1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitSelect function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/CmpInstAnalysis.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/OverflowInstAnalysis.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstrTypes.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/User.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/KnownBits.h" 42 #include "llvm/Transforms/InstCombine/InstCombiner.h" 43 #include <cassert> 44 #include <utility> 45 46 #define DEBUG_TYPE "instcombine" 47 #include "llvm/Transforms/Utils/InstructionWorklist.h" 48 49 using namespace llvm; 50 using namespace PatternMatch; 51 52 53 /// Replace a select operand based on an equality comparison with the identity 54 /// constant of a binop. 55 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 56 const TargetLibraryInfo &TLI, 57 InstCombinerImpl &IC) { 58 // The select condition must be an equality compare with a constant operand. 59 Value *X; 60 Constant *C; 61 CmpInst::Predicate Pred; 62 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 63 return nullptr; 64 65 bool IsEq; 66 if (ICmpInst::isEquality(Pred)) 67 IsEq = Pred == ICmpInst::ICMP_EQ; 68 else if (Pred == FCmpInst::FCMP_OEQ) 69 IsEq = true; 70 else if (Pred == FCmpInst::FCMP_UNE) 71 IsEq = false; 72 else 73 return nullptr; 74 75 // A select operand must be a binop. 76 BinaryOperator *BO; 77 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 78 return nullptr; 79 80 // The compare constant must be the identity constant for that binop. 81 // If this a floating-point compare with 0.0, any zero constant will do. 82 Type *Ty = BO->getType(); 83 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 84 if (IdC != C) { 85 if (!IdC || !CmpInst::isFPPredicate(Pred)) 86 return nullptr; 87 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 88 return nullptr; 89 } 90 91 // Last, match the compare variable operand with a binop operand. 92 Value *Y; 93 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 94 return nullptr; 95 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 96 return nullptr; 97 98 // +0.0 compares equal to -0.0, and so it does not behave as required for this 99 // transform. Bail out if we can not exclude that possibility. 100 if (isa<FPMathOperator>(BO)) 101 if (!BO->hasNoSignedZeros() && 102 !cannotBeNegativeZero(Y, IC.getDataLayout(), &TLI)) 103 return nullptr; 104 105 // BO = binop Y, X 106 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 107 // => 108 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 109 return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y); 110 } 111 112 /// This folds: 113 /// select (icmp eq (and X, C1)), TC, FC 114 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 115 /// To something like: 116 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 117 /// Or: 118 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 119 /// With some variations depending if FC is larger than TC, or the shift 120 /// isn't needed, or the bit widths don't match. 121 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 122 InstCombiner::BuilderTy &Builder) { 123 const APInt *SelTC, *SelFC; 124 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 125 !match(Sel.getFalseValue(), m_APInt(SelFC))) 126 return nullptr; 127 128 // If this is a vector select, we need a vector compare. 129 Type *SelType = Sel.getType(); 130 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 131 return nullptr; 132 133 Value *V; 134 APInt AndMask; 135 bool CreateAnd = false; 136 ICmpInst::Predicate Pred = Cmp->getPredicate(); 137 if (ICmpInst::isEquality(Pred)) { 138 if (!match(Cmp->getOperand(1), m_Zero())) 139 return nullptr; 140 141 V = Cmp->getOperand(0); 142 const APInt *AndRHS; 143 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 144 return nullptr; 145 146 AndMask = *AndRHS; 147 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 148 Pred, V, AndMask)) { 149 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 150 if (!AndMask.isPowerOf2()) 151 return nullptr; 152 153 CreateAnd = true; 154 } else { 155 return nullptr; 156 } 157 158 // In general, when both constants are non-zero, we would need an offset to 159 // replace the select. This would require more instructions than we started 160 // with. But there's one special-case that we handle here because it can 161 // simplify/reduce the instructions. 162 APInt TC = *SelTC; 163 APInt FC = *SelFC; 164 if (!TC.isZero() && !FC.isZero()) { 165 // If the select constants differ by exactly one bit and that's the same 166 // bit that is masked and checked by the select condition, the select can 167 // be replaced by bitwise logic to set/clear one bit of the constant result. 168 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 169 return nullptr; 170 if (CreateAnd) { 171 // If we have to create an 'and', then we must kill the cmp to not 172 // increase the instruction count. 173 if (!Cmp->hasOneUse()) 174 return nullptr; 175 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 176 } 177 bool ExtraBitInTC = TC.ugt(FC); 178 if (Pred == ICmpInst::ICMP_EQ) { 179 // If the masked bit in V is clear, clear or set the bit in the result: 180 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 181 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 182 Constant *C = ConstantInt::get(SelType, TC); 183 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 184 } 185 if (Pred == ICmpInst::ICMP_NE) { 186 // If the masked bit in V is set, set or clear the bit in the result: 187 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 188 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 189 Constant *C = ConstantInt::get(SelType, FC); 190 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 191 } 192 llvm_unreachable("Only expecting equality predicates"); 193 } 194 195 // Make sure one of the select arms is a power-of-2. 196 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 197 return nullptr; 198 199 // Determine which shift is needed to transform result of the 'and' into the 200 // desired result. 201 const APInt &ValC = !TC.isZero() ? TC : FC; 202 unsigned ValZeros = ValC.logBase2(); 203 unsigned AndZeros = AndMask.logBase2(); 204 205 // Insert the 'and' instruction on the input to the truncate. 206 if (CreateAnd) 207 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 208 209 // If types don't match, we can still convert the select by introducing a zext 210 // or a trunc of the 'and'. 211 if (ValZeros > AndZeros) { 212 V = Builder.CreateZExtOrTrunc(V, SelType); 213 V = Builder.CreateShl(V, ValZeros - AndZeros); 214 } else if (ValZeros < AndZeros) { 215 V = Builder.CreateLShr(V, AndZeros - ValZeros); 216 V = Builder.CreateZExtOrTrunc(V, SelType); 217 } else { 218 V = Builder.CreateZExtOrTrunc(V, SelType); 219 } 220 221 // Okay, now we know that everything is set up, we just don't know whether we 222 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 223 bool ShouldNotVal = !TC.isZero(); 224 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 225 if (ShouldNotVal) 226 V = Builder.CreateXor(V, ValC); 227 228 return V; 229 } 230 231 /// We want to turn code that looks like this: 232 /// %C = or %A, %B 233 /// %D = select %cond, %C, %A 234 /// into: 235 /// %C = select %cond, %B, 0 236 /// %D = or %A, %C 237 /// 238 /// Assuming that the specified instruction is an operand to the select, return 239 /// a bitmask indicating which operands of this instruction are foldable if they 240 /// equal the other incoming value of the select. 241 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 242 switch (I->getOpcode()) { 243 case Instruction::Add: 244 case Instruction::FAdd: 245 case Instruction::Mul: 246 case Instruction::FMul: 247 case Instruction::And: 248 case Instruction::Or: 249 case Instruction::Xor: 250 return 3; // Can fold through either operand. 251 case Instruction::Sub: // Can only fold on the amount subtracted. 252 case Instruction::FSub: 253 case Instruction::FDiv: // Can only fold on the divisor amount. 254 case Instruction::Shl: // Can only fold on the shift amount. 255 case Instruction::LShr: 256 case Instruction::AShr: 257 return 1; 258 default: 259 return 0; // Cannot fold 260 } 261 } 262 263 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 264 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI, 265 Instruction *FI) { 266 // Don't break up min/max patterns. The hasOneUse checks below prevent that 267 // for most cases, but vector min/max with bitcasts can be transformed. If the 268 // one-use restrictions are eased for other patterns, we still don't want to 269 // obfuscate min/max. 270 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 271 match(&SI, m_SMax(m_Value(), m_Value())) || 272 match(&SI, m_UMin(m_Value(), m_Value())) || 273 match(&SI, m_UMax(m_Value(), m_Value())))) 274 return nullptr; 275 276 // If this is a cast from the same type, merge. 277 Value *Cond = SI.getCondition(); 278 Type *CondTy = Cond->getType(); 279 if (TI->getNumOperands() == 1 && TI->isCast()) { 280 Type *FIOpndTy = FI->getOperand(0)->getType(); 281 if (TI->getOperand(0)->getType() != FIOpndTy) 282 return nullptr; 283 284 // The select condition may be a vector. We may only change the operand 285 // type if the vector width remains the same (and matches the condition). 286 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) { 287 if (!FIOpndTy->isVectorTy() || 288 CondVTy->getElementCount() != 289 cast<VectorType>(FIOpndTy)->getElementCount()) 290 return nullptr; 291 292 // TODO: If the backend knew how to deal with casts better, we could 293 // remove this limitation. For now, there's too much potential to create 294 // worse codegen by promoting the select ahead of size-altering casts 295 // (PR28160). 296 // 297 // Note that ValueTracking's matchSelectPattern() looks through casts 298 // without checking 'hasOneUse' when it matches min/max patterns, so this 299 // transform may end up happening anyway. 300 if (TI->getOpcode() != Instruction::BitCast && 301 (!TI->hasOneUse() || !FI->hasOneUse())) 302 return nullptr; 303 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 304 // TODO: The one-use restrictions for a scalar select could be eased if 305 // the fold of a select in visitLoadInst() was enhanced to match a pattern 306 // that includes a cast. 307 return nullptr; 308 } 309 310 // Fold this by inserting a select from the input values. 311 Value *NewSI = 312 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0), 313 SI.getName() + ".v", &SI); 314 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 315 TI->getType()); 316 } 317 318 Value *OtherOpT, *OtherOpF; 319 bool MatchIsOpZero; 320 auto getCommonOp = [&](Instruction *TI, Instruction *FI, bool Commute, 321 bool Swapped = false) -> Value * { 322 assert(!(Commute && Swapped) && 323 "Commute and Swapped can't set at the same time"); 324 if (!Swapped) { 325 if (TI->getOperand(0) == FI->getOperand(0)) { 326 OtherOpT = TI->getOperand(1); 327 OtherOpF = FI->getOperand(1); 328 MatchIsOpZero = true; 329 return TI->getOperand(0); 330 } else if (TI->getOperand(1) == FI->getOperand(1)) { 331 OtherOpT = TI->getOperand(0); 332 OtherOpF = FI->getOperand(0); 333 MatchIsOpZero = false; 334 return TI->getOperand(1); 335 } 336 } 337 338 if (!Commute && !Swapped) 339 return nullptr; 340 341 // If we are allowing commute or swap of operands, then 342 // allow a cross-operand match. In that case, MatchIsOpZero 343 // means that TI's operand 0 (FI's operand 1) is the common op. 344 if (TI->getOperand(0) == FI->getOperand(1)) { 345 OtherOpT = TI->getOperand(1); 346 OtherOpF = FI->getOperand(0); 347 MatchIsOpZero = true; 348 return TI->getOperand(0); 349 } else if (TI->getOperand(1) == FI->getOperand(0)) { 350 OtherOpT = TI->getOperand(0); 351 OtherOpF = FI->getOperand(1); 352 MatchIsOpZero = false; 353 return TI->getOperand(1); 354 } 355 return nullptr; 356 }; 357 358 if (TI->hasOneUse() || FI->hasOneUse()) { 359 // Cond ? -X : -Y --> -(Cond ? X : Y) 360 Value *X, *Y; 361 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y)))) { 362 // Intersect FMF from the fneg instructions and union those with the 363 // select. 364 FastMathFlags FMF = TI->getFastMathFlags(); 365 FMF &= FI->getFastMathFlags(); 366 FMF |= SI.getFastMathFlags(); 367 Value *NewSel = 368 Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI); 369 if (auto *NewSelI = dyn_cast<Instruction>(NewSel)) 370 NewSelI->setFastMathFlags(FMF); 371 Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel); 372 NewFNeg->setFastMathFlags(FMF); 373 return NewFNeg; 374 } 375 376 // Min/max intrinsic with a common operand can have the common operand 377 // pulled after the select. This is the same transform as below for binops, 378 // but specialized for intrinsic matching and without the restrictive uses 379 // clause. 380 auto *TII = dyn_cast<IntrinsicInst>(TI); 381 auto *FII = dyn_cast<IntrinsicInst>(FI); 382 if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID()) { 383 if (match(TII, m_MaxOrMin(m_Value(), m_Value()))) { 384 if (Value *MatchOp = getCommonOp(TI, FI, true)) { 385 Value *NewSel = 386 Builder.CreateSelect(Cond, OtherOpT, OtherOpF, "minmaxop", &SI); 387 return CallInst::Create(TII->getCalledFunction(), {NewSel, MatchOp}); 388 } 389 } 390 391 // select c, (ldexp v, e0), (ldexp v, e1) -> ldexp v, (select c, e0, e1) 392 // select c, (ldexp v0, e), (ldexp v1, e) -> ldexp (select c, v0, v1), e 393 // 394 // select c, (ldexp v0, e0), (ldexp v1, e1) -> 395 // ldexp (select c, v0, v1), (select c, e0, e1) 396 if (TII->getIntrinsicID() == Intrinsic::ldexp) { 397 Value *LdexpVal0 = TII->getArgOperand(0); 398 Value *LdexpExp0 = TII->getArgOperand(1); 399 Value *LdexpVal1 = FII->getArgOperand(0); 400 Value *LdexpExp1 = FII->getArgOperand(1); 401 if (LdexpExp0->getType() == LdexpExp1->getType()) { 402 FPMathOperator *SelectFPOp = cast<FPMathOperator>(&SI); 403 FastMathFlags FMF = cast<FPMathOperator>(TII)->getFastMathFlags(); 404 FMF &= cast<FPMathOperator>(FII)->getFastMathFlags(); 405 FMF |= SelectFPOp->getFastMathFlags(); 406 407 Value *SelectVal = Builder.CreateSelect(Cond, LdexpVal0, LdexpVal1); 408 Value *SelectExp = Builder.CreateSelect(Cond, LdexpExp0, LdexpExp1); 409 410 CallInst *NewLdexp = Builder.CreateIntrinsic( 411 TII->getType(), Intrinsic::ldexp, {SelectVal, SelectExp}); 412 NewLdexp->setFastMathFlags(FMF); 413 return replaceInstUsesWith(SI, NewLdexp); 414 } 415 } 416 } 417 418 // icmp with a common operand also can have the common operand 419 // pulled after the select. 420 ICmpInst::Predicate TPred, FPred; 421 if (match(TI, m_ICmp(TPred, m_Value(), m_Value())) && 422 match(FI, m_ICmp(FPred, m_Value(), m_Value()))) { 423 if (TPred == FPred || TPred == CmpInst::getSwappedPredicate(FPred)) { 424 bool Swapped = TPred != FPred; 425 if (Value *MatchOp = 426 getCommonOp(TI, FI, ICmpInst::isEquality(TPred), Swapped)) { 427 Value *NewSel = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 428 SI.getName() + ".v", &SI); 429 return new ICmpInst( 430 MatchIsOpZero ? TPred : CmpInst::getSwappedPredicate(TPred), 431 MatchOp, NewSel); 432 } 433 } 434 } 435 } 436 437 // Only handle binary operators (including two-operand getelementptr) with 438 // one-use here. As with the cast case above, it may be possible to relax the 439 // one-use constraint, but that needs be examined carefully since it may not 440 // reduce the total number of instructions. 441 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 442 !TI->isSameOperationAs(FI) || 443 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 444 !TI->hasOneUse() || !FI->hasOneUse()) 445 return nullptr; 446 447 // Figure out if the operations have any operands in common. 448 Value *MatchOp = getCommonOp(TI, FI, TI->isCommutative()); 449 if (!MatchOp) 450 return nullptr; 451 452 // If the select condition is a vector, the operands of the original select's 453 // operands also must be vectors. This may not be the case for getelementptr 454 // for example. 455 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() || 456 !OtherOpF->getType()->isVectorTy())) 457 return nullptr; 458 459 // If we are sinking div/rem after a select, we may need to freeze the 460 // condition because div/rem may induce immediate UB with a poison operand. 461 // For example, the following transform is not safe if Cond can ever be poison 462 // because we can replace poison with zero and then we have div-by-zero that 463 // didn't exist in the original code: 464 // Cond ? x/y : x/z --> x / (Cond ? y : z) 465 auto *BO = dyn_cast<BinaryOperator>(TI); 466 if (BO && BO->isIntDivRem() && !isGuaranteedNotToBePoison(Cond)) { 467 // A udiv/urem with a common divisor is safe because UB can only occur with 468 // div-by-zero, and that would be present in the original code. 469 if (BO->getOpcode() == Instruction::SDiv || 470 BO->getOpcode() == Instruction::SRem || MatchIsOpZero) 471 Cond = Builder.CreateFreeze(Cond); 472 } 473 474 // If we reach here, they do have operations in common. 475 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 476 SI.getName() + ".v", &SI); 477 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 478 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 479 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 480 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 481 NewBO->copyIRFlags(TI); 482 NewBO->andIRFlags(FI); 483 return NewBO; 484 } 485 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 486 auto *FGEP = cast<GetElementPtrInst>(FI); 487 Type *ElementType = TGEP->getResultElementType(); 488 return TGEP->isInBounds() && FGEP->isInBounds() 489 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 490 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 491 } 492 llvm_unreachable("Expected BinaryOperator or GEP"); 493 return nullptr; 494 } 495 496 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 497 if (!C1I.isZero() && !C2I.isZero()) // One side must be zero. 498 return false; 499 return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes(); 500 } 501 502 /// Try to fold the select into one of the operands to allow further 503 /// optimization. 