1 //===- InstCombinePHI.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitPHINode function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Transforms/Utils/Local.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/IR/PatternMatch.h" 20 using namespace llvm; 21 using namespace llvm::PatternMatch; 22 23 #define DEBUG_TYPE "instcombine" 24 25 static cl::opt<unsigned> 26 MaxNumPhis("instcombine-max-num-phis", cl::init(512), 27 cl::desc("Maximum number phis to handle in intptr/ptrint folding")); 28 29 /// The PHI arguments will be folded into a single operation with a PHI node 30 /// as input. The debug location of the single operation will be the merged 31 /// locations of the original PHI node arguments. 32 void InstCombiner::PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN) { 33 auto *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); 34 Inst->setDebugLoc(FirstInst->getDebugLoc()); 35 // We do not expect a CallInst here, otherwise, N-way merging of DebugLoc 36 // will be inefficient. 37 assert(!isa<CallInst>(Inst)); 38 39 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { 40 auto *I = cast<Instruction>(PN.getIncomingValue(i)); 41 Inst->applyMergedLocation(Inst->getDebugLoc(), I->getDebugLoc()); 42 } 43 } 44 45 // Replace Integer typed PHI PN if the PHI's value is used as a pointer value. 46 // If there is an existing pointer typed PHI that produces the same value as PN, 47 // replace PN and the IntToPtr operation with it. Otherwise, synthesize a new 48 // PHI node: 49 // 50 // Case-1: 51 // bb1: 52 // int_init = PtrToInt(ptr_init) 53 // br label %bb2 54 // bb2: 55 // int_val = PHI([int_init, %bb1], [int_val_inc, %bb2] 56 // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2] 57 // ptr_val2 = IntToPtr(int_val) 58 // ... 59 // use(ptr_val2) 60 // ptr_val_inc = ... 61 // inc_val_inc = PtrToInt(ptr_val_inc) 62 // 63 // ==> 64 // bb1: 65 // br label %bb2 66 // bb2: 67 // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2] 68 // ... 69 // use(ptr_val) 70 // ptr_val_inc = ... 71 // 72 // Case-2: 73 // bb1: 74 // int_ptr = BitCast(ptr_ptr) 75 // int_init = Load(int_ptr) 76 // br label %bb2 77 // bb2: 78 // int_val = PHI([int_init, %bb1], [int_val_inc, %bb2] 79 // ptr_val2 = IntToPtr(int_val) 80 // ... 81 // use(ptr_val2) 82 // ptr_val_inc = ... 83 // inc_val_inc = PtrToInt(ptr_val_inc) 84 // ==> 85 // bb1: 86 // ptr_init = Load(ptr_ptr) 87 // br label %bb2 88 // bb2: 89 // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2] 90 // ... 91 // use(ptr_val) 92 // ptr_val_inc = ... 93 // ... 94 // 95 Instruction *InstCombiner::FoldIntegerTypedPHI(PHINode &PN) { 96 if (!PN.getType()->isIntegerTy()) 97 return nullptr; 98 if (!PN.hasOneUse()) 99 return nullptr; 100 101 auto *IntToPtr = dyn_cast<IntToPtrInst>(PN.user_back()); 102 if (!IntToPtr) 103 return nullptr; 104 105 // Check if the pointer is actually used as pointer: 106 auto HasPointerUse = [](Instruction *IIP) { 107 for (User *U : IIP->users()) { 108 Value *Ptr = nullptr; 109 if (LoadInst *LoadI = dyn_cast<LoadInst>(U)) { 110 Ptr = LoadI->getPointerOperand(); 111 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 112 Ptr = SI->getPointerOperand(); 113 } else if (GetElementPtrInst *GI = dyn_cast<GetElementPtrInst>(U)) { 114 Ptr = GI->getPointerOperand(); 115 } 116 117 if (Ptr && Ptr == IIP) 118 return true; 119 } 120 return false; 121 }; 122 123 if (!HasPointerUse(IntToPtr)) 124 return nullptr; 125 126 if (DL.getPointerSizeInBits(IntToPtr->getAddressSpace()) != 127 DL.getTypeSizeInBits(IntToPtr->getOperand(0)->getType())) 128 return nullptr; 129 130 SmallVector<Value *, 4> AvailablePtrVals; 131 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) { 132 Value *Arg = PN.getIncomingValue(i); 133 134 // First look backward: 135 if (auto *PI = dyn_cast<PtrToIntInst>(Arg)) { 136 AvailablePtrVals.emplace_back(PI->getOperand(0)); 137 continue; 138 } 139 140 // Next look forward: 141 Value *ArgIntToPtr = nullptr; 142 for (User *U : Arg->users()) { 143 if (isa<IntToPtrInst>(U) && U->getType() == IntToPtr->getType() && 144 (DT.dominates(cast<Instruction>(U), PN.getIncomingBlock(i)) || 145 cast<Instruction>(U)->getParent() == PN.getIncomingBlock(i))) { 146 ArgIntToPtr = U; 147 break; 148 } 149 } 150 151 if (ArgIntToPtr) { 152 AvailablePtrVals.emplace_back(ArgIntToPtr); 153 continue; 154 } 155 156 // If Arg is defined by a PHI, allow it. This will also create 157 // more opportunities iteratively. 