI);
3952     if (Known.One.isOne())
3953       return replaceInstUsesWith(SI, TrueVal);
3954     if (Known.Zero.isOne())
3955       return replaceInstUsesWith(SI, FalseVal);
3956   }
3957 
3958   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
3959     return BitCastSel;
3960 
3961   // Simplify selects that test the returned flag of cmpxchg instructions.
3962   if (Value *V = foldSelectCmpXchg(SI))
3963     return replaceInstUsesWith(SI, V);
3964 
3965   if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
3966     return Select;
3967 
3968   if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder))
3969     return Funnel;
3970 
3971   if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
3972     return Copysign;
3973 
3974   if (Instruction *PN = foldSelectToPhi(SI, DT, Builder))
3975     return replaceInstUsesWith(SI, PN);
3976 
3977   if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder))
3978     return replaceInstUsesWith(SI, Fr);
3979 
3980   if (Value *V = foldRoundUpIntegerWithPow2Alignment(SI, Builder))
3981     return replaceInstUsesWith(SI, V);
3982 
3983   // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0)
3984   // Load inst is intentionally not checked for hasOneUse()
3985   if (match(FalseVal, m_Zero()) &&
3986       (match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal),
3987                                    m_CombineOr(m_Undef(), m_Zero()))) ||
3988        match(TrueVal, m_MaskedGather(m_Value(), m_Value(), m_Specific(CondVal),
3989                                      m_CombineOr(m_Undef(), m_Zero()))))) {
3990     auto *MaskedInst = cast<IntrinsicInst>(TrueVal);
3991     if (isa<UndefValue>(MaskedInst->getArgOperand(3)))
3992       MaskedInst->setArgOperand(3, FalseVal /* Zero */);
3993     return replaceInstUsesWith(SI, MaskedInst);
3994   }
3995 
3996   Value *Mask;
3997   if (match(TrueVal, m_Zero()) &&
3998       (match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask),
3999                                     m_CombineOr(m_Undef(), m_Zero()))) ||
4000        match(FalseVal, m_MaskedGather(m_Value(), m_Value(), m_Value(Mask),
4001                                       m_CombineOr(m_Undef(), m_Zero())))) &&
4002       (CondVal->getType() == Mask->getType())) {
4003     // We can remove the select by ensuring the load zeros all lanes the
4004     // select would have.  We determine this by proving there is no overlap
4005     // between the load and select masks.
4006     // (i.e (load_mask & select_mask) == 0 == no overlap)
4007     bool CanMergeSelectIntoLoad = false;
4008     if (Value *V = simplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI)))
4009       CanMergeSelectIntoLoad = match(V, m_Zero());
4010 
4011     if (CanMergeSelectIntoLoad) {
4012       auto *MaskedInst = cast<IntrinsicInst>(FalseVal);
4013       if (isa<UndefValue>(MaskedInst->getArgOperand(3)))
4014         MaskedInst->setArgOperand(3, TrueVal /* Zero */);
4015       return replaceInstUsesWith(SI, MaskedInst);
4016     }
4017   }
4018 
4019   if (Instruction *I = foldSelectOfSymmetricSelect(SI, Builder))
4020     return I;
4021 
4022   if (Instruction *I = foldNestedSelects(SI, Builder))
4023     return I;
4024 
4025   // Match logical variants of the pattern,
4026   // and transform them iff that gets rid of inversions.
4027   //   (~x) | y  -->  ~(x & (~y))
4028   //   (~x) & y  -->  ~(x | (~y))
4029   if (sinkNotIntoOtherHandOfLogicalOp(SI))
4030     return &SI;
4031 
4032   if (Instruction *I = foldBitCeil(SI, Builder))
4033     return I;
4034 
4035   // Fold:
4036   // (select A && B, T, F) -> (select A, (select B, T, F), F)
4037   // (select A || B, T, F) -> (select A, T, (select B, T, F))
4038   // if (select B, T, F) is foldable.
4039   // TODO: preserve FMF flags
4040   auto FoldSelectWithAndOrCond = [&](bool IsAnd, Value *A,
4041                                      Value *B) -> Instruction * {
4042     if (Value *V = simplifySelectInst(B, TrueVal, FalseVal,
4043                                       SQ.getWithInstruction(&SI)))
4044       return SelectInst::Create(A, IsAnd ? V : TrueVal, IsAnd ? FalseVal : V);
4045 
4046     // Is (select B, T, F) a SPF?
4047     if (CondVal->hasOneUse() && SelType->isIntOrIntVectorTy()) {
4048       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(B))
4049         if (Value *V = canonicalizeSPF(*Cmp, TrueVal, FalseVal, *this))
4050           return SelectInst::Create(A, IsAnd ? V : TrueVal,
4051                                     IsAnd ? FalseVal : V);
4052     }
4053 
4054     return nullptr;
4055   };
4056 
4057   Value *LHS, *RHS;
4058   if (match(CondVal, m_And(m_Value(LHS), m_Value(RHS)))) {
4059     if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, LHS, RHS))
4060       return I;
4061     if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, RHS, LHS))
4062       return I;
4063   } else if (match(CondVal, m_Or(m_Value(LHS), m_Value(RHS)))) {
4064     if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, LHS, RHS))
4065       return I;
4066     if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, RHS, LHS))
4067       return I;
4068   } else {
4069     // We cannot swap the operands of logical and/or.
4070     // TODO: Can we swap the operands by inserting a freeze?
4071     if (match(CondVal, m_LogicalAnd(m_Value(LHS), m_Value(RHS)))) {
4072       if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, LHS, RHS))
4073         return I;
4074     } else if (match(CondVal, m_LogicalOr(m_Value(LHS), m_Value(RHS)))) {
4075       if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, LHS, RHS))
4076         return I;
4077     }
4078   }
4079 
4080   // select Cond, !X, X -> xor Cond, X
4081   if (CondVal->getType() == SI.getType() && isKnownInversion(FalseVal, TrueVal))
4082     return BinaryOperator::CreateXor(CondVal, FalseVal);
4083 
4084   // For vectors, this transform is only safe if the simplification does not
4085   // look through any lane-crossing operations. For now, limit to scalars only.
4086   if (SelType->isIntegerTy() &&
4087       (!isa<Constant>(TrueVal) || !isa<Constant>(FalseVal))) {
4088     // Try to simplify select arms based on KnownBits implied by the condition.
4089     CondContext CC(CondVal);
4090     findValuesAffectedByCondition(CondVal, /*IsAssume=*/false, [&](Value *V) {
4091       CC.AffectedValues.insert(V);
4092     });
4093     SimplifyQuery Q = SQ.getWithInstruction(&SI).getWithCondContext(CC);
4094     if (!CC.AffectedValues.empty()) {
4095       if (!isa<Constant>(TrueVal) &&
4096           hasAffectedValue(TrueVal, CC.AffectedValues, /*Depth=*/0)) {
4097         KnownBits Known = llvm::computeKnownBits(TrueVal, /*Depth=*/0, Q);
4098         if (Known.isConstant())
4099           return replaceOperand(SI, 1,
4100                                 ConstantInt::get(SelType, Known.getConstant()));
4101       }
4102 
4103       CC.Invert = true;
4104       if (!isa<Constant>(FalseVal) &&
4105           hasAffectedValue(FalseVal, CC.AffectedValues, /*Depth=*/0)) {
4106         KnownBits Known = llvm::computeKnownBits(FalseVal, /*Depth=*/0, Q);
4107         if (Known.isConstant())
4108           return replaceOperand(SI, 2,
4109                                 ConstantInt::get(SelType, Known.getConstant()));
4110       }
4111     }
4112   }
4113 
4114   return nullptr;
4115 }
4116