504 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 505 Value *FalseVal) { 506 // See the comment above getSelectFoldableOperands for a description of the 507 // transformation we are doing here. 508 auto TryFoldSelectIntoOp = [&](SelectInst &SI, Value *TrueVal, 509 Value *FalseVal, 510 bool Swapped) -> Instruction * { 511 auto *TVI = dyn_cast<BinaryOperator>(TrueVal); 512 if (!TVI || !TVI->hasOneUse() || isa<Constant>(FalseVal)) 513 return nullptr; 514 515 unsigned SFO = getSelectFoldableOperands(TVI); 516 unsigned OpToFold = 0; 517 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) 518 OpToFold = 1; 519 else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) 520 OpToFold = 2; 521 522 if (!OpToFold) 523 return nullptr; 524 525 // TODO: We probably ought to revisit cases where the select and FP 526 // instructions have different flags and add tests to ensure the 527 // behaviour is correct. 528 FastMathFlags FMF; 529 if (isa<FPMathOperator>(&SI)) 530 FMF = SI.getFastMathFlags(); 531 Constant *C = ConstantExpr::getBinOpIdentity( 532 TVI->getOpcode(), TVI->getType(), true, FMF.noSignedZeros()); 533 Value *OOp = TVI->getOperand(2 - OpToFold); 534 // Avoid creating select between 2 constants unless it's selecting 535 // between 0, 1 and -1. 536 const APInt *OOpC; 537 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 538 if (!isa<Constant>(OOp) || 539 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) { 540 Value *NewSel = Builder.CreateSelect(SI.getCondition(), Swapped ? C : OOp, 541 Swapped ? OOp : C, "", &SI); 542 if (isa<FPMathOperator>(&SI)) 543 cast<Instruction>(NewSel)->setFastMathFlags(FMF); 544 NewSel->takeName(TVI); 545 BinaryOperator *BO = 546 BinaryOperator::Create(TVI->getOpcode(), FalseVal, NewSel); 547 BO->copyIRFlags(TVI); 548 return BO; 549 } 550 return nullptr; 551 }; 552 553 if (Instruction *R = TryFoldSelectIntoOp(SI, TrueVal, FalseVal, false)) 554 return R; 555 556 if (Instruction *R = TryFoldSelectIntoOp(SI, FalseVal, TrueVal, true)) 557 return R; 558 559 return nullptr; 560 } 561 562 /// We want to turn: 563 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 564 /// into: 565 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 566 /// Note: 567 /// Z may be 0 if lshr is missing. 568 /// Worst-case scenario is that we will replace 5 instructions with 5 different 569 /// instructions, but we got rid of select. 570 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 571 Value *TVal, Value *FVal, 572 InstCombiner::BuilderTy &Builder) { 573 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 574 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 575 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 576 return nullptr; 577 578 // The TrueVal has general form of: and %B, 1 579 Value *B; 580 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 581 return nullptr; 582 583 // Where %B may be optionally shifted: lshr %X, %Z. 584 Value *X, *Z; 585 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 586 587 // The shift must be valid. 588 // TODO: This restricts the fold to constant shift amounts. Is there a way to 589 // handle variable shifts safely? PR47012 590 if (HasShift && 591 !match(Z, m_SpecificInt_ICMP(CmpInst::ICMP_ULT, 592 APInt(SelType->getScalarSizeInBits(), 593 SelType->getScalarSizeInBits())))) 594 return nullptr; 595 596 if (!HasShift) 597 X = B; 598 599 Value *Y; 600 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 601 return nullptr; 602 603 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 604 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 605 Constant *One = ConstantInt::get(SelType, 1); 606 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 607 Value *FullMask = Builder.CreateOr(Y, MaskB); 608 Value *MaskedX = Builder.CreateAnd(X, FullMask); 609 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 610 return new ZExtInst(ICmpNeZero, SelType); 611 } 612 613 /// We want to turn: 614 /// (select (icmp eq (and X, C1), 0), 0, (shl [nsw/nuw] X, C2)); 615 /// iff C1 is a mask and the number of its leading zeros is equal to C2 616 /// into: 617 /// shl X, C2 618 static Value *foldSelectICmpAndZeroShl(const ICmpInst *Cmp, Value *TVal, 619 Value *FVal, 620 InstCombiner::BuilderTy &Builder) { 621 ICmpInst::Predicate Pred; 622 Value *AndVal; 623 if (!match(Cmp, m_ICmp(Pred, m_Value(AndVal), m_Zero()))) 624 return nullptr; 625 626 if (Pred == ICmpInst::ICMP_NE) { 627 Pred = ICmpInst::ICMP_EQ; 628 std::swap(TVal, FVal); 629 } 630 631 Value *X; 632 const APInt *C2, *C1; 633 if (Pred != ICmpInst::ICMP_EQ || 634 !match(AndVal, m_And(m_Value(X), m_APInt(C1))) || 635 !match(TVal, m_Zero()) || !match(FVal, m_Shl(m_Specific(X), m_APInt(C2)))) 636 return nullptr; 637 638 if (!C1->isMask() || 639 C1->countLeadingZeros() != static_cast<unsigned>(C2->getZExtValue())) 640 return nullptr; 641 642 auto *FI = dyn_cast<Instruction>(FVal); 643 if (!FI) 644 return nullptr; 645 646 FI->setHasNoSignedWrap(false); 647 FI->setHasNoUnsignedWrap(false); 648 return FVal; 649 } 650 651 /// We want to turn: 652 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 653 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0 654 /// into: 655 /// ashr (X, Y) 656 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, 657 Value *FalseVal, 658 InstCombiner::BuilderTy &Builder) { 659 ICmpInst::Predicate Pred = IC->getPredicate(); 660 Value *CmpLHS = IC->getOperand(0); 661 Value *CmpRHS = IC->getOperand(1); 662 if (!CmpRHS->getType()->isIntOrIntVectorTy()) 663 return nullptr; 664 665 Value *X, *Y; 666 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits(); 667 if ((Pred != ICmpInst::ICMP_SGT || 668 !match(CmpRHS, 669 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) && 670 (Pred != ICmpInst::ICMP_SLT || 671 !match(CmpRHS, 672 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0))))) 673 return nullptr; 674 675 // Canonicalize so that ashr is in FalseVal. 676 if (Pred == ICmpInst::ICMP_SLT) 677 std::swap(TrueVal, FalseVal); 678 679 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) && 680 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) && 681 match(CmpLHS, m_Specific(X))) { 682 const auto *Ashr = cast<Instruction>(FalseVal); 683 // if lshr is not exact and ashr is, this new ashr must not be exact. 684 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact(); 685 return Builder.CreateAShr(X, Y, IC->getName(), IsExact); 686 } 687 688 return nullptr; 689 } 690 691 /// We want to turn: 692 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 693 /// into: 694 /// (or (shl (and X, C1), C3), Y) 695 /// iff: 696 /// C1 and C2 are both powers of 2 697 /// where: 698 /// C3 = Log(C2) - Log(C1) 699 /// 700 /// This transform handles cases where: 701 /// 1. The icmp predicate is inverted 702 /// 2. The select operands are reversed 703 /// 3. The magnitude of C2 and C1 are flipped 704 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 705 Value *FalseVal, 706 InstCombiner::BuilderTy &Builder) { 707 // Only handle integer compares. Also, if this is a vector select, we need a 708 // vector compare. 709 if (!TrueVal->getType()->isIntOrIntVectorTy() || 710 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 711 return nullptr; 712 713 Value *CmpLHS = IC->getOperand(0); 714 Value *CmpRHS = IC->getOperand(1); 715 716 Value *V; 717 unsigned C1Log; 718 bool IsEqualZero; 719 bool NeedAnd = false; 720 if (IC->isEquality()) { 721 if (!match(CmpRHS, m_Zero())) 722 return nullptr; 723 724 const APInt *C1; 725 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 726 return nullptr; 727 728 V = CmpLHS; 729 C1Log = C1->logBase2(); 730 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 731 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 732 IC->getPredicate() == ICmpInst::ICMP_SGT) { 733 // We also need to recognize (icmp slt (trunc (X)), 0) and 734 // (icmp sgt (trunc (X)), -1). 735 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 736 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 737 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 738 return nullptr; 739 740 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 741 return nullptr; 742 743 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 744 NeedAnd = true; 745 } else { 746 return nullptr; 747 } 748 749 const APInt *C2; 750 bool OrOnTrueVal = false; 751 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 752 if (!OrOnFalseVal) 753 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 754 755 if (!OrOnFalseVal && !OrOnTrueVal) 756 return nullptr; 757 758 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 759 760 unsigned C2Log = C2->logBase2(); 761 762 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 763 bool NeedShift = C1Log != C2Log; 764 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 765 V->getType()->getScalarSizeInBits(); 766 767 // Make sure we don't create more instructions than we save. 768 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 769 if ((NeedShift + NeedXor + NeedZExtTrunc) > 770 (IC->hasOneUse() + Or->hasOneUse())) 771 return nullptr; 772 773 if (NeedAnd) { 774 // Insert the AND instruction on the input to the truncate. 775 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 776 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 777 } 778 779 if (C2Log > C1Log) { 780 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 781 V = Builder.CreateShl(V, C2Log - C1Log); 782 } else if (C1Log > C2Log) { 783 V = Builder.CreateLShr(V, C1Log - C2Log); 784 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 785 } else 786 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 787 788 if (NeedXor) 789 V = Builder.CreateXor(V, *C2); 790 791 return Builder.CreateOr(V, Y); 792 } 793 794 /// Canonicalize a set or clear of a masked set of constant bits to 795 /// select-of-constants form. 796 static Instruction *foldSetClearBits(SelectInst &Sel, 797 InstCombiner::BuilderTy &Builder) { 798 Value *Cond = Sel.getCondition(); 799 Value *T = Sel.getTrueValue(); 800 Value *F = Sel.getFalseValue(); 801 Type *Ty = Sel.getType(); 802 Value *X; 803 const APInt *NotC, *C; 804 805 // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C) 806 if (match(T, m_And(m_Value(X), m_APInt(NotC))) && 807 match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 808 Constant *Zero = ConstantInt::getNullValue(Ty); 809 Constant *OrC = ConstantInt::get(Ty, *C); 810 Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel); 811 return BinaryOperator::CreateOr(T, NewSel); 812 } 813 814 // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0) 815 if (match(F, m_And(m_Value(X), m_APInt(NotC))) && 816 match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 817 Constant *Zero = ConstantInt::getNullValue(Ty); 818 Constant *OrC = ConstantInt::get(Ty, *C); 819 Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel); 820 return BinaryOperator::CreateOr(F, NewSel); 821 } 822 823 return nullptr; 824 } 825 826 // select (x == 0), 0, x * y --> freeze(y) * x 827 // select (y == 0), 0, x * y --> freeze(x) * y 828 // select (x == 0), undef, x * y --> freeze(y) * x 829 // select (x == undef), 0, x * y --> freeze(y) * x 830 // Usage of mul instead of 0 will make the result more poisonous, 831 // so the operand that was not checked in the condition should be frozen. 832 // The latter folding is applied only when a constant compared with x is 833 // is a vector consisting of 0 and undefs. If a constant compared with x 834 // is a scalar undefined value or undefined vector then an expression 835 // should be already folded into a constant. 836 static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) { 837 auto *CondVal = SI.getCondition(); 838 auto *TrueVal = SI.getTrueValue(); 839 auto *FalseVal = SI.getFalseValue(); 840 Value *X, *Y; 841 ICmpInst::Predicate Predicate; 842 843 // Assuming that constant compared with zero is not undef (but it may be 844 // a vector with some undef elements). Otherwise (when a constant is undef) 845 // the select expression should be already simplified. 846 if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) || 847 !ICmpInst::isEquality(Predicate)) 848 return nullptr; 849 850 if (Predicate == ICmpInst::ICMP_NE) 851 std::swap(TrueVal, FalseVal); 852 853 // Check that TrueVal is a constant instead of matching it with m_Zero() 854 // to handle the case when it is a scalar undef value or a vector containing 855 // non-zero elements that are masked by undef elements in the compare 856 // constant. 857 auto *TrueValC = dyn_cast<Constant>(TrueVal); 858 if (TrueValC == nullptr || 859 !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) || 860 !isa<Instruction>(FalseVal)) 861 return nullptr; 862 863 auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1)); 864 auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC); 865 // If X is compared with 0 then TrueVal could be either zero or undef. 866 // m_Zero match vectors containing some undef elements, but for scalars 867 // m_Undef should be used explicitly. 868 if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef())) 869 return nullptr; 870 871 auto *FalseValI = cast<Instruction>(FalseVal); 872 auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"), 873 *FalseValI); 874 IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY); 875 return IC.replaceInstUsesWith(SI, FalseValI); 876 } 877 878 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). 879 /// There are 8 commuted/swapped variants of this pattern. 880 /// TODO: Also support a - UMIN(a,b) patterns. 881 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 882 const Value *TrueVal, 883 const Value *FalseVal, 884 InstCombiner::BuilderTy &Builder) { 885 ICmpInst::Predicate Pred = ICI->getPredicate(); 886 Value *A = ICI->getOperand(0); 887 Value *B = ICI->getOperand(1); 888 889 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 890 // (a == 0) ? 0 : a - 1 -> (a != 0) ? a - 1 : 0 891 if (match(TrueVal, m_Zero())) { 892 Pred = ICmpInst::getInversePredicate(Pred); 893 std::swap(TrueVal, FalseVal); 894 } 895 896 if (!match(FalseVal, m_Zero())) 897 return nullptr; 898 899 // ugt 0 is canonicalized to ne 0 and requires special handling 900 // (a != 0) ? a + -1 : 0 -> usub.sat(a, 1) 901 if (Pred == ICmpInst::ICMP_NE) { 902 if (match(B, m_Zero()) && match(TrueVal, m_Add(m_Specific(A), m_AllOnes()))) 903 return Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, 904 ConstantInt::get(A->getType(), 1)); 905 return nullptr; 906 } 907 908 if (!ICmpInst::isUnsigned(Pred)) 909 return nullptr; 910 911 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 912 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 913 std::swap(A, B); 914 Pred = ICmpInst::getSwappedPredicate(Pred); 915 } 916 917 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 918 "Unexpected isUnsigned predicate!"); 919 920 // Ensure the sub is of the form: 921 // (a > b) ? a - b : 0 -> usub.sat(a, b) 922 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 923 // Checking for both a-b and a+(-b) as a constant. 924 bool IsNegative = false; 925 const APInt *C; 926 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) || 927 (match(A, m_APInt(C)) && 928 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C))))) 929 IsNegative = true; 930 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) && 931 !(match(B, m_APInt(C)) && 932 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C))))) 933 return nullptr; 934 935 // If we are adding a negate and the sub and icmp are used anywhere else, we 936 // would end up with more instructions. 937 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse()) 938 return nullptr; 939 940 // (a > b) ? a - b : 0 -> usub.sat(a, b) 941 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 942 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); 943 if (IsNegative) 944 Result = Builder.CreateNeg(Result); 945 return Result; 946 } 947 948 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, 949 InstCombiner::BuilderTy &Builder) { 950 if (!Cmp->hasOneUse()) 951 return nullptr; 952 953 // Match unsigned saturated add with constant. 954 Value *Cmp0 = Cmp->getOperand(0); 955 Value *Cmp1 = Cmp->getOperand(1); 956 ICmpInst::Predicate Pred = Cmp->getPredicate(); 957 Value *X; 958 const APInt *C, *CmpC; 959 if (Pred == ICmpInst::ICMP_ULT && 960 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 && 961 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) { 962 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C) 963 return Builder.CreateBinaryIntrinsic( 964 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C)); 965 } 966 967 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 968 // There are 8 commuted variants. 969 // Canonicalize -1 (saturated result) to true value of the select. 970 if (match(FVal, m_AllOnes())) { 971 std::swap(TVal, FVal); 972 Pred = CmpInst::getInversePredicate(Pred); 973 } 974 if (!match(TVal, m_AllOnes())) 975 return nullptr; 976 977 // Canonicalize predicate to less-than or less-or-equal-than. 978 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 979 std::swap(Cmp0, Cmp1); 980 Pred = CmpInst::getSwappedPredicate(Pred); 981 } 982 if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE) 983 return nullptr; 984 985 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 986 // Strictness of the comparison is irrelevant. 987 Value *Y; 988 if (match(Cmp0, m_Not(m_Value(X))) && 989 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { 990 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 991 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) 992 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); 993 } 994 // The 'not' op may be included in the sum but not the compare. 