158 if (isa<PHINode>(Arg)) { 159 AvailablePtrVals.emplace_back(Arg); 160 continue; 161 } 162 163 // For a single use integer load: 164 auto *LoadI = dyn_cast<LoadInst>(Arg); 165 if (!LoadI) 166 return nullptr; 167 168 if (!LoadI->hasOneUse()) 169 return nullptr; 170 171 // Push the integer typed Load instruction into the available 172 // value set, and fix it up later when the pointer typed PHI 173 // is synthesized. 174 AvailablePtrVals.emplace_back(LoadI); 175 } 176 177 // Now search for a matching PHI 178 auto *BB = PN.getParent(); 179 assert(AvailablePtrVals.size() == PN.getNumIncomingValues() && 180 "Not enough available ptr typed incoming values"); 181 PHINode *MatchingPtrPHI = nullptr; 182 unsigned NumPhis = 0; 183 for (auto II = BB->begin(), EI = BasicBlock::iterator(BB->getFirstNonPHI()); 184 II != EI; II++, NumPhis++) { 185 // FIXME: consider handling this in AggressiveInstCombine 186 if (NumPhis > MaxNumPhis) 187 return nullptr; 188 PHINode *PtrPHI = dyn_cast<PHINode>(II); 189 if (!PtrPHI || PtrPHI == &PN || PtrPHI->getType() != IntToPtr->getType()) 190 continue; 191 MatchingPtrPHI = PtrPHI; 192 for (unsigned i = 0; i != PtrPHI->getNumIncomingValues(); ++i) { 193 if (AvailablePtrVals[i] != 194 PtrPHI->getIncomingValueForBlock(PN.getIncomingBlock(i))) { 195 MatchingPtrPHI = nullptr; 196 break; 197 } 198 } 199 200 if (MatchingPtrPHI) 201 break; 202 } 203 204 if (MatchingPtrPHI) { 205 assert(MatchingPtrPHI->getType() == IntToPtr->getType() && 206 "Phi's Type does not match with IntToPtr"); 207 // The PtrToCast + IntToPtr will be simplified later 208 return CastInst::CreateBitOrPointerCast(MatchingPtrPHI, 209 IntToPtr->getOperand(0)->getType()); 210 } 211 212 // If it requires a conversion for every PHI operand, do not do it. 213 if (all_of(AvailablePtrVals, [&](Value *V) { 214 return (V->getType() != IntToPtr->getType()) || isa<IntToPtrInst>(V); 215 })) 216 return nullptr; 217 218 // If any of the operand that requires casting is a terminator 219 // instruction, do not do it. 220 if (any_of(AvailablePtrVals, [&](Value *V) { 221 if (V->getType() == IntToPtr->getType()) 222 return false; 223 224 auto *Inst = dyn_cast<Instruction>(V); 225 return Inst && Inst->isTerminator(); 226 })) 227 return nullptr; 228 229 PHINode *NewPtrPHI = PHINode::Create( 230 IntToPtr->getType(), PN.getNumIncomingValues(), PN.getName() + ".ptr"); 231 232 InsertNewInstBefore(NewPtrPHI, PN); 233 SmallDenseMap<Value *, Instruction *> Casts; 234 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) { 235 auto *IncomingBB = PN.getIncomingBlock(i); 236 auto *IncomingVal = AvailablePtrVals[i]; 237 238 if (IncomingVal->getType() == IntToPtr->getType()) { 239 NewPtrPHI->addIncoming(IncomingVal, IncomingBB); 240 continue; 241 } 242 243 #ifndef NDEBUG 244 LoadInst *LoadI = dyn_cast<LoadInst>(IncomingVal); 245 assert((isa<PHINode>(IncomingVal) || 246 IncomingVal->getType()->isPointerTy() || 247 (LoadI && LoadI->hasOneUse())) && 248 "Can not replace LoadInst with multiple uses"); 249 #endif 250 // Need to insert a BitCast. 251 // For an integer Load instruction with a single use, the load + IntToPtr 252 // cast will be simplified into a pointer load: 253 // %v = load i64, i64* %a.ip, align 8 254 // %v.cast = inttoptr i64 %v to float ** 255 // ==> 256 // %v.ptrp = bitcast i64 * %a.ip to float ** 257 // %v.cast = load float *, float ** %v.ptrp, align 8 258 Instruction *&CI = Casts[IncomingVal]; 259 if (!CI) { 260 CI = CastInst::CreateBitOrPointerCast(IncomingVal, IntToPtr->getType(), 261 IncomingVal->getName() + ".ptr"); 262 if (auto *IncomingI = dyn_cast<Instruction>(IncomingVal)) { 263 BasicBlock::iterator InsertPos(IncomingI); 264 InsertPos++; 265 if (isa<PHINode>(IncomingI)) 266 InsertPos = IncomingI->getParent()->getFirstInsertionPt(); 267 InsertNewInstBefore(CI, *InsertPos); 268 } else { 269 auto *InsertBB = &IncomingBB->getParent()->getEntryBlock(); 270 InsertNewInstBefore(CI, *InsertBB->getFirstInsertionPt()); 271 } 272 } 273 NewPtrPHI->addIncoming(CI, IncomingBB); 274 } 275 276 // The PtrToCast + IntToPtr will be simplified later 277 return CastInst::CreateBitOrPointerCast(NewPtrPHI, 278 IntToPtr->getOperand(0)->getType()); 279 } 280 281 /// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the 282 /// adds all have a single use, turn this into a phi and a single binop. 