xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitSelect function.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/CmpInstAnalysis.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/OverflowInstAnalysis.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/KnownBits.h"
42 #include "llvm/Transforms/InstCombine/InstCombiner.h"
43 #include <cassert>
44 #include <utility>
45 
46 #define DEBUG_TYPE "instcombine"
47 #include "llvm/Transforms/Utils/InstructionWorklist.h"
48 
49 using namespace llvm;
50 using namespace PatternMatch;
51 
52 
53 /// Replace a select operand based on an equality comparison with the identity
54 /// constant of a binop.
55 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
56                                             const TargetLibraryInfo &TLI,
57                                             InstCombinerImpl &IC) {
58   // The select condition must be an equality compare with a constant operand.
59   Value *X;
60   Constant *C;
61   CmpInst::Predicate Pred;
62   if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
63     return nullptr;
64 
65   bool IsEq;
66   if (ICmpInst::isEquality(Pred))
67     IsEq = Pred == ICmpInst::ICMP_EQ;
68   else if (Pred == FCmpInst::FCMP_OEQ)
69     IsEq = true;
70   else if (Pred == FCmpInst::FCMP_UNE)
71     IsEq = false;
72   else
73     return nullptr;
74 
75   // A select operand must be a binop.
76   BinaryOperator *BO;
77   if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
78     return nullptr;
79 
80   // The compare constant must be the identity constant for that binop.
81   // If this a floating-point compare with 0.0, any zero constant will do.
82   Type *Ty = BO->getType();
83   Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
84   if (IdC != C) {
85     if (!IdC || !CmpInst::isFPPredicate(Pred))
86       return nullptr;
87     if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
88       return nullptr;
89   }
90 
91   // Last, match the compare variable operand with a binop operand.
92   Value *Y;
93   if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
94     return nullptr;
95   if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
96     return nullptr;
97 
98   // +0.0 compares equal to -0.0, and so it does not behave as required for this
99   // transform. Bail out if we can not exclude that possibility.
100   if (isa<FPMathOperator>(BO))
101     if (!BO->hasNoSignedZeros() &&
102         !cannotBeNegativeZero(Y, IC.getDataLayout(), &TLI))
103       return nullptr;
104 
105   // BO = binop Y, X
106   // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
107   // =>
108   // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
109   return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
110 }
111 
112 /// This folds:
113 ///  select (icmp eq (and X, C1)), TC, FC
114 ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
115 /// To something like:
116 ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
117 /// Or:
118 ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
119 /// With some variations depending if FC is larger than TC, or the shift
120 /// isn't needed, or the bit widths don't match.
121 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
122                                 InstCombiner::BuilderTy &Builder) {
123   const APInt *SelTC, *SelFC;
124   if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
125       !match(Sel.getFalseValue(), m_APInt(SelFC)))
126     return nullptr;
127 
128   // If this is a vector select, we need a vector compare.
129   Type *SelType = Sel.getType();
130   if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
131     return nullptr;
132 
133   Value *V;
134   APInt AndMask;
135   bool CreateAnd = false;
136   ICmpInst::Predicate Pred = Cmp->getPredicate();
137   if (ICmpInst::isEquality(Pred)) {
138     if (!match(Cmp->getOperand(1), m_Zero()))
139       return nullptr;
140 
141     V = Cmp->getOperand(0);
142     const APInt *AndRHS;
143     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
144       return nullptr;
145 
146     AndMask = *AndRHS;
147   } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
148                                   Pred, V, AndMask)) {
149     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
150     if (!AndMask.isPowerOf2())
151       return nullptr;
152 
153     CreateAnd = true;
154   } else {
155     return nullptr;
156   }
157 
158   // In general, when both constants are non-zero, we would need an offset to
159   // replace the select. This would require more instructions than we started
160   // with. But there's one special-case that we handle here because it can
161   // simplify/reduce the instructions.
162   APInt TC = *SelTC;
163   APInt FC = *SelFC;
164   if (!TC.isZero() && !FC.isZero()) {
165     // If the select constants differ by exactly one bit and that's the same
166     // bit that is masked and checked by the select condition, the select can
167     // be replaced by bitwise logic to set/clear one bit of the constant result.
168     if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
169       return nullptr;
170     if (CreateAnd) {
171       // If we have to create an 'and', then we must kill the cmp to not
172       // increase the instruction count.
173       if (!Cmp->hasOneUse())
174         return nullptr;
175       V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
176     }
177     bool ExtraBitInTC = TC.ugt(FC);
178     if (Pred == ICmpInst::ICMP_EQ) {
179       // If the masked bit in V is clear, clear or set the bit in the result:
180       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
181       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
182       Constant *C = ConstantInt::get(SelType, TC);
183       return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
184     }
185     if (Pred == ICmpInst::ICMP_NE) {
186       // If the masked bit in V is set, set or clear the bit in the result:
187       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
188       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
189       Constant *C = ConstantInt::get(SelType, FC);
190       return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
191     }
192     llvm_unreachable("Only expecting equality predicates");
193   }
194 
195   // Make sure one of the select arms is a power-of-2.
196   if (!TC.isPowerOf2() && !FC.isPowerOf2())
197     return nullptr;
198 
199   // Determine which shift is needed to transform result of the 'and' into the
200   // desired result.
201   const APInt &ValC = !TC.isZero() ? TC : FC;
202   unsigned ValZeros = ValC.logBase2();
203   unsigned AndZeros = AndMask.logBase2();
204 
205   // Insert the 'and' instruction on the input to the truncate.
206   if (CreateAnd)
207     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
208 
209   // If types don't match, we can still convert the select by introducing a zext
210   // or a trunc of the 'and'.
211   if (ValZeros > AndZeros) {
212     V = Builder.CreateZExtOrTrunc(V, SelType);
213     V = Builder.CreateShl(V, ValZeros - AndZeros);
214   } else if (ValZeros < AndZeros) {
215     V = Builder.CreateLShr(V, AndZeros - ValZeros);
216     V = Builder.CreateZExtOrTrunc(V, SelType);
217   } else {
218     V = Builder.CreateZExtOrTrunc(V, SelType);
219   }
220 
221   // Okay, now we know that everything is set up, we just don't know whether we
222   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
223   bool ShouldNotVal = !TC.isZero();
224   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
225   if (ShouldNotVal)
226     V = Builder.CreateXor(V, ValC);
227 
228   return V;
229 }
230 
231 /// We want to turn code that looks like this:
232 ///   %C = or %A, %B
233 ///   %D = select %cond, %C, %A
234 /// into:
235 ///   %C = select %cond, %B, 0
236 ///   %D = or %A, %C
237 ///
238 /// Assuming that the specified instruction is an operand to the select, return
239 /// a bitmask indicating which operands of this instruction are foldable if they
240 /// equal the other incoming value of the select.
241 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
242   switch (I->getOpcode()) {
243   case Instruction::Add:
244   case Instruction::FAdd:
245   case Instruction::Mul:
246   case Instruction::FMul:
247   case Instruction::And:
248   case Instruction::Or:
249   case Instruction::Xor:
250     return 3;              // Can fold through either operand.
251   case Instruction::Sub:   // Can only fold on the amount subtracted.
252   case Instruction::FSub:
253   case Instruction::FDiv:  // Can only fold on the divisor amount.
254   case Instruction::Shl:   // Can only fold on the shift amount.
255   case Instruction::LShr:
256   case Instruction::AShr:
257     return 1;
258   default:
259     return 0;              // Cannot fold
260   }
261 }
262 
263 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
264 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI,
265                                               Instruction *FI) {
266   // Don't break up min/max patterns. The hasOneUse checks below prevent that
267   // for most cases, but vector min/max with bitcasts can be transformed. If the
268   // one-use restrictions are eased for other patterns, we still don't want to
269   // obfuscate min/max.
270   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
271        match(&SI, m_SMax(m_Value(), m_Value())) ||
272        match(&SI, m_UMin(m_Value(), m_Value())) ||
273        match(&SI, m_UMax(m_Value(), m_Value()))))
274     return nullptr;
275 
276   // If this is a cast from the same type, merge.
277   Value *Cond = SI.getCondition();
278   Type *CondTy = Cond->getType();
279   if (TI->getNumOperands() == 1 && TI->isCast()) {
280     Type *FIOpndTy = FI->getOperand(0)->getType();
281     if (TI->getOperand(0)->getType() != FIOpndTy)
282       return nullptr;
283 
284     // The select condition may be a vector. We may only change the operand
285     // type if the vector width remains the same (and matches the condition).
286     if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
287       if (!FIOpndTy->isVectorTy() ||
288           CondVTy->getElementCount() !=
289               cast<VectorType>(FIOpndTy)->getElementCount())
290         return nullptr;
291 
292       // TODO: If the backend knew how to deal with casts better, we could
293       // remove this limitation. For now, there's too much potential to create
294       // worse codegen by promoting the select ahead of size-altering casts
295       // (PR28160).
296       //
297       // Note that ValueTracking's matchSelectPattern() looks through casts
298       // without checking 'hasOneUse' when it matches min/max patterns, so this
299       // transform may end up happening anyway.
300       if (TI->getOpcode() != Instruction::BitCast &&
301           (!TI->hasOneUse() || !FI->hasOneUse()))
302         return nullptr;
303     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
304       // TODO: The one-use restrictions for a scalar select could be eased if
305       // the fold of a select in visitLoadInst() was enhanced to match a pattern
306       // that includes a cast.
307       return nullptr;
308     }
309 
310     // Fold this by inserting a select from the input values.
311     Value *NewSI =
312         Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
313                              SI.getName() + ".v", &SI);
314     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
315                             TI->getType());
316   }
317 
318   Value *OtherOpT, *OtherOpF;
319   bool MatchIsOpZero;
320   auto getCommonOp = [&](Instruction *TI, Instruction *FI, bool Commute,
321                          bool Swapped = false) -> Value * {
322     assert(!(Commute && Swapped) &&
323            "Commute and Swapped can't set at the same time");
324     if (!Swapped) {
325       if (TI->getOperand(0) == FI->getOperand(0)) {
326         OtherOpT = TI->getOperand(1);
327         OtherOpF = FI->getOperand(1);
328         MatchIsOpZero = true;
329         return TI->getOperand(0);
330       } else if (TI->getOperand(1) == FI->getOperand(1)) {
331         OtherOpT = TI->getOperand(0);
332         OtherOpF = FI->getOperand(0);
333         MatchIsOpZero = false;
334         return TI->getOperand(1);
335       }
336     }
337 
338     if (!Commute && !Swapped)
339       return nullptr;
340 
341     // If we are allowing commute or swap of operands, then
342     // allow a cross-operand match. In that case, MatchIsOpZero
343     // means that TI's operand 0 (FI's operand 1) is the common op.
344     if (TI->getOperand(0) == FI->getOperand(1)) {
345       OtherOpT = TI->getOperand(1);
346       OtherOpF = FI->getOperand(0);
347       MatchIsOpZero = true;
348       return TI->getOperand(0);
349     } else if (TI->getOperand(1) == FI->getOperand(0)) {
350       OtherOpT = TI->getOperand(0);
351       OtherOpF = FI->getOperand(1);
352       MatchIsOpZero = false;
353       return TI->getOperand(1);
354     }
355     return nullptr;
356   };
357 
358   if (TI->hasOneUse() || FI->hasOneUse()) {
359     // Cond ? -X : -Y --> -(Cond ? X : Y)
360     Value *X, *Y;
361     if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y)))) {
362       // Intersect FMF from the fneg instructions and union those with the
363       // select.
364       FastMathFlags FMF = TI->getFastMathFlags();
365       FMF &= FI->getFastMathFlags();
366       FMF |= SI.getFastMathFlags();
367       Value *NewSel =
368           Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
369       if (auto *NewSelI = dyn_cast<Instruction>(NewSel))
370         NewSelI->setFastMathFlags(FMF);
371       Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel);
372       NewFNeg->setFastMathFlags(FMF);
373       return NewFNeg;
374     }
375 
376     // Min/max intrinsic with a common operand can have the common operand
377     // pulled after the select. This is the same transform as below for binops,
378     // but specialized for intrinsic matching and without the restrictive uses
379     // clause.
380     auto *TII = dyn_cast<IntrinsicInst>(TI);
381     auto *FII = dyn_cast<IntrinsicInst>(FI);
382     if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID()) {
383       if (match(TII, m_MaxOrMin(m_Value(), m_Value()))) {
384         if (Value *MatchOp = getCommonOp(TI, FI, true)) {
385           Value *NewSel =
386               Builder.CreateSelect(Cond, OtherOpT, OtherOpF, "minmaxop", &SI);
387           return CallInst::Create(TII->getCalledFunction(), {NewSel, MatchOp});
388         }
389       }
390 
391       // select c, (ldexp v, e0), (ldexp v, e1) -> ldexp v, (select c, e0, e1)
392       // select c, (ldexp v0, e), (ldexp v1, e) -> ldexp (select c, v0, v1), e
393       //
394       // select c, (ldexp v0, e0), (ldexp v1, e1) ->
395       //     ldexp (select c, v0, v1), (select c, e0, e1)
396       if (TII->getIntrinsicID() == Intrinsic::ldexp) {
397         Value *LdexpVal0 = TII->getArgOperand(0);
398         Value *LdexpExp0 = TII->getArgOperand(1);
399         Value *LdexpVal1 = FII->getArgOperand(0);
400         Value *LdexpExp1 = FII->getArgOperand(1);
401         if (LdexpExp0->getType() == LdexpExp1->getType()) {
402           FPMathOperator *SelectFPOp = cast<FPMathOperator>(&SI);
403           FastMathFlags FMF = cast<FPMathOperator>(TII)->getFastMathFlags();
404           FMF &= cast<FPMathOperator>(FII)->getFastMathFlags();
405           FMF |= SelectFPOp->getFastMathFlags();
406 
407           Value *SelectVal = Builder.CreateSelect(Cond, LdexpVal0, LdexpVal1);
408           Value *SelectExp = Builder.CreateSelect(Cond, LdexpExp0, LdexpExp1);
409 
410           CallInst *NewLdexp = Builder.CreateIntrinsic(
411               TII->getType(), Intrinsic::ldexp, {SelectVal, SelectExp});
412           NewLdexp->setFastMathFlags(FMF);
413           return replaceInstUsesWith(SI, NewLdexp);
414         }
415       }
416     }
417 
418     // icmp with a common operand also can have the common operand
419     // pulled after the select.
420     ICmpInst::Predicate TPred, FPred;
421     if (match(TI, m_ICmp(TPred, m_Value(), m_Value())) &&
422         match(FI, m_ICmp(FPred, m_Value(), m_Value()))) {
423       if (TPred == FPred || TPred == CmpInst::getSwappedPredicate(FPred)) {
424         bool Swapped = TPred != FPred;
425         if (Value *MatchOp =
426                 getCommonOp(TI, FI, ICmpInst::isEquality(TPred), Swapped)) {
427           Value *NewSel = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
428                                                SI.getName() + ".v", &SI);
429           return new ICmpInst(
430               MatchIsOpZero ? TPred : CmpInst::getSwappedPredicate(TPred),
431               MatchOp, NewSel);
432         }
433       }
434     }
435   }
436 
437   // Only handle binary operators (including two-operand getelementptr) with
438   // one-use here. As with the cast case above, it may be possible to relax the
439   // one-use constraint, but that needs be examined carefully since it may not
440   // reduce the total number of instructions.
441   if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
442       !TI->isSameOperationAs(FI) ||
443       (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
444       !TI->hasOneUse() || !FI->hasOneUse())
445     return nullptr;
446 
447   // Figure out if the operations have any operands in common.
448   Value *MatchOp = getCommonOp(TI, FI, TI->isCommutative());
449   if (!MatchOp)
450     return nullptr;
451 
452   // If the select condition is a vector, the operands of the original select's
453   // operands also must be vectors. This may not be the case for getelementptr
454   // for example.
455   if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
456                                !OtherOpF->getType()->isVectorTy()))
457     return nullptr;
458 
459   // If we are sinking div/rem after a select, we may need to freeze the
460   // condition because div/rem may induce immediate UB with a poison operand.
461   // For example, the following transform is not safe if Cond can ever be poison
462   // because we can replace poison with zero and then we have div-by-zero that
463   // didn't exist in the original code:
464   // Cond ? x/y : x/z --> x / (Cond ? y : z)
465   auto *BO = dyn_cast<BinaryOperator>(TI);
466   if (BO && BO->isIntDivRem() && !isGuaranteedNotToBePoison(Cond)) {
467     // A udiv/urem with a common divisor is safe because UB can only occur with
468     // div-by-zero, and that would be present in the original code.
469     if (BO->getOpcode() == Instruction::SDiv ||
470         BO->getOpcode() == Instruction::SRem || MatchIsOpZero)
471       Cond = Builder.CreateFreeze(Cond);
472   }
473 
474   // If we reach here, they do have operations in common.
475   Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
476                                       SI.getName() + ".v", &SI);
477   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
478   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
479   if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
480     BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
481     NewBO->copyIRFlags(TI);
482     NewBO->andIRFlags(FI);
483     return NewBO;
484   }
485   if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
486     auto *FGEP = cast<GetElementPtrInst>(FI);
487     Type *ElementType = TGEP->getResultElementType();
488     return TGEP->isInBounds() && FGEP->isInBounds()
489                ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
490                : GetElementPtrInst::Create(ElementType, Op0, {Op1});
491   }
492   llvm_unreachable("Expected BinaryOperator or GEP");
493   return nullptr;
494 }
495 
496 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
497   if (!C1I.isZero() && !C2I.isZero()) // One side must be zero.
498     return false;
499   return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes();
500 }
501 
502 /// Try to fold the select into one of the operands to allow further
503 /// optimization.
504 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
505                                                 Value *FalseVal) {
506   // See the comment above getSelectFoldableOperands for a description of the
507   // transformation we are doing here.
508   auto TryFoldSelectIntoOp = [&](SelectInst &SI, Value *TrueVal,
509                                  Value *FalseVal,
510                                  bool Swapped) -> Instruction * {
511     auto *TVI = dyn_cast<BinaryOperator>(TrueVal);
512     if (!TVI || !TVI->hasOneUse() || isa<Constant>(FalseVal))
513       return nullptr;
514 
515     unsigned SFO = getSelectFoldableOperands(TVI);
516     unsigned OpToFold = 0;
517     if ((SFO & 1) && FalseVal == TVI->getOperand(0))
518       OpToFold = 1;
519     else if ((SFO & 2) && FalseVal == TVI->getOperand(1))
520       OpToFold = 2;
521 
522     if (!OpToFold)
523       return nullptr;
524 
525     // TODO: We probably ought to revisit cases where the select and FP
526     // instructions have different flags and add tests to ensure the
527     // behaviour is correct.
528     FastMathFlags FMF;
529     if (isa<FPMathOperator>(&SI))
530       FMF = SI.getFastMathFlags();
531     Constant *C = ConstantExpr::getBinOpIdentity(
532         TVI->getOpcode(), TVI->getType(), true, FMF.noSignedZeros());
533     Value *OOp = TVI->getOperand(2 - OpToFold);
534     // Avoid creating select between 2 constants unless it's selecting
535     // between 0, 1 and -1.