995 // Strictness of the comparison is irrelevant. 996 X = Cmp0; 997 Y = Cmp1; 998 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) { 999 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) 1000 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) 1001 BinaryOperator *BO = cast<BinaryOperator>(FVal); 1002 return Builder.CreateBinaryIntrinsic( 1003 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); 1004 } 1005 // The overflow may be detected via the add wrapping round. 1006 // This is only valid for strict comparison! 1007 if (Pred == ICmpInst::ICMP_ULT && 1008 match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) && 1009 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) { 1010 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y) 1011 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 1012 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y); 1013 } 1014 1015 return nullptr; 1016 } 1017 1018 /// Try to match patterns with select and subtract as absolute difference. 1019 static Value *foldAbsDiff(ICmpInst *Cmp, Value *TVal, Value *FVal, 1020 InstCombiner::BuilderTy &Builder) { 1021 auto *TI = dyn_cast<Instruction>(TVal); 1022 auto *FI = dyn_cast<Instruction>(FVal); 1023 if (!TI || !FI) 1024 return nullptr; 1025 1026 // Normalize predicate to gt/lt rather than ge/le. 1027 ICmpInst::Predicate Pred = Cmp->getStrictPredicate(); 1028 Value *A = Cmp->getOperand(0); 1029 Value *B = Cmp->getOperand(1); 1030 1031 // Normalize "A - B" as the true value of the select. 1032 if (match(FI, m_Sub(m_Specific(A), m_Specific(B)))) { 1033 std::swap(FI, TI); 1034 Pred = ICmpInst::getSwappedPredicate(Pred); 1035 } 1036 1037 // With any pair of no-wrap subtracts: 1038 // (A > B) ? (A - B) : (B - A) --> abs(A - B) 1039 if (Pred == CmpInst::ICMP_SGT && 1040 match(TI, m_Sub(m_Specific(A), m_Specific(B))) && 1041 match(FI, m_Sub(m_Specific(B), m_Specific(A))) && 1042 (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap()) && 1043 (FI->hasNoSignedWrap() || FI->hasNoUnsignedWrap())) { 1044 // The remaining subtract is not "nuw" any more. 1045 // If there's one use of the subtract (no other use than the use we are 1046 // about to replace), then we know that the sub is "nsw" in this context 1047 // even if it was only "nuw" before. If there's another use, then we can't 1048 // add "nsw" to the existing instruction because it may not be safe in the 1049 // other user's context. 1050 TI->setHasNoUnsignedWrap(false); 1051 if (!TI->hasNoSignedWrap()) 1052 TI->setHasNoSignedWrap(TI->hasOneUse()); 1053 return Builder.CreateBinaryIntrinsic(Intrinsic::abs, TI, Builder.getTrue()); 1054 } 1055 1056 return nullptr; 1057 } 1058 1059 /// Fold the following code sequence: 1060 /// \code 1061 /// int a = ctlz(x & -x); 1062 // x ? 31 - a : a; 1063 // // or 1064 // x ? 31 - a : 32; 1065 /// \code 1066 /// 1067 /// into: 1068 /// cttz(x) 1069 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal, 1070 Value *FalseVal, 1071 InstCombiner::BuilderTy &Builder) { 1072 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 1073 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero())) 1074 return nullptr; 1075 1076 if (ICI->getPredicate() == ICmpInst::ICMP_NE) 1077 std::swap(TrueVal, FalseVal); 1078 1079 Value *Ctlz; 1080 if (!match(FalseVal, 1081 m_Xor(m_Value(Ctlz), m_SpecificInt(BitWidth - 1)))) 1082 return nullptr; 1083 1084 if (!match(Ctlz, m_Intrinsic<Intrinsic::ctlz>())) 1085 return nullptr; 1086 1087 if (TrueVal != Ctlz && !match(TrueVal, m_SpecificInt(BitWidth))) 1088 return nullptr; 1089 1090 Value *X = ICI->getOperand(0); 1091 auto *II = cast<IntrinsicInst>(Ctlz); 1092 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X))))) 1093 return nullptr; 1094 1095 Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz, 1096 II->getType()); 1097 return CallInst::Create(F, {X, II->getArgOperand(1)}); 1098 } 1099 1100 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 1101 /// call to cttz/ctlz with flag 'is_zero_poison' cleared. 1102 /// 1103 /// For example, we can fold the following code sequence: 1104 /// \code 1105 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 1106 /// %1 = icmp ne i32 %x, 0 1107 /// %2 = select i1 %1, i32 %0, i32 32 1108 /// \code 1109 /// 1110 /// into: 1111 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 1112 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 1113 InstCombiner::BuilderTy &Builder) { 1114 ICmpInst::Predicate Pred = ICI->getPredicate(); 1115 Value *CmpLHS = ICI->getOperand(0); 1116 Value *CmpRHS = ICI->getOperand(1); 1117 1118 // Check if the select condition compares a value for equality. 1119 if (!ICI->isEquality()) 1120 return nullptr; 1121 1122 Value *SelectArg = FalseVal; 1123 Value *ValueOnZero = TrueVal; 1124 if (Pred == ICmpInst::ICMP_NE) 1125 std::swap(SelectArg, ValueOnZero); 1126 1127 // Skip zero extend/truncate. 1128 Value *Count = nullptr; 1129 if (!match(SelectArg, m_ZExt(m_Value(Count))) && 1130 !match(SelectArg, m_Trunc(m_Value(Count)))) 1131 Count = SelectArg; 1132 1133 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 1134 // input to the cttz/ctlz is used as LHS for the compare instruction. 1135 Value *X; 1136 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Value(X))) && 1137 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Value(X)))) 1138 return nullptr; 1139 1140 // (X == 0) ? BitWidth : ctz(X) 1141 // (X == -1) ? BitWidth : ctz(~X) 1142 if ((X != CmpLHS || !match(CmpRHS, m_Zero())) && 1143 (!match(X, m_Not(m_Specific(CmpLHS))) || !match(CmpRHS, m_AllOnes()))) 1144 return nullptr; 1145 1146 IntrinsicInst *II = cast<IntrinsicInst>(Count); 1147 1148 // Check if the value propagated on zero is a constant number equal to the 1149 // sizeof in bits of 'Count'. 1150 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 1151 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 1152 // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from 1153 // true to false on this flag, so we can replace it for all users. 1154 II->setArgOperand(1, ConstantInt::getFalse(II->getContext())); 1155 return SelectArg; 1156 } 1157 1158 // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional 1159 // zext/trunc) have one use (ending at the select), the cttz/ctlz result will 1160 // not be used if the input is zero. Relax to 'zero is poison' for that case. 1161 if (II->hasOneUse() && SelectArg->hasOneUse() && 1162 !match(II->getArgOperand(1), m_One())) 1163 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 1164 1165 return nullptr; 1166 } 1167 1168 static Instruction *canonicalizeSPF(SelectInst &Sel, ICmpInst &Cmp, 1169 InstCombinerImpl &IC) { 1170 Value *LHS, *RHS; 1171 // TODO: What to do with pointer min/max patterns? 1172 if (!Sel.getType()->isIntOrIntVectorTy()) 1173 return nullptr; 1174 1175 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; 1176 if (SPF == SelectPatternFlavor::SPF_ABS || 1177 SPF == SelectPatternFlavor::SPF_NABS) { 1178 if (!Cmp.hasOneUse() && !RHS->hasOneUse()) 1179 return nullptr; // TODO: Relax this restriction. 1180 1181 // Note that NSW flag can only be propagated for normal, non-negated abs! 1182 bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS && 1183 match(RHS, m_NSWNeg(m_Specific(LHS))); 1184 Constant *IntMinIsPoisonC = 1185 ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison); 1186 Instruction *Abs = 1187 IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC); 1188 1189 if (SPF == SelectPatternFlavor::SPF_NABS) 1190 return BinaryOperator::CreateNeg(Abs); // Always without NSW flag! 1191 return IC.replaceInstUsesWith(Sel, Abs); 1192 } 1193 1194 if (SelectPatternResult::isMinOrMax(SPF)) { 1195 Intrinsic::ID IntrinsicID; 1196 switch (SPF) { 1197 case SelectPatternFlavor::SPF_UMIN: 1198 IntrinsicID = Intrinsic::umin; 1199 break; 1200 case SelectPatternFlavor::SPF_UMAX: 1201 IntrinsicID = Intrinsic::umax; 1202 break; 1203 case SelectPatternFlavor::SPF_SMIN: 1204 IntrinsicID = Intrinsic::smin; 1205 break; 1206 case SelectPatternFlavor::SPF_SMAX: 1207 IntrinsicID = Intrinsic::smax; 1208 break; 1209 default: 1210 llvm_unreachable("Unexpected SPF"); 1211 } 1212 return IC.replaceInstUsesWith( 1213 Sel, IC.Builder.CreateBinaryIntrinsic(IntrinsicID, LHS, RHS)); 1214 } 1215 1216 return nullptr; 1217 } 1218 1219 bool InstCombinerImpl::replaceInInstruction(Value *V, Value *Old, Value *New, 1220 unsigned Depth) { 1221 // Conservatively limit replacement to two instructions upwards. 1222 if (Depth == 2) 1223 return false; 1224 1225 auto *I = dyn_cast<Instruction>(V); 1226 if (!I || !I->hasOneUse() || !isSafeToSpeculativelyExecute(I)) 1227 return false; 1228 1229 bool Changed = false; 1230 for (Use &U : I->operands()) { 1231 if (U == Old) { 1232 replaceUse(U, New); 1233 Worklist.add(I); 1234 Changed = true; 1235 } else { 1236 Changed |= replaceInInstruction(U, Old, New, Depth + 1); 1237 } 1238 } 1239 return Changed; 1240 } 1241 1242 /// If we have a select with an equality comparison, then we know the value in 1243 /// one of the arms of the select. See if substituting this value into an arm 1244 /// and simplifying the result yields the same value as the other arm. 1245 /// 1246 /// To make this transform safe, we must drop poison-generating flags 1247 /// (nsw, etc) if we simplified to a binop because the select may be guarding 1248 /// that poison from propagating. If the existing binop already had no 1249 /// poison-generating flags, then this transform can be done by instsimplify. 1250 /// 1251 /// Consider: 1252 /// %cmp = icmp eq i32 %x, 2147483647 1253 /// %add = add nsw i32 %x, 1 1254 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add 1255 /// 1256 /// We can't replace %sel with %add unless we strip away the flags. 1257 /// TODO: Wrapping flags could be preserved in some cases with better analysis. 1258 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel, 1259 ICmpInst &Cmp) { 1260 if (!Cmp.isEquality()) 1261 return nullptr; 1262 1263 // Canonicalize the pattern to ICMP_EQ by swapping the select operands. 1264 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 1265 bool Swapped = false; 1266 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) { 1267 std::swap(TrueVal, FalseVal); 1268 Swapped = true; 1269 } 1270 1271 // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand. 1272 // Make sure Y cannot be undef though, as we might pick different values for 1273 // undef in the icmp and in f(Y). Additionally, take care to avoid replacing 1274 // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite 1275 // replacement cycle. 1276 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1); 1277 if (TrueVal != CmpLHS && 1278 isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) { 1279 if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ, 1280 /* AllowRefinement */ true)) 1281 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1282 1283 // Even if TrueVal does not simplify, we can directly replace a use of 1284 // CmpLHS with CmpRHS, as long as the instruction is not used anywhere 1285 // else and is safe to speculatively execute (we may end up executing it 1286 // with different operands, which should not cause side-effects or trigger 1287 // undefined behavior). Only do this if CmpRHS is a constant, as 1288 // profitability is not clear for other cases. 1289 // FIXME: Support vectors. 1290 if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant()) && 1291 !Cmp.getType()->isVectorTy()) 1292 if (replaceInInstruction(TrueVal, CmpLHS, CmpRHS)) 1293 return &Sel; 1294 } 1295 if (TrueVal != CmpRHS && 1296 isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT)) 1297 if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ, 1298 /* AllowRefinement */ true)) 1299 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1300 1301 auto *FalseInst = dyn_cast<Instruction>(FalseVal); 1302 if (!FalseInst) 1303 return nullptr; 1304 1305 // InstSimplify already performed this fold if it was possible subject to 1306 // current poison-generating flags. Try the transform again with 1307 // poison-generating flags temporarily dropped. 1308 bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false; 1309 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) { 1310 WasNUW = OBO->hasNoUnsignedWrap(); 1311 WasNSW = OBO->hasNoSignedWrap(); 1312 FalseInst->setHasNoUnsignedWrap(false); 1313 FalseInst->setHasNoSignedWrap(false); 1314 } 1315 if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) { 1316 WasExact = PEO->isExact(); 1317 FalseInst->setIsExact(false); 1318 } 1319 if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) { 1320 WasInBounds = GEP->isInBounds(); 1321 GEP->setIsInBounds(false); 1322 } 1323 1324 // Try each equivalence substitution possibility. 1325 // We have an 'EQ' comparison, so the select's false value will propagate. 1326 // Example: 1327 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1 1328 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ, 1329 /* AllowRefinement */ false) == TrueVal || 1330 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ, 1331 /* AllowRefinement */ false) == TrueVal) { 1332 return replaceInstUsesWith(Sel, FalseVal); 1333 } 1334 1335 // Restore poison-generating flags if the transform did not apply. 1336 if (WasNUW) 1337 FalseInst->setHasNoUnsignedWrap(); 1338 if (WasNSW) 1339 FalseInst->setHasNoSignedWrap(); 1340 if (WasExact) 1341 FalseInst->setIsExact(); 1342 if (WasInBounds) 1343 cast<GetElementPtrInst>(FalseInst)->setIsInBounds(); 1344 1345 return nullptr; 1346 } 1347 1348 // See if this is a pattern like: 1349 // %old_cmp1 = icmp slt i32 %x, C2 1350 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high 1351 // %old_x_offseted = add i32 %x, C1 1352 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0 1353 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement 1354 // This can be rewritten as more canonical pattern: 1355 // %new_cmp1 = icmp slt i32 %x, -C1 1356 // %new_cmp2 = icmp sge i32 %x, C0-C1 1357 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x 1358 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low 1359 // Iff -C1 s<= C2 s<= C0-C1 1360 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result) 1361 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.) 1362 static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0, 1363 InstCombiner::BuilderTy &Builder) { 1364 Value *X = Sel0.getTrueValue(); 1365 Value *Sel1 = Sel0.getFalseValue(); 1366 1367 // First match the condition of the outermost select. 1368 // Said condition must be one-use. 1369 if (!Cmp0.hasOneUse()) 1370 return nullptr; 1371 ICmpInst::Predicate Pred0 = Cmp0.getPredicate(); 1372 Value *Cmp00 = Cmp0.getOperand(0); 1373 Constant *C0; 1374 if (!match(Cmp0.getOperand(1), 1375 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))) 1376 return nullptr; 1377 1378 if (!isa<SelectInst>(Sel1)) { 1379 Pred0 = ICmpInst::getInversePredicate(Pred0); 1380 std::swap(X, Sel1); 1381 } 1382 1383 // Canonicalize Cmp0 into ult or uge. 1384 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1385 switch (Pred0) { 1386 case ICmpInst::Predicate::ICMP_ULT: 1387 case ICmpInst::Predicate::ICMP_UGE: 1388 // Although icmp ult %x, 0 is an unusual thing to try and should generally 1389 // have been simplified, it does not verify with undef inputs so ensure we 1390 // are not in a strange state. 1391 if (!match(C0, m_SpecificInt_ICMP( 1392 ICmpInst::Predicate::ICMP_NE, 1393 APInt::getZero(C0->getType()->getScalarSizeInBits())))) 1394 return nullptr; 1395 break; // Great! 1396 case ICmpInst::Predicate::ICMP_ULE: 1397 case ICmpInst::Predicate::ICMP_UGT: 1398 // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment 1399 // C0, which again means it must not have any all-ones elements. 1400 if (!match(C0, 1401 m_SpecificInt_ICMP( 1402 ICmpInst::Predicate::ICMP_NE, 1403 APInt::getAllOnes(C0->getType()->getScalarSizeInBits())))) 1404 return nullptr; // Can't do, have all-ones element[s]. 1405 Pred0 = ICmpInst::getFlippedStrictnessPredicate(Pred0); 1406 C0 = InstCombiner::AddOne(C0); 1407 break; 1408 default: 1409 return nullptr; // Unknown predicate. 1410 } 1411 1412 // Now that we've canonicalized the ICmp, we know the X we expect; 1413 // the select in other hand should be one-use. 1414 if (!Sel1->hasOneUse()) 1415 return nullptr; 1416 1417 // If the types do not match, look through any truncs to the underlying 1418 // instruction. 1419 if (Cmp00->getType() != X->getType() && X->hasOneUse()) 1420 match(X, m_TruncOrSelf(m_Value(X))); 1421 1422 // We now can finish matching the condition of the outermost select: 1423 // it should either be the X itself, or an addition of some constant to X. 1424 Constant *C1; 1425 if (Cmp00 == X) 1426 C1 = ConstantInt::getNullValue(X->getType()); 1427 else if (!match(Cmp00, 1428 m_Add(m_Specific(X), 1429 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1))))) 1430 return nullptr; 1431 1432 Value *Cmp1; 1433 ICmpInst::Predicate Pred1; 1434 Constant *C2; 1435 Value *ReplacementLow, *ReplacementHigh; 1436 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow), 1437 m_Value(ReplacementHigh))) || 1438 !match(Cmp1, 1439 m_ICmp(Pred1, m_Specific(X), 1440 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2))))) 1441 return nullptr; 1442 1443 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse())) 1444 return nullptr; // Not enough one-use instructions for the fold. 1445 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of 1446 // two comparisons we'll need to build. 1447 1448 // Canonicalize Cmp1 into the form we expect. 1449 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1450 switch (Pred1) { 1451 case ICmpInst::Predicate::ICMP_SLT: 1452 break; 1453 case ICmpInst::Predicate::ICMP_SLE: 1454 // We'd have to increment C2 by one, and for that it must not have signed 1455 // max element, but then it would have been canonicalized to 'slt' before 1456 // we get here. So we can't do anything useful with 'sle'. 1457 return nullptr; 1458 case ICmpInst::Predicate::ICMP_SGT: 1459 // We want to canonicalize it to 'slt', so we'll need to increment C2, 1460 // which again means it must not have any signed max elements. 1461 if (!match(C2, 1462 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1463 APInt::getSignedMaxValue( 1464 C2->getType()->getScalarSizeInBits())))) 1465 return nullptr; // Can't do, have signed max element[s]. 1466 C2 = InstCombiner::AddOne(C2); 1467 [[fallthrough]]; 1468 case ICmpInst::Predicate::ICMP_SGE: 1469 // Also non-canonical, but here we don't need to change C2, 1470 // so we don't have any restrictions on C2, so we can just handle it. 1471 Pred1 = ICmpInst::Predicate::ICMP_SLT; 1472 std::swap(ReplacementLow, ReplacementHigh); 1473 break; 1474 default: 1475 return nullptr; // Unknown predicate. 1476 } 1477 assert(Pred1 == ICmpInst::Predicate::ICMP_SLT && 1478 "Unexpected predicate type."); 1479 1480 // The thresholds of this clamp-like pattern. 1481 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1); 1482 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1); 1483 1484 assert((Pred0 == ICmpInst::Predicate::ICMP_ULT || 1485 Pred0 == ICmpInst::Predicate::ICMP_UGE) && 1486 "Unexpected predicate type."); 1487 if (Pred0 == ICmpInst::Predicate::ICMP_UGE) 1488 std::swap(ThresholdLowIncl, ThresholdHighExcl); 1489 1490 // The fold has a precondition 1: C2 s>= ThresholdLow 1491 auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2, 1492 ThresholdLowIncl); 1493 if (!match(Precond1, m_One())) 1494 return nullptr; 1495 // The fold has a precondition 2: C2 s<= ThresholdHigh 1496 auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2, 1497 ThresholdHighExcl); 1498 if (!match(Precond2, m_One())) 1499 return nullptr; 1500 1501 // If we are matching from a truncated input, we need to sext the 1502 // ReplacementLow and ReplacementHigh values. Only do the transform if they 1503 // are free to extend due to being constants. 1504 if (X->getType() != Sel0.getType()) { 1505 Constant *LowC, *HighC; 1506 if (!match(ReplacementLow, m_ImmConstant(LowC)) || 1507 !match(ReplacementHigh, m_ImmConstant(HighC))) 1508 return nullptr; 1509 ReplacementLow = ConstantExpr::getSExt(LowC, X->getType()); 1510 ReplacementHigh = ConstantExpr::getSExt(HighC, X->getType()); 1511 } 1512 1513 // All good, finally emit the new pattern. 1514 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl); 1515 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl); 1516 Value *MaybeReplacedLow = 1517 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X); 1518 1519 // Create the final select. If we looked through a truncate above, we will 1520 // need to retruncate the result. 1521 Value *MaybeReplacedHigh = Builder.CreateSelect( 1522 ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow); 1523 return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType()); 1524 } 1525 1526 // If we have 1527 // %cmp = icmp [canonical predicate] i32 %x, C0 1528 // %r = select i1 %cmp, i32 %y, i32 C1 1529 // Where C0 != C1 and %x may be different from %y, see if the constant that we 1530 // will have if we flip the strictness of the predicate (i.e. without changing 1531 // the result) is identical to the C1 in select. If it matches we can change 1532 // original comparison to one with swapped predicate, reuse the constant, 1533 // and swap the hands of select. 1534 static Instruction * 1535 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp, 1536 InstCombinerImpl &IC) { 1537 ICmpInst::Predicate Pred; 1538 Value *X; 1539 Constant *C0; 1540 if (!match(&Cmp, m_OneUse(m_ICmp( 1541 Pred, m_Value(X), 1542 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))))) 1543 return nullptr; 1544 1545 // If comparison predicate is non-relational, we won't be able to do anything. 1546 if (ICmpInst::isEquality(Pred)) 1547 return nullptr; 1548 1549 // If comparison predicate is non-canonical, then we certainly won't be able 1550 // to make it canonical; canonicalizeCmpWithConstant() already tried. 1551 if (!InstCombiner::isCanonicalPredicate(Pred)) 1552 return nullptr; 1553 1554 // If the [input] type of comparison and select type are different, lets abort 1555 // for now. We could try to compare constants with trunc/[zs]ext though. 1556 if (C0->getType() != Sel.getType()) 1557 return nullptr; 1558 1559 // ULT with 'add' of a constant is canonical. See foldICmpAddConstant(). 1560 // FIXME: Are there more magic icmp predicate+constant pairs we must avoid? 1561 // Or should we just abandon this transform entirely? 1562 if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant()))) 1563 return nullptr; 1564 1565 1566 Value *SelVal0, *SelVal1; // We do not care which one is from where. 1567 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1))); 1568 // At least one of these values we are selecting between must be a constant 1569 // else we'll never succeed. 1570 if (!match(SelVal0, m_AnyIntegralConstant()) && 1571 !match(SelVal1, m_AnyIntegralConstant())) 1572 return nullptr; 1573 1574 // Does this constant C match any of the `select` values? 1575 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) { 1576 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1); 1577 }; 1578 1579 // If C0 *already* matches true/false value of select, we are done. 1580 if (MatchesSelectValue(C0)) 1581 return nullptr; 1582 1583 // Check the constant we'd have with flipped-strictness predicate. 1584 auto FlippedStrictness = 1585 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0); 1586 if (!FlippedStrictness) 1587 return nullptr; 1588 1589 // If said constant doesn't match either, then there is no hope, 1590 if (!MatchesSelectValue(FlippedStrictness->second)) 1591 return nullptr; 1592 1593 // It matched! Lets insert the new comparison just before select. 1594 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder); 1595 IC.Builder.SetInsertPoint(&Sel); 1596 1597 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped. 1598 Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second, 1599 Cmp.getName() + ".inv"); 1600 IC.replaceOperand(Sel, 0, NewCmp); 1601 Sel.swapValues(); 1602 Sel.swapProfMetadata(); 1603 1604 return &Sel; 1605 } 1606 1607 static Instruction *foldSelectZeroOrOnes(ICmpInst *Cmp, Value *TVal, 1608 Value *FVal, 1609 InstCombiner::BuilderTy &Builder) { 1610 if (!Cmp->hasOneUse()) 1611 return nullptr; 1612 1613 const APInt *CmpC; 1614 if (!match(Cmp->getOperand(1), m_APIntAllowUndef(CmpC))) 1615 return nullptr; 1616 1617 // (X u< 2) ? -X : -1 --> sext (X != 0) 1618 Value *X = Cmp->getOperand(0); 1619 if (Cmp->getPredicate() == ICmpInst::ICMP_ULT && *CmpC == 2 && 1620 match(TVal, m_Neg(m_Specific(X))) && match(FVal, m_AllOnes())) 1621 return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType()); 1622 1623 // (X u> 1) ? -1 : -X --> sext (X != 0) 1624 if (Cmp->getPredicate() == ICmpInst::ICMP_UGT && *CmpC == 1 && 1625 match(FVal, m_Neg(m_Specific(X))) && match(TVal, m_AllOnes())) 1626 return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType()); 1627 1628 return nullptr; 1629 } 1630 1631 static Value *foldSelectInstWithICmpConst(SelectInst &SI, ICmpInst *ICI, 1632 InstCombiner::BuilderTy &Builder) { 1633 const APInt *CmpC; 1634 Value *V; 1635 CmpInst::Predicate Pred; 1636 if (!match(ICI, m_ICmp(Pred, m_Value(V), m_APInt(CmpC)))) 1637 return nullptr; 1638 1639 // Match clamp away from min/max value as a max/min operation. 1640 Value *TVal = SI.getTrueValue(); 1641 Value *FVal = SI.getFalseValue(); 1642 if (Pred == ICmpInst::ICMP_EQ && V == FVal) { 1643 // (V == UMIN) ? UMIN+1 : V --> umax(V, UMIN+1) 1644 if (CmpC->isMinValue() && match(TVal, m_SpecificInt(*CmpC + 1))) 1645 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, V, TVal); 1646 // (V == UMAX) ? UMAX-1 : V --> umin(V, UMAX-1) 1647 if (CmpC->isMaxValue() && match(TVal, m_SpecificInt(*CmpC - 1))) 1648 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, V, TVal); 1649 // (V == SMIN) ? SMIN+1 : V --> smax(V, SMIN+1) 1650 if (CmpC->isMinSignedValue() && match(TVal, m_SpecificInt(*CmpC + 1))) 1651 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, V, TVal); 1652 // (V == SMAX) ? SMAX-1 : V --> smin(V, SMAX-1) 1653 if (CmpC->isMaxSignedValue() && match(TVal, m_SpecificInt(*CmpC - 1))) 1654 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, V, TVal); 1655 } 1656 1657 BinaryOperator *BO; 1658 const APInt *C; 1659 CmpInst::Predicate CPred; 1660 if (match(&SI, m_Select(m_Specific(ICI), m_APInt(C), m_BinOp(BO)))) 1661 CPred = ICI->getPredicate(); 1662 else if (match(&SI, m_Select(m_Specific(ICI), m_BinOp(BO), m_APInt(C)))) 1663 CPred = ICI->getInversePredicate(); 1664 else 1665 return nullptr; 1666 1667 const APInt *BinOpC; 1668 if (!match(BO, m_BinOp(m_Specific(V), m_APInt(BinOpC)))) 1669 return nullptr; 1670 1671 ConstantRange R = ConstantRange::makeExactICmpRegion(CPred, *CmpC) 1672 .binaryOp(BO->getOpcode(), *BinOpC); 1673 if (R == *C) { 1674 BO->dropPoisonGeneratingFlags(); 1675 return BO; 1676 } 1677 return nullptr; 1678 } 1679 1680 /// Visit a SelectInst that has an ICmpInst as its first operand. 1681 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI, 1682 ICmpInst *ICI) { 1683 if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI)) 1684 return NewSel; 1685 1686 if (Instruction *NewSPF = canonicalizeSPF(SI, *ICI, *this)) 1687 return NewSPF; 1688 1689 if (Value *V = foldSelectInstWithICmpConst(SI, ICI, Builder)) 1690 return replaceInstUsesWith(SI, V); 1691 1692 if (Value *V = canonicalizeClampLike(SI, *ICI, Builder)) 1693 return replaceInstUsesWith(SI, V); 1694 1695 if (Instruction *NewSel = 1696 tryToReuseConstantFromSelectInComparison(SI, *ICI, *this)) 1697 return NewSel; 1698 1699 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 1700 return replaceInstUsesWith(SI, V); 1701 1702 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 1703 bool Changed = false; 1704 Value *TrueVal = SI.getTrueValue(); 1705 Value *FalseVal = SI.getFalseValue(); 1706 ICmpInst::Predicate Pred = ICI->getPredicate(); 1707 Value *CmpLHS = ICI->getOperand(0); 1708 Value *CmpRHS = ICI->getOperand(1); 1709 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS) && !isa<Constant>(CmpLHS)) { 1710 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 1711 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 1712 SI.setOperand(1, CmpRHS); 1713 Changed = true; 1714 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 1715 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 1716 SI.setOperand(2, CmpRHS); 1717 Changed = true; 1718 } 1719 } 1720 1721 // Canonicalize a signbit condition to use zero constant by swapping: 1722 // (CmpLHS > -1) ? TV : FV --> (CmpLHS < 0) ? FV : TV 1723 // To avoid conflicts (infinite loops) with other canonicalizations, this is 1724 // not applied with any constant select arm. 1725 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes()) && 1726 !match(TrueVal, m_Constant()) && !match(FalseVal, m_Constant()) && 1727 ICI->hasOneUse()) { 1728 InstCombiner::BuilderTy::InsertPointGuard Guard(Builder); 1729 Builder.SetInsertPoint(&SI); 1730 Value *IsNeg = Builder.CreateIsNeg(CmpLHS, ICI->getName()); 1731 replaceOperand(SI, 0, IsNeg); 1732 SI.swapValues(); 1733 SI.swapProfMetadata(); 1734 return &SI; 1735 } 1736 1737 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 1738 // decomposeBitTestICmp() might help. 1739 if (TrueVal->getType()->isIntOrIntVectorTy()) { 1740 unsigned BitWidth = 1741 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 1742 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 1743 Value *X; 1744 const APInt *Y, *C; 1745 bool TrueWhenUnset; 1746 bool IsBitTest = false; 1747 if (ICmpInst::isEquality(Pred) && 1748 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 1749 match(CmpRHS, m_Zero())) { 1750 IsBitTest = true; 1751 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 1752 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 1753 X = CmpLHS; 1754 Y = &MinSignedValue; 1755 IsBitTest = true; 1756 TrueWhenUnset = false; 1757 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 1758 X = CmpLHS; 1759 Y = &MinSignedValue; 1760 IsBitTest = true; 1761 TrueWhenUnset = true; 1762 } 1763 if (IsBitTest) { 1764 Value *V = nullptr; 1765 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1766 if (TrueWhenUnset && TrueVal == X && 1767 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1768 V = Builder.CreateAnd(X, ~(*Y)); 1769 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1770 else if (!TrueWhenUnset && FalseVal == X && 1771 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1772 V = Builder.CreateAnd(X, ~(*Y)); 1773 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1774 else if (TrueWhenUnset && FalseVal == X && 1775 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1776 V = Builder.CreateOr(X, *Y); 1777 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1778 else if (!TrueWhenUnset && TrueVal == X && 1779 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1780 V = Builder.CreateOr(X, *Y); 1781 1782 if (V) 1783 return replaceInstUsesWith(SI, V); 1784 } 1785 } 1786 1787 if (Instruction *V = 1788 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1789 return V; 1790 1791 if (Value *V = foldSelectICmpAndZeroShl(ICI, TrueVal, FalseVal, Builder)) 1792 return replaceInstUsesWith(SI, V); 1793 1794 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder)) 1795 return V; 1796 1797 if (Instruction *V = foldSelectZeroOrOnes(ICI, TrueVal, FalseVal, Builder)) 1798 return V; 1799 1800 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 1801 return replaceInstUsesWith(SI, V); 1802 1803 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder)) 1804 return replaceInstUsesWith(SI, V); 1805 1806 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 1807 return replaceInstUsesWith(SI, V); 1808 1809 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1810 return replaceInstUsesWith(SI, V); 1811 1812 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) 1813 return replaceInstUsesWith(SI, V); 1814 1815 if (Value *V = foldAbsDiff(ICI, TrueVal, FalseVal, Builder)) 1816 return replaceInstUsesWith(SI, V); 1817 1818 return Changed ? &SI : nullptr; 1819 } 1820 1821 /// SI is a select whose condition is a PHI node (but the two may be in 1822 /// different blocks). See if the true/false values (V) are live in all of the 1823 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1824 /// 1825 /// X = phi [ C1, BB1], [C2, BB2] 1826 /// Y = add 1827 /// Z = select X, Y, 0 1828 /// 1829 /// because Y is not live in BB1/BB2. 1830 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1831 const SelectInst &SI) { 1832 // If the value is a non-instruction value like a constant or argument, it 1833 // can always be mapped. 1834 const Instruction *I = dyn_cast<Instruction>(V); 1835 if (!I) return true; 1836 1837 // If V is a PHI node defined in the same block as the condition PHI, we can 1838 // map the arguments. 1839 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1840 1841 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1842 if (VP->getParent() == CondPHI->getParent()) 1843 return true; 1844 1845 // Otherwise, if the PHI and select are defined in the same block and if V is 1846 // defined in a different block, then we can transform it. 1847 if (SI.getParent() == CondPHI->getParent() && 1848 I->getParent() != CondPHI->getParent()) 1849 return true; 1850 1851 // Otherwise we have a 'hard' case and we can't tell without doing more 1852 // detailed dominator based analysis, punt. 1853 return false; 1854 } 1855 1856 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1857 /// SPF2(SPF1(A, B), C) 1858 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner, 1859 SelectPatternFlavor SPF1, Value *A, 1860 Value *B, Instruction &Outer, 1861 SelectPatternFlavor SPF2, 1862 Value *C) { 1863 if (Outer.getType() != Inner->getType()) 1864 return nullptr; 1865 1866 if (C == A || C == B) { 1867 // MAX(MAX(A, B), B) -> MAX(A, B) 1868 // MIN(MIN(a, b), a) -> MIN(a, b) 1869 // TODO: This could be done in instsimplify. 