283 Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) { 284 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); 285 assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)); 286 unsigned Opc = FirstInst->getOpcode(); 287 Value *LHSVal = FirstInst->getOperand(0); 288 Value *RHSVal = FirstInst->getOperand(1); 289 290 Type *LHSType = LHSVal->getType(); 291 Type *RHSType = RHSVal->getType(); 292 293 // Scan to see if all operands are the same opcode, and all have one use. 294 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { 295 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i)); 296 if (!I || I->getOpcode() != Opc || !I->hasOneUse() || 297 // Verify type of the LHS matches so we don't fold cmp's of different 298 // types. 299 I->getOperand(0)->getType() != LHSType || 300 I->getOperand(1)->getType() != RHSType) 301 return nullptr; 302 303 // If they are CmpInst instructions, check their predicates 304 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 305 if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate()) 306 return nullptr; 307 308 // Keep track of which operand needs a phi node. 309 if (I->getOperand(0) != LHSVal) LHSVal = nullptr; 310 if (I->getOperand(1) != RHSVal) RHSVal = nullptr; 311 } 312 313 // If both LHS and RHS would need a PHI, don't do this transformation, 314 // because it would increase the number of PHIs entering the block, 315 // which leads to higher register pressure. This is especially 316 // bad when the PHIs are in the header of a loop. 317 if (!LHSVal && !RHSVal) 318 return nullptr; 319 320 // Otherwise, this is safe to transform! 321 322 Value *InLHS = FirstInst->getOperand(0); 323 Value *InRHS = FirstInst->getOperand(1); 324 PHINode *NewLHS = nullptr, *NewRHS = nullptr; 325 if (!LHSVal) { 326 NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(), 327 FirstInst->getOperand(0)->getName() + ".pn"); 328 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0)); 329 InsertNewInstBefore(NewLHS, PN); 330 LHSVal = NewLHS; 331 } 332 333 if (!RHSVal) { 334 NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(), 335 FirstInst->getOperand(1)->getName() + ".pn"); 336 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0)); 337 InsertNewInstBefore(NewRHS, PN); 338 RHSVal = NewRHS; 339 } 340 341 // Add all operands to the new PHIs. 342 if (NewLHS || NewRHS) { 343 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 344 Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i)); 345 if (NewLHS) { 346 Value *NewInLHS = InInst->getOperand(0); 347 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i)); 348 } 349 if (NewRHS) { 350 Value *NewInRHS = InInst->getOperand(1); 351 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i)); 352 } 353 } 354 } 355 356 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) { 357 CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), 358 LHSVal, RHSVal); 359 PHIArgMergedDebugLoc(NewCI, PN); 360 return NewCI; 361 } 362 363 BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst); 364 BinaryOperator *NewBinOp = 365 BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal); 366 367 NewBinOp->copyIRFlags(PN.getIncomingValue(0)); 368 369 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) 370 NewBinOp->andIRFlags(PN.getIncomingValue(i)); 371 372 PHIArgMergedDebugLoc(NewBinOp, PN); 373 return NewBinOp; 374 } 375 376 Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) { 377 GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0)); 378 379 SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(), 380 FirstInst->op_end()); 381 // This is true if all GEP bases are allocas and if all indices into them are 382 // constants. 