536     const APInt *OOpC;
537     bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
538     if (!isa<Constant>(OOp) ||
539         (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
540       Value *NewSel = Builder.CreateSelect(SI.getCondition(), Swapped ? C : OOp,
541                                            Swapped ? OOp : C, "", &SI);
542       if (isa<FPMathOperator>(&SI))
543         cast<Instruction>(NewSel)->setFastMathFlags(FMF);
544       NewSel->takeName(TVI);
545       BinaryOperator *BO =
546           BinaryOperator::Create(TVI->getOpcode(), FalseVal, NewSel);
547       BO->copyIRFlags(TVI);
548       return BO;
549     }
550     return nullptr;
551   };
552 
553   if (Instruction *R = TryFoldSelectIntoOp(SI, TrueVal, FalseVal, false))
554     return R;
555 
556   if (Instruction *R = TryFoldSelectIntoOp(SI, FalseVal, TrueVal, true))
557     return R;
558 
559   return nullptr;
560 }
561 
562 /// We want to turn:
563 ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
564 /// into:
565 ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
566 /// Note:
567 ///   Z may be 0 if lshr is missing.
568 /// Worst-case scenario is that we will replace 5 instructions with 5 different
569 /// instructions, but we got rid of select.
570 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
571                                          Value *TVal, Value *FVal,
572                                          InstCombiner::BuilderTy &Builder) {
573   if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
574         Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
575         match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
576     return nullptr;
577 
578   // The TrueVal has general form of:  and %B, 1
579   Value *B;
580   if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
581     return nullptr;
582 
583   // Where %B may be optionally shifted:  lshr %X, %Z.
584   Value *X, *Z;
585   const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
586 
587   // The shift must be valid.
588   // TODO: This restricts the fold to constant shift amounts. Is there a way to
589   //       handle variable shifts safely? PR47012
590   if (HasShift &&
591       !match(Z, m_SpecificInt_ICMP(CmpInst::ICMP_ULT,
592                                    APInt(SelType->getScalarSizeInBits(),
593                                          SelType->getScalarSizeInBits()))))
594     return nullptr;
595 
596   if (!HasShift)
597     X = B;
598 
599   Value *Y;
600   if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
601     return nullptr;
602 
603   // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
604   // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
605   Constant *One = ConstantInt::get(SelType, 1);
606   Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
607   Value *FullMask = Builder.CreateOr(Y, MaskB);
608   Value *MaskedX = Builder.CreateAnd(X, FullMask);
609   Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
610   return new ZExtInst(ICmpNeZero, SelType);
611 }
612 
613 /// We want to turn:
614 ///   (select (icmp eq (and X, C1), 0), 0, (shl [nsw/nuw] X, C2));
615 ///   iff C1 is a mask and the number of its leading zeros is equal to C2
616 /// into:
617 ///   shl X, C2
618 static Value *foldSelectICmpAndZeroShl(const ICmpInst *Cmp, Value *TVal,
619                                        Value *FVal,
620                                        InstCombiner::BuilderTy &Builder) {
621   ICmpInst::Predicate Pred;
622   Value *AndVal;
623   if (!match(Cmp, m_ICmp(Pred, m_Value(AndVal), m_Zero())))
624     return nullptr;
625 
626   if (Pred == ICmpInst::ICMP_NE) {
627     Pred = ICmpInst::ICMP_EQ;
628     std::swap(TVal, FVal);
629   }
630 
631   Value *X;
632   const APInt *C2, *C1;
633   if (Pred != ICmpInst::ICMP_EQ ||
634       !match(AndVal, m_And(m_Value(X), m_APInt(C1))) ||
635       !match(TVal, m_Zero()) || !match(FVal, m_Shl(m_Specific(X), m_APInt(C2))))
636     return nullptr;
637 
638   if (!C1->isMask() ||
639       C1->countLeadingZeros() != static_cast<unsigned>(C2->getZExtValue()))
640     return nullptr;
641 
642   auto *FI = dyn_cast<Instruction>(FVal);
643   if (!FI)
644     return nullptr;
645 
646   FI->setHasNoSignedWrap(false);
647   FI->setHasNoUnsignedWrap(false);
648   return FVal;
649 }
650 
651 /// We want to turn:
652 ///   (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
653 ///   (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
654 /// into:
655 ///   ashr (X, Y)
656 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
657                                      Value *FalseVal,
658                                      InstCombiner::BuilderTy &Builder) {
659   ICmpInst::Predicate Pred = IC->getPredicate();
660   Value *CmpLHS = IC->getOperand(0);
661   Value *CmpRHS = IC->getOperand(1);
662   if (!CmpRHS->getType()->isIntOrIntVectorTy())
663     return nullptr;
664 
665   Value *X, *Y;
666   unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
667   if ((Pred != ICmpInst::ICMP_SGT ||
668        !match(CmpRHS,
669               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
670       (Pred != ICmpInst::ICMP_SLT ||
671        !match(CmpRHS,
672               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
673     return nullptr;
674 
675   // Canonicalize so that ashr is in FalseVal.
676   if (Pred == ICmpInst::ICMP_SLT)
677     std::swap(TrueVal, FalseVal);
678 
679   if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
680       match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
681       match(CmpLHS, m_Specific(X))) {
682     const auto *Ashr = cast<Instruction>(FalseVal);
683     // if lshr is not exact and ashr is, this new ashr must not be exact.
684     bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
685     return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
686   }
687 
688   return nullptr;
689 }
690 
691 /// We want to turn:
692 ///   (select (icmp eq (and X, C1), 0), Y, (BinOp Y, C2))
693 /// into:
694 ///   IF C2 u>= C1
695 ///     (BinOp Y, (shl (and X, C1), C3))
696 ///   ELSE
697 ///     (BinOp Y, (lshr (and X, C1), C3))
698 /// iff:
699 ///   0 on the RHS is the identity value (i.e add, xor, shl, etc...)
700 ///   C1 and C2 are both powers of 2
701 /// where:
702 ///   IF C2 u>= C1
703 ///     C3 = Log(C2) - Log(C1)
704 ///   ELSE
705 ///     C3 = Log(C1) - Log(C2)
706 ///
707 /// This transform handles cases where:
708 /// 1. The icmp predicate is inverted
709 /// 2. The select operands are reversed
710 /// 3. The magnitude of C2 and C1 are flipped
711 static Value *foldSelectICmpAndBinOp(const ICmpInst *IC, Value *TrueVal,
712                                   Value *FalseVal,
713                                   InstCombiner::BuilderTy &Builder) {
714   // Only handle integer compares. Also, if this is a vector select, we need a
715   // vector compare.
716   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
717      TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
718     return nullptr;
719 
720   Value *CmpLHS = IC->getOperand(0);
721   Value *CmpRHS = IC->getOperand(1);
722 
723   unsigned C1Log;
724   bool NeedAnd = false;
725   CmpInst::Predicate Pred = IC->getPredicate();
726   if (IC->isEquality()) {
727     if (!match(CmpRHS, m_Zero()))
728       return nullptr;
729 
730     const APInt *C1;
731     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
732       return nullptr;
733 
734     C1Log = C1->logBase2();
735   } else {
736     APInt C1;
737     if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CmpLHS, C1) ||
738         !C1.isPowerOf2())
739       return nullptr;
740 
741     C1Log = C1.logBase2();
742     NeedAnd = true;
743   }
744 
745   Value *Y, *V = CmpLHS;
746   BinaryOperator *BinOp;
747   const APInt *C2;
748   bool NeedXor;
749   if (match(FalseVal, m_BinOp(m_Specific(TrueVal), m_Power2(C2)))) {
750     Y = TrueVal;
751     BinOp = cast<BinaryOperator>(FalseVal);
752     NeedXor = Pred == ICmpInst::ICMP_NE;
753   } else if (match(TrueVal, m_BinOp(m_Specific(FalseVal), m_Power2(C2)))) {
754     Y = FalseVal;
755     BinOp = cast<BinaryOperator>(TrueVal);
756     NeedXor = Pred == ICmpInst::ICMP_EQ;
757   } else {
758     return nullptr;
759   }
760 
761   // Check that 0 on RHS is identity value for this binop.
762   auto *IdentityC =
763       ConstantExpr::getBinOpIdentity(BinOp->getOpcode(), BinOp->getType(),
764                                      /*AllowRHSConstant*/ true);
765   if (IdentityC == nullptr || !IdentityC->isNullValue())
766     return nullptr;
767 
768   unsigned C2Log = C2->logBase2();
769 
770   bool NeedShift = C1Log != C2Log;
771   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
772                        V->getType()->getScalarSizeInBits();
773 
774   // Make sure we don't create more instructions than we save.
775   if ((NeedShift + NeedXor + NeedZExtTrunc + NeedAnd) >
776       (IC->hasOneUse() + BinOp->hasOneUse()))
777     return nullptr;
778 
779   if (NeedAnd) {
780     // Insert the AND instruction on the input to the truncate.
781     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
782     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
783   }
784 
785   if (C2Log > C1Log) {
786     V = Builder.CreateZExtOrTrunc(V, Y->getType());
787     V = Builder.CreateShl(V, C2Log - C1Log);
788   } else if (C1Log > C2Log) {
789     V = Builder.CreateLShr(V, C1Log - C2Log);
790     V = Builder.CreateZExtOrTrunc(V, Y->getType());
791   } else
792     V = Builder.CreateZExtOrTrunc(V, Y->getType());
793 
794   if (NeedXor)
795     V = Builder.CreateXor(V, *C2);
796 
797   return Builder.CreateBinOp(BinOp->getOpcode(), Y, V);
798 }
799 
800 /// Canonicalize a set or clear of a masked set of constant bits to
801 /// select-of-constants form.
802 static Instruction *foldSetClearBits(SelectInst &Sel,
803                                      InstCombiner::BuilderTy &Builder) {
804   Value *Cond = Sel.getCondition();
805   Value *T = Sel.getTrueValue();
806   Value *F = Sel.getFalseValue();
807   Type *Ty = Sel.getType();
808   Value *X;
809   const APInt *NotC, *C;
810 
811   // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C)
812   if (match(T, m_And(m_Value(X), m_APInt(NotC))) &&
813       match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
814     Constant *Zero = ConstantInt::getNullValue(Ty);
815     Constant *OrC = ConstantInt::get(Ty, *C);
816     Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel);
817     return BinaryOperator::CreateOr(T, NewSel);
818   }
819 
820   // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0)
821   if (match(F, m_And(m_Value(X), m_APInt(NotC))) &&
822       match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
823     Constant *Zero = ConstantInt::getNullValue(Ty);
824     Constant *OrC = ConstantInt::get(Ty, *C);
825     Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel);
826     return BinaryOperator::CreateOr(F, NewSel);
827   }
828 
829   return nullptr;
830 }
831 
832 //   select (x == 0), 0, x * y --> freeze(y) * x
833 //   select (y == 0), 0, x * y --> freeze(x) * y
834 //   select (x == 0), undef, x * y --> freeze(y) * x
835 //   select (x == undef), 0, x * y --> freeze(y) * x
836 // Usage of mul instead of 0 will make the result more poisonous,
837 // so the operand that was not checked in the condition should be frozen.
838 // The latter folding is applied only when a constant compared with x is
839 // is a vector consisting of 0 and undefs. If a constant compared with x
840 // is a scalar undefined value or undefined vector then an expression
841 // should be already folded into a constant.
842 static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) {
843   auto *CondVal = SI.getCondition();
844   auto *TrueVal = SI.getTrueValue();
845   auto *FalseVal = SI.getFalseValue();
846   Value *X, *Y;
847   ICmpInst::Predicate Predicate;
848 
849   // Assuming that constant compared with zero is not undef (but it may be
850   // a vector with some undef elements). Otherwise (when a constant is undef)
851   // the select expression should be already simplified.
852   if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) ||
853       !ICmpInst::isEquality(Predicate))
854     return nullptr;
855 
856   if (Predicate == ICmpInst::ICMP_NE)
857     std::swap(TrueVal, FalseVal);
858 
859   // Check that TrueVal is a constant instead of matching it with m_Zero()
860   // to handle the case when it is a scalar undef value or a vector containing
861   // non-zero elements that are masked by undef elements in the compare
862   // constant.
863   auto *TrueValC = dyn_cast<Constant>(TrueVal);
864   if (TrueValC == nullptr ||
865       !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) ||
866       !isa<Instruction>(FalseVal))
867     return nullptr;
868 
869   auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1));
870   auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC);
871   // If X is compared with 0 then TrueVal could be either zero or undef.
872   // m_Zero match vectors containing some undef elements, but for scalars
873   // m_Undef should be used explicitly.
874   if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef()))
875     return nullptr;
876 
877   auto *FalseValI = cast<Instruction>(FalseVal);
878   auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"),
879                                      FalseValI->getIterator());
880   IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY);
881   return IC.replaceInstUsesWith(SI, FalseValI);
882 }
883 
884 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
885 /// There are 8 commuted/swapped variants of this pattern.
886 /// TODO: Also support a - UMIN(a,b) patterns.
887 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
888                                             const Value *TrueVal,
889                                             const Value *FalseVal,
890                                             InstCombiner::BuilderTy &Builder) {
891   ICmpInst::Predicate Pred = ICI->getPredicate();
892   Value *A = ICI->getOperand(0);
893   Value *B = ICI->getOperand(1);
894 
895   // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
896   // (a == 0) ? 0 : a - 1 -> (a != 0) ? a - 1 : 0
897   if (match(TrueVal, m_Zero())) {
898     Pred = ICmpInst::getInversePredicate(Pred);
899     std::swap(TrueVal, FalseVal);
900   }
901 
902   if (!match(FalseVal, m_Zero()))
903     return nullptr;
904 
905   // ugt 0 is canonicalized to ne 0 and requires special handling
906   // (a != 0) ? a + -1 : 0 -> usub.sat(a, 1)
907   if (Pred == ICmpInst::ICMP_NE) {
908     if (match(B, m_Zero()) && match(TrueVal, m_Add(m_Specific(A), m_AllOnes())))
909       return Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A,
910                                            ConstantInt::get(A->getType(), 1));
911     return nullptr;
912   }
913 
914   if (!ICmpInst::isUnsigned(Pred))
915     return nullptr;
916 
917   if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
918     // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
919     std::swap(A, B);
920     Pred = ICmpInst::getSwappedPredicate(Pred);
921   }
922 
923   assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
924          "Unexpected isUnsigned predicate!");
925 
926   // Ensure the sub is of the form:
927   //  (a > b) ? a - b : 0 -> usub.sat(a, b)
928   //  (a > b) ? b - a : 0 -> -usub.sat(a, b)
929   // Checking for both a-b and a+(-b) as a constant.
930   bool IsNegative = false;
931   const APInt *C;
932   if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
933       (match(A, m_APInt(C)) &&
934        match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
935     IsNegative = true;
936   else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
937            !(match(B, m_APInt(C)) &&
938              match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
939     return nullptr;
940 
941   // If we are adding a negate and the sub and icmp are used anywhere else, we
942   // would end up with more instructions.
943   if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
944     return nullptr;
945 
946   // (a > b) ? a - b : 0 -> usub.sat(a, b)
947   // (a > b) ? b - a : 0 -> -usub.sat(a, b)
948   Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
949   if (IsNegative)
950     Result = Builder.CreateNeg(Result);
951   return Result;
952 }
953 
954 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
955                                        InstCombiner::BuilderTy &Builder) {
956   if (!Cmp->hasOneUse())
957     return nullptr;
958 
959   // Match unsigned saturated add with constant.
960   Value *Cmp0 = Cmp->getOperand(0);
961   Value *Cmp1 = Cmp->getOperand(1);
962   ICmpInst::Predicate Pred = Cmp->getPredicate();
963   Value *X;
964   const APInt *C, *CmpC;
965   if (Pred == ICmpInst::ICMP_ULT &&
966       match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
967       match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
968     // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
969     return Builder.CreateBinaryIntrinsic(
970         Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
971   }
972 
973   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
974   // There are 8 commuted variants.
975   // Canonicalize -1 (saturated result) to true value of the select.
976   if (match(FVal, m_AllOnes())) {
977     std::swap(TVal, FVal);
978     Pred = CmpInst::getInversePredicate(Pred);
979   }
980   if (!match(TVal, m_AllOnes()))
981     return nullptr;
982 
983   // Canonicalize predicate to less-than or less-or-equal-than.
984   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
985     std::swap(Cmp0, Cmp1);
986     Pred = CmpInst::getSwappedPredicate(Pred);
987   }
988   if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE)
989     return nullptr;
990 
991   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
992   // Strictness of the comparison is irrelevant.
993   Value *Y;
994   if (match(Cmp0, m_Not(m_Value(X))) &&
995       match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
996     // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
997     // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
998     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
999   }
1000   // The 'not' op may be included in the sum but not the compare.
1001   // Strictness of the comparison is irrelevant.
1002   X = Cmp0;
1003   Y = Cmp1;
1004   if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
1005     // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
1006     // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
1007     BinaryOperator *BO = cast<BinaryOperator>(FVal);
1008     return Builder.CreateBinaryIntrinsic(
1009         Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
1010   }
1011   // The overflow may be detected via the add wrapping round.
1012   // This is only valid for strict comparison!
1013   if (Pred == ICmpInst::ICMP_ULT &&
1014       match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
1015       match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
1016     // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
1017     // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
1018     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
1019   }
1020 
1021   return nullptr;
1022 }
1023 
1024 /// Try to match patterns with select and subtract as absolute difference.
1025 static Value *foldAbsDiff(ICmpInst *Cmp, Value *TVal, Value *FVal,
1026                           InstCombiner::BuilderTy &Builder) {
1027   auto *TI = dyn_cast<Instruction>(TVal);
1028   auto *FI = dyn_cast<Instruction>(FVal);
1029   if (!TI || !FI)
1030     return nullptr;
1031 
1032   // Normalize predicate to gt/lt rather than ge/le.
1033   ICmpInst::Predicate Pred = Cmp->getStrictPredicate();
1034   Value *A = Cmp->getOperand(0);
1035   Value *B = Cmp->getOperand(1);
1036 
1037   // Normalize "A - B" as the true value of the select.
1038   if (match(FI, m_Sub(m_Specific(A), m_Specific(B)))) {
1039     std::swap(FI, TI);
1040     Pred = ICmpInst::getSwappedPredicate(Pred);
1041   }
1042 
1043   // With any pair of no-wrap subtracts:
1044   // (A > B) ? (A - B) : (B - A) --> abs(A - B)
1045   if (Pred == CmpInst::ICMP_SGT &&
1046       match(TI, m_Sub(m_Specific(A), m_Specific(B))) &&
1047       match(FI, m_Sub(m_Specific(B), m_Specific(A))) &&
1048       (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap()) &&
1049       (FI->hasNoSignedWrap() || FI->hasNoUnsignedWrap())) {
1050     // The remaining subtract is not "nuw" any more.
1051     // If there's one use of the subtract (no other use than the use we are
1052     // about to replace), then we know that the sub is "nsw" in this context
1053     // even if it was only "nuw" before. If there's another use, then we can't
1054     // add "nsw" to the existing instruction because it may not be safe in the
1055     // other user's context.
1056     TI->setHasNoUnsignedWrap(false);
1057     if (!TI->hasNoSignedWrap())
1058       TI->setHasNoSignedWrap(TI->hasOneUse());
1059     return Builder.CreateBinaryIntrinsic(Intrinsic::abs, TI, Builder.getTrue());
1060   }
1061 
1062   return nullptr;
1063 }
1064 
1065 /// Fold the following code sequence:
1066 /// \code
1067 ///   int a = ctlz(x & -x);
1068 //    x ? 31 - a : a;
1069 //    // or
1070 //    x ? 31 - a : 32;
1071 /// \code
1072 ///
1073 /// into:
1074 ///   cttz(x)
1075 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
1076                                          Value *FalseVal,
1077                                          InstCombiner::BuilderTy &Builder) {
1078   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
1079   if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
1080     return nullptr;
1081 
1082   if (ICI->getPredicate() == ICmpInst::ICMP_NE)
1083     std::swap(TrueVal, FalseVal);
1084 
1085   Value *Ctlz;
1086   if (!match(FalseVal,
1087              m_Xor(m_Value(Ctlz), m_SpecificInt(BitWidth - 1))))
1088     return nullptr;
1089 
1090   if (!match(Ctlz, m_Intrinsic<Intrinsic::ctlz>()))
1091     return nullptr;
1092 
1093   if (TrueVal != Ctlz && !match(TrueVal, m_SpecificInt(BitWidth)))
1094     return nullptr;
1095 
1096   Value *X = ICI->getOperand(0);
1097   auto *II = cast<IntrinsicInst>(Ctlz);
1098   if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
1099     return nullptr;
1100 
1101   Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
1102                                           II->getType());
1103   return CallInst::Create(F, {X, II->getArgOperand(1)});
1104 }
1105 
1106 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
1107 /// call to cttz/ctlz with flag 'is_zero_poison' cleared.
1108 ///
1109 /// For example, we can fold the following code sequence:
1110 /// \code
1111 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
1112 ///   %1 = icmp ne i32 %x, 0
1113 ///   %2 = select i1 %1, i32 %0, i32 32
1114 /// \code
1115 ///
1116 /// into:
1117 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
1118 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
1119                                  InstCombiner::BuilderTy &Builder) {
1120   ICmpInst::Predicate Pred = ICI->getPredicate();
1121   Value *CmpLHS = ICI->getOperand(0);
1122   Value *CmpRHS = ICI->getOperand(1);
1123 
1124   // Check if the select condition compares a value for equality.
1125   if (!ICI->isEquality())
1126     return nullptr;
1127 
1128   Value *SelectArg = FalseVal;
1129   Value *ValueOnZero = TrueVal;
1130   if (Pred == ICmpInst::ICMP_NE)
1131     std::swap(SelectArg, ValueOnZero);
1132 
1133   // Skip zero extend/truncate.
1134   Value *Count = nullptr;
1135   if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
1136       !match(SelectArg, m_Trunc(m_Value(Count))))
1137     Count = SelectArg;
1138 
1139   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
1140   // input to the cttz/ctlz is used as LHS for the compare instruction.
1141   Value *X;
1142   if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Value(X))) &&
1143       !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Value(X))))
1144     return nullptr;
1145 
1146   // (X == 0) ? BitWidth : ctz(X)
1147   // (X == -1) ? BitWidth : ctz(~X)
1148   if ((X != CmpLHS || !match(CmpRHS, m_Zero())) &&
1149       (!match(X, m_Not(m_Specific(CmpLHS))) || !match(CmpRHS, m_AllOnes())))
1150     return nullptr;
1151 
1152   IntrinsicInst *II = cast<IntrinsicInst>(Count);
1153 
1154   // Check if the value propagated on zero is a constant number equal to the
1155   // sizeof in bits of 'Count'.
1156   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
1157   if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
1158     // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from
1159     // true to false on this flag, so we can replace it for all users.
1160     II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
1161     return SelectArg;
1162   }
1163 
1164   // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional
1165   // zext/trunc) have one use (ending at the select), the cttz/ctlz result will
1166   // not be used if the input is zero. Relax to 'zero is poison' for that case.
1167   if (II->hasOneUse() && SelectArg->hasOneUse() &&
1168       !match(II->getArgOperand(1), m_One()))
1169     II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
1170 
1171   return nullptr;
1172 }
1173 
1174 static Value *canonicalizeSPF(ICmpInst &Cmp, Value *TrueVal, Value *FalseVal,
1175                               InstCombinerImpl &IC) {
1176   Value *LHS, *RHS;
1177   // TODO: What to do with pointer min/max patterns?
1178   if (!TrueVal->getType()->isIntOrIntVectorTy())
1179     return nullptr;
1180 
1181   SelectPatternFlavor SPF =
1182       matchDecomposedSelectPattern(&Cmp, TrueVal, FalseVal, LHS, RHS).Flavor;
1183   if (SPF == SelectPatternFlavor::SPF_ABS ||
1184       SPF == SelectPatternFlavor::SPF_NABS) {
1185     if (!Cmp.hasOneUse() && !RHS->hasOneUse())
1186       return nullptr; // TODO: Relax this restriction.
1187 
1188     // Note that NSW flag can only be propagated for normal, non-negated abs!
1189     bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS &&
1190                           match(RHS, m_NSWNeg(m_Specific(LHS)));
1191     Constant *IntMinIsPoisonC =
1192         ConstantInt::get(Type::getInt1Ty(Cmp.getContext()), IntMinIsPoison);
1193     Instruction *Abs =
1194         IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC);
1195 
1196     if (SPF == SelectPatternFlavor::SPF_NABS)
1197       return IC.Builder.CreateNeg(Abs); // Always without NSW flag!
1198     return Abs;
1199   }
1200 
1201   if (SelectPatternResult::isMinOrMax(SPF)) {
1202     Intrinsic::ID IntrinsicID;
1203     switch (SPF) {
1204     case SelectPatternFlavor::SPF_UMIN:
1205       IntrinsicID = Intrinsic::umin;
1206       break;
1207     case SelectPatternFlavor::SPF_UMAX:
1208       IntrinsicID = Intrinsic::umax;
1209       break;
1210     case SelectPatternFlavor::SPF_SMIN:
1211       IntrinsicID = Intrinsic::smin;
1212       break;
1213     case SelectPatternFlavor::SPF_SMAX:
1214       IntrinsicID = Intrinsic::smax;
1215       break;
1216     default:
1217       llvm_unreachable("Unexpected SPF");
1218     }
1219     return IC.Builder.CreateBinaryIntrinsic(IntrinsicID, LHS, RHS);
1220   }
1221 
1222   return nullptr;
1223 }
1224 
1225 bool InstCombinerImpl::replaceInInstruction(Value *V, Value *Old, Value *New,
1226                                             unsigned Depth) {
1227   // Conservatively limit replacement to two instructions upwards.
1228   if (Depth == 2)
1229     return false;
1230 
1231   auto *I = dyn_cast<Instruction>(V);
1232   if (!I || !I->hasOneUse() || !isSafeToSpeculativelyExecute(I))
1233     return false;
1234 
1235   bool Changed = false;
1236   for (Use &U : I->operands()) {
1237     if (U == Old) {
1238       replaceUse(U, New);
1239       Worklist.add(I);
1240       Changed = true;
1241     } else {
1242       Changed |= replaceInInstruction(U, Old, New, Depth + 1);
1243     }
1244   }
1245   return Changed;
1246 }
1247 
1248 /// If we have a select with an equality comparison, then we know the value in
1249 /// one of the arms of the select. See if substituting this value into an arm
1250 /// and simplifying the result yields the same value as the other arm.
1251 ///
1252 /// To make this transform safe, we must drop poison-generating flags
1253 /// (nsw, etc) if we simplified to a binop because the select may be guarding
1254 /// that poison from propagating. If the existing binop already had no
1255 /// poison-generating flags, then this transform can be done by instsimplify.
1256 ///
1257 /// Consider:
1258 ///   %cmp = icmp eq i32 %x, 2147483647
1259 ///   %add = add nsw i32 %x, 1
1260 ///   %sel = select i1 %cmp, i32 -2147483648, i32 %add
1261 ///
1262 /// We can't replace %sel with %add unless we strip away the flags.
1263 /// TODO: Wrapping flags could be preserved in some cases with better analysis.
1264 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel,
1265                                                           ICmpInst &Cmp) {
1266   if (!Cmp.isEquality())
1267     return nullptr;
1268 
1269   // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1270   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1271   bool Swapped = false;
1272   if (Cmp.getPredicate() == ICmpInst::ICMP_NE) {
1273     std::swap(TrueVal, FalseVal);
1274     Swapped = true;
1275   }
1276 
1277   // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand.
1278   // Make sure Y cannot be undef though, as we might pick different values for
1279   // undef in the icmp and in f(Y). Additionally, take care to avoid replacing
1280   // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite
1281   // replacement cycle.
1282   Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1283   if (TrueVal != CmpLHS &&
1284       isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) {
1285     if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ,
1286                                           /* AllowRefinement */ true))
1287       return replaceOperand(Sel, Swapped ? 2 : 1, V);
1288 
1289     // Even if TrueVal does not simplify, we can directly replace a use of
1290     // CmpLHS with CmpRHS, as long as the instruction is not used anywhere
1291     // else and is safe to speculatively execute (we may end up executing it
1292     // with different operands, which should not cause side-effects or trigger
1293     // undefined behavior). Only do this if CmpRHS is a constant, as
1294     // profitability is not clear for other cases.
1295     // FIXME: Support vectors.
1296     if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant()) &&
1297         !Cmp.getType()->isVectorTy())
1298       if (replaceInInstruction(TrueVal, CmpLHS, CmpRHS))
1299         return &Sel;
1300   }
1301   if (TrueVal != CmpRHS &&
1302       isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT))
1303     if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ,
1304                                           /* AllowRefinement */ true))
1305       return replaceOperand(Sel, Swapped ? 2 : 1, V);
1306 
1307   auto *FalseInst = dyn_cast<Instruction>(FalseVal);
1308   if (!FalseInst)
1309     return nullptr;
1310 
1311   // InstSimplify already performed this fold if it was possible subject to
1312   // current poison-generating flags. Check whether dropping poison-generating
1313   // flags enables the transform.
1314 
1315   // Try each equivalence substitution possibility.
1316   // We have an 'EQ' comparison, so the select's false value will propagate.
1317   // Example:
1318   // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1319   SmallVector<Instruction *> DropFlags;
1320   if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ,
1321                              /* AllowRefinement */ false,
1322                              &DropFlags) == TrueVal ||
1323       simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ,
1324                              /* AllowRefinement */ false,
1325                              &DropFlags) == TrueVal) {
1326     for (Instruction *I : DropFlags) {
1327       I->dropPoisonGeneratingFlagsAndMetadata();
1328       Worklist.add(I);
1329     }
1330 
1331     return replaceInstUsesWith(Sel, FalseVal);
1332   }
1333 
1334   return nullptr;
1335 }
1336 
1337 // See if this is a pattern like:
1338 //   %old_cmp1 = icmp slt i32 %x, C2
1339 //   %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1340 //   %old_x_offseted = add i32 %x, C1
1341 //   %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1342 //   %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1343 // This can be rewritten as more canonical pattern:
1344 //   %new_cmp1 = icmp slt i32 %x, -C1
1345 //   %new_cmp2 = icmp sge i32 %x, C0-C1
1346 //   %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1347 //   %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1348 // Iff -C1 s<= C2 s<= C0-C1
1349 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1350 //      SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
1351 static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1352                                     InstCombiner::BuilderTy &Builder) {
1353   Value *X = Sel0.getTrueValue();
1354   Value *Sel1 = Sel0.getFalseValue();
1355 
1356   // First match the condition of the outermost select.
1357   // Said condition must be one-use.
1358   if (!Cmp0.hasOneUse())
1359     return nullptr;
1360   ICmpInst::Predicate Pred0 = Cmp0.getPredicate();
1361   Value *Cmp00 = Cmp0.getOperand(0);
1362   Constant *C0;
1363   if (!match(Cmp0.getOperand(1),
1364              m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
1365     return nullptr;
1366 
1367   if (!isa<SelectInst>(Sel1)) {
1368     Pred0 = ICmpInst::getInversePredicate(Pred0);
1369     std::swap(X, Sel1);
1370   }
1371 
1372   // Canonicalize Cmp0 into ult or uge.
1373   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1374   switch (Pred0) {
1375   case ICmpInst::Predicate::ICMP_ULT:
1376   case ICmpInst::Predicate::ICMP_UGE:
1377     // Although icmp ult %x, 0 is an unusual thing to try and should generally
1378     // have been simplified, it does not verify with undef inputs so ensure we
1379     // are not in a strange state.
1380     if (!match(C0, m_SpecificInt_ICMP(
1381                        ICmpInst::Predicate::ICMP_NE,
1382                        APInt::getZero(C0->getType()->getScalarSizeInBits()))))
1383       return nullptr;
1384     break; // Great!
1385   case ICmpInst::Predicate::ICMP_ULE:
1386   case ICmpInst::Predicate::ICMP_UGT:
1387     // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment
1388     // C0, which again means it must not have any all-ones elements.
1389     if (!match(C0,
1390                m_SpecificInt_ICMP(
1391                    ICmpInst::Predicate::ICMP_NE,
1392                    APInt::getAllOnes(C0->getType()->getScalarSizeInBits()))))
1393       return nullptr; // Can't do, have all-ones element[s].
1394     Pred0 = ICmpInst::getFlippedStrictnessPredicate(Pred0);
1395     C0 = InstCombiner::AddOne(C0);
1396     break;
1397   default:
1398     return nullptr; // Unknown predicate.
1399   }
1400 
1401   // Now that we've canonicalized the ICmp, we know the X we expect;
1402   // the select in other hand should be one-use.
1403   if (!Sel1->hasOneUse())
1404     return nullptr;
1405 
1406   // If the types do not match, look through any truncs to the underlying
1407   // instruction.
1408   if (Cmp00->getType() != X->getType() && X->hasOneUse())
1409     match(X, m_TruncOrSelf(m_Value(X)));
1410 
1411   // We now can finish matching the condition of the outermost select:
1412   // it should either be the X itself, or an addition of some constant to X.
1413   Constant *C1;
1414   if (Cmp00 == X)
1415     C1 = ConstantInt::getNullValue(X->getType());
1416   else if (!match(Cmp00,
1417                   m_Add(m_Specific(X),
1418                         m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
1419     return nullptr;
1420 
1421   Value *Cmp1;
1422   ICmpInst::Predicate Pred1;
1423   Constant *C2;
1424   Value *ReplacementLow, *ReplacementHigh;
1425   if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1426                             m_Value(ReplacementHigh))) ||
1427       !match(Cmp1,
1428              m_ICmp(Pred1, m_Specific(X),
1429                     m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
1430     return nullptr;
1431 
1432   if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1433     return nullptr; // Not enough one-use instructions for the fold.
1434   // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1435   //        two comparisons we'll need to build.
1436 
1437   // Canonicalize Cmp1 into the form we expect.
1438   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1439   switch (Pred1) {
1440   case ICmpInst::Predicate::ICMP_SLT:
1441     break;
1442   case ICmpInst::Predicate::ICMP_SLE:
1443     // We'd have to increment C2 by one, and for that it must not have signed
1444     // max element, but then it would have been canonicalized to 'slt' before
1445     // we get here. So we can't do anything useful with 'sle'.
1446     return nullptr;
1447   case ICmpInst::Predicate::ICMP_SGT:
1448     // We want to canonicalize it to 'slt', so we'll need to increment C2,
1449     // which again means it must not have any signed max elements.
1450     if (!match(C2,
1451                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1452                                   APInt::getSignedMaxValue(
1453                                       C2->getType()->getScalarSizeInBits()))))
1454       return nullptr; // Can't do, have signed max element[s].
1455     C2 = InstCombiner::AddOne(C2);
1456     [[fallthrough]];
1457   case ICmpInst::Predicate::ICMP_SGE:
1458     // Also non-canonical, but here we don't need to change C2,
1459     // so we don't have any restrictions on C2, so we can just handle it.
1460     Pred1 = ICmpInst::Predicate::ICMP_SLT;
1461     std::swap(ReplacementLow, ReplacementHigh);
1462     break;
1463   default:
1464     return nullptr; // Unknown predicate.
1465   }
1466   assert(Pred1 == ICmpInst::Predicate::ICMP_SLT &&
1467          "Unexpected predicate type.");
1468 
1469   // The thresholds of this clamp-like pattern.
1470   auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1471   auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1472 
1473   assert((Pred0 == ICmpInst::Predicate::ICMP_ULT ||
1474           Pred0 == ICmpInst::Predicate::ICMP_UGE) &&
1475          "Unexpected predicate type.");
1476   if (Pred0 == ICmpInst::Predicate::ICMP_UGE)
1477     std::swap(ThresholdLowIncl, ThresholdHighExcl);
1478 
1479   // The fold has a precondition 1: C2 s>= ThresholdLow
1480   auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
1481                                          ThresholdLowIncl);
1482   if (!match(Precond1, m_One()))
1483     return nullptr;
1484   // The fold has a precondition 2: C2 s<= ThresholdHigh
1485   auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
1486                                          ThresholdHighExcl);
1487   if (!match(Precond2, m_One()))
1488     return nullptr;
1489 
1490   // If we are matching from a truncated input, we need to sext the
1491   // ReplacementLow and ReplacementHigh values. Only do the transform if they
1492   // are free to extend due to being constants.
1493   if (X->getType() != Sel0.getType()) {
1494     Constant *LowC, *HighC;
1495     if (!match(ReplacementLow, m_ImmConstant(LowC)) ||
1496         !match(ReplacementHigh, m_ImmConstant(HighC)))
1497       return nullptr;
1498     const DataLayout &DL = Sel0.getModule()->getDataLayout();
1499     ReplacementLow =
1500         ConstantFoldCastOperand(Instruction::SExt, LowC, X->getType(), DL);
1501     ReplacementHigh =
1502         ConstantFoldCastOperand(Instruction::SExt, HighC, X->getType(), DL);
1503     assert(ReplacementLow && ReplacementHigh &&
1504            "Constant folding of ImmConstant cannot fail");
1505   }
1506 
1507   // All good, finally emit the new pattern.
1508   Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1509   Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1510   Value *MaybeReplacedLow =
1511       Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1512 
1513   // Create the final select. If we looked through a truncate above, we will
1514   // need to retruncate the result.
1515   Value *MaybeReplacedHigh = Builder.CreateSelect(
1516       ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1517   return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType());
1518 }
1519 
1520 // If we have
1521 //  %cmp = icmp [canonical predicate] i32 %x, C0
1522 //  %r = select i1 %cmp, i32 %y, i32 C1
1523 // Where C0 != C1 and %x may be different from %y, see if the constant that we
1524 // will have if we flip the strictness of the predicate (i.e. without changing
1525 // the result) is identical to the C1 in select. If it matches we can change
1526 // original comparison to one with swapped predicate, reuse the constant,
1527 // and swap the hands of select.
1528 static Instruction *
1529 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
1530                                          InstCombinerImpl &IC) {
1531   ICmpInst::Predicate Pred;
1532   Value *X;
1533   Constant *C0;
1534   if (!match(&Cmp, m_OneUse(m_ICmp(
1535                        Pred, m_Value(X),
1536                        m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
1537     return nullptr;
1538 
1539   // If comparison predicate is non-relational, we won't be able to do anything.
1540   if (ICmpInst::isEquality(Pred))
1541     return nullptr;
1542 
1543   // If comparison predicate is non-canonical, then we certainly won't be able
1544   // to make it canonical; canonicalizeCmpWithConstant() already tried.
1545   if (!InstCombiner::isCanonicalPredicate(Pred))
1546     return nullptr;
1547 
1548   // If the [input] type of comparison and select type are different, lets abort
1549   // for now. We could try to compare constants with trunc/[zs]ext though.
1550   if (C0->getType() != Sel.getType())
1551     return nullptr;
1552 
1553   // ULT with 'add' of a constant is canonical. See foldICmpAddConstant().
1554   // FIXME: Are there more magic icmp predicate+constant pairs we must avoid?
1555   //        Or should we just abandon this transform entirely?
1556   if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant())))
1557     return nullptr;
1558 
1559 
1560   Value *SelVal0, *SelVal1; // We do not care which one is from where.
1561   match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
1562   // At least one of these values we are selecting between must be a constant
1563   // else we'll never succeed.
1564   if (!match(SelVal0, m_AnyIntegralConstant()) &&
1565       !match(SelVal1, m_AnyIntegralConstant()))
1566     return nullptr;
1567 
1568   // Does this constant C match any of the `select` values?
1569   auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
1570     return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
1571   };
1572 
1573   // If C0 *already* matches true/false value of select, we are done.
1574   if (MatchesSelectValue(C0))
1575     return nullptr;
1576 
1577   // Check the constant we'd have with flipped-strictness predicate.
1578   auto FlippedStrictness =
1579       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0);
1580   if (!FlippedStrictness)
1581     return nullptr;
1582 
1583   // If said constant doesn't match either, then there is no hope,
1584   if (!MatchesSelectValue(FlippedStrictness->second))
1585     return nullptr;
1586 
1587   // It matched! Lets insert the new comparison just before select.
1588   InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
1589   IC.Builder.SetInsertPoint(&Sel);
1590 
1591   Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
1592   Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
1593                                         Cmp.getName() + ".inv");
1594   IC.replaceOperand(Sel, 0, NewCmp);
1595   Sel.swapValues();
1596   Sel.swapProfMetadata();
1597 
1598   return &Sel;
1599 }
1600 
1601 static Instruction *foldSelectZeroOrOnes(ICmpInst *Cmp, Value *TVal,
1602                                          Value *FVal,
1603                                          InstCombiner::BuilderTy &Builder) {
1604   if (!Cmp->hasOneUse())
1605     return nullptr;
1606 
1607   const APInt *CmpC;
1608   if (!match(Cmp->getOperand(1), m_APIntAllowUndef(CmpC)))
1609     return nullptr;
1610 
1611   // (X u< 2) ? -X : -1 --> sext (X != 0)
1612   Value *X = Cmp->getOperand(0);
1613   if (Cmp->getPredicate() == ICmpInst::ICMP_ULT && *CmpC == 2 &&
1614       match(TVal, m_Neg(m_Specific(X))) && match(FVal, m_AllOnes()))
1615     return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType());
1616 
1617   // (X u> 1) ? -1 : -X --> sext (X != 0)
1618   if (Cmp->getPredicate() == ICmpInst::ICMP_UGT && *CmpC == 1 &&
1619       match(FVal, m_Neg(m_Specific(X))) && match(TVal, m_AllOnes()))
1620     return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType());
1621 
1622   return nullptr;
1623 }
1624 
1625 static Value *foldSelectInstWithICmpConst(SelectInst &SI, ICmpInst *ICI,
1626                                           InstCombiner::BuilderTy &Builder) {
1627   const APInt *CmpC;
1628   Value *V;
1629   CmpInst::Predicate Pred;
1630   if (!match(ICI, m_ICmp(Pred, m_Value(V), m_APInt(CmpC))))
1631     return nullptr;
1632 
1633   // Match clamp away from min/max value as a max/min operation.
1634   Value *TVal = SI.getTrueValue();
1635   Value *FVal = SI.getFalseValue();
1636   if (Pred == ICmpInst::ICMP_EQ && V == FVal) {
1637     // (V == UMIN) ? UMIN+1 : V --> umax(V, UMIN+1)
1638     if (CmpC->isMinValue() && match(TVal, m_SpecificInt(*CmpC + 1)))
1639       return Builder.CreateBinaryIntrinsic(Intrinsic::umax, V, TVal);
1640     // (V == UMAX) ? UMAX-1 : V --> umin(V, UMAX-1)
1641     if (CmpC->isMaxValue() && match(TVal, m_SpecificInt(*CmpC - 1)))
1642       return Builder.CreateBinaryIntrinsic(Intrinsic::umin, V, TVal);
1643     // (V == SMIN) ? SMIN+1 : V --> smax(V, SMIN+1)
1644     if (CmpC->isMinSignedValue() && match(TVal, m_SpecificInt(*CmpC + 1)))
1645       return Builder.CreateBinaryIntrinsic(Intrinsic::smax, V, TVal);
1646     // (V == SMAX) ? SMAX-1 : V --> smin(V, SMAX-1)
1647     if (CmpC->isMaxSignedValue() && match(TVal, m_SpecificInt(*CmpC - 1)))
1648       return Builder.CreateBinaryIntrinsic(Intrinsic::smin, V, TVal);
1649   }
1650 
1651   BinaryOperator *BO;
1652   const APInt *C;
1653   CmpInst::Predicate CPred;
1654   if (match(&SI, m_Select(m_Specific(ICI), m_APInt(C), m_BinOp(BO))))
1655     CPred = ICI->getPredicate();
1656   else if (match(&SI, m_Select(m_Specific(ICI), m_BinOp(BO), m_APInt(C))))
1657     CPred = ICI->getInversePredicate();
1658   else
1659     return nullptr;
1660 
1661   const APInt *BinOpC;
1662   if (!match(BO, m_BinOp(m_Specific(V), m_APInt(BinOpC))))
1663     return nullptr;
1664 
1665   ConstantRange R = ConstantRange::makeExactICmpRegion(CPred, *CmpC)
1666                         .binaryOp(BO->getOpcode(), *BinOpC);
1667   if (R == *C) {
1668     BO->dropPoisonGeneratingFlags();
1669     return BO;
1670   }
1671   return nullptr;
1672 }
1673 
1674 /// Visit a SelectInst that has an ICmpInst as its first operand.
1675 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI,
1676                                                       ICmpInst *ICI) {
1677   if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI))
1678     return NewSel;
1679 
1680   if (Value *V =
1681           canonicalizeSPF(*ICI, SI.getTrueValue(), SI.getFalseValue(), *this))
1682     return replaceInstUsesWith(SI, V);
1683 
1684   if (Value *V = foldSelectInstWithICmpConst(SI, ICI, Builder))
1685     return replaceInstUsesWith(SI, V);
1686 
1687   if (Value *V = canonicalizeClampLike(SI, *ICI, Builder))
1688     return replaceInstUsesWith(SI, V);
1689 
1690   if (Instruction *NewSel =
1691           tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
1692     return NewSel;
1693 
1694   if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1695     return replaceInstUsesWith(SI, V);
1696 
1697   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1698   bool Changed = false;
1699   Value *TrueVal = SI.getTrueValue();
1700   Value *FalseVal = SI.getFalseValue();
1701   ICmpInst::Predicate Pred = ICI->getPredicate();
1702   Value *CmpLHS = ICI->getOperand(0);
1703   Value *CmpRHS = ICI->getOperand(1);
1704   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS) && !isa<Constant>(CmpLHS)) {
1705     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1706       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1707       SI.setOperand(1, CmpRHS);
1708       Changed = true;
1709     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1710       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1711       SI.setOperand(2, CmpRHS);
1712       Changed = true;
1713     }
1714   }
1715 
1716   // Canonicalize a signbit condition to use zero constant by swapping:
1717   // (CmpLHS > -1) ? TV : FV --> (CmpLHS < 0) ? FV : TV
1718   // To avoid conflicts (infinite loops) with other canonicalizations, this is
1719   // not applied with any constant select arm.
1720   if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes()) &&
1721       !match(TrueVal, m_Constant()) && !match(FalseVal, m_Constant()) &&
1722       ICI->hasOneUse()) {
1723     InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
1724     Builder.SetInsertPoint(&SI);
1725     Value *IsNeg = Builder.CreateIsNeg(CmpLHS, ICI->getName());
1726     replaceOperand(SI, 0, IsNeg);
1727     SI.swapValues();
1728     SI.swapProfMetadata();
1729     return &SI;
1730   }
1731 
1732   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1733   // decomposeBitTestICmp() might help.
1734   if (TrueVal->getType()->isIntOrIntVectorTy()) {
1735     unsigned BitWidth =
1736         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1737     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1738     Value *X;
1739     const APInt *Y, *C;
1740     bool TrueWhenUnset;
1741     bool IsBitTest = false;
1742     if (ICmpInst::isEquality(Pred) &&
1743         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1744         match(CmpRHS, m_Zero())) {
1745       IsBitTest = true;
1746       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1747     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1748       X = CmpLHS;
1749       Y = &MinSignedValue;
1750       IsBitTest = true;
1751       TrueWhenUnset = false;
1752     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1753       X = CmpLHS;
1754       Y = &MinSignedValue;
1755       IsBitTest = true;
1756       TrueWhenUnset = true;
1757     }
1758     if (IsBitTest) {
1759       Value *V = nullptr;
1760       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
1761       if (TrueWhenUnset && TrueVal == X &&
1762           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1763         V = Builder.CreateAnd(X, ~(*Y));
1764       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
1765       else if (!TrueWhenUnset && FalseVal == X &&
1766                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1767         V = Builder.CreateAnd(X, ~(*Y));
1768       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
1769       else if (TrueWhenUnset && FalseVal == X &&
1770                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1771         V = Builder.CreateOr(X, *Y);
1772       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
1773       else if (!TrueWhenUnset && TrueVal == X &&
1774                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1775         V = Builder.CreateOr(X, *Y);
1776 
1777       if (V)
1778         return replaceInstUsesWith(SI, V);
1779     }
1780   }
1781 
1782   if (Instruction *V =
1783           foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1784     return V;
1785 
1786   if (Value *V = foldSelectICmpAndZeroShl(ICI, TrueVal, FalseVal, Builder))
1787     return replaceInstUsesWith(SI, V);
1788 
1789   if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
1790     return V;
1791 
1792   if (Instruction *V = foldSelectZeroOrOnes(ICI, TrueVal, FalseVal, Builder))
1793     return V;
1794 
1795   if (Value *V = foldSelectICmpAndBinOp(ICI, TrueVal, FalseVal, Builder))
1796     return replaceInstUsesWith(SI, V);
1797 
1798   if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1799     return replaceInstUsesWith(SI, V);
1800 
1801   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1802     return replaceInstUsesWith(SI, V);
1803 
1804   if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1805     return replaceInstUsesWith(SI, V);
1806 
1807   if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1808     return replaceInstUsesWith(SI, V);
1809 
1810   if (Value *V = foldAbsDiff(ICI, TrueVal, FalseVal, Builder))
1811     return replaceInstUsesWith(SI, V);
1812 
1813   return Changed ? &SI : nullptr;
1814 }
1815 
1816 /// SI is a select whose condition is a PHI node (but the two may be in
1817 /// different blocks). See if the true/false values (V) are live in all of the
1818 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1819 ///
1820 ///   X = phi [ C1, BB1], [C2, BB2]
1821 ///   Y = add
1822 ///   Z = select X, Y, 0
1823 ///
1824 /// because Y is not live in BB1/BB2.
1825 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1826                                                    const SelectInst &SI) {
1827   // If the value is a non-instruction value like a constant or argument, it
1828   // can always be mapped.
1829   const Instruction *I = dyn_cast<Instruction>(V);
1830   if (!I) return true;
1831 
1832   // If V is a PHI node defined in the same block as the condition PHI, we can
1833   // map the arguments.
1834   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1835 
1836   if (const PHINode *VP = dyn_cast<PHINode>(I))
1837     if (VP->getParent() == CondPHI->getParent())
1838       return true;
1839 
1840   // Otherwise, if the PHI and select are defined in the same block and if V is
1841   // defined in a different block, then we can transform it.
1842   if (SI.getParent() == CondPHI->getParent() &&
1843       I->getParent() != CondPHI->getParent())
1844     return true;
1845 
1846   // Otherwise we have a 'hard' case and we can't tell without doing more
1847   // detailed dominator based analysis, punt.
1848   return false;
1849 }
1850 
1851 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1852 ///   SPF2(SPF1(A, B), C)
1853 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner,
1854                                             SelectPatternFlavor SPF1, Value *A,
1855                                             Value *B, Instruction &Outer,
1856                                             SelectPatternFlavor SPF2,
1857                                             Value *C) {
1858   if (Outer.getType() != Inner->getType())
1859     return nullptr;
1860 
1861   if (C == A || C == B) {
1862     // MAX(MAX(A, B), B) -> MAX(A, B)
1863     // MIN(MIN(a, b), a) -> MIN(a, b)
1864     // TODO: This could be done in instsimplify.
1865     if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1866       return replaceInstUsesWith(Outer, Inner);
1867   }
1868 
1869   return nullptr;
1870 }
1871 
1872 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1873 /// This is even legal for FP.
1874 static Instruction *foldAddSubSelect(SelectInst &SI,
1875                                      InstCombiner::BuilderTy &Builder) {
1876   Value *CondVal = SI.getCondition();
1877   Value *TrueVal = SI.getTrueValue();
1878   Value *FalseVal = SI.getFalseValue();
1879   auto *TI = dyn_cast<Instruction>(TrueVal);
1880   auto *FI = dyn_cast<Instruction>(FalseVal);
1881   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1882     return nullptr;
1883 
1884   Instruction *AddOp = nullptr, *SubOp = nullptr;
1885   if ((TI->getOpcode() == Instruction::Sub &&
1886        FI->getOpcode() == Instruction::Add) ||
1887       (TI->getOpcode() == Instruction::FSub &&
1888        FI->getOpcode() == Instruction::FAdd)) {
1889     AddOp = FI;
1890     SubOp = TI;
1891   } else if ((FI->getOpcode() == Instruction::Sub &&
1892               TI->getOpcode() == Instruction::Add) ||
1893              (FI->getOpcode() == Instruction::FSub &&
1894               TI->getOpcode() == Instruction::FAdd)) {
1895     AddOp = TI;
1896     SubOp = FI;
1897   }
1898 
1899   if (AddOp) {
1900     Value *OtherAddOp = nullptr;
1901     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1902       OtherAddOp = AddOp->getOperand(1);
1903     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1904       OtherAddOp = AddOp->getOperand(0);
1905     }
1906 
1907     if (OtherAddOp) {
1908       // So at this point we know we have (Y -> OtherAddOp):
1909       //        select C, (add X, Y), (sub X, Z)
1910       Value *NegVal; // Compute -Z
1911       if (SI.getType()->isFPOrFPVectorTy()) {
1912         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1913         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1914           FastMathFlags Flags = AddOp->getFastMathFlags();
1915           Flags &= SubOp->getFastMathFlags();
1916           NegInst->setFastMathFlags(Flags);
1917         }
1918       } else {
1919         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1920       }
1921 
1922       Value *NewTrueOp = OtherAddOp;
1923       Value *NewFalseOp = NegVal;
1924       if (AddOp != TI)
1925         std::swap(NewTrueOp, NewFalseOp);
1926       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1927                                            SI.getName() + ".p", &SI);
1928 
1929       if (SI.getType()->isFPOrFPVectorTy()) {
1930         Instruction *RI =
1931             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1932 
1933         FastMathFlags Flags = AddOp->getFastMathFlags();
1934         Flags &= SubOp->getFastMathFlags();
1935         RI->setFastMathFlags(Flags);
1936         return RI;
1937       } else
1938         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1939     }
1940   }
1941   return nullptr;
1942 }
1943 
1944 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1945 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1946 /// Along with a number of patterns similar to:
1947 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1948 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1949 static Instruction *
1950 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
1951   Value *CondVal = SI.getCondition();
1952   Value *TrueVal = SI.getTrueValue();
1953   Value *FalseVal = SI.getFalseValue();
1954 
1955   WithOverflowInst *II;
1956   if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
1957       !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
1958     return nullptr;
1959 
1960   Value *X = II->getLHS();
1961   Value *Y = II->getRHS();
1962 
1963   auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
1964     Type *Ty = Limit->getType();
1965 
1966     ICmpInst::Predicate Pred;
1967     Value *TrueVal, *FalseVal, *Op;
1968     const APInt *C;
1969     if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
1970                                m_Value(TrueVal), m_Value(FalseVal))))
1971       return false;
1972 
1973     auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); };
1974     auto IsMinMax = [&](Value *Min, Value *Max) {
1975       APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
1976       APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
1977       return match(Min, m_SpecificInt(MinVal)) &&
1978              match(Max, m_SpecificInt(MaxVal));
1979     };
1980 
1981     if (Op != X && Op != Y)
1982       return false;
1983 
1984     if (IsAdd) {
1985       // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1986       // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1987       // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1988       // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1989       if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1990           IsMinMax(TrueVal, FalseVal))
1991         return true;
1992       // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1993       // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1994       // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1995       // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1996       if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1997           IsMinMax(FalseVal, TrueVal))
1998         return true;
1999     } else {
2000       // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2001       // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2002       if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
2003           IsMinMax(TrueVal, FalseVal))
2004         return true;
2005       // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2006       // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2007       if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
2008           IsMinMax(FalseVal, TrueVal))
2009         return true;
2010       // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2011       // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2012       if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
2013           IsMinMax(FalseVal, TrueVal))
2014         return true;
2015       // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2016       // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2017       if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
2018           IsMinMax(TrueVal, FalseVal))
2019         return true;
2020     }
2021 
2022     return false;
2023   };
2024 
2025   Intrinsic::ID NewIntrinsicID;
2026   if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
2027       match(TrueVal, m_AllOnes()))
2028     // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
2029     NewIntrinsicID = Intrinsic::uadd_sat;
2030   else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
2031            match(TrueVal, m_Zero()))
2032     // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
2033     NewIntrinsicID = Intrinsic::usub_sat;
2034   else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
2035            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
2036     // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2037     // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2038     // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2039     // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2040     // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2041     // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2042     // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2043     // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2044     NewIntrinsicID = Intrinsic::sadd_sat;
2045   else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
2046            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
2047     // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2048     // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2049     // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2050     // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2051     // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2052     // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2053     // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2054     // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2055     NewIntrinsicID = Intrinsic::ssub_sat;
2056   else
2057     return nullptr;
2058 
2059   Function *F =
2060       Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
2061   return CallInst::Create(F, {X, Y});
2062 }
2063 
2064 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) {
2065   Constant *C;
2066   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
2067       !match(Sel.getFalseValue(), m_Constant(C)))
2068     return nullptr;
2069 
2070   Instruction *ExtInst;
2071   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
2072       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
2073     return nullptr;
2074 
2075   auto ExtOpcode = ExtInst->getOpcode();
2076   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
2077     return nullptr;
2078 
2079   // If we are extending from a boolean type or if we can create a select that
2080   // has the same size operands as its condition, try to narrow the select.
2081   Value *X = ExtInst->getOperand(0);
2082   Type *SmallType = X->getType();
2083   Value *Cond = Sel.getCondition();
2084   auto *Cmp = dyn_cast<CmpInst>(Cond);
2085   if (!SmallType->isIntOrIntVectorTy(1) &&
2086       (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
2087     return nullptr;
2088 
2089   // If the constant is the same after truncation to the smaller type and
2090   // extension to the original type, we can narrow the select.
2091   Type *SelType = Sel.getType();
2092   Constant *TruncC = getLosslessTrunc(C, SmallType, ExtOpcode);
2093   if (TruncC && ExtInst->hasOneUse()) {
2094     Value *TruncCVal = cast<Value>(TruncC);
2095     if (ExtInst == Sel.getFalseValue())
2096       std::swap(X, TruncCVal);
2097 
2098     // select Cond, (ext X), C --> ext(select Cond, X, C')
2099     // select Cond, C, (ext X) --> ext(select Cond, C', X)
2100     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
2101     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
2102   }
2103 
2104   return nullptr;
2105 }
2106 
2107 /// Try to transform a vector select with a constant condition vector into a
2108 /// shuffle for easier combining with other shuffles and insert/extract.
2109 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
2110   Value *CondVal = SI.getCondition();
2111   Constant *CondC;
2112   auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType());
2113   if (!CondValTy || !match(CondVal, m_Constant(CondC)))
2114     return nullptr;
2115 
2116   unsigned NumElts = CondValTy->getNumElements();
2117   SmallVector<int, 16> Mask;
2118   Mask.reserve(NumElts);
2119   for (unsigned i = 0; i != NumElts; ++i) {
2120     Constant *Elt = CondC->getAggregateElement(i);
2121     if (!Elt)
2122       return nullptr;
2123 
2124     if (Elt->isOneValue()) {
2125       // If the select condition element is true, choose from the 1st vector.
2126       Mask.push_back(i);
2127     } else if (Elt->isNullValue()) {
2128       // If the select condition element is false, choose from the 2nd vector.
2129       Mask.push_back(i + NumElts);
2130     } else if (isa<UndefValue>(Elt)) {
2131       // Undef in a select condition (choose one of the operands) does not mean
2132       // the same thing as undef in a shuffle mask (any value is acceptable), so
2133       // give up.
2134       return nullptr;
2135     } else {
2136       // Bail out on a constant expression.
2137       return nullptr;
2138     }
2139   }
2140 
2141   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask);
2142 }
2143 
2144 /// If we have a select of vectors with a scalar condition, try to convert that
2145 /// to a vector select by splatting the condition. A splat may get folded with
2146 /// other operations in IR and having all operands of a select be vector types
2147 /// is likely better for vector codegen.
2148 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel,
2149                                                    InstCombinerImpl &IC) {
2150   auto *Ty = dyn_cast<VectorType>(Sel.getType());
2151   if (!Ty)
2152     return nullptr;
2153 
2154   // We can replace a single-use extract with constant index.
2155   Value *Cond = Sel.getCondition();
2156   if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt()))))
2157     return nullptr;
2158 
2159   // select (extelt V, Index), T, F --> select (splat V, Index), T, F
2160   // Splatting the extracted condition reduces code (we could directly create a
2161   // splat shuffle of the source vector to eliminate the intermediate step).
2162   return IC.replaceOperand(
2163       Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond));
2164 }
2165 
2166 /// Reuse bitcasted operands between a compare and select:
2167 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2168 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
2169 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
2170                                           InstCombiner::BuilderTy &Builder) {
2171   Value *Cond = Sel.getCondition();
2172   Value *TVal = Sel.getTrueValue();
2173   Value *FVal = Sel.getFalseValue();
2174 
2175   CmpInst::Predicate Pred;
2176   Value *A, *B;
2177   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
2178     return nullptr;
2179 
2180   // The select condition is a compare instruction. If the select's true/false
2181   // values are already the same as the compare operands, there's nothing to do.
2182   if (TVal == A || TVal == B || FVal == A || FVal == B)
2183     return nullptr;
2184 
2185   Value *C, *D;
2186   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
2187     return nullptr;
2188 
2189   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
2190   Value *TSrc, *FSrc;
2191   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
2192       !match(FVal, m_BitCast(m_Value(FSrc))))
2193     return nullptr;
2194 
2195   // If the select true/false values are *different bitcasts* of the same source
2196   // operands, make the select operands the same as the compare operands and
2197   // cast the result. This is the canonical select form for min/max.
2198   Value *NewSel;
2199   if (TSrc == C && FSrc == D) {
2200     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2201     // bitcast (select (cmp A, B), A, B)
2202     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
2203   } else if (TSrc == D && FSrc == C) {
2204     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
2205     // bitcast (select (cmp A, B), B, A)
2206     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
2207   } else {
2208     return nullptr;
2209   }
2210   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
2211 }
2212 
2213 /// Try to eliminate select instructions that test the returned flag of cmpxchg
2214 /// instructions.
2215 ///
2216 /// If a select instruction tests the returned flag of a cmpxchg instruction and
2217 /// selects between the returned value of the cmpxchg instruction its compare
2218 /// operand, the result of the select will always be equal to its false value.
2219 /// For example:
2220 ///
2221 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2222 ///   %1 = extractvalue { i64, i1 } %0, 1
2223 ///   %2 = extractvalue { i64, i1 } %0, 0
2224 ///   %3 = select i1 %1, i64 %compare, i64 %2
2225 ///   ret i64 %3
2226 ///
2227 /// The returned value of the cmpxchg instruction (%2) is the original value
2228 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
2229 /// must have been equal to %compare. Thus, the result of the select is always
2230 /// equal to %2, and the code can be simplified to:
2231 ///
2232 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2233 ///   %1 = extractvalue { i64, i1 } %0, 0
2234 ///   ret i64 %1
2235 ///
2236 static Value *foldSelectCmpXchg(SelectInst &SI) {
2237   // A helper that determines if V is an extractvalue instruction whose
2238   // aggregate operand is a cmpxchg instruction and whose single index is equal
2239   // to I. If such conditions are true, the helper returns the cmpxchg
2240   // instruction; otherwise, a nullptr is returned.
2241   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
2242     auto *Extract = dyn_cast<ExtractValueInst>(V);
2243     if (!Extract)
2244       return nullptr;
2245     if (Extract->getIndices()[0] != I)
2246       return nullptr;
2247     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
2248   };
2249 
2250   // If the select has a single user, and this user is a select instruction that
2251   // we can simplify, skip the cmpxchg simplification for now.
2252   if (SI.hasOneUse())
2253     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
2254       if (Select->getCondition() == SI.getCondition())
2255         if (Select->getFalseValue() == SI.getTrueValue() ||
2256             Select->getTrueValue() == SI.getFalseValue())
2257           return nullptr;
2258 
2259   // Ensure the select condition is the returned flag of a cmpxchg instruction.
2260   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
2261   if (!CmpXchg)
2262     return nullptr;
2263 
2264   // Check the true value case: The true value of the select is the returned
2265   // value of the same cmpxchg used by the condition, and the false value is the
2266   // cmpxchg instruction's compare operand.
2267   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
2268     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue())
2269       return SI.getFalseValue();
2270 
2271   // Check the false value case: The false value of the select is the returned
2272   // value of the same cmpxchg used by the condition, and the true value is the
2273   // cmpxchg instruction's compare operand.
2274   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
2275     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue())
2276       return SI.getFalseValue();
2277 
2278   return nullptr;
2279 }
2280 
2281 /// Try to reduce a funnel/rotate pattern that includes a compare and select
2282 /// into a funnel shift intrinsic. Example:
2283 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2284 ///              --> call llvm.fshl.i32(a, a, b)
2285 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c)))
2286 ///                 --> call llvm.fshl.i32(a, b, c)
2287 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c)))
2288 ///                 --> call llvm.fshr.i32(a, b, c)
2289 static Instruction *foldSelectFunnelShift(SelectInst &Sel,
2290                                           InstCombiner::BuilderTy &Builder) {
2291   // This must be a power-of-2 type for a bitmasking transform to be valid.
2292   unsigned Width = Sel.getType()->getScalarSizeInBits();
2293   if (!isPowerOf2_32(Width))
2294     return nullptr;
2295 
2296   BinaryOperator *Or0, *Or1;
2297   if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
2298     return nullptr;
2299 
2300   Value *SV0, *SV1, *SA0, *SA1;
2301   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0),
2302                                           m_ZExtOrSelf(m_Value(SA0))))) ||
2303       !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1),
2304                                           m_ZExtOrSelf(m_Value(SA1))))) ||
2305       Or0->getOpcode() == Or1->getOpcode())
2306     return nullptr;
2307 
2308   // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)).
2309   if (Or0->getOpcode() == BinaryOperator::LShr) {
2310     std::swap(Or0, Or1);
2311     std::swap(SV0, SV1);
2312     std::swap(SA0, SA1);
2313   }
2314   assert(Or0->getOpcode() == BinaryOperator::Shl &&
2315          Or1->getOpcode() == BinaryOperator::LShr &&
2316          "Illegal or(shift,shift) pair");
2317 
2318   // Check the shift amounts to see if they are an opposite pair.
2319   Value *ShAmt;
2320   if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
2321     ShAmt = SA0;
2322   else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
2323     ShAmt = SA1;
2324   else
2325     return nullptr;
2326 
2327   // We should now have this pattern:
2328   // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1))
2329   // The false value of the select must be a funnel-shift of the true value:
2330   // IsFShl -> TVal must be SV0 else TVal must be SV1.
2331   bool IsFshl = (ShAmt == SA0);
2332   Value *TVal = Sel.getTrueValue();
2333   if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
2334     return nullptr;
2335 
2336   // Finally, see if the select is filtering out a shift-by-zero.
2337   Value *Cond = Sel.getCondition();
2338   ICmpInst::Predicate Pred;
2339   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
2340       Pred != ICmpInst::ICMP_EQ)
2341     return nullptr;
2342 
2343   // If this is not a rotate then the select was blocking poison from the
2344   // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
2345   if (SV0 != SV1) {
2346     if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1))
2347       SV1 = Builder.CreateFreeze(SV1);
2348     else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0))
2349       SV0 = Builder.CreateFreeze(SV0);
2350   }
2351 
2352   // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2353   // Convert to funnel shift intrinsic.
2354   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2355   Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
2356   ShAmt = Builder.CreateZExt(ShAmt, Sel.getType());
2357   return CallInst::Create(F, { SV0, SV1, ShAmt });
2358 }
2359 
2360 static Instruction *foldSelectToCopysign(SelectInst &Sel,
2361                                          InstCombiner::BuilderTy &Builder) {
2362   Value *Cond = Sel.getCondition();
2363   Value *TVal = Sel.getTrueValue();
2364   Value *FVal = Sel.getFalseValue();
2365   Type *SelType = Sel.getType();
2366 
2367   if (ICmpInst::makeCmpResultType(TVal->getType()) != Cond->getType())
2368     return nullptr;
2369 
2370   // Match select ?, TC, FC where the constants are equal but negated.
2371   // TODO: Generalize to handle a negated variable operand?
2372   const APFloat *TC, *FC;
2373   if (!match(TVal, m_APFloatAllowUndef(TC)) ||
2374       !match(FVal, m_APFloatAllowUndef(FC)) ||
2375       !abs(*TC).bitwiseIsEqual(abs(*FC)))
2376     return nullptr;
2377 
2378   assert(TC != FC && "Expected equal select arms to simplify");
2379 
2380   Value *X;
2381   const APInt *C;
2382   bool IsTrueIfSignSet;
2383   ICmpInst::Predicate Pred;
2384   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) ||
2385       !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) ||
2386       X->getType() != SelType)
2387     return nullptr;
2388 
2389   // If needed, negate the value that will be the sign argument of the copysign:
2390   // (bitcast X) <  0 ? -TC :  TC --> copysign(TC,  X)
2391   // (bitcast X) <  0 ?  TC : -TC --> copysign(TC, -X)
2392   // (bitcast X) >= 0 ? -TC :  TC --> copysign(TC, -X)
2393   // (bitcast X) >= 0 ?  TC : -TC --> copysign(TC,  X)
2394   // Note: FMF from the select can not be propagated to the new instructions.
2395   if (IsTrueIfSignSet ^ TC->isNegative())
2396     X = Builder.CreateFNeg(X);
2397 
2398   // Canonicalize the magnitude argument as the positive constant since we do
2399   // not care about its sign.
2400   Value *MagArg = ConstantFP::get(SelType, abs(*TC));
2401   Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign,
2402                                           Sel.getType());
2403   return CallInst::Create(F, { MagArg, X });
2404 }
2405 
2406 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) {
2407   if (!isa<VectorType>(Sel.getType()))
2408     return nullptr;
2409 
2410   Value *Cond = Sel.getCondition();
2411   Value *TVal = Sel.getTrueValue();
2412   Value *FVal = Sel.getFalseValue();
2413   Value *C, *X, *Y;
2414 
2415   if (match(Cond, m_VecReverse(m_Value(C)))) {
2416     auto createSelReverse = [&](Value *C, Value *X, Value *Y) {
2417       Value *V = Builder.CreateSelect(C, X, Y, Sel.getName(), &Sel);
2418       if (auto *I = dyn_cast<Instruction>(V))
2419         I->copyIRFlags(&Sel);
2420       Module *M = Sel.getModule();
2421       Function *F = Intrinsic::getDeclaration(
2422           M, Intrinsic::experimental_vector_reverse, V->getType());
2423       return CallInst::Create(F, V);
2424     };
2425 
2426     if (match(TVal, m_VecReverse(m_Value(X)))) {
2427       // select rev(C), rev(X), rev(Y) --> rev(select C, X, Y)
2428       if (match(FVal, m_VecReverse(m_Value(Y))) &&
2429           (Cond->hasOneUse() || TVal->hasOneUse() || FVal->hasOneUse()))
2430         return createSelReverse(C, X, Y);
2431 
2432       // select rev(C), rev(X), FValSplat --> rev(select C, X, FValSplat)
2433       if ((Cond->hasOneUse() || TVal->hasOneUse()) && isSplatValue(FVal))
2434         return createSelReverse(C, X, FVal);
2435     }
2436     // select rev(C), TValSplat, rev(Y) --> rev(select C, TValSplat, Y)
2437     else if (isSplatValue(TVal) && match(FVal, m_VecReverse(m_Value(Y))) &&
2438              (Cond->hasOneUse() || FVal->hasOneUse()))
2439       return createSelReverse(C, TVal, Y);
2440   }
2441 
2442   auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType());
2443   if (!VecTy)
2444     return nullptr;
2445 
2446   unsigned NumElts = VecTy->getNumElements();
2447   APInt PoisonElts(NumElts, 0);
2448   APInt AllOnesEltMask(APInt::getAllOnes(NumElts));
2449   if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, PoisonElts)) {
2450     if (V != &Sel)
2451       return replaceInstUsesWith(Sel, V);
2452     return &Sel;
2453   }
2454 
2455   // A select of a "select shuffle" with a common operand can be rearranged
2456   // to select followed by "select shuffle". Because of poison, this only works
2457   // in the case of a shuffle with no undefined mask elements.
2458   ArrayRef<int> Mask;
2459   if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2460       !is_contained(Mask, PoisonMaskElem) &&
2461       cast<ShuffleVectorInst>(TVal)->isSelect()) {
2462     if (X == FVal) {
2463       // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X)
2464       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2465       return new ShuffleVectorInst(X, NewSel, Mask);
2466     }
2467     if (Y == FVal) {
2468       // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y
2469       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2470       return new ShuffleVectorInst(NewSel, Y, Mask);
2471     }
2472   }
2473   if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2474       !is_contained(Mask, PoisonMaskElem) &&
2475       cast<ShuffleVectorInst>(FVal)->isSelect()) {
2476     if (X == TVal) {
2477       // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y)
2478       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2479       return new ShuffleVectorInst(X, NewSel, Mask);
2480     }
2481     if (Y == TVal) {
2482       // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y
2483       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2484       return new ShuffleVectorInst(NewSel, Y, Mask);
2485     }
2486   }
2487 
2488   return nullptr;
2489 }
2490 
2491 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB,
2492                                         const DominatorTree &DT,
2493                                         InstCombiner::BuilderTy &Builder) {
2494   // Find the block's immediate dominator that ends with a conditional branch
2495   // that matches select's condition (maybe inverted).
2496   auto *IDomNode = DT[BB]->getIDom();
2497   if (!IDomNode)
2498     return nullptr;
2499   BasicBlock *IDom = IDomNode->getBlock();
2500 
2501   Value *Cond = Sel.getCondition();
2502   Value *IfTrue, *IfFalse;
2503   BasicBlock *TrueSucc, *FalseSucc;
2504   if (match(IDom->getTerminator(),
2505             m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc),
2506                  m_BasicBlock(FalseSucc)))) {
2507     IfTrue = Sel.getTrueValue();
2508     IfFalse = Sel.getFalseValue();
2509   } else if (match(IDom->getTerminator(),
2510                    m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc),
2511                         m_BasicBlock(FalseSucc)))) {
2512     IfTrue = Sel.getFalseValue();
2513     IfFalse = Sel.getTrueValue();
2514   } else
2515     return nullptr;
2516 
2517   // Make sure the branches are actually different.
2518   if (TrueSucc == FalseSucc)
2519     return nullptr;
2520 
2521   // We want to replace select %cond, %a, %b with a phi that takes value %a
2522   // for all incoming edges that are dominated by condition `%cond == true`,
2523   // and value %b for edges dominated by condition `%cond == false`. If %a
2524   // or %b are also phis from the same basic block, we can go further and take
2525   // their incoming values from the corresponding blocks.
2526   BasicBlockEdge TrueEdge(IDom, TrueSucc);
2527   BasicBlockEdge FalseEdge(IDom, FalseSucc);
2528   DenseMap<BasicBlock *, Value *> Inputs;
2529   for (auto *Pred : predecessors(BB)) {
2530     // Check implication.
2531     BasicBlockEdge Incoming(Pred, BB);
2532     if (DT.dominates(TrueEdge, Incoming))
2533       Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred);
2534     else if (DT.dominates(FalseEdge, Incoming))
2535       Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred);
2536     else
2537       return nullptr;
2538     // Check availability.
2539     if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred]))
2540       if (!DT.dominates(Insn, Pred->getTerminator()))
2541         return nullptr;
2542   }
2543 
2544   Builder.SetInsertPoint(BB, BB->begin());
2545   auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size());
2546   for (auto *Pred : predecessors(BB))
2547     PN->addIncoming(Inputs[Pred], Pred);
2548   PN->takeName(&Sel);
2549   return PN;
2550 }
2551 
2552 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT,
2553                                     InstCombiner::BuilderTy &Builder) {
2554   // Try to replace this select with Phi in one of these blocks.
2555   SmallSetVector<BasicBlock *, 4> CandidateBlocks;
2556   CandidateBlocks.insert(Sel.getParent());
2557   for (Value *V : Sel.operands())
2558     if (auto *I = dyn_cast<Instruction>(V))
2559       CandidateBlocks.insert(I->getParent());
2560 
2561   for (BasicBlock *BB : CandidateBlocks)
2562     if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
2563       return PN;
2564   return nullptr;
2565 }
2566 
2567 /// Tries to reduce a pattern that arises when calculating the remainder of the
2568 /// Euclidean division. When the divisor is a power of two and is guaranteed not
2569 /// to be negative, a signed remainder can be folded with a bitwise and.
2570 ///
2571 /// (x % n) < 0 ? (x % n) + n : (x % n)
2572 ///    -> x & (n - 1)
2573 static Instruction *foldSelectWithSRem(SelectInst &SI, InstCombinerImpl &IC,
2574                                        IRBuilderBase &Builder) {
2575   Value *CondVal = SI.getCondition();
2576   Value *TrueVal = SI.getTrueValue();
2577   Value *FalseVal = SI.getFalseValue();
2578 
2579   ICmpInst::Predicate Pred;
2580   Value *Op, *RemRes, *Remainder;
2581   const APInt *C;
2582   bool TrueIfSigned = false;
2583 
2584   if (!(match(CondVal, m_ICmp(Pred, m_Value(RemRes), m_APInt(C))) &&
2585         IC.isSignBitCheck(Pred, *C, TrueIfSigned)))
2586     return nullptr;
2587 
2588   // If the sign bit is not set, we have a SGE/SGT comparison, and the operands
2589   // of the select are inverted.
2590   if (!TrueIfSigned)
2591     std::swap(TrueVal, FalseVal);
2592 
2593   auto FoldToBitwiseAnd = [&](Value *Remainder) -> Instruction * {
2594     Value *Add = Builder.CreateAdd(
2595         Remainder, Constant::getAllOnesValue(RemRes->getType()));
2596     return BinaryOperator::CreateAnd(Op, Add);
2597   };
2598 
2599   // Match the general case:
2600   // %rem = srem i32 %x, %n
2601   // %cnd = icmp slt i32 %rem, 0
2602   // %add = add i32 %rem, %n
2603   // %sel = select i1 %cnd, i32 %add, i32 %rem
2604   if (match(TrueVal, m_Add(m_Value(RemRes), m_Value(Remainder))) &&
2605       match(RemRes, m_SRem(m_Value(Op), m_Specific(Remainder))) &&
2606       IC.isKnownToBeAPowerOfTwo(Remainder, /*OrZero*/ true) &&
2607       FalseVal == RemRes)
2608     return FoldToBitwiseAnd(Remainder);
2609 
2610   // Match the case where the one arm has been replaced by constant 1:
2611   // %rem = srem i32 %n, 2
2612   // %cnd = icmp slt i32 %rem, 0
2613   // %sel = select i1 %cnd, i32 1, i32 %rem
2614   if (match(TrueVal, m_One()) &&
2615       match(RemRes, m_SRem(m_Value(Op), m_SpecificInt(2))) &&
2616       FalseVal == RemRes)
2617     return FoldToBitwiseAnd(ConstantInt::get(RemRes->getType(), 2));
2618 
2619   return nullptr;
2620 }
2621 
2622 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
2623   FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition());
2624   if (!FI)
2625     return nullptr;
2626 
2627   Value *Cond = FI->getOperand(0);
2628   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
2629 
2630   //   select (freeze(x == y)), x, y --> y
2631   //   select (freeze(x != y)), x, y --> x
2632   // The freeze should be only used by this select. Otherwise, remaining uses of
2633   // the freeze can observe a contradictory value.
2634   //   c = freeze(x == y)   ; Let's assume that y = poison & x = 42; c is 0 or 1
2635   //   a = select c, x, y   ;
2636   //   f(a, c)              ; f(poison, 1) cannot happen, but if a is folded
2637   //                        ; to y, this can happen.
2638   CmpInst::Predicate Pred;
2639   if (FI->hasOneUse() &&
2640       match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) &&
2641       (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) {
2642     return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
2643   }
2644 
2645   return nullptr;
2646 }
2647 
2648 Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op,
2649                                                                  SelectInst &SI,
2650                                                                  bool IsAnd) {
2651   Value *CondVal = SI.getCondition();
2652   Value *A = SI.getTrueValue();
2653   Value *B = SI.getFalseValue();
2654 
2655   assert(Op->getType()->isIntOrIntVectorTy(1) &&
2656          "Op must be either i1 or vector of i1.");
2657 
2658   std::optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd);
2659   if (!Res)
2660     return nullptr;
2661 
2662   Value *Zero = Constant::getNullValue(A->getType());
2663   Value *One = Constant::getAllOnesValue(A->getType());
2664 
2665   if (*Res == true) {
2666     if (IsAnd)
2667       // select op, (select cond, A, B), false => select op, A, false
2668       // and    op, (select cond, A, B)        => select op, A, false
2669       //   if op = true implies condval = true.
2670       return SelectInst::Create(Op, A, Zero);
2671     else
2672       // select op, true, (select cond, A, B) => select op, true, A
2673       // or     op, (select cond, A, B)       => select op, true, A
2674       //   if op = false implies condval = true.
2675       return SelectInst::Create(Op, One, A);
2676   } else {
2677     if (IsAnd)
2678       // select op, (select cond, A, B), false => select op, B, false
2679       // and    op, (select cond, A, B)        => select op, B, false
2680       //   if op = true implies condval = false.
2681       return SelectInst::Create(Op, B, Zero);
2682     else
2683       // select op, true, (select cond, A, B) => select op, true, B
2684       // or     op, (select cond, A, B)       => select op, true, B
2685       //   if op = false implies condval = false.
2686       return SelectInst::Create(Op, One, B);
2687   }
2688 }
2689 
2690 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2691 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work.
2692 static Instruction *foldSelectWithFCmpToFabs(SelectInst &SI,
2693                                              InstCombinerImpl &IC) {
2694   Value *CondVal = SI.getCondition();
2695 
2696   bool ChangedFMF = false;
2697   for (bool Swap : {false, true}) {
2698     Value *TrueVal = SI.getTrueValue();
2699     Value *X = SI.getFalseValue();
2700     CmpInst::Predicate Pred;
2701 
2702     if (Swap)
2703       std::swap(TrueVal, X);
2704 
2705     if (!match(CondVal, m_FCmp(Pred, m_Specific(X), m_AnyZeroFP())))
2706       continue;
2707 
2708     // fold (X <= +/-0.0) ? (0.0 - X) : X to fabs(X), when 'Swap' is false
2709     // fold (X >  +/-0.0) ? X : (0.0 - X) to fabs(X), when 'Swap' is true
2710     if (match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) {
2711       if (!Swap && (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2712         Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2713         return IC.replaceInstUsesWith(SI, Fabs);
2714       }
2715       if (Swap && (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2716         Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2717         return IC.replaceInstUsesWith(SI, Fabs);
2718       }
2719     }
2720 
2721     if (!match(TrueVal, m_FNeg(m_Specific(X))))
2722       return nullptr;
2723 
2724     // Forward-propagate nnan and ninf from the fneg to the select.
2725     // If all inputs are not those values, then the select is not either.
2726     // Note: nsz is defined differently, so it may not be correct to propagate.
2727     FastMathFlags FMF = cast<FPMathOperator>(TrueVal)->getFastMathFlags();
2728     if (FMF.noNaNs() && !SI.hasNoNaNs()) {
2729       SI.setHasNoNaNs(true);
2730       ChangedFMF = true;
2731     }
2732     if (FMF.noInfs() && !SI.hasNoInfs()) {
2733       SI.setHasNoInfs(true);
2734       ChangedFMF = true;
2735     }
2736 
2737     // With nsz, when 'Swap' is false:
2738     // fold (X < +/-0.0) ? -X : X or (X <= +/-0.0) ? -X : X to fabs(X)
2739     // fold (X > +/-0.0) ? -X : X or (X >= +/-0.0) ? -X : X to -fabs(x)
2740     // when 'Swap' is true:
2741     // fold (X > +/-0.0) ? X : -X or (X >= +/-0.0) ? X : -X to fabs(X)
2742     // fold (X < +/-0.0) ? X : -X or (X <= +/-0.0) ? X : -X to -fabs(X)
2743     //
2744     // Note: We require "nnan" for this fold because fcmp ignores the signbit
2745     //       of NAN, but IEEE-754 specifies the signbit of NAN values with
2746     //       fneg/fabs operations.
2747     if (!SI.hasNoSignedZeros() || !SI.hasNoNaNs())
2748       return nullptr;
2749 
2750     if (Swap)
2751       Pred = FCmpInst::getSwappedPredicate(Pred);
2752 
2753     bool IsLTOrLE = Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2754                     Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE;
2755     bool IsGTOrGE = Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2756                     Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE;
2757 
2758     if (IsLTOrLE) {
2759       Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2760       return IC.replaceInstUsesWith(SI, Fabs);
2761     }
2762     if (IsGTOrGE) {
2763       Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2764       Instruction *NewFNeg = UnaryOperator::CreateFNeg(Fabs);
2765       NewFNeg->setFastMathFlags(SI.getFastMathFlags());
2766       return NewFNeg;
2767     }
2768   }
2769 
2770   return ChangedFMF ? &SI : nullptr;
2771 }
2772 
2773 // Match the following IR pattern:
2774 //   %x.lowbits = and i8 %x, %lowbitmask
2775 //   %x.lowbits.are.zero = icmp eq i8 %x.lowbits, 0
2776 //   %x.biased = add i8 %x, %bias
2777 //   %x.biased.highbits = and i8 %x.biased, %highbitmask
2778 //   %x.roundedup = select i1 %x.lowbits.are.zero, i8 %x, i8 %x.biased.highbits
2779 // Define:
2780 //   %alignment = add i8 %lowbitmask, 1
2781 // Iff 1. an %alignment is a power-of-two (aka, %lowbitmask is a low bit mask)
2782 // and 2. %bias is equal to either %lowbitmask or %alignment,
2783 // and 3. %highbitmask is equal to ~%lowbitmask (aka, to -%alignment)
2784 // then this pattern can be transformed into:
2785 //   %x.offset = add i8 %x, %lowbitmask
2786 //   %x.roundedup = and i8 %x.offset, %highbitmask
2787 static Value *
2788 foldRoundUpIntegerWithPow2Alignment(SelectInst &SI,
2789                                     InstCombiner::BuilderTy &Builder) {
2790   Value *Cond = SI.getCondition();
2791   Value *X = SI.getTrueValue();
2792   Value *XBiasedHighBits = SI.getFalseValue();
2793 
2794   ICmpInst::Predicate Pred;
2795   Value *XLowBits;
2796   if (!match(Cond, m_ICmp(Pred, m_Value(XLowBits), m_ZeroInt())) ||
2797       !ICmpInst::isEquality(Pred))
2798     return nullptr;
2799 
2800   if (Pred == ICmpInst::Predicate::ICMP_NE)
2801     std::swap(X, XBiasedHighBits);
2802 
2803   // FIXME: we could support non non-splats here.
2804 
2805   const APInt *LowBitMaskCst;
2806   if (!match(XLowBits, m_And(m_Specific(X), m_APIntAllowUndef(LowBitMaskCst))))
2807     return nullptr;
2808 
2809   // Match even if the AND and ADD are swapped.
2810   const APInt *BiasCst, *HighBitMaskCst;
2811   if (!match(XBiasedHighBits,
2812              m_And(m_Add(m_Specific(X), m_APIntAllowUndef(BiasCst)),
2813                    m_APIntAllowUndef(HighBitMaskCst))) &&
2814       !match(XBiasedHighBits,
2815              m_Add(m_And(m_Specific(X), m_APIntAllowUndef(HighBitMaskCst)),
2816                    m_APIntAllowUndef(BiasCst))))
2817     return nullptr;
2818 
2819   if (!LowBitMaskCst->isMask())
2820     return nullptr;
2821 
2822   APInt InvertedLowBitMaskCst = ~*LowBitMaskCst;
2823   if (InvertedLowBitMaskCst != *HighBitMaskCst)
2824     return nullptr;
2825 
2826   APInt AlignmentCst = *LowBitMaskCst + 1;
2827 
2828   if (*BiasCst != AlignmentCst && *BiasCst != *LowBitMaskCst)
2829     return nullptr;
2830 
2831   if (!XBiasedHighBits->hasOneUse()) {
2832     if (*BiasCst == *LowBitMaskCst)
2833       return XBiasedHighBits;
2834     return nullptr;
2835   }
2836 
2837   // FIXME: could we preserve undef's here?
2838   Type *Ty = X->getType();
2839   Value *XOffset = Builder.CreateAdd(X, ConstantInt::get(Ty, *LowBitMaskCst),
2840                                      X->getName() + ".biased");
2841   Value *R = Builder.CreateAnd(XOffset, ConstantInt::get(Ty, *HighBitMaskCst));
2842   R->takeName(&SI);
2843   return R;
2844 }
2845 
2846 namespace {
2847 struct DecomposedSelect {
2848   Value *Cond = nullptr;
2849   Value *TrueVal = nullptr;
2850   Value *FalseVal = nullptr;
2851 };
2852 } // namespace
2853 
2854 /// Look for patterns like
2855 ///   %outer.cond = select i1 %inner.cond, i1 %alt.cond, i1 false
2856 ///   %inner.sel = select i1 %inner.cond, i8 %inner.sel.t, i8 %inner.sel.f
2857 ///   %outer.sel = select i1 %outer.cond, i8 %outer.sel.t, i8 %inner.sel
2858 /// and rewrite it as
2859 ///   %inner.sel = select i1 %cond.alternative, i8 %sel.outer.t, i8 %sel.inner.t
2860 ///   %sel.outer = select i1 %cond.inner, i8 %inner.sel, i8 %sel.inner.f
2861 static Instruction *foldNestedSelects(SelectInst &OuterSelVal,
2862                                       InstCombiner::BuilderTy &Builder) {
2863   // We must start with a `select`.
2864   DecomposedSelect OuterSel;
2865   match(&OuterSelVal,
2866         m_Select(m_Value(OuterSel.Cond), m_Value(OuterSel.TrueVal),
2867                  m_Value(OuterSel.FalseVal)));
2868 
2869   // Canonicalize inversion of the outermost `select`'s condition.
2870   if (match(OuterSel.Cond, m_Not(m_Value(OuterSel.Cond))))
2871     std::swap(OuterSel.TrueVal, OuterSel.FalseVal);
2872 
2873   // The condition of the outermost select must be an `and`/`or`.
2874   if (!match(OuterSel.Cond, m_c_LogicalOp(m_Value(), m_Value())))
2875     return nullptr;
2876 
2877   // Depending on the logical op, inner select might be in different hand.
2878   bool IsAndVariant = match(OuterSel.Cond, m_LogicalAnd());
2879   Value *InnerSelVal = IsAndVariant ? OuterSel.FalseVal : OuterSel.TrueVal;
2880 
2881   // Profitability check - avoid increasing instruction count.
2882   if (none_of(ArrayRef<Value *>({OuterSelVal.getCondition(), InnerSelVal}),
2883               [](Value *V) { return V->hasOneUse(); }))
2884     return nullptr;
2885 
2886   // The appropriate hand of the outermost `select` must be a select itself.
2887   DecomposedSelect InnerSel;
2888   if (!match(InnerSelVal,
2889              m_Select(m_Value(InnerSel.Cond), m_Value(InnerSel.TrueVal),
2890                       m_Value(InnerSel.FalseVal))))
2891     return nullptr;
2892 
2893   // Canonicalize inversion of the innermost `select`'s condition.
2894   if (match(InnerSel.Cond, m_Not(m_Value(InnerSel.Cond))))
2895     std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
2896 
2897   Value *AltCond = nullptr;
2898   auto matchOuterCond = [OuterSel, IsAndVariant, &AltCond](auto m_InnerCond) {
2899     // An unsimplified select condition can match both LogicalAnd and LogicalOr
2900     // (select true, true, false). Since below we assume that LogicalAnd implies
2901     // InnerSel match the FVal and vice versa for LogicalOr, we can't match the
2902     // alternative pattern here.
2903     return IsAndVariant ? match(OuterSel.Cond,
2904                                 m_c_LogicalAnd(m_InnerCond, m_Value(AltCond)))
2905                         : match(OuterSel.Cond,
2906                                 m_c_LogicalOr(m_InnerCond, m_Value(AltCond)));
2907   };
2908 
2909   // Finally, match the condition that was driving the outermost `select`,
2910   // it should be a logical operation between the condition that was driving
2911   // the innermost `select` (after accounting for the possible inversions
2912   // of the condition), and some other condition.
2913   if (matchOuterCond(m_Specific(InnerSel.Cond))) {
2914     // Done!
2915   } else if (Value * NotInnerCond; matchOuterCond(m_CombineAnd(
2916                  m_Not(m_Specific(InnerSel.Cond)), m_Value(NotInnerCond)))) {
2917     // Done!
2918     std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
2919     InnerSel.Cond = NotInnerCond;
2920   } else // Not the pattern we were looking for.
2921     return nullptr;
2922 
2923   Value *SelInner = Builder.CreateSelect(
2924       AltCond, IsAndVariant ? OuterSel.TrueVal : InnerSel.FalseVal,
2925       IsAndVariant ? InnerSel.TrueVal : OuterSel.FalseVal);
2926   SelInner->takeName(InnerSelVal);
2927   return SelectInst::Create(InnerSel.Cond,
2928                             IsAndVariant ? SelInner : InnerSel.TrueVal,
2929                             !IsAndVariant ? SelInner : InnerSel.FalseVal);
2930 }
2931 
2932 Instruction *InstCombinerImpl::foldSelectOfBools(SelectInst &SI) {
2933   Value *CondVal = SI.getCondition();
2934   Value *TrueVal = SI.getTrueValue();
2935   Value *FalseVal = SI.getFalseValue();
2936   Type *SelType = SI.getType();
2937 
2938   // Avoid potential infinite loops by checking for non-constant condition.
2939   // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()?
2940   //       Scalar select must have simplified?
2941   if (!SelType->isIntOrIntVectorTy(1) || isa<Constant>(CondVal) ||
2942       TrueVal->getType() != CondVal->getType())
2943     return nullptr;
2944 
2945   auto *One = ConstantInt::getTrue(SelType);
2946   auto *Zero = ConstantInt::getFalse(SelType);
2947   Value *A, *B, *C, *D;
2948 
2949   // Folding select to and/or i1 isn't poison safe in general. impliesPoison
2950   // checks whether folding it does not convert a well-defined value into
2951   // poison.
2952   if (match(TrueVal, m_One())) {
2953     if (impliesPoison(FalseVal, CondVal)) {
2954       // Change: A = select B, true, C --> A = or B, C
2955       return BinaryOperator::CreateOr(CondVal, FalseVal);
2956     }
2957 
2958     if (auto *LHS = dyn_cast<FCmpInst>(CondVal))
2959       if (auto *RHS = dyn_cast<FCmpInst>(FalseVal))
2960         if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ false,
2961                                         /*IsSelectLogical*/ true))
2962           return replaceInstUsesWith(SI, V);
2963 
2964     // (A && B) || (C && B) --> (A || C) && B
2965     if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) &&
2966         match(FalseVal, m_LogicalAnd(m_Value(C), m_Value(D))) &&
2967         (CondVal->hasOneUse() || FalseVal->hasOneUse())) {
2968       bool CondLogicAnd = isa<SelectInst>(CondVal);
2969       bool FalseLogicAnd = isa<SelectInst>(FalseVal);
2970       auto AndFactorization = [&](Value *Common, Value *InnerCond,
2971                                   Value *InnerVal,
2972                                   bool SelFirst = false) -> Instruction * {
2973         Value *InnerSel = Builder.CreateSelect(InnerCond, One, InnerVal);
2974         if (SelFirst)
2975           std::swap(Common, InnerSel);
2976         if (FalseLogicAnd || (CondLogicAnd && Common == A))
2977           return SelectInst::Create(Common, InnerSel, Zero);
2978         else
2979           return BinaryOperator::CreateAnd(Common, InnerSel);
2980       };
2981 
2982       if (A == C)
2983         return AndFactorization(A, B, D);
2984       if (A == D)
2985         return AndFactorization(A, B, C);
2986       if (B == C)
2987         return AndFactorization(B, A, D);
2988       if (B == D)
2989         return AndFactorization(B, A, C, CondLogicAnd && FalseLogicAnd);
2990     }
2991   }
2992 
2993   if (match(FalseVal, m_Zero())) {
2994     if (impliesPoison(TrueVal, CondVal)) {
2995       // Change: A = select B, C, false --> A = and B, C
2996       return BinaryOperator::CreateAnd(CondVal, TrueVal);
2997     }
2998 
2999     if (auto *LHS = dyn_cast<FCmpInst>(CondVal))
3000       if (auto *RHS = dyn_cast<FCmpInst>(TrueVal))
3001         if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ true,
3002                                         /*IsSelectLogical*/ true))
3003           return replaceInstUsesWith(SI, V);
3004 
3005     // (A || B) && (C || B) --> (A && C) || B
3006     if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
3007         match(TrueVal, m_LogicalOr(m_Value(C), m_Value(D))) &&
3008         (CondVal->hasOneUse() || TrueVal->hasOneUse())) {
3009       bool CondLogicOr = isa<SelectInst>(CondVal);
3010       bool TrueLogicOr = isa<SelectInst>(TrueVal);
3011       auto OrFactorization = [&](Value *Common, Value *InnerCond,
3012                                  Value *InnerVal,
3013                                  bool SelFirst = false) -> Instruction * {
3014         Value *InnerSel = Builder.CreateSelect(InnerCond, InnerVal, Zero);
3015         if (SelFirst)
3016           std::swap(Common, InnerSel);
3017         if (TrueLogicOr || (CondLogicOr && Common == A))
3018           return SelectInst::Create(Common, One, InnerSel);
3019         else
3020           return BinaryOperator::CreateOr(Common, InnerSel);
3021       };
3022 
3023       if (A == C)
3024         return OrFactorization(A, B, D);
3025       if (A == D)
3026         return OrFactorization(A, B, C);
3027       if (B == C)
3028         return OrFactorization(B, A, D);
3029       if (B == D)
3030         return OrFactorization(B, A, C, CondLogicOr && TrueLogicOr);
3031     }
3032   }
3033 
3034   // We match the "full" 0 or 1 constant here to avoid a potential infinite
3035   // loop with vectors that may have undefined/poison elements.
3036   // select a, false, b -> select !a, b, false
3037   if (match(TrueVal, m_Specific(Zero))) {
3038     Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
3039     return SelectInst::Create(NotCond, FalseVal, Zero);
3040   }
3041   // select a, b, true -> select !a, true, b
3042   if (match(FalseVal, m_Specific(One))) {
3043     Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
3044     return SelectInst::Create(NotCond, One, TrueVal);
3045   }
3046 
3047   // DeMorgan in select form: !a && !b --> !(a || b)
3048   // select !a, !b, false --> not (select a, true, b)
3049   if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
3050       (CondVal->hasOneUse() || TrueVal->hasOneUse()) &&
3051       !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
3052     return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B));
3053 
3054   // DeMorgan in select form: !a || !b --> !(a && b)
3055   // select !a, true, !b --> not (select a, b, false)
3056   if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
3057       (CondVal->hasOneUse() || FalseVal->hasOneUse()) &&
3058       !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
3059     return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero));
3060 
3061   // select (select a, true, b), true, b -> select a, true, b
3062   if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
3063       match(TrueVal, m_One()) && match(FalseVal, m_Specific(B)))
3064     return replaceOperand(SI, 0, A);
3065   // select (select a, b, false), b, false -> select a, b, false
3066   if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
3067       match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero()))
3068     return replaceOperand(SI, 0, A);
3069 
3070   // ~(A & B) & (A | B) --> A ^ B
3071   if (match(&SI, m_c_LogicalAnd(m_Not(m_LogicalAnd(m_Value(A), m_Value(B))),
3072                                 m_c_LogicalOr(m_Deferred(A), m_Deferred(B)))))
3073     return BinaryOperator::CreateXor(A, B);
3074 
3075   // select (~a | c), a, b -> select a, (select c, true, b), false
3076   if (match(CondVal,
3077             m_OneUse(m_c_Or(m_Not(m_Specific(TrueVal)), m_Value(C))))) {
3078     Value *OrV = Builder.CreateSelect(C, One, FalseVal);
3079     return SelectInst::Create(TrueVal, OrV, Zero);
3080   }
3081   // select (c & b), a, b -> select b, (select ~c, true, a), false
3082   if (match(CondVal, m_OneUse(m_c_And(m_Value(C), m_Specific(FalseVal))))) {
3083     if (Value *NotC = getFreelyInverted(C, C->hasOneUse(), &Builder)) {
3084       Value *OrV = Builder.CreateSelect(NotC, One, TrueVal);
3085       return SelectInst::Create(FalseVal, OrV, Zero);
3086     }
3087   }
3088   // select (a | c), a, b -> select a, true, (select ~c, b, false)
3089   if (match(CondVal, m_OneUse(m_c_Or(m_Specific(TrueVal), m_Value(C))))) {
3090     if (Value *NotC = getFreelyInverted(C, C->hasOneUse(), &Builder)) {
3091       Value *AndV = Builder.CreateSelect(NotC, FalseVal, Zero);
3092       return SelectInst::Create(TrueVal, One, AndV);
3093     }
3094   }
3095   // select (c & ~b), a, b -> select b, true, (select c, a, false)
3096   if (match(CondVal,
3097             m_OneUse(m_c_And(m_Value(C), m_Not(m_Specific(FalseVal)))))) {
3098     Value *AndV = Builder.CreateSelect(C, TrueVal, Zero);
3099     return SelectInst::Create(FalseVal, One, AndV);
3100   }
3101 
3102   if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) {
3103     Use *Y = nullptr;
3104     bool IsAnd = match(FalseVal, m_Zero()) ? true : false;
3105     Value *Op1 = IsAnd ? TrueVal : FalseVal;
3106     if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) {
3107       auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr");
3108       InsertNewInstBefore(FI, cast<Instruction>(Y->getUser())->getIterator());
3109       replaceUse(*Y, FI);
3110       return replaceInstUsesWith(SI, Op1);
3111     }
3112 
3113     if (auto *Op1SI = dyn_cast<SelectInst>(Op1))
3114       if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI,
3115                                                       /* IsAnd */ IsAnd))
3116         return I;
3117 
3118     if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal))
3119       if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1))
3120         if (auto *V = foldAndOrOfICmps(ICmp0, ICmp1, SI, IsAnd,
3121                                        /* IsLogical */ true))
3122           return replaceInstUsesWith(SI, V);
3123   }
3124 
3125   // select (a || b), c, false -> select a, c, false
3126   // select c, (a || b), false -> select c, a, false
3127   //   if c implies that b is false.
3128   if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
3129       match(FalseVal, m_Zero())) {
3130     std::optional<bool> Res = isImpliedCondition(TrueVal, B, DL);
3131     if (Res && *Res == false)
3132       return replaceOperand(SI, 0, A);
3133   }
3134   if (match(TrueVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
3135       match(FalseVal, m_Zero())) {
3136     std::optional<bool> Res = isImpliedCondition(CondVal, B, DL);
3137     if (Res && *Res == false)
3138       return replaceOperand(SI, 1, A);
3139   }
3140   // select c, true, (a && b)  -> select c, true, a
3141   // select (a && b), true, c  -> select a, true, c
3142   //   if c = false implies that b = true
3143   if (match(TrueVal, m_One()) &&
3144       match(FalseVal, m_LogicalAnd(m_Value(A), m_Value(B)))) {
3145     std::optional<bool> Res = isImpliedCondition(CondVal, B, DL, false);
3146     if (Res && *Res == true)
3147       return replaceOperand(SI, 2, A);
3148   }
3149   if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) &&
3150       match(TrueVal, m_One())) {
3151     std::optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false);
3152     if (Res && *Res == true)
3153       return replaceOperand(SI, 0, A);
3154   }
3155 
3156   if (match(TrueVal, m_One())) {
3157     Value *C;
3158 
3159     // (C && A) || (!C && B) --> sel C, A, B
3160     // (A && C) || (!C && B) --> sel C, A, B
3161     // (C && A) || (B && !C) --> sel C, A, B
3162     // (A && C) || (B && !C) --> sel C, A, B (may require freeze)
3163     if (match(FalseVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(B))) &&
3164         match(CondVal, m_c_LogicalAnd(m_Specific(C), m_Value(A)))) {
3165       auto *SelCond = dyn_cast<SelectInst>(CondVal);
3166       auto *SelFVal = dyn_cast<SelectInst>(FalseVal);
3167       bool MayNeedFreeze = SelCond && SelFVal &&
3168                            match(SelFVal->getTrueValue(),
3169                                  m_Not(m_Specific(SelCond->getTrueValue())));
3170       if (MayNeedFreeze)
3171         C = Builder.CreateFreeze(C);
3172       return SelectInst::Create(C, A, B);
3173     }
3174 
3175     // (!C && A) || (C && B) --> sel C, B, A
3176     // (A && !C) || (C && B) --> sel C, B, A
3177     // (!C && A) || (B && C) --> sel C, B, A
3178     // (A && !C) || (B && C) --> sel C, B, A (may require freeze)
3179     if (match(CondVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(A))) &&
3180         match(FalseVal, m_c_LogicalAnd(m_Specific(C), m_Value(B)))) {
3181       auto *SelCond = dyn_cast<SelectInst>(CondVal);
3182       auto *SelFVal = dyn_cast<SelectInst>(FalseVal);
3183       bool MayNeedFreeze = SelCond && SelFVal &&
3184                            match(SelCond->getTrueValue(),
3185                                  m_Not(m_Specific(SelFVal->getTrueValue())));
3186       if (MayNeedFreeze)
3187         C = Builder.CreateFreeze(C);
3188       return SelectInst::Create(C, B, A);
3189     }
3190   }
3191 
3192   return nullptr;
3193 }
3194 
3195 // Return true if we can safely remove the select instruction for std::bit_ceil
3196 // pattern.
3197 static bool isSafeToRemoveBitCeilSelect(ICmpInst::Predicate Pred, Value *Cond0,
3198                                         const APInt *Cond1, Value *CtlzOp,
3199                                         unsigned BitWidth) {
3200   // The challenge in recognizing std::bit_ceil(X) is that the operand is used
3201   // for the CTLZ proper and select condition, each possibly with some
3202   // operation like add and sub.
3203   //
3204   // Our aim is to make sure that -ctlz & (BitWidth - 1) == 0 even when the
3205   // select instruction would select 1, which allows us to get rid of the select
3206   // instruction.
3207   //
3208   // To see if we can do so, we do some symbolic execution with ConstantRange.
3209   // Specifically, we compute the range of values that Cond0 could take when
3210   // Cond == false.  Then we successively transform the range until we obtain
3211   // the range of values that CtlzOp could take.
3212   //
3213   // Conceptually, we follow the def-use chain backward from Cond0 while
3214   // transforming the range for Cond0 until we meet the common ancestor of Cond0
3215   // and CtlzOp.  Then we follow the def-use chain forward until we obtain the
3216   // range for CtlzOp.  That said, we only follow at most one ancestor from
3217   // Cond0.  Likewise, we only follow at most one ancestor from CtrlOp.
3218 
3219   ConstantRange CR = ConstantRange::makeExactICmpRegion(
3220       CmpInst::getInversePredicate(Pred), *Cond1);
3221 
3222   // Match the operation that's used to compute CtlzOp from CommonAncestor.  If
3223   // CtlzOp == CommonAncestor, return true as no operation is needed.  If a
3224   // match is found, execute the operation on CR, update CR, and return true.
3225   // Otherwise, return false.
3226   auto MatchForward = [&](Value *CommonAncestor) {
3227     const APInt *C = nullptr;
3228     if (CtlzOp == CommonAncestor)
3229       return true;
3230     if (match(CtlzOp, m_Add(m_Specific(CommonAncestor), m_APInt(C)))) {
3231       CR = CR.add(*C);
3232       return true;
3233     }
3234     if (match(CtlzOp, m_Sub(m_APInt(C), m_Specific(CommonAncestor)))) {
3235       CR = ConstantRange(*C).sub(CR);
3236       return true;
3237     }
3238     if (match(CtlzOp, m_Not(m_Specific(CommonAncestor)))) {
3239       CR = CR.binaryNot();
3240       return true;
3241     }
3242     return false;
3243   };
3244 
3245   const APInt *C = nullptr;
3246   Value *CommonAncestor;
3247   if (MatchForward(Cond0)) {
3248     // Cond0 is either CtlzOp or CtlzOp's parent.  CR has been updated.
3249   } else if (match(Cond0, m_Add(m_Value(CommonAncestor), m_APInt(C)))) {
3250     CR = CR.sub(*C);
3251     if (!MatchForward(CommonAncestor))
3252       return false;
3253     // Cond0's parent is either CtlzOp or CtlzOp's parent.  CR has been updated.
3254   } else {
3255     return false;
3256   }
3257 
3258   // Return true if all the values in the range are either 0 or negative (if
3259   // treated as signed).  We do so by evaluating:
3260   //
3261   //   CR - 1 u>= (1 << BitWidth) - 1.
3262   APInt IntMax = APInt::getSignMask(BitWidth) - 1;
3263   CR = CR.sub(APInt(BitWidth, 1));
3264   return CR.icmp(ICmpInst::ICMP_UGE, IntMax);
3265 }
3266 
3267 // Transform the std::bit_ceil(X) pattern like:
3268 //
3269 //   %dec = add i32 %x, -1
3270 //   %ctlz = tail call i32 @llvm.ctlz.i32(i32 %dec, i1 false)
3271 //   %sub = sub i32 32, %ctlz
3272 //   %shl = shl i32 1, %sub
3273 //   %ugt = icmp ugt i32 %x, 1
3274 //   %sel = select i1 %ugt, i32 %shl, i32 1
3275 //
3276 // into:
3277 //
3278 //   %dec = add i32 %x, -1
3279 //   %ctlz = tail call i32 @llvm.ctlz.i32(i32 %dec, i1 false)
3280 //   %neg = sub i32 0, %ctlz
3281 //   %masked = and i32 %ctlz, 31
3282 //   %shl = shl i32 1, %sub
3283 //
3284 // Note that the select is optimized away while the shift count is masked with
3285 // 31.  We handle some variations of the input operand like std::bit_ceil(X +
3286 // 1).
3287 static Instruction *foldBitCeil(SelectInst &SI, IRBuilderBase &Builder) {
3288   Type *SelType = SI.getType();
3289   unsigned BitWidth = SelType->getScalarSizeInBits();
3290 
3291   Value *FalseVal = SI.getFalseValue();
3292   Value *TrueVal = SI.getTrueValue();
3293   ICmpInst::Predicate Pred;
3294   const APInt *Cond1;
3295   Value *Cond0, *Ctlz, *CtlzOp;
3296   if (!match(SI.getCondition(), m_ICmp(Pred, m_Value(Cond0), m_APInt(Cond1))))
3297     return nullptr;
3298 
3299   if (match(TrueVal, m_One())) {
3300     std::swap(FalseVal, TrueVal);
3301     Pred = CmpInst::getInversePredicate(Pred);
3302   }
3303 
3304   if (!match(FalseVal, m_One()) ||
3305       !match(TrueVal,
3306              m_OneUse(m_Shl(m_One(), m_OneUse(m_Sub(m_SpecificInt(BitWidth),
3307                                                     m_Value(Ctlz)))))) ||
3308       !match(Ctlz, m_Intrinsic<Intrinsic::ctlz>(m_Value(CtlzOp), m_Zero())) ||
3309       !isSafeToRemoveBitCeilSelect(Pred, Cond0, Cond1, CtlzOp, BitWidth))
3310     return nullptr;
3311 
3312   // Build 1 << (-CTLZ & (BitWidth-1)).  The negation likely corresponds to a
3313   // single hardware instruction as opposed to BitWidth - CTLZ, where BitWidth
3314   // is an integer constant.  Masking with BitWidth-1 comes free on some
3315   // hardware as part of the shift instruction.
3316   Value *Neg = Builder.CreateNeg(Ctlz);
3317   Value *Masked =
3318       Builder.CreateAnd(Neg, ConstantInt::get(SelType, BitWidth - 1));
3319   return BinaryOperator::Create(Instruction::Shl, ConstantInt::get(SelType, 1),
3320                                 Masked);
3321 }
3322 
3323 bool InstCombinerImpl::fmulByZeroIsZero(Value *MulVal, FastMathFlags FMF,
3324                                         const Instruction *CtxI) const {
3325   KnownFPClass Known = computeKnownFPClass(MulVal, FMF, fcNegative, CtxI);
3326 
3327   return Known.isKnownNeverNaN() && Known.isKnownNeverInfinity() &&
3328          (FMF.noSignedZeros() || Known.signBitIsZeroOrNaN());
3329 }
3330 
3331 static bool matchFMulByZeroIfResultEqZero(InstCombinerImpl &IC, Value *Cmp0,
3332                                           Value *Cmp1, Value *TrueVal,
3333                                           Value *FalseVal, Instruction &CtxI,
3334                                           bool SelectIsNSZ) {
3335   Value *MulRHS;
3336   if (match(Cmp1, m_PosZeroFP()) &&
3337       match(TrueVal, m_c_FMul(m_Specific(Cmp0), m_Value(MulRHS)))) {
3338     FastMathFlags FMF = cast<FPMathOperator>(TrueVal)->getFastMathFlags();
3339     // nsz must be on the select, it must be ignored on the multiply. We
3340     // need nnan and ninf on the multiply for the other value.
3341     FMF.setNoSignedZeros(SelectIsNSZ);
3342     return IC.fmulByZeroIsZero(MulRHS, FMF, &CtxI);
3343   }
3344 
3345   return false;
3346 }
3347 
3348 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) {
3349   Value *CondVal = SI.getCondition();
3350   Value *TrueVal = SI.getTrueValue();
3351   Value *FalseVal = SI.getFalseValue();
3352   Type *SelType = SI.getType();
3353 
3354   if (Value *V = simplifySelectInst(CondVal, TrueVal, FalseVal,
3355                                     SQ.getWithInstruction(&SI)))
3356     return replaceInstUsesWith(SI, V);
3357 
3358   if (Instruction *I = canonicalizeSelectToShuffle(SI))
3359     return I;
3360 
3361   if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this))
3362     return I;
3363 
3364   // If the type of select is not an integer type or if the condition and
3365   // the selection type are not both scalar nor both vector types, there is no
3366   // point in attempting to match these patterns.
3367   Type *CondType = CondVal->getType();
3368   if (!isa<Constant>(CondVal) && SelType->isIntOrIntVectorTy() &&
3369       CondType->isVectorTy() == SelType->isVectorTy()) {
3370     if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal,
3371                                           ConstantInt::getTrue(CondType), SQ,
3372                                           /* AllowRefinement */ true))
3373       return replaceOperand(SI, 1, S);
3374 
3375     if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal,
3376                                           ConstantInt::getFalse(CondType), SQ,
3377                                           /* AllowRefinement */ true))
3378       return replaceOperand(SI, 2, S);
3379   }
3380 
3381   if (Instruction *R = foldSelectOfBools(SI))
3382     return R;
3383 
3384   // Selecting between two integer or vector splat integer constants?
3385   //
3386   // Note that we don't handle a scalar select of vectors:
3387   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
3388   // because that may need 3 instructions to splat the condition value:
3389   // extend, insertelement, shufflevector.
3390   //
3391   // Do not handle i1 TrueVal and FalseVal otherwise would result in
3392   // zext/sext i1 to i1.
3393   if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) &&
3394       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
3395     // select C, 1, 0 -> zext C to int
3396     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
3397       return new ZExtInst(CondVal, SelType);
3398 
3399     // select C, -1, 0 -> sext C to int
3400     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
3401       return new SExtInst(CondVal, SelType);
3402 
3403     // select C, 0, 1 -> zext !C to int
3404     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
3405       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
3406       return new ZExtInst(NotCond, SelType);
3407     }
3408 
3409     // select C, 0, -1 -> sext !C to int
3410     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
3411       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
3412       return new SExtInst(NotCond, SelType);
3413     }
3414   }
3415 
3416   auto *SIFPOp = dyn_cast<FPMathOperator>(&SI);
3417 
3418   if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) {
3419     FCmpInst::Predicate Pred = FCmp->getPredicate();
3420     Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1);
3421     // Are we selecting a value based on a comparison of the two values?
3422     if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
3423         (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
3424       // Canonicalize to use ordered comparisons by swapping the select
3425       // operands.
3426       //
3427       // e.g.
3428       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
3429       if (FCmp->hasOneUse() && FCmpInst::isUnordered(Pred)) {
3430         FCmpInst::Predicate InvPred = FCmp->getInversePredicate();
3431         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
3432         // FIXME: The FMF should propagate from the select, not the fcmp.
3433         Builder.setFastMathFlags(FCmp->getFastMathFlags());
3434         Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
3435                                             FCmp->getName() + ".inv");
3436         Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
3437         return replaceInstUsesWith(SI, NewSel);
3438       }
3439     }
3440 
3441     if (SIFPOp) {
3442       // Fold out scale-if-equals-zero pattern.
3443       //
3444       // This pattern appears in code with denormal range checks after it's
3445       // assumed denormals are treated as zero. This drops a canonicalization.
3446 
3447       // TODO: Could relax the signed zero logic. We just need to know the sign
3448       // of the result matches (fmul x, y has the same sign as x).
3449       //
3450       // TODO: Handle always-canonicalizing variant that selects some value or 1
3451       // scaling factor in the fmul visitor.
3452 
3453       // TODO: Handle ldexp too
3454 
3455       Value *MatchCmp0 = nullptr;
3456       Value *MatchCmp1 = nullptr;
3457 
3458       // (select (fcmp [ou]eq x, 0.0), (fmul x, K), x => x
3459       // (select (fcmp [ou]ne x, 0.0), x, (fmul x, K) => x
3460       if (Pred == CmpInst::FCMP_OEQ || Pred == CmpInst::FCMP_UEQ) {
3461         MatchCmp0 = FalseVal;
3462         MatchCmp1 = TrueVal;
3463       } else if (Pred == CmpInst::FCMP_ONE || Pred == CmpInst::FCMP_UNE) {
3464         MatchCmp0 = TrueVal;
3465         MatchCmp1 = FalseVal;
3466       }
3467 
3468       if (Cmp0 == MatchCmp0 &&
3469           matchFMulByZeroIfResultEqZero(*this, Cmp0, Cmp1, MatchCmp1, MatchCmp0,
3470                                         SI, SIFPOp->hasNoSignedZeros()))
3471         return replaceInstUsesWith(SI, Cmp0);
3472     }
3473   }
3474 
3475   if (SIFPOp) {
3476     // TODO: Try to forward-propagate FMF from select arms to the select.
3477 
3478     // Canonicalize select of FP values where NaN and -0.0 are not valid as
3479     // minnum/maxnum intrinsics.
3480     if (SIFPOp->hasNoNaNs() && SIFPOp->hasNoSignedZeros()) {
3481       Value *X, *Y;
3482       if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
3483         return replaceInstUsesWith(
3484             SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
3485 
3486       if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
3487         return replaceInstUsesWith(
3488             SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
3489     }
3490   }
3491 
3492   // Fold selecting to fabs.
3493   if (Instruction *Fabs = foldSelectWithFCmpToFabs(SI, *this))
3494     return Fabs;
3495 
3496   // See if we are selecting two values based on a comparison of the two values.
3497   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
3498     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
3499       return Result;
3500 
3501   if (Instruction *Add = foldAddSubSelect(SI, Builder))
3502     return Add;
3503   if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
3504     return Add;
3505   if (Instruction *Or = foldSetClearBits(SI, Builder))
3506     return Or;
3507   if (Instruction *Mul = foldSelectZeroOrMul(SI, *this))
3508     return Mul;
3509 
3510   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
3511   auto *TI = dyn_cast<Instruction>(TrueVal);
3512   auto *FI = dyn_cast<Instruction>(FalseVal);
3513   if (TI && FI && TI->getOpcode() == FI->getOpcode())
3514     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
3515       return IV;
3516 
3517   if (Instruction *I = foldSelectExtConst(SI))
3518     return I;
3519 
3520   if (Instruction *I = foldSelectWithSRem(SI, *this, Builder))
3521     return I;
3522 
3523   // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))
3524   // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx))
3525   auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base,
3526                                bool Swap) -> GetElementPtrInst * {
3527     Value *Ptr = Gep->getPointerOperand();
3528     if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base ||
3529         !Gep->hasOneUse())
3530       return nullptr;
3531     Value *Idx = Gep->getOperand(1);
3532     if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType()))
3533       return nullptr;
3534     Type *ElementType = Gep->getResultElementType();
3535     Value *NewT = Idx;
3536     Value *NewF = Constant::getNullValue(Idx->getType());
3537     if (Swap)
3538       std::swap(NewT, NewF);
3539     Value *NewSI =
3540         Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI);
3541     if (Gep->isInBounds())
3542       return GetElementPtrInst::CreateInBounds(ElementType, Ptr, {NewSI});
3543     return GetElementPtrInst::Create(ElementType, Ptr, {NewSI});
3544   };
3545   if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal))
3546     if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false))
3547       return NewGep;
3548   if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal))
3549     if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true))
3550       return NewGep;
3551 
3552   // See if we can fold the select into one of our operands.
3553   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
3554     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
3555       return FoldI;
3556 
3557     Value *LHS, *RHS;
3558     Instruction::CastOps CastOp;
3559     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
3560     auto SPF = SPR.Flavor;
3561     if (SPF) {
3562       Value *LHS2, *RHS2;
3563       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
3564         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
3565                                           RHS2, SI, SPF, RHS))
3566           return R;
3567       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
3568         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
3569                                           RHS2, SI, SPF, LHS))
3570           return R;
3571     }
3572 
3573     if (SelectPatternResult::isMinOrMax(SPF)) {
3574       // Canonicalize so that
3575       // - type casts are outside select patterns.
3576       // - float clamp is transformed to min/max pattern
3577 
3578       bool IsCastNeeded = LHS->getType() != SelType;
3579       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
3580       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
3581       if (IsCastNeeded ||
3582           (LHS->getType()->isFPOrFPVectorTy() &&
3583            ((CmpLHS != LHS && CmpLHS != RHS) ||
3584             (CmpRHS != LHS && CmpRHS != RHS)))) {
3585         CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
3586 
3587         Value *Cmp;
3588         if (CmpInst::isIntPredicate(MinMaxPred)) {
3589           Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
3590         } else {
3591           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
3592           auto FMF =
3593               cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
3594           Builder.setFastMathFlags(FMF);
3595           Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
3596         }
3597 
3598         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
3599         if (!IsCastNeeded)
3600           return replaceInstUsesWith(SI, NewSI);
3601 
3602         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
3603         return replaceInstUsesWith(SI, NewCast);
3604       }
3605     }
3606   }
3607 
3608   // See if we can fold the select into a phi node if the condition is a select.
3609   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
3610     // The true/false values have to be live in the PHI predecessor's blocks.
3611     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
3612         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
3613       if (Instruction *NV = foldOpIntoPhi(SI, PN))
3614         return NV;
3615 
3616   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
3617     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
3618       // select(C, select(C, a, b), c) -> select(C, a, c)
3619       if (TrueSI->getCondition() == CondVal) {
3620         if (SI.getTrueValue() == TrueSI->getTrueValue())
3621           return nullptr;
3622         return replaceOperand(SI, 1, TrueSI->getTrueValue());
3623       }
3624       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
3625       // We choose this as normal form to enable folding on the And and
3626       // shortening paths for the values (this helps getUnderlyingObjects() for
3627       // example).
3628       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
3629         Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition());
3630         replaceOperand(SI, 0, And);
3631         replaceOperand(SI, 1, TrueSI->getTrueValue());
3632         return &SI;
3633       }
3634     }
3635   }
3636   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
3637     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
3638       // select(C, a, select(C, b, c)) -> select(C, a, c)
3639       if (FalseSI->getCondition() == CondVal) {
3640         if (SI.getFalseValue() == FalseSI->getFalseValue())
3641           return nullptr;
3642         return replaceOperand(SI, 2, FalseSI->getFalseValue());
3643       }
3644       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
3645       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
3646         Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition());
3647         replaceOperand(SI, 0, Or);
3648         replaceOperand(SI, 2, FalseSI->getFalseValue());
3649         return &SI;
3650       }
3651     }
3652   }
3653 
3654   // Try to simplify a binop sandwiched between 2 selects with the same
3655   // condition. This is not valid for div/rem because the select might be
3656   // preventing a division-by-zero.
3657   // TODO: A div/rem restriction is conservative; use something like
3658   //       isSafeToSpeculativelyExecute().
3659   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
3660   BinaryOperator *TrueBO;
3661   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && !TrueBO->isIntDivRem()) {
3662     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
3663       if (TrueBOSI->getCondition() == CondVal) {
3664         replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue());
3665         Worklist.push(TrueBO);
3666         return &SI;
3667       }
3668     }
3669     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
3670       if (TrueBOSI->getCondition() == CondVal) {
3671         replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue());
3672         Worklist.push(TrueBO);
3673         return &SI;
3674       }
3675     }
3676   }
3677 
3678   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
3679   BinaryOperator *FalseBO;
3680   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && !FalseBO->isIntDivRem()) {
3681     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
3682       if (FalseBOSI->getCondition() == CondVal) {
3683         replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue());
3684         Worklist.push(FalseBO);
3685         return &SI;
3686       }
3687     }
3688     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
3689       if (FalseBOSI->getCondition() == CondVal) {
3690         replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue());
3691         Worklist.push(FalseBO);
3692         return &SI;
3693       }
3694     }
3695   }
3696 
3697   Value *NotCond;
3698   if (match(CondVal, m_Not(m_Value(NotCond))) &&
3699       !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) {
3700     replaceOperand(SI, 0, NotCond);
3701     SI.swapValues();
3702     SI.swapProfMetadata();
3703     return &SI;
3704   }
3705 
3706   if (Instruction *I = foldVectorSelect(SI))
3707     return I;
3708 
3709   // If we can compute the condition, there's no need for a select.
3710   // Like the above fold, we are attempting to reduce compile-time cost by
3711   // putting this fold here with limitations rather than in InstSimplify.
3712   // The motivation for this call into value tracking is to take advantage of
3713   // the assumption cache, so make sure that is populated.
3714   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
3715     KnownBits Known(1);
3716     computeKnownBits(CondVal, Known, 0, &SI);
3717     if (Known.One.isOne())
3718       return replaceInstUsesWith(SI, TrueVal);
3719     if (Known.Zero.isOne())
3720       return replaceInstUsesWith(SI, FalseVal);
3721   }
3722 
3723   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
3724     return BitCastSel;
3725 
3726   // Simplify selects that test the returned flag of cmpxchg instructions.
3727   if (Value *V = foldSelectCmpXchg(SI))
3728     return replaceInstUsesWith(SI, V);
3729 
3730   if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
3731     return Select;
3732 
3733   if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder))
3734     return Funnel;
3735 
3736   if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
3737     return Copysign;
3738 
3739   if (Instruction *PN = foldSelectToPhi(SI, DT, Builder))
3740     return replaceInstUsesWith(SI, PN);
3741 
3742   if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder))
3743     return replaceInstUsesWith(SI, Fr);
3744 
3745   if (Value *V = foldRoundUpIntegerWithPow2Alignment(SI, Builder))
3746     return replaceInstUsesWith(SI, V);
3747 
3748   // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0)
3749   // Load inst is intentionally not checked for hasOneUse()
3750   if (match(FalseVal, m_Zero()) &&
3751       (match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal),
3752                                    m_CombineOr(m_Undef(), m_Zero()))) ||
3753        match(TrueVal, m_MaskedGather(m_Value(), m_Value(), m_Specific(CondVal),
3754                                      m_CombineOr(m_Undef(), m_Zero()))))) {
3755     auto *MaskedInst = cast<IntrinsicInst>(TrueVal);
3756     if (isa<UndefValue>(MaskedInst->getArgOperand(3)))
3757       MaskedInst->setArgOperand(3, FalseVal /* Zero */);
3758     return replaceInstUsesWith(SI, MaskedInst);
3759   }
3760 
3761   Value *Mask;
3762   if (match(TrueVal, m_Zero()) &&
3763       (match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask),
3764                                     m_CombineOr(m_Undef(), m_Zero()))) ||
3765        match(FalseVal, m_MaskedGather(m_Value(), m_Value(), m_Value(Mask),
3766                                       m_CombineOr(m_Undef(), m_Zero())))) &&
3767       (CondVal->getType() == Mask->getType())) {
3768     // We can remove the select by ensuring the load zeros all lanes the
3769     // select would have.  We determine this by proving there is no overlap
3770     // between the load and select masks.
3771     // (i.e (load_mask & select_mask) == 0 == no overlap)
3772     bool CanMergeSelectIntoLoad = false;
3773     if (Value *V = simplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI)))
3774       CanMergeSelectIntoLoad = match(V, m_Zero());
3775 
3776     if (CanMergeSelectIntoLoad) {
3777       auto *MaskedInst = cast<IntrinsicInst>(FalseVal);
3778       if (isa<UndefValue>(MaskedInst->getArgOperand(3)))
3779         MaskedInst->setArgOperand(3, TrueVal /* Zero */);
3780       return replaceInstUsesWith(SI, MaskedInst);
3781     }
3782   }
3783 
3784   if (Instruction *I = foldNestedSelects(SI, Builder))
3785     return I;
3786 
3787   // Match logical variants of the pattern,
3788   // and transform them iff that gets rid of inversions.
3789   //   (~x) | y  -->  ~(x & (~y))
3790   //   (~x) & y  -->  ~(x | (~y))
3791   if (sinkNotIntoOtherHandOfLogicalOp(SI))
3792     return &SI;
3793 
3794   if (Instruction *I = foldBitCeil(SI, Builder))
3795     return I;
3796 
3797   // Fold:
3798   // (select A && B, T, F) -> (select A, (select B, T, F), F)
3799   // (select A || B, T, F) -> (select A, T, (select B, T, F))
3800   // if (select B, T, F) is foldable.
3801   // TODO: preserve FMF flags
3802   auto FoldSelectWithAndOrCond = [&](bool IsAnd, Value *A,
3803                                      Value *B) -> Instruction * {
3804     if (Value *V = simplifySelectInst(B, TrueVal, FalseVal,
3805                                       SQ.getWithInstruction(&SI)))
3806       return SelectInst::Create(A, IsAnd ? V : TrueVal, IsAnd ? FalseVal : V);
3807 
3808     // Is (select B, T, F) a SPF?
3809     if (CondVal->hasOneUse() && SelType->isIntOrIntVectorTy()) {
3810       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(B))
3811         if (Value *V = canonicalizeSPF(*Cmp, TrueVal, FalseVal, *this))
3812           return SelectInst::Create(A, IsAnd ? V : TrueVal,
3813                                     IsAnd ? FalseVal : V);
3814     }
3815 
3816     return nullptr;
3817   };
3818 
3819   Value *LHS, *RHS;
3820   if (match(CondVal, m_And(m_Value(LHS), m_Value(RHS)))) {
3821     if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, LHS, RHS))
3822       return I;
3823     if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, RHS, LHS))
3824       return I;
3825   } else if (match(CondVal, m_Or(m_Value(LHS), m_Value(RHS)))) {
3826     if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, LHS, RHS))
3827       return I;
3828     if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, RHS, LHS))
3829       return I;
3830   } else {
3831     // We cannot swap the operands of logical and/or.
3832     // TODO: Can we swap the operands by inserting a freeze?
3833     if (match(CondVal, m_LogicalAnd(m_Value(LHS), m_Value(RHS)))) {
3834       if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, LHS, RHS))
3835         return I;
3836     } else if (match(CondVal, m_LogicalOr(m_Value(LHS), m_Value(RHS)))) {
3837       if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, LHS, RHS))
3838         return I;
3839     }
3840   }
3841 
3842   return nullptr;
3843 }
3844