1870 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 1871 return replaceInstUsesWith(Outer, Inner); 1872 } 1873 1874 return nullptr; 1875 } 1876 1877 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1878 /// This is even legal for FP. 1879 static Instruction *foldAddSubSelect(SelectInst &SI, 1880 InstCombiner::BuilderTy &Builder) { 1881 Value *CondVal = SI.getCondition(); 1882 Value *TrueVal = SI.getTrueValue(); 1883 Value *FalseVal = SI.getFalseValue(); 1884 auto *TI = dyn_cast<Instruction>(TrueVal); 1885 auto *FI = dyn_cast<Instruction>(FalseVal); 1886 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1887 return nullptr; 1888 1889 Instruction *AddOp = nullptr, *SubOp = nullptr; 1890 if ((TI->getOpcode() == Instruction::Sub && 1891 FI->getOpcode() == Instruction::Add) || 1892 (TI->getOpcode() == Instruction::FSub && 1893 FI->getOpcode() == Instruction::FAdd)) { 1894 AddOp = FI; 1895 SubOp = TI; 1896 } else if ((FI->getOpcode() == Instruction::Sub && 1897 TI->getOpcode() == Instruction::Add) || 1898 (FI->getOpcode() == Instruction::FSub && 1899 TI->getOpcode() == Instruction::FAdd)) { 1900 AddOp = TI; 1901 SubOp = FI; 1902 } 1903 1904 if (AddOp) { 1905 Value *OtherAddOp = nullptr; 1906 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1907 OtherAddOp = AddOp->getOperand(1); 1908 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1909 OtherAddOp = AddOp->getOperand(0); 1910 } 1911 1912 if (OtherAddOp) { 1913 // So at this point we know we have (Y -> OtherAddOp): 1914 // select C, (add X, Y), (sub X, Z) 1915 Value *NegVal; // Compute -Z 1916 if (SI.getType()->isFPOrFPVectorTy()) { 1917 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1918 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1919 FastMathFlags Flags = AddOp->getFastMathFlags(); 1920 Flags &= SubOp->getFastMathFlags(); 1921 NegInst->setFastMathFlags(Flags); 1922 } 1923 } else { 1924 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1925 } 1926 1927 Value *NewTrueOp = OtherAddOp; 1928 Value *NewFalseOp = NegVal; 1929 if (AddOp != TI) 1930 std::swap(NewTrueOp, NewFalseOp); 1931 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1932 SI.getName() + ".p", &SI); 1933 1934 if (SI.getType()->isFPOrFPVectorTy()) { 1935 Instruction *RI = 1936 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1937 1938 FastMathFlags Flags = AddOp->getFastMathFlags(); 1939 Flags &= SubOp->getFastMathFlags(); 1940 RI->setFastMathFlags(Flags); 1941 return RI; 1942 } else 1943 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1944 } 1945 } 1946 return nullptr; 1947 } 1948 1949 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1950 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1951 /// Along with a number of patterns similar to: 1952 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1953 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1954 static Instruction * 1955 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) { 1956 Value *CondVal = SI.getCondition(); 1957 Value *TrueVal = SI.getTrueValue(); 1958 Value *FalseVal = SI.getFalseValue(); 1959 1960 WithOverflowInst *II; 1961 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) || 1962 !match(FalseVal, m_ExtractValue<0>(m_Specific(II)))) 1963 return nullptr; 1964 1965 Value *X = II->getLHS(); 1966 Value *Y = II->getRHS(); 1967 1968 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) { 1969 Type *Ty = Limit->getType(); 1970 1971 ICmpInst::Predicate Pred; 1972 Value *TrueVal, *FalseVal, *Op; 1973 const APInt *C; 1974 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)), 1975 m_Value(TrueVal), m_Value(FalseVal)))) 1976 return false; 1977 1978 auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); }; 1979 auto IsMinMax = [&](Value *Min, Value *Max) { 1980 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 1981 APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 1982 return match(Min, m_SpecificInt(MinVal)) && 1983 match(Max, m_SpecificInt(MaxVal)); 1984 }; 1985 1986 if (Op != X && Op != Y) 1987 return false; 1988 1989 if (IsAdd) { 1990 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1991 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1992 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1993 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1994 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1995 IsMinMax(TrueVal, FalseVal)) 1996 return true; 1997 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1998 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1999 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2000 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2001 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 2002 IsMinMax(FalseVal, TrueVal)) 2003 return true; 2004 } else { 2005 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2006 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2007 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) && 2008 IsMinMax(TrueVal, FalseVal)) 2009 return true; 2010 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2011 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2012 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) && 2013 IsMinMax(FalseVal, TrueVal)) 2014 return true; 2015 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2016 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2017 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 2018 IsMinMax(FalseVal, TrueVal)) 2019 return true; 2020 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2021 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2022 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 2023 IsMinMax(TrueVal, FalseVal)) 2024 return true; 2025 } 2026 2027 return false; 2028 }; 2029 2030 Intrinsic::ID NewIntrinsicID; 2031 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow && 2032 match(TrueVal, m_AllOnes())) 2033 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 2034 NewIntrinsicID = Intrinsic::uadd_sat; 2035 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow && 2036 match(TrueVal, m_Zero())) 2037 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y 2038 NewIntrinsicID = Intrinsic::usub_sat; 2039 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow && 2040 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true)) 2041 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2042 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2043 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2044 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2045 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2046 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2047 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2048 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2049 NewIntrinsicID = Intrinsic::sadd_sat; 2050 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow && 2051 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false)) 2052 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2053 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2054 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2055 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2056 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2057 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2058 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2059 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2060 NewIntrinsicID = Intrinsic::ssub_sat; 2061 else 2062 return nullptr; 2063 2064 Function *F = 2065 Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType()); 2066 return CallInst::Create(F, {X, Y}); 2067 } 2068 2069 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) { 2070 Constant *C; 2071 if (!match(Sel.getTrueValue(), m_Constant(C)) && 2072 !match(Sel.getFalseValue(), m_Constant(C))) 2073 return nullptr; 2074 2075 Instruction *ExtInst; 2076 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 2077 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 2078 return nullptr; 2079 2080 auto ExtOpcode = ExtInst->getOpcode(); 2081 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 2082 return nullptr; 2083 2084 // If we are extending from a boolean type or if we can create a select that 2085 // has the same size operands as its condition, try to narrow the select. 2086 Value *X = ExtInst->getOperand(0); 2087 Type *SmallType = X->getType(); 2088 Value *Cond = Sel.getCondition(); 2089 auto *Cmp = dyn_cast<CmpInst>(Cond); 2090 if (!SmallType->isIntOrIntVectorTy(1) && 2091 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 2092 return nullptr; 2093 2094 // If the constant is the same after truncation to the smaller type and 2095 // extension to the original type, we can narrow the select. 2096 Type *SelType = Sel.getType(); 2097 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 2098 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 2099 if (ExtC == C && ExtInst->hasOneUse()) { 2100 Value *TruncCVal = cast<Value>(TruncC); 2101 if (ExtInst == Sel.getFalseValue()) 2102 std::swap(X, TruncCVal); 2103 2104 // select Cond, (ext X), C --> ext(select Cond, X, C') 2105 // select Cond, C, (ext X) --> ext(select Cond, C', X) 2106 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 2107 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 2108 } 2109 2110 // If one arm of the select is the extend of the condition, replace that arm 2111 // with the extension of the appropriate known bool value. 2112 if (Cond == X) { 2113 if (ExtInst == Sel.getTrueValue()) { 2114 // select X, (sext X), C --> select X, -1, C 2115 // select X, (zext X), C --> select X, 1, C 2116 Constant *One = ConstantInt::getTrue(SmallType); 2117 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 2118 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 2119 } else { 2120 // select X, C, (sext X) --> select X, C, 0 2121 // select X, C, (zext X) --> select X, C, 0 2122 Constant *Zero = ConstantInt::getNullValue(SelType); 2123 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 2124 } 2125 } 2126 2127 return nullptr; 2128 } 2129 2130 /// Try to transform a vector select with a constant condition vector into a 2131 /// shuffle for easier combining with other shuffles and insert/extract. 2132 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 2133 Value *CondVal = SI.getCondition(); 2134 Constant *CondC; 2135 auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType()); 2136 if (!CondValTy || !match(CondVal, m_Constant(CondC))) 2137 return nullptr; 2138 2139 unsigned NumElts = CondValTy->getNumElements(); 2140 SmallVector<int, 16> Mask; 2141 Mask.reserve(NumElts); 2142 for (unsigned i = 0; i != NumElts; ++i) { 2143 Constant *Elt = CondC->getAggregateElement(i); 2144 if (!Elt) 2145 return nullptr; 2146 2147 if (Elt->isOneValue()) { 2148 // If the select condition element is true, choose from the 1st vector. 2149 Mask.push_back(i); 2150 } else if (Elt->isNullValue()) { 2151 // If the select condition element is false, choose from the 2nd vector. 2152 Mask.push_back(i + NumElts); 2153 } else if (isa<UndefValue>(Elt)) { 2154 // Undef in a select condition (choose one of the operands) does not mean 2155 // the same thing as undef in a shuffle mask (any value is acceptable), so 2156 // give up. 2157 return nullptr; 2158 } else { 2159 // Bail out on a constant expression. 2160 return nullptr; 2161 } 2162 } 2163 2164 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask); 2165 } 2166 2167 /// If we have a select of vectors with a scalar condition, try to convert that 2168 /// to a vector select by splatting the condition. A splat may get folded with 2169 /// other operations in IR and having all operands of a select be vector types 2170 /// is likely better for vector codegen. 2171 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel, 2172 InstCombinerImpl &IC) { 2173 auto *Ty = dyn_cast<VectorType>(Sel.getType()); 2174 if (!Ty) 2175 return nullptr; 2176 2177 // We can replace a single-use extract with constant index. 2178 Value *Cond = Sel.getCondition(); 2179 if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt())))) 2180 return nullptr; 2181 2182 // select (extelt V, Index), T, F --> select (splat V, Index), T, F 2183 // Splatting the extracted condition reduces code (we could directly create a 2184 // splat shuffle of the source vector to eliminate the intermediate step). 2185 return IC.replaceOperand( 2186 Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond)); 2187 } 2188 2189 /// Reuse bitcasted operands between a compare and select: 2190 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2191 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 2192 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 2193 InstCombiner::BuilderTy &Builder) { 2194 Value *Cond = Sel.getCondition(); 2195 Value *TVal = Sel.getTrueValue(); 2196 Value *FVal = Sel.getFalseValue(); 2197 2198 CmpInst::Predicate Pred; 2199 Value *A, *B; 2200 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 2201 return nullptr; 2202 2203 // The select condition is a compare instruction. If the select's true/false 2204 // values are already the same as the compare operands, there's nothing to do. 2205 if (TVal == A || TVal == B || FVal == A || FVal == B) 2206 return nullptr; 2207 2208 Value *C, *D; 2209 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 2210 return nullptr; 2211 2212 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 2213 Value *TSrc, *FSrc; 2214 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 2215 !match(FVal, m_BitCast(m_Value(FSrc)))) 2216 return nullptr; 2217 2218 // If the select true/false values are *different bitcasts* of the same source 2219 // operands, make the select operands the same as the compare operands and 2220 // cast the result. This is the canonical select form for min/max. 2221 Value *NewSel; 2222 if (TSrc == C && FSrc == D) { 2223 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2224 // bitcast (select (cmp A, B), A, B) 2225 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 2226 } else if (TSrc == D && FSrc == C) { 2227 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 2228 // bitcast (select (cmp A, B), B, A) 2229 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 2230 } else { 2231 return nullptr; 2232 } 2233 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 2234 } 2235 2236 /// Try to eliminate select instructions that test the returned flag of cmpxchg 2237 /// instructions. 2238 /// 2239 /// If a select instruction tests the returned flag of a cmpxchg instruction and 2240 /// selects between the returned value of the cmpxchg instruction its compare 2241 /// operand, the result of the select will always be equal to its false value. 2242 /// For example: 2243 /// 2244 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2245 /// %1 = extractvalue { i64, i1 } %0, 1 2246 /// %2 = extractvalue { i64, i1 } %0, 0 2247 /// %3 = select i1 %1, i64 %compare, i64 %2 2248 /// ret i64 %3 2249 /// 2250 /// The returned value of the cmpxchg instruction (%2) is the original value 2251 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 2252 /// must have been equal to %compare. Thus, the result of the select is always 2253 /// equal to %2, and the code can be simplified to: 2254 /// 2255 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2256 /// %1 = extractvalue { i64, i1 } %0, 0 2257 /// ret i64 %1 2258 /// 2259 static Value *foldSelectCmpXchg(SelectInst &SI) { 2260 // A helper that determines if V is an extractvalue instruction whose 2261 // aggregate operand is a cmpxchg instruction and whose single index is equal 2262 // to I. If such conditions are true, the helper returns the cmpxchg 2263 // instruction; otherwise, a nullptr is returned. 2264 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 2265 auto *Extract = dyn_cast<ExtractValueInst>(V); 2266 if (!Extract) 2267 return nullptr; 2268 if (Extract->getIndices()[0] != I) 2269 return nullptr; 2270 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 2271 }; 2272 2273 // If the select has a single user, and this user is a select instruction that 2274 // we can simplify, skip the cmpxchg simplification for now. 2275 if (SI.hasOneUse()) 2276 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 2277 if (Select->getCondition() == SI.getCondition()) 2278 if (Select->getFalseValue() == SI.getTrueValue() || 2279 Select->getTrueValue() == SI.getFalseValue()) 2280 return nullptr; 2281 2282 // Ensure the select condition is the returned flag of a cmpxchg instruction. 2283 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 2284 if (!CmpXchg) 2285 return nullptr; 2286 2287 // Check the true value case: The true value of the select is the returned 2288 // value of the same cmpxchg used by the condition, and the false value is the 2289 // cmpxchg instruction's compare operand. 2290 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 2291 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) 2292 return SI.getFalseValue(); 2293 2294 // Check the false value case: The false value of the select is the returned 2295 // value of the same cmpxchg used by the condition, and the true value is the 2296 // cmpxchg instruction's compare operand. 2297 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 2298 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) 2299 return SI.getFalseValue(); 2300 2301 return nullptr; 2302 } 2303 2304 /// Try to reduce a funnel/rotate pattern that includes a compare and select 2305 /// into a funnel shift intrinsic. Example: 2306 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 2307 /// --> call llvm.fshl.i32(a, a, b) 2308 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c))) 2309 /// --> call llvm.fshl.i32(a, b, c) 2310 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c))) 2311 /// --> call llvm.fshr.i32(a, b, c) 2312 static Instruction *foldSelectFunnelShift(SelectInst &Sel, 2313 InstCombiner::BuilderTy &Builder) { 2314 // This must be a power-of-2 type for a bitmasking transform to be valid. 2315 unsigned Width = Sel.getType()->getScalarSizeInBits(); 2316 if (!isPowerOf2_32(Width)) 2317 return nullptr; 2318 2319 BinaryOperator *Or0, *Or1; 2320 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 2321 return nullptr; 2322 2323 Value *SV0, *SV1, *SA0, *SA1; 2324 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0), 2325 m_ZExtOrSelf(m_Value(SA0))))) || 2326 !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1), 2327 m_ZExtOrSelf(m_Value(SA1))))) || 2328 Or0->getOpcode() == Or1->getOpcode()) 2329 return nullptr; 2330 2331 // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)). 2332 if (Or0->getOpcode() == BinaryOperator::LShr) { 2333 std::swap(Or0, Or1); 2334 std::swap(SV0, SV1); 2335 std::swap(SA0, SA1); 2336 } 2337 assert(Or0->getOpcode() == BinaryOperator::Shl && 2338 Or1->getOpcode() == BinaryOperator::LShr && 2339 "Illegal or(shift,shift) pair"); 2340 2341 // Check the shift amounts to see if they are an opposite pair. 2342 Value *ShAmt; 2343 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 2344 ShAmt = SA0; 2345 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 2346 ShAmt = SA1; 2347 else 2348 return nullptr; 2349 2350 // We should now have this pattern: 2351 // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1)) 2352 // The false value of the select must be a funnel-shift of the true value: 2353 // IsFShl -> TVal must be SV0 else TVal must be SV1. 2354 bool IsFshl = (ShAmt == SA0); 2355 Value *TVal = Sel.getTrueValue(); 2356 if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1)) 2357 return nullptr; 2358 2359 // Finally, see if the select is filtering out a shift-by-zero. 2360 Value *Cond = Sel.getCondition(); 2361 ICmpInst::Predicate Pred; 2362 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || 2363 Pred != ICmpInst::ICMP_EQ) 2364 return nullptr; 2365 2366 // If this is not a rotate then the select was blocking poison from the 2367 // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it. 2368 if (SV0 != SV1) { 2369 if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1)) 2370 SV1 = Builder.CreateFreeze(SV1); 2371 else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0)) 2372 SV0 = Builder.CreateFreeze(SV0); 2373 } 2374 2375 // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way. 2376 // Convert to funnel shift intrinsic. 2377 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 2378 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); 2379 ShAmt = Builder.CreateZExt(ShAmt, Sel.getType()); 2380 return CallInst::Create(F, { SV0, SV1, ShAmt }); 2381 } 2382 2383 static Instruction *foldSelectToCopysign(SelectInst &Sel, 2384 InstCombiner::BuilderTy &Builder) { 2385 Value *Cond = Sel.getCondition(); 2386 Value *TVal = Sel.getTrueValue(); 2387 Value *FVal = Sel.getFalseValue(); 2388 Type *SelType = Sel.getType(); 2389 2390 // Match select ?, TC, FC where the constants are equal but negated. 2391 // TODO: Generalize to handle a negated variable operand? 2392 const APFloat *TC, *FC; 2393 if (!match(TVal, m_APFloatAllowUndef(TC)) || 2394 !match(FVal, m_APFloatAllowUndef(FC)) || 2395 !abs(*TC).bitwiseIsEqual(abs(*FC))) 2396 return nullptr; 2397 2398 assert(TC != FC && "Expected equal select arms to simplify"); 2399 2400 Value *X; 2401 const APInt *C; 2402 bool IsTrueIfSignSet; 2403 ICmpInst::Predicate Pred; 2404 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) || 2405 !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) || 2406 X->getType() != SelType) 2407 return nullptr; 2408 2409 // If needed, negate the value that will be the sign argument of the copysign: 2410 // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X) 2411 // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X) 2412 // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X) 2413 // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X) 2414 // Note: FMF from the select can not be propagated to the new instructions. 2415 if (IsTrueIfSignSet ^ TC->isNegative()) 2416 X = Builder.CreateFNeg(X); 2417 2418 // Canonicalize the magnitude argument as the positive constant since we do 2419 // not care about its sign. 2420 Value *MagArg = ConstantFP::get(SelType, abs(*TC)); 2421 Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign, 2422 Sel.getType()); 2423 return CallInst::Create(F, { MagArg, X }); 2424 } 2425 2426 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) { 2427 if (!isa<VectorType>(Sel.getType())) 2428 return nullptr; 2429 2430 Value *Cond = Sel.getCondition(); 2431 Value *TVal = Sel.getTrueValue(); 2432 Value *FVal = Sel.getFalseValue(); 2433 Value *C, *X, *Y; 2434 2435 if (match(Cond, m_VecReverse(m_Value(C)))) { 2436 auto createSelReverse = [&](Value *C, Value *X, Value *Y) { 2437 Value *V = Builder.CreateSelect(C, X, Y, Sel.getName(), &Sel); 2438 if (auto *I = dyn_cast<Instruction>(V)) 2439 I->copyIRFlags(&Sel); 2440 Module *M = Sel.getModule(); 2441 Function *F = Intrinsic::getDeclaration( 2442 M, Intrinsic::experimental_vector_reverse, V->getType()); 2443 return CallInst::Create(F, V); 2444 }; 2445 2446 if (match(TVal, m_VecReverse(m_Value(X)))) { 2447 // select rev(C), rev(X), rev(Y) --> rev(select C, X, Y) 2448 if (match(FVal, m_VecReverse(m_Value(Y))) && 2449 (Cond->hasOneUse() || TVal->hasOneUse() || FVal->hasOneUse())) 2450 return createSelReverse(C, X, Y); 2451 2452 // select rev(C), rev(X), FValSplat --> rev(select C, X, FValSplat) 2453 if ((Cond->hasOneUse() || TVal->hasOneUse()) && isSplatValue(FVal)) 2454 return createSelReverse(C, X, FVal); 2455 } 2456 // select rev(C), TValSplat, rev(Y) --> rev(select C, TValSplat, Y) 2457 else if (isSplatValue(TVal) && match(FVal, m_VecReverse(m_Value(Y))) && 2458 (Cond->hasOneUse() || FVal->hasOneUse())) 2459 return createSelReverse(C, TVal, Y); 2460 } 2461 2462 auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType()); 2463 if (!VecTy) 2464 return nullptr; 2465 2466 unsigned NumElts = VecTy->getNumElements(); 2467 APInt UndefElts(NumElts, 0); 2468 APInt AllOnesEltMask(APInt::getAllOnes(NumElts)); 2469 if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) { 2470 if (V != &Sel) 2471 return replaceInstUsesWith(Sel, V); 2472 return &Sel; 2473 } 2474 2475 // A select of a "select shuffle" with a common operand can be rearranged 2476 // to select followed by "select shuffle". Because of poison, this only works 2477 // in the case of a shuffle with no undefined mask elements. 2478 ArrayRef<int> Mask; 2479 if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2480 !is_contained(Mask, PoisonMaskElem) && 2481 cast<ShuffleVectorInst>(TVal)->isSelect()) { 2482 if (X == FVal) { 2483 // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X) 2484 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2485 return new ShuffleVectorInst(X, NewSel, Mask); 2486 } 2487 if (Y == FVal) { 2488 // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y 2489 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2490 return new ShuffleVectorInst(NewSel, Y, Mask); 2491 } 2492 } 2493 if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2494 !is_contained(Mask, PoisonMaskElem) && 2495 cast<ShuffleVectorInst>(FVal)->isSelect()) { 2496 if (X == TVal) { 2497 // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y) 2498 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2499 return new ShuffleVectorInst(X, NewSel, Mask); 2500 } 2501 if (Y == TVal) { 2502 // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y 2503 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2504 return new ShuffleVectorInst(NewSel, Y, Mask); 2505 } 2506 } 2507 2508 return nullptr; 2509 } 2510 2511 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB, 2512 const DominatorTree &DT, 2513 InstCombiner::BuilderTy &Builder) { 2514 // Find the block's immediate dominator that ends with a conditional branch 2515 // that matches select's condition (maybe inverted). 2516 auto *IDomNode = DT[BB]->getIDom(); 2517 if (!IDomNode) 2518 return nullptr; 2519 BasicBlock *IDom = IDomNode->getBlock(); 2520 2521 Value *Cond = Sel.getCondition(); 2522 Value *IfTrue, *IfFalse; 2523 BasicBlock *TrueSucc, *FalseSucc; 2524 if (match(IDom->getTerminator(), 2525 m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc), 2526 m_BasicBlock(FalseSucc)))) { 2527 IfTrue = Sel.getTrueValue(); 2528 IfFalse = Sel.getFalseValue(); 2529 } else if (match(IDom->getTerminator(), 2530 m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc), 2531 m_BasicBlock(FalseSucc)))) { 2532 IfTrue = Sel.getFalseValue(); 2533 IfFalse = Sel.getTrueValue(); 2534 } else 2535 return nullptr; 2536 2537 // Make sure the branches are actually different. 2538 if (TrueSucc == FalseSucc) 2539 return nullptr; 2540 2541 // We want to replace select %cond, %a, %b with a phi that takes value %a 2542 // for all incoming edges that are dominated by condition `%cond == true`, 2543 // and value %b for edges dominated by condition `%cond == false`. If %a 2544 // or %b are also phis from the same basic block, we can go further and take 2545 // their incoming values from the corresponding blocks. 2546 BasicBlockEdge TrueEdge(IDom, TrueSucc); 2547 BasicBlockEdge FalseEdge(IDom, FalseSucc); 2548 DenseMap<BasicBlock *, Value *> Inputs; 2549 for (auto *Pred : predecessors(BB)) { 2550 // Check implication. 2551 BasicBlockEdge Incoming(Pred, BB); 2552 if (DT.dominates(TrueEdge, Incoming)) 2553 Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred); 2554 else if (DT.dominates(FalseEdge, Incoming)) 2555 Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred); 2556 else 2557 return nullptr; 2558 // Check availability. 2559 if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred])) 2560 if (!DT.dominates(Insn, Pred->getTerminator())) 2561 return nullptr; 2562 } 2563 2564 Builder.SetInsertPoint(&*BB->begin()); 2565 auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size()); 2566 for (auto *Pred : predecessors(BB)) 2567 PN->addIncoming(Inputs[Pred], Pred); 2568 PN->takeName(&Sel); 2569 return PN; 2570 } 2571 2572 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT, 2573 InstCombiner::BuilderTy &Builder) { 2574 // Try to replace this select with Phi in one of these blocks. 2575 SmallSetVector<BasicBlock *, 4> CandidateBlocks; 2576 CandidateBlocks.insert(Sel.getParent()); 2577 for (Value *V : Sel.operands()) 2578 if (auto *I = dyn_cast<Instruction>(V)) 2579 CandidateBlocks.insert(I->getParent()); 2580 2581 for (BasicBlock *BB : CandidateBlocks) 2582 if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder)) 2583 return PN; 2584 return nullptr; 2585 } 2586 2587 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) { 2588 FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition()); 2589 if (!FI) 2590 return nullptr; 2591 2592 Value *Cond = FI->getOperand(0); 2593 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 2594 2595 // select (freeze(x == y)), x, y --> y 2596 // select (freeze(x != y)), x, y --> x 2597 // The freeze should be only used by this select. Otherwise, remaining uses of 2598 // the freeze can observe a contradictory value. 2599 // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1 2600 // a = select c, x, y ; 2601 // f(a, c) ; f(poison, 1) cannot happen, but if a is folded 2602 // ; to y, this can happen. 2603 CmpInst::Predicate Pred; 2604 if (FI->hasOneUse() && 2605 match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) && 2606 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) { 2607 return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal; 2608 } 2609 2610 return nullptr; 2611 } 2612 2613 Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op, 2614 SelectInst &SI, 2615 bool IsAnd) { 2616 Value *CondVal = SI.getCondition(); 2617 Value *A = SI.getTrueValue(); 2618 Value *B = SI.getFalseValue(); 2619 2620 assert(Op->getType()->isIntOrIntVectorTy(1) && 2621 "Op must be either i1 or vector of i1."); 2622 2623 std::optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd); 2624 if (!Res) 2625 return nullptr; 2626 2627 Value *Zero = Constant::getNullValue(A->getType()); 2628 Value *One = Constant::getAllOnesValue(A->getType()); 2629 2630 if (*Res == true) { 2631 if (IsAnd) 2632 // select op, (select cond, A, B), false => select op, A, false 2633 // and op, (select cond, A, B) => select op, A, false 2634 // if op = true implies condval = true. 2635 return SelectInst::Create(Op, A, Zero); 2636 else 2637 // select op, true, (select cond, A, B) => select op, true, A 2638 // or op, (select cond, A, B) => select op, true, A 2639 // if op = false implies condval = true. 2640 return SelectInst::Create(Op, One, A); 2641 } else { 2642 if (IsAnd) 2643 // select op, (select cond, A, B), false => select op, B, false 2644 // and op, (select cond, A, B) => select op, B, false 2645 // if op = true implies condval = false. 2646 return SelectInst::Create(Op, B, Zero); 2647 else 2648 // select op, true, (select cond, A, B) => select op, true, B 2649 // or op, (select cond, A, B) => select op, true, B 2650 // if op = false implies condval = false. 2651 return SelectInst::Create(Op, One, B); 2652 } 2653 } 2654 2655 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 2656 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. 2657 static Instruction *foldSelectWithFCmpToFabs(SelectInst &SI, 2658 InstCombinerImpl &IC) { 2659 Value *CondVal = SI.getCondition(); 2660 2661 bool ChangedFMF = false; 2662 for (bool Swap : {false, true}) { 2663 Value *TrueVal = SI.getTrueValue(); 2664 Value *X = SI.getFalseValue(); 2665 CmpInst::Predicate Pred; 2666 2667 if (Swap) 2668 std::swap(TrueVal, X); 2669 2670 if (!match(CondVal, m_FCmp(Pred, m_Specific(X), m_AnyZeroFP()))) 2671 continue; 2672 2673 // fold (X <= +/-0.0) ? (0.0 - X) : X to fabs(X), when 'Swap' is false 2674 // fold (X > +/-0.0) ? X : (0.0 - X) to fabs(X), when 'Swap' is true 2675 if (match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) { 2676 if (!Swap && (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) { 2677 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); 2678 return IC.replaceInstUsesWith(SI, Fabs); 2679 } 2680 if (Swap && (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) { 2681 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); 2682 return IC.replaceInstUsesWith(SI, Fabs); 2683 } 2684 } 2685 2686 if (!match(TrueVal, m_FNeg(m_Specific(X)))) 2687 return nullptr; 2688 2689 // Forward-propagate nnan and ninf from the fneg to the select. 2690 // If all inputs are not those values, then the select is not either. 2691 // Note: nsz is defined differently, so it may not be correct to propagate. 2692 FastMathFlags FMF = cast<FPMathOperator>(TrueVal)->getFastMathFlags(); 2693 if (FMF.noNaNs() && !SI.hasNoNaNs()) { 2694 SI.setHasNoNaNs(true); 2695 ChangedFMF = true; 2696 } 2697 if (FMF.noInfs() && !SI.hasNoInfs()) { 2698 SI.setHasNoInfs(true); 2699 ChangedFMF = true; 2700 } 2701 2702 // With nsz, when 'Swap' is false: 2703 // fold (X < +/-0.0) ? -X : X or (X <= +/-0.0) ? -X : X to fabs(X) 2704 // fold (X > +/-0.0) ? -X : X or (X >= +/-0.0) ? -X : X to -fabs(x) 2705 // when 'Swap' is true: 2706 // fold (X > +/-0.0) ? X : -X or (X >= +/-0.0) ? X : -X to fabs(X) 2707 // fold (X < +/-0.0) ? X : -X or (X <= +/-0.0) ? X : -X to -fabs(X) 2708 // 2709 // Note: We require "nnan" for this fold because fcmp ignores the signbit 2710 // of NAN, but IEEE-754 specifies the signbit of NAN values with 2711 // fneg/fabs operations. 2712 if (!SI.hasNoSignedZeros() || !SI.hasNoNaNs()) 2713 return nullptr; 2714 2715 if (Swap) 2716 Pred = FCmpInst::getSwappedPredicate(Pred); 2717 2718 bool IsLTOrLE = Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE || 2719 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE; 2720 bool IsGTOrGE = Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE || 2721 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE; 2722 2723 if (IsLTOrLE) { 2724 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); 2725 return IC.replaceInstUsesWith(SI, Fabs); 2726 } 2727 if (IsGTOrGE) { 2728 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); 2729 Instruction *NewFNeg = UnaryOperator::CreateFNeg(Fabs); 2730 NewFNeg->setFastMathFlags(SI.getFastMathFlags()); 2731 return NewFNeg; 2732 } 2733 } 2734 2735 return ChangedFMF ? &SI : nullptr; 2736 } 2737 2738 // Match the following IR pattern: 2739 // %x.lowbits = and i8 %x, %lowbitmask 2740 // %x.lowbits.are.zero = icmp eq i8 %x.lowbits, 0 2741 // %x.biased = add i8 %x, %bias 2742 // %x.biased.highbits = and i8 %x.biased, %highbitmask 2743 // %x.roundedup = select i1 %x.lowbits.are.zero, i8 %x, i8 %x.biased.highbits 2744 // Define: 2745 // %alignment = add i8 %lowbitmask, 1 2746 // Iff 1. an %alignment is a power-of-two (aka, %lowbitmask is a low bit mask) 2747 // and 2. %bias is equal to either %lowbitmask or %alignment, 2748 // and 3. %highbitmask is equal to ~%lowbitmask (aka, to -%alignment) 2749 // then this pattern can be transformed into: 2750 // %x.offset = add i8 %x, %lowbitmask 2751 // %x.roundedup = and i8 %x.offset, %highbitmask 2752 static Value * 2753 foldRoundUpIntegerWithPow2Alignment(SelectInst &SI, 2754 InstCombiner::BuilderTy &Builder) { 2755 Value *Cond = SI.getCondition(); 2756 Value *X = SI.getTrueValue(); 2757 Value *XBiasedHighBits = SI.getFalseValue(); 2758 2759 ICmpInst::Predicate Pred; 2760 Value *XLowBits; 2761 if (!match(Cond, m_ICmp(Pred, m_Value(XLowBits), m_ZeroInt())) || 2762 !ICmpInst::isEquality(Pred)) 2763 return nullptr; 2764 2765 if (Pred == ICmpInst::Predicate::ICMP_NE) 2766 std::swap(X, XBiasedHighBits); 2767 2768 // FIXME: we could support non non-splats here. 2769 2770 const APInt *LowBitMaskCst; 2771 if (!match(XLowBits, m_And(m_Specific(X), m_APIntAllowUndef(LowBitMaskCst)))) 2772 return nullptr; 2773 2774 // Match even if the AND and ADD are swapped. 2775 const APInt *BiasCst, *HighBitMaskCst; 2776 if (!match(XBiasedHighBits, 2777 m_And(m_Add(m_Specific(X), m_APIntAllowUndef(BiasCst)), 2778 m_APIntAllowUndef(HighBitMaskCst))) && 2779 !match(XBiasedHighBits, 2780 m_Add(m_And(m_Specific(X), m_APIntAllowUndef(HighBitMaskCst)), 2781 m_APIntAllowUndef(BiasCst)))) 2782 return nullptr; 2783 2784 if (!LowBitMaskCst->isMask()) 2785 return nullptr; 2786 2787 APInt InvertedLowBitMaskCst = ~*LowBitMaskCst; 2788 if (InvertedLowBitMaskCst != *HighBitMaskCst) 2789 return nullptr; 2790 2791 APInt AlignmentCst = *LowBitMaskCst + 1; 2792 2793 if (*BiasCst != AlignmentCst && *BiasCst != *LowBitMaskCst) 2794 return nullptr; 2795 2796 if (!XBiasedHighBits->hasOneUse()) { 2797 if (*BiasCst == *LowBitMaskCst) 2798 return XBiasedHighBits; 2799 return nullptr; 2800 } 2801 2802 // FIXME: could we preserve undef's here? 2803 Type *Ty = X->getType(); 2804 Value *XOffset = Builder.CreateAdd(X, ConstantInt::get(Ty, *LowBitMaskCst), 2805 X->getName() + ".biased"); 2806 Value *R = Builder.CreateAnd(XOffset, ConstantInt::get(Ty, *HighBitMaskCst)); 2807 R->takeName(&SI); 2808 return R; 2809 } 2810 2811 namespace { 2812 struct DecomposedSelect { 2813 Value *Cond = nullptr; 2814 Value *TrueVal = nullptr; 2815 Value *FalseVal = nullptr; 2816 }; 2817 } // namespace 2818 2819 /// Look for patterns like 2820 /// %outer.cond = select i1 %inner.cond, i1 %alt.cond, i1 false 2821 /// %inner.sel = select i1 %inner.cond, i8 %inner.sel.t, i8 %inner.sel.f 2822 /// %outer.sel = select i1 %outer.cond, i8 %outer.sel.t, i8 %inner.sel 2823 /// and rewrite it as 2824 /// %inner.sel = select i1 %cond.alternative, i8 %sel.outer.t, i8 %sel.inner.t 2825 /// %sel.outer = select i1 %cond.inner, i8 %inner.sel, i8 %sel.inner.f 2826 static Instruction *foldNestedSelects(SelectInst &OuterSelVal, 2827 InstCombiner::BuilderTy &Builder) { 2828 // We must start with a `select`. 2829 DecomposedSelect OuterSel; 2830 match(&OuterSelVal, 2831 m_Select(m_Value(OuterSel.Cond), m_Value(OuterSel.TrueVal), 2832 m_Value(OuterSel.FalseVal))); 2833 2834 // Canonicalize inversion of the outermost `select`'s condition. 2835 if (match(OuterSel.Cond, m_Not(m_Value(OuterSel.Cond)))) 2836 std::swap(OuterSel.TrueVal, OuterSel.FalseVal); 2837 2838 // The condition of the outermost select must be an `and`/`or`. 2839 if (!match(OuterSel.Cond, m_c_LogicalOp(m_Value(), m_Value()))) 2840 return nullptr; 2841 2842 // Depending on the logical op, inner select might be in different hand. 2843 bool IsAndVariant = match(OuterSel.Cond, m_LogicalAnd()); 2844 Value *InnerSelVal = IsAndVariant ? OuterSel.FalseVal : OuterSel.TrueVal; 2845 2846 // Profitability check - avoid increasing instruction count. 2847 if (none_of(ArrayRef<Value *>({OuterSelVal.getCondition(), InnerSelVal}), 2848 [](Value *V) { return V->hasOneUse(); })) 2849 return nullptr; 2850 2851 // The appropriate hand of the outermost `select` must be a select itself. 2852 DecomposedSelect InnerSel; 2853 if (!match(InnerSelVal, 2854 m_Select(m_Value(InnerSel.Cond), m_Value(InnerSel.TrueVal), 2855 m_Value(InnerSel.FalseVal)))) 2856 return nullptr; 2857 2858 // Canonicalize inversion of the innermost `select`'s condition. 2859 if (match(InnerSel.Cond, m_Not(m_Value(InnerSel.Cond)))) 2860 std::swap(InnerSel.TrueVal, InnerSel.FalseVal); 2861 2862 Value *AltCond = nullptr; 2863 auto matchOuterCond = [OuterSel, &AltCond](auto m_InnerCond) { 2864 return match(OuterSel.Cond, m_c_LogicalOp(m_InnerCond, m_Value(AltCond))); 2865 }; 2866 2867 // Finally, match the condition that was driving the outermost `select`, 2868 // it should be a logical operation between the condition that was driving 2869 // the innermost `select` (after accounting for the possible inversions 2870 // of the condition), and some other condition. 2871 if (matchOuterCond(m_Specific(InnerSel.Cond))) { 2872 // Done! 2873 } else if (Value * NotInnerCond; matchOuterCond(m_CombineAnd( 2874 m_Not(m_Specific(InnerSel.Cond)), m_Value(NotInnerCond)))) { 2875 // Done! 2876 std::swap(InnerSel.TrueVal, InnerSel.FalseVal); 2877 InnerSel.Cond = NotInnerCond; 2878 } else // Not the pattern we were looking for. 2879 return nullptr; 2880 2881 Value *SelInner = Builder.CreateSelect( 2882 AltCond, IsAndVariant ? OuterSel.TrueVal : InnerSel.FalseVal, 2883 IsAndVariant ? InnerSel.TrueVal : OuterSel.FalseVal); 2884 SelInner->takeName(InnerSelVal); 2885 return SelectInst::Create(InnerSel.Cond, 2886 IsAndVariant ? SelInner : InnerSel.TrueVal, 2887 !IsAndVariant ? SelInner : InnerSel.FalseVal); 2888 } 2889 2890 Instruction *InstCombinerImpl::foldSelectOfBools(SelectInst &SI) { 2891 Value *CondVal = SI.getCondition(); 2892 Value *TrueVal = SI.getTrueValue(); 2893 Value *FalseVal = SI.getFalseValue(); 2894 Type *SelType = SI.getType(); 2895 2896 // Avoid potential infinite loops by checking for non-constant condition. 2897 // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()? 2898 // Scalar select must have simplified? 2899 if (!SelType->isIntOrIntVectorTy(1) || isa<Constant>(CondVal) || 2900 TrueVal->getType() != CondVal->getType()) 2901 return nullptr; 2902 2903 auto *One = ConstantInt::getTrue(SelType); 2904 auto *Zero = ConstantInt::getFalse(SelType); 2905 Value *A, *B, *C, *D; 2906 2907 // Folding select to and/or i1 isn't poison safe in general. impliesPoison 2908 // checks whether folding it does not convert a well-defined value into 2909 // poison. 2910 if (match(TrueVal, m_One())) { 2911 if (impliesPoison(FalseVal, CondVal)) { 2912 // Change: A = select B, true, C --> A = or B, C 2913 return BinaryOperator::CreateOr(CondVal, FalseVal); 2914 } 2915 2916 if (auto *LHS = dyn_cast<FCmpInst>(CondVal)) 2917 if (auto *RHS = dyn_cast<FCmpInst>(FalseVal)) 2918 if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ false, 2919 /*IsSelectLogical*/ true)) 2920 return replaceInstUsesWith(SI, V); 2921 2922 // (A && B) || (C && B) --> (A || C) && B 2923 if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) && 2924 match(FalseVal, m_LogicalAnd(m_Value(C), m_Value(D))) && 2925 (CondVal->hasOneUse() || FalseVal->hasOneUse())) { 2926 bool CondLogicAnd = isa<SelectInst>(CondVal); 2927 bool FalseLogicAnd = isa<SelectInst>(FalseVal); 2928 auto AndFactorization = [&](Value *Common, Value *InnerCond, 2929 Value *InnerVal, 2930 bool SelFirst = false) -> Instruction * { 2931 Value *InnerSel = Builder.CreateSelect(InnerCond, One, InnerVal); 2932 if (SelFirst) 2933 std::swap(Common, InnerSel); 2934 if (FalseLogicAnd || (CondLogicAnd && Common == A)) 2935 return SelectInst::Create(Common, InnerSel, Zero); 2936 else 2937 return BinaryOperator::CreateAnd(Common, InnerSel); 2938 }; 2939 2940 if (A == C) 2941 return AndFactorization(A, B, D); 2942 if (A == D) 2943 return AndFactorization(A, B, C); 2944 if (B == C) 2945 return AndFactorization(B, A, D); 2946 if (B == D) 2947 return AndFactorization(B, A, C, CondLogicAnd && FalseLogicAnd); 2948 } 2949 } 2950 2951 if (match(FalseVal, m_Zero())) { 2952 if (impliesPoison(TrueVal, CondVal)) { 2953 // Change: A = select B, C, false --> A = and B, C 2954 return BinaryOperator::CreateAnd(CondVal, TrueVal); 2955 } 2956 2957 if (auto *LHS = dyn_cast<FCmpInst>(CondVal)) 2958 if (auto *RHS = dyn_cast<FCmpInst>(TrueVal)) 2959 if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ true, 2960 /*IsSelectLogical*/ true)) 2961 return replaceInstUsesWith(SI, V); 2962 2963 // (A || B) && (C || B) --> (A && C) || B 2964 if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) && 2965 match(TrueVal, m_LogicalOr(m_Value(C), m_Value(D))) && 2966 (CondVal->hasOneUse() || TrueVal->hasOneUse())) { 2967 bool CondLogicOr = isa<SelectInst>(CondVal); 2968 bool TrueLogicOr = isa<SelectInst>(TrueVal); 2969 auto OrFactorization = [&](Value *Common, Value *InnerCond, 2970 Value *InnerVal, 2971 bool SelFirst = false) -> Instruction * { 2972 Value *InnerSel = Builder.CreateSelect(InnerCond, InnerVal, Zero); 2973 if (SelFirst) 2974 std::swap(Common, InnerSel); 2975 if (TrueLogicOr || (CondLogicOr && Common == A)) 2976 return SelectInst::Create(Common, One, InnerSel); 2977 else 2978 return BinaryOperator::CreateOr(Common, InnerSel); 2979 }; 2980 2981 if (A == C) 2982 return OrFactorization(A, B, D); 2983 if (A == D) 2984 return OrFactorization(A, B, C); 2985 if (B == C) 2986 return OrFactorization(B, A, D); 2987 if (B == D) 2988 return OrFactorization(B, A, C, CondLogicOr && TrueLogicOr); 2989 } 2990 } 2991 2992 // We match the "full" 0 or 1 constant here to avoid a potential infinite 2993 // loop with vectors that may have undefined/poison elements. 2994 // select a, false, b -> select !a, b, false 2995 if (match(TrueVal, m_Specific(Zero))) { 2996 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2997 return SelectInst::Create(NotCond, FalseVal, Zero); 2998 } 2999 // select a, b, true -> select !a, true, b 3000 if (match(FalseVal, m_Specific(One))) { 3001 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 3002 return SelectInst::Create(NotCond, One, TrueVal); 3003 } 3004 3005 // DeMorgan in select form: !a && !b --> !(a || b) 3006 // select !a, !b, false --> not (select a, true, b) 3007 if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) && 3008 (CondVal->hasOneUse() || TrueVal->hasOneUse()) && 3009 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr())) 3010 return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B)); 3011 3012 // DeMorgan in select form: !a || !b --> !(a && b) 3013 // select !a, true, !b --> not (select a, b, false) 3014 if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) && 3015 (CondVal->hasOneUse() || FalseVal->hasOneUse()) && 3016 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr())) 3017 return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero)); 3018 3019 // select (select a, true, b), true, b -> select a, true, b 3020 if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 3021 match(TrueVal, m_One()) && match(FalseVal, m_Specific(B))) 3022 return replaceOperand(SI, 0, A); 3023 // select (select a, b, false), b, false -> select a, b, false 3024 if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) && 3025 match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero())) 3026 return replaceOperand(SI, 0, A); 3027 // select a, (select ~a, true, b), false -> select a, b, false 3028 if (match(TrueVal, m_c_LogicalOr(m_Not(m_Specific(CondVal)), m_Value(B))) && 3029 match(FalseVal, m_Zero())) 3030 return replaceOperand(SI, 1, B); 3031 // select a, true, (select ~a, b, false) -> select a, true, b 3032 if (match(FalseVal, m_c_LogicalAnd(m_Not(m_Specific(CondVal)), m_Value(B))) && 3033 match(TrueVal, m_One())) 3034 return replaceOperand(SI, 2, B); 3035 3036 // ~(A & B) & (A | B) --> A ^ B 3037 if (match(&SI, m_c_LogicalAnd(m_Not(m_LogicalAnd(m_Value(A), m_Value(B))), 3038 m_c_LogicalOr(m_Deferred(A), m_Deferred(B))))) 3039 return BinaryOperator::CreateXor(A, B); 3040 3041 // select (~a | c), a, b -> and a, (or c, freeze(b)) 3042 if (match(CondVal, m_c_Or(m_Not(m_Specific(TrueVal)), m_Value(C))) && 3043 CondVal->hasOneUse()) { 3044 FalseVal = Builder.CreateFreeze(FalseVal); 3045 return BinaryOperator::CreateAnd(TrueVal, Builder.CreateOr(C, FalseVal)); 3046 } 3047 // select (~c & b), a, b -> and b, (or freeze(a), c) 3048 if (match(CondVal, m_c_And(m_Not(m_Value(C)), m_Specific(FalseVal))) && 3049 CondVal->hasOneUse()) { 3050 TrueVal = Builder.CreateFreeze(TrueVal); 3051 return BinaryOperator::CreateAnd(FalseVal, Builder.CreateOr(C, TrueVal)); 3052 } 3053 3054 if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) { 3055 Use *Y = nullptr; 3056 bool IsAnd = match(FalseVal, m_Zero()) ? true : false; 3057 Value *Op1 = IsAnd ? TrueVal : FalseVal; 3058 if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) { 3059 auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr"); 3060 InsertNewInstBefore(FI, *cast<Instruction>(Y->getUser())); 3061 replaceUse(*Y, FI); 3062 return replaceInstUsesWith(SI, Op1); 3063 } 3064 3065 if (auto *Op1SI = dyn_cast<SelectInst>(Op1)) 3066 if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI, 3067 /* IsAnd */ IsAnd)) 3068 return I; 3069 3070 if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal)) 3071 if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1)) 3072 if (auto *V = foldAndOrOfICmps(ICmp0, ICmp1, SI, IsAnd, 3073 /* IsLogical */ true)) 3074 return replaceInstUsesWith(SI, V); 3075 } 3076 3077 // select (a || b), c, false -> select a, c, false 3078 // select c, (a || b), false -> select c, a, false 3079 // if c implies that b is false. 3080 if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) && 3081 match(FalseVal, m_Zero())) { 3082 std::optional<bool> Res = isImpliedCondition(TrueVal, B, DL); 3083 if (Res && *Res == false) 3084 return replaceOperand(SI, 0, A); 3085 } 3086 if (match(TrueVal, m_LogicalOr(m_Value(A), m_Value(B))) && 3087 match(FalseVal, m_Zero())) { 3088 std::optional<bool> Res = isImpliedCondition(CondVal, B, DL); 3089 if (Res && *Res == false) 3090 return replaceOperand(SI, 1, A); 3091 } 3092 // select c, true, (a && b) -> select c, true, a 3093 // select (a && b), true, c -> select a, true, c 3094 // if c = false implies that b = true 3095 if (match(TrueVal, m_One()) && 3096 match(FalseVal, m_LogicalAnd(m_Value(A), m_Value(B)))) { 3097 std::optional<bool> Res = isImpliedCondition(CondVal, B, DL, false); 3098 if (Res && *Res == true) 3099 return replaceOperand(SI, 2, A); 3100 } 3101 if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) && 3102 match(TrueVal, m_One())) { 3103 std::optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false); 3104 if (Res && *Res == true) 3105 return replaceOperand(SI, 0, A); 3106 } 3107 3108 if (match(TrueVal, m_One())) { 3109 Value *C; 3110 3111 // (C && A) || (!C && B) --> sel C, A, B 3112 // (A && C) || (!C && B) --> sel C, A, B 3113 // (C && A) || (B && !C) --> sel C, A, B 3114 // (A && C) || (B && !C) --> sel C, A, B (may require freeze) 3115 if (match(FalseVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(B))) && 3116 match(CondVal, m_c_LogicalAnd(m_Specific(C), m_Value(A)))) { 3117 auto *SelCond = dyn_cast<SelectInst>(CondVal); 3118 auto *SelFVal = dyn_cast<SelectInst>(FalseVal); 3119 bool MayNeedFreeze = SelCond && SelFVal && 3120 match(SelFVal->getTrueValue(), 3121 m_Not(m_Specific(SelCond->getTrueValue()))); 3122 if (MayNeedFreeze) 3123 C = Builder.CreateFreeze(C); 3124 return SelectInst::Create(C, A, B); 3125 } 3126 3127 // (!C && A) || (C && B) --> sel C, B, A 3128 // (A && !C) || (C && B) --> sel C, B, A 3129 // (!C && A) || (B && C) --> sel C, B, A 3130 // (A && !C) || (B && C) --> sel C, B, A (may require freeze) 3131 if (match(CondVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(A))) && 3132 match(FalseVal, m_c_LogicalAnd(m_Specific(C), m_Value(B)))) { 3133 auto *SelCond = dyn_cast<SelectInst>(CondVal); 3134 auto *SelFVal = dyn_cast<SelectInst>(FalseVal); 3135 bool MayNeedFreeze = SelCond && SelFVal && 3136 match(SelCond->getTrueValue(), 3137 m_Not(m_Specific(SelFVal->getTrueValue()))); 3138 if (MayNeedFreeze) 3139 C = Builder.CreateFreeze(C); 3140 return SelectInst::Create(C, B, A); 3141 } 3142 } 3143 3144 return nullptr; 3145 } 3146 3147 // Return true if we can safely remove the select instruction for std::bit_ceil 3148 // pattern. 3149 static bool isSafeToRemoveBitCeilSelect(ICmpInst::Predicate Pred, Value *Cond0, 3150 const APInt *Cond1, Value *CtlzOp, 3151 unsigned BitWidth) { 3152 // The challenge in recognizing std::bit_ceil(X) is that the operand is used 3153 // for the CTLZ proper and select condition, each possibly with some 3154 // operation like add and sub. 3155 // 3156 // Our aim is to make sure that -ctlz & (BitWidth - 1) == 0 even when the 3157 // select instruction would select 1, which allows us to get rid of the select 3158 // instruction. 3159 // 3160 // To see if we can do so, we do some symbolic execution with ConstantRange. 3161 // Specifically, we compute the range of values that Cond0 could take when 3162 // Cond == false. Then we successively transform the range until we obtain 3163 // the range of values that CtlzOp could take. 3164 // 3165 // Conceptually, we follow the def-use chain backward from Cond0 while 3166 // transforming the range for Cond0 until we meet the common ancestor of Cond0 3167 // and CtlzOp. Then we follow the def-use chain forward until we obtain the 3168 // range for CtlzOp. That said, we only follow at most one ancestor from 3169 // Cond0. Likewise, we only follow at most one ancestor from CtrlOp. 3170 3171 ConstantRange CR = ConstantRange::makeExactICmpRegion( 3172 CmpInst::getInversePredicate(Pred), *Cond1); 3173 3174 // Match the operation that's used to compute CtlzOp from CommonAncestor. If 3175 // CtlzOp == CommonAncestor, return true as no operation is needed. If a 3176 // match is found, execute the operation on CR, update CR, and return true. 3177 // Otherwise, return false. 3178 auto MatchForward = [&](Value *CommonAncestor) { 3179 const APInt *C = nullptr; 3180 if (CtlzOp == CommonAncestor) 3181 return true; 3182 if (match(CtlzOp, m_Add(m_Specific(CommonAncestor), m_APInt(C)))) { 3183 CR = CR.add(*C); 3184 return true; 3185 } 3186 if (match(CtlzOp, m_Sub(m_APInt(C), m_Specific(CommonAncestor)))) { 3187 CR = ConstantRange(*C).sub(CR); 3188 return true; 3189 } 3190 if (match(CtlzOp, m_Not(m_Specific(CommonAncestor)))) { 3191 CR = CR.binaryNot(); 3192 return true; 3193 } 3194 return false; 3195 }; 3196 3197 const APInt *C = nullptr; 3198 Value *CommonAncestor; 3199 if (MatchForward(Cond0)) { 3200 // Cond0 is either CtlzOp or CtlzOp's parent. CR has been updated. 3201 } else if (match(Cond0, m_Add(m_Value(CommonAncestor), m_APInt(C)))) { 3202 CR = CR.sub(*C); 3203 if (!MatchForward(CommonAncestor)) 3204 return false; 3205 // Cond0's parent is either CtlzOp or CtlzOp's parent. CR has been updated. 3206 } else { 3207 return false; 3208 } 3209 3210 // Return true if all the values in the range are either 0 or negative (if 3211 // treated as signed). We do so by evaluating: 3212 // 3213 // CR - 1 u>= (1 << BitWidth) - 1. 3214 APInt IntMax = APInt::getSignMask(BitWidth) - 1; 3215 CR = CR.sub(APInt(BitWidth, 1)); 3216 return CR.icmp(ICmpInst::ICMP_UGE, IntMax); 3217 } 3218 3219 // Transform the std::bit_ceil(X) pattern like: 3220 // 3221 // %dec = add i32 %x, -1 3222 // %ctlz = tail call i32 @llvm.ctlz.i32(i32 %dec, i1 false) 3223 // %sub = sub i32 32, %ctlz 3224 // %shl = shl i32 1, %sub 3225 // %ugt = icmp ugt i32 %x, 1 3226 // %sel = select i1 %ugt, i32 %shl, i32 1 3227 // 3228 // into: 3229 // 3230 // %dec = add i32 %x, -1 3231 // %ctlz = tail call i32 @llvm.ctlz.i32(i32 %dec, i1 false) 3232 // %neg = sub i32 0, %ctlz 3233 // %masked = and i32 %ctlz, 31 3234 // %shl = shl i32 1, %sub 3235 // 3236 // Note that the select is optimized away while the shift count is masked with 3237 // 31. We handle some variations of the input operand like std::bit_ceil(X + 3238 // 1). 3239 static Instruction *foldBitCeil(SelectInst &SI, IRBuilderBase &Builder) { 3240 Type *SelType = SI.getType(); 3241 unsigned BitWidth = SelType->getScalarSizeInBits(); 3242 3243 Value *FalseVal = SI.getFalseValue(); 3244 Value *TrueVal = SI.getTrueValue(); 3245 ICmpInst::Predicate Pred; 3246 const APInt *Cond1; 3247 Value *Cond0, *Ctlz, *CtlzOp; 3248 if (!match(SI.getCondition(), m_ICmp(Pred, m_Value(Cond0), m_APInt(Cond1)))) 3249 return nullptr; 3250 3251 if (match(TrueVal, m_One())) { 3252 std::swap(FalseVal, TrueVal); 3253 Pred = CmpInst::getInversePredicate(Pred); 3254 } 3255 3256 if (!match(FalseVal, m_One()) || 3257 !match(TrueVal, 3258 m_OneUse(m_Shl(m_One(), m_OneUse(m_Sub(m_SpecificInt(BitWidth), 3259 m_Value(Ctlz)))))) || 3260 !match(Ctlz, m_Intrinsic<Intrinsic::ctlz>(m_Value(CtlzOp), m_Zero())) || 3261 !isSafeToRemoveBitCeilSelect(Pred, Cond0, Cond1, CtlzOp, BitWidth)) 3262 return nullptr; 3263 3264 // Build 1 << (-CTLZ & (BitWidth-1)). The negation likely corresponds to a 3265 // single hardware instruction as opposed to BitWidth - CTLZ, where BitWidth 3266 // is an integer constant. Masking with BitWidth-1 comes free on some 3267 // hardware as part of the shift instruction. 3268 Value *Neg = Builder.CreateNeg(Ctlz); 3269 Value *Masked = 3270 Builder.CreateAnd(Neg, ConstantInt::get(SelType, BitWidth - 1)); 3271 return BinaryOperator::Create(Instruction::Shl, ConstantInt::get(SelType, 1), 3272 Masked); 3273 } 3274 3275 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) { 3276 Value *CondVal = SI.getCondition(); 3277 Value *TrueVal = SI.getTrueValue(); 3278 Value *FalseVal = SI.getFalseValue(); 3279 Type *SelType = SI.getType(); 3280 3281 if (Value *V = simplifySelectInst(CondVal, TrueVal, FalseVal, 3282 SQ.getWithInstruction(&SI))) 3283 return replaceInstUsesWith(SI, V); 3284 3285 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 3286 return I; 3287 3288 if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this)) 3289 return I; 3290 3291 // If the type of select is not an integer type or if the condition and 3292 // the selection type are not both scalar nor both vector types, there is no 3293 // point in attempting to match these patterns. 3294 Type *CondType = CondVal->getType(); 3295 if (!isa<Constant>(CondVal) && SelType->isIntOrIntVectorTy() && 3296 CondType->isVectorTy() == SelType->isVectorTy()) { 3297 if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal, 3298 ConstantInt::getTrue(CondType), SQ, 3299 /* AllowRefinement */ true)) 3300 return replaceOperand(SI, 1, S); 3301 3302 if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal, 3303 ConstantInt::getFalse(CondType), SQ, 3304 /* AllowRefinement */ true)) 3305 return replaceOperand(SI, 2, S); 3306 3307 // Handle patterns involving sext/zext + not explicitly, 3308 // as simplifyWithOpReplaced() only looks past one instruction. 3309 Value *NotCond; 3310 3311 // select a, sext(!a), b -> select !a, b, 0 3312 // select a, zext(!a), b -> select !a, b, 0 3313 if (match(TrueVal, m_ZExtOrSExt(m_CombineAnd(m_Value(NotCond), 3314 m_Not(m_Specific(CondVal)))))) 3315 return SelectInst::Create(NotCond, FalseVal, 3316 Constant::getNullValue(SelType)); 3317 3318 // select a, b, zext(!a) -> select !a, 1, b 3319 if (match(FalseVal, m_ZExt(m_CombineAnd(m_Value(NotCond), 3320 m_Not(m_Specific(CondVal)))))) 3321 return SelectInst::Create(NotCond, ConstantInt::get(SelType, 1), TrueVal); 3322 3323 // select a, b, sext(!a) -> select !a, -1, b 3324 if (match(FalseVal, m_SExt(m_CombineAnd(m_Value(NotCond), 3325 m_Not(m_Specific(CondVal)))))) 3326 return SelectInst::Create(NotCond, Constant::getAllOnesValue(SelType), 3327 TrueVal); 3328 } 3329 3330 if (Instruction *R = foldSelectOfBools(SI)) 3331 return R; 3332 3333 // Selecting between two integer or vector splat integer constants? 3334 // 3335 // Note that we don't handle a scalar select of vectors: 3336 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 3337 // because that may need 3 instructions to splat the condition value: 3338 // extend, insertelement, shufflevector. 3339 // 3340 // Do not handle i1 TrueVal and FalseVal otherwise would result in 3341 // zext/sext i1 to i1. 3342 if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) && 3343 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 3344 // select C, 1, 0 -> zext C to int 3345 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 3346 return new ZExtInst(CondVal, SelType); 3347 3348 // select C, -1, 0 -> sext C to int 3349 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 3350 return new SExtInst(CondVal, SelType); 3351 3352 // select C, 0, 1 -> zext !C to int 3353 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 3354 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 3355 return new ZExtInst(NotCond, SelType); 3356 } 3357 3358 // select C, 0, -1 -> sext !C to int 3359 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 3360 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 3361 return new SExtInst(NotCond, SelType); 3362 } 3363 } 3364 3365 if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) { 3366 Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1); 3367 // Are we selecting a value based on a comparison of the two values? 3368 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) || 3369 (Cmp0 == FalseVal && Cmp1 == TrueVal)) { 3370 // Canonicalize to use ordered comparisons by swapping the select 3371 // operands. 3372 // 3373 // e.g. 3374 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 3375 if (FCmp->hasOneUse() && FCmpInst::isUnordered(FCmp->getPredicate())) { 3376 FCmpInst::Predicate InvPred = FCmp->getInversePredicate(); 3377 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 3378 // FIXME: The FMF should propagate from the select, not the fcmp. 3379 Builder.setFastMathFlags(FCmp->getFastMathFlags()); 3380 Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1, 3381 FCmp->getName() + ".inv"); 3382 Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal); 3383 return replaceInstUsesWith(SI, NewSel); 3384 } 3385 } 3386 } 3387 3388 if (isa<FPMathOperator>(SI)) { 3389 // TODO: Try to forward-propagate FMF from select arms to the select. 3390 3391 // Canonicalize select of FP values where NaN and -0.0 are not valid as 3392 // minnum/maxnum intrinsics. 3393 if (SI.hasNoNaNs() && SI.hasNoSignedZeros()) { 3394 Value *X, *Y; 3395 if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y)))) 3396 return replaceInstUsesWith( 3397 SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI)); 3398 3399 if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y)))) 3400 return replaceInstUsesWith( 3401 SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI)); 3402 } 3403 } 3404 3405 // Fold selecting to fabs. 3406 if (Instruction *Fabs = foldSelectWithFCmpToFabs(SI, *this)) 3407 return Fabs; 3408 3409 // See if we are selecting two values based on a comparison of the two values. 3410 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 3411 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 3412 return Result; 3413 3414 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 3415 return Add; 3416 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder)) 3417 return Add; 3418 if (Instruction *Or = foldSetClearBits(SI, Builder)) 3419 return Or; 3420 if (Instruction *Mul = foldSelectZeroOrMul(SI, *this)) 3421 return Mul; 3422 3423 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 3424 auto *TI = dyn_cast<Instruction>(TrueVal); 3425 auto *FI = dyn_cast<Instruction>(FalseVal); 3426 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 3427 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 3428 return IV; 3429 3430 if (Instruction *I = foldSelectExtConst(SI)) 3431 return I; 3432 3433 // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0)) 3434 // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx)) 3435 auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base, 3436 bool Swap) -> GetElementPtrInst * { 3437 Value *Ptr = Gep->getPointerOperand(); 3438 if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base || 3439 !Gep->hasOneUse()) 3440 return nullptr; 3441 Value *Idx = Gep->getOperand(1); 3442 if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType())) 3443 return nullptr; 3444 Type *ElementType = Gep->getResultElementType(); 3445 Value *NewT = Idx; 3446 Value *NewF = Constant::getNullValue(Idx->getType()); 3447 if (Swap) 3448 std::swap(NewT, NewF); 3449 Value *NewSI = 3450 Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI); 3451 if (Gep->isInBounds()) 3452 return GetElementPtrInst::CreateInBounds(ElementType, Ptr, {NewSI}); 3453 return GetElementPtrInst::Create(ElementType, Ptr, {NewSI}); 3454 }; 3455 if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal)) 3456 if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false)) 3457 return NewGep; 3458 if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal)) 3459 if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true)) 3460 return NewGep; 3461 3462 // See if we can fold the select into one of our operands. 3463 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 3464 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 3465 return FoldI; 3466 3467 Value *LHS, *RHS; 3468 Instruction::CastOps CastOp; 3469 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 3470 auto SPF = SPR.Flavor; 3471 if (SPF) { 3472 Value *LHS2, *RHS2; 3473 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 3474 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 3475 RHS2, SI, SPF, RHS)) 3476 return R; 3477 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 3478 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 3479 RHS2, SI, SPF, LHS)) 3480 return R; 3481 } 3482 3483 if (SelectPatternResult::isMinOrMax(SPF)) { 3484 // Canonicalize so that 3485 // - type casts are outside select patterns. 3486 // - float clamp is transformed to min/max pattern 3487 3488 bool IsCastNeeded = LHS->getType() != SelType; 3489 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 3490 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 3491 if (IsCastNeeded || 3492 (LHS->getType()->isFPOrFPVectorTy() && 3493 ((CmpLHS != LHS && CmpLHS != RHS) || 3494 (CmpRHS != LHS && CmpRHS != RHS)))) { 3495 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered); 3496 3497 Value *Cmp; 3498 if (CmpInst::isIntPredicate(MinMaxPred)) { 3499 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS); 3500 } else { 3501 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 3502 auto FMF = 3503 cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 3504 Builder.setFastMathFlags(FMF); 3505 Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS); 3506 } 3507 3508 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 3509 if (!IsCastNeeded) 3510 return replaceInstUsesWith(SI, NewSI); 3511 3512 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 3513 return replaceInstUsesWith(SI, NewCast); 3514 } 3515 } 3516 } 3517 3518 // See if we can fold the select into a phi node if the condition is a select. 3519 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 3520 // The true/false values have to be live in the PHI predecessor's blocks. 3521 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 3522 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 3523 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 3524 return NV; 3525 3526 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 3527 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 3528 // select(C, select(C, a, b), c) -> select(C, a, c) 3529 if (TrueSI->getCondition() == CondVal) { 3530 if (SI.getTrueValue() == TrueSI->getTrueValue()) 3531 return nullptr; 3532 return replaceOperand(SI, 1, TrueSI->getTrueValue()); 3533 } 3534 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 3535 // We choose this as normal form to enable folding on the And and 3536 // shortening paths for the values (this helps getUnderlyingObjects() for 3537 // example). 3538 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 3539 Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition()); 3540 replaceOperand(SI, 0, And); 3541 replaceOperand(SI, 1, TrueSI->getTrueValue()); 3542 return &SI; 3543 } 3544 } 3545 } 3546 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 3547 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 3548 // select(C, a, select(C, b, c)) -> select(C, a, c) 3549 if (FalseSI->getCondition() == CondVal) { 3550 if (SI.getFalseValue() == FalseSI->getFalseValue()) 3551 return nullptr; 3552 return replaceOperand(SI, 2, FalseSI->getFalseValue()); 3553 } 3554 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 3555 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 3556 Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition()); 3557 replaceOperand(SI, 0, Or); 3558 replaceOperand(SI, 2, FalseSI->getFalseValue()); 3559 return &SI; 3560 } 3561 } 3562 } 3563 3564 // Try to simplify a binop sandwiched between 2 selects with the same 3565 // condition. This is not valid for div/rem because the select might be 3566 // preventing a division-by-zero. 3567 // TODO: A div/rem restriction is conservative; use something like 3568 // isSafeToSpeculativelyExecute(). 3569 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 3570 BinaryOperator *TrueBO; 3571 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && !TrueBO->isIntDivRem()) { 3572 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 3573 if (TrueBOSI->getCondition() == CondVal) { 3574 replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue()); 3575 Worklist.push(TrueBO); 3576 return &SI; 3577 } 3578 } 3579 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 3580 if (TrueBOSI->getCondition() == CondVal) { 3581 replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue()); 3582 Worklist.push(TrueBO); 3583 return &SI; 3584 } 3585 } 3586 } 3587 3588 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 3589 BinaryOperator *FalseBO; 3590 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && !FalseBO->isIntDivRem()) { 3591 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 3592 if (FalseBOSI->getCondition() == CondVal) { 3593 replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue()); 3594 Worklist.push(FalseBO); 3595 return &SI; 3596 } 3597 } 3598 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 3599 if (FalseBOSI->getCondition() == CondVal) { 3600 replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue()); 3601 Worklist.push(FalseBO); 3602 return &SI; 3603 } 3604 } 3605 } 3606 3607 Value *NotCond; 3608 if (match(CondVal, m_Not(m_Value(NotCond))) && 3609 !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) { 3610 replaceOperand(SI, 0, NotCond); 3611 SI.swapValues(); 3612 SI.swapProfMetadata(); 3613 return &SI; 3614 } 3615 3616 if (Instruction *I = foldVectorSelect(SI)) 3617 return I; 3618 3619 // If we can compute the condition, there's no need for a select. 3620 // Like the above fold, we are attempting to reduce compile-time cost by 3621 // putting this fold here with limitations rather than in InstSimplify. 3622 // The motivation for this call into value tracking is to take advantage of 3623 // the assumption cache, so make sure that is populated. 3624 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 3625 KnownBits Known(1); 3626 computeKnownBits(CondVal, Known, 0, &SI); 3627 if (Known.One.isOne()) 3628 return replaceInstUsesWith(SI, TrueVal); 3629 if (Known.Zero.isOne()) 3630 return replaceInstUsesWith(SI, FalseVal); 3631 } 3632 3633 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 3634 return BitCastSel; 3635 3636 // Simplify selects that test the returned flag of cmpxchg instructions. 3637 if (Value *V = foldSelectCmpXchg(SI)) 3638 return replaceInstUsesWith(SI, V); 3639 3640 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this)) 3641 return Select; 3642 3643 if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder)) 3644 return Funnel; 3645 3646 if (Instruction *Copysign = foldSelectToCopysign(SI, Builder)) 3647 return Copysign; 3648 3649 if (Instruction *PN = foldSelectToPhi(SI, DT, Builder)) 3650 return replaceInstUsesWith(SI, PN); 3651 3652 if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder)) 3653 return replaceInstUsesWith(SI, Fr); 3654 3655 if (Value *V = foldRoundUpIntegerWithPow2Alignment(SI, Builder)) 3656 return replaceInstUsesWith(SI, V); 3657 3658 // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0) 3659 // Load inst is intentionally not checked for hasOneUse() 3660 if (match(FalseVal, m_Zero()) && 3661 (match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal), 3662 m_CombineOr(m_Undef(), m_Zero()))) || 3663 match(TrueVal, m_MaskedGather(m_Value(), m_Value(), m_Specific(CondVal), 3664 m_CombineOr(m_Undef(), m_Zero()))))) { 3665 auto *MaskedInst = cast<IntrinsicInst>(TrueVal); 3666 if (isa<UndefValue>(MaskedInst->getArgOperand(3))) 3667 MaskedInst->setArgOperand(3, FalseVal /* Zero */); 3668 return replaceInstUsesWith(SI, MaskedInst); 3669 } 3670 3671 Value *Mask; 3672 if (match(TrueVal, m_Zero()) && 3673 (match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask), 3674 m_CombineOr(m_Undef(), m_Zero()))) || 3675 match(FalseVal, m_MaskedGather(m_Value(), m_Value(), m_Value(Mask), 3676 m_CombineOr(m_Undef(), m_Zero())))) && 3677 (CondVal->getType() == Mask->getType())) { 3678 // We can remove the select by ensuring the load zeros all lanes the 3679 // select would have. We determine this by proving there is no overlap 3680 // between the load and select masks. 3681 // (i.e (load_mask & select_mask) == 0 == no overlap) 3682 bool CanMergeSelectIntoLoad = false; 3683 if (Value *V = simplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI))) 3684 CanMergeSelectIntoLoad = match(V, m_Zero()); 3685 3686 if (CanMergeSelectIntoLoad) { 3687 auto *MaskedInst = cast<IntrinsicInst>(FalseVal); 3688 if (isa<UndefValue>(MaskedInst->getArgOperand(3))) 3689 MaskedInst->setArgOperand(3, TrueVal /* Zero */); 3690 return replaceInstUsesWith(SI, MaskedInst); 3691 } 3692 } 3693 3694 if (Instruction *I = foldNestedSelects(SI, Builder)) 3695 return I; 3696 3697 // Match logical variants of the pattern, 3698 // and transform them iff that gets rid of inversions. 3699 // (~x) | y --> ~(x & (~y)) 3700 // (~x) & y --> ~(x | (~y)) 3701 if (sinkNotIntoOtherHandOfLogicalOp(SI)) 3702 return &SI; 3703 3704 if (Instruction *I = foldBitCeil(SI, Builder)) 3705 return I; 3706 3707 return nullptr; 3708 } 3709