383 bool AllBasePointersAreAllocas = true; 384 385 // We don't want to replace this phi if the replacement would require 386 // more than one phi, which leads to higher register pressure. This is 387 // especially bad when the PHIs are in the header of a loop. 388 bool NeededPhi = false; 389 390 bool AllInBounds = true; 391 392 // Scan to see if all operands are the same opcode, and all have one use. 393 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { 394 GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i)); 395 if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() || 396 GEP->getNumOperands() != FirstInst->getNumOperands()) 397 return nullptr; 398 399 AllInBounds &= GEP->isInBounds(); 400 401 // Keep track of whether or not all GEPs are of alloca pointers. 402 if (AllBasePointersAreAllocas && 403 (!isa<AllocaInst>(GEP->getOperand(0)) || 404 !GEP->hasAllConstantIndices())) 405 AllBasePointersAreAllocas = false; 406 407 // Compare the operand lists. 408 for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) { 409 if (FirstInst->getOperand(op) == GEP->getOperand(op)) 410 continue; 411 412 // Don't merge two GEPs when two operands differ (introducing phi nodes) 413 // if one of the PHIs has a constant for the index. The index may be 414 // substantially cheaper to compute for the constants, so making it a 415 // variable index could pessimize the path. This also handles the case 416 // for struct indices, which must always be constant. 417 if (isa<ConstantInt>(FirstInst->getOperand(op)) || 418 isa<ConstantInt>(GEP->getOperand(op))) 419 return nullptr; 420 421 if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType()) 422 return nullptr; 423 424 // If we already needed a PHI for an earlier operand, and another operand 425 // also requires a PHI, we'd be introducing more PHIs than we're 426 // eliminating, which increases register pressure on entry to the PHI's 427 // block. 428 if (NeededPhi) 429 return nullptr; 430 431 FixedOperands[op] = nullptr; // Needs a PHI. 432 NeededPhi = true; 433 } 434 } 435 436 // If all of the base pointers of the PHI'd GEPs are from allocas, don't 437 // bother doing this transformation. At best, this will just save a bit of 438 // offset calculation, but all the predecessors will have to materialize the 439 // stack address into a register anyway. We'd actually rather *clone* the 440 // load up into the predecessors so that we have a load of a gep of an alloca, 441 // which can usually all be folded into the load. 442 if (AllBasePointersAreAllocas) 443 return nullptr; 444 445 // Otherwise, this is safe to transform. Insert PHI nodes for each operand 446 // that is variable. 447 SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size()); 448 449 bool HasAnyPHIs = false; 450 for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) { 451 if (FixedOperands[i]) continue; // operand doesn't need a phi. 452 Value *FirstOp = FirstInst->getOperand(i); 453 PHINode *NewPN = PHINode::Create(FirstOp->getType(), e, 454 FirstOp->getName()+".pn"); 455 InsertNewInstBefore(NewPN, PN); 456 457 NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0)); 458 OperandPhis[i] = NewPN; 459 FixedOperands[i] = NewPN; 460 HasAnyPHIs = true; 461 } 462 463 464 // Add all operands to the new PHIs. 465 if (HasAnyPHIs) { 466 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 467 GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i)); 468 BasicBlock *InBB = PN.getIncomingBlock(i); 469 470 for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op) 471 if (PHINode *OpPhi = OperandPhis[op]) 472 OpPhi->addIncoming(InGEP->getOperand(op), InBB); 473 } 474 } 475 476 Value *Base = FixedOperands[0]; 477 GetElementPtrInst *NewGEP = 478 GetElementPtrInst::Create(FirstInst->getSourceElementType(), Base, 479 makeArrayRef(FixedOperands).slice(1)); 480 if (AllInBounds) NewGEP->setIsInBounds(); 481 PHIArgMergedDebugLoc(NewGEP, PN); 482 return NewGEP; 483 } 484 485 486 /// Return true if we know that it is safe to sink the load out of the block 487 /// that defines it. This means that it must be obvious the value of the load is 488 /// not changed from the point of the load to the end of the block it is in. 489 /// 490 /// Finally, it is safe, but not profitable, to sink a load targeting a 491 /// non-address-taken alloca. Doing so will cause us to not promote the alloca 492 /// to a register. 493 static bool isSafeAndProfitableToSinkLoad(LoadInst *L) { 494 BasicBlock::iterator BBI = L->getIterator(), E = L->getParent()->end(); 495 496 for (++BBI; BBI != E; ++BBI) 497 if (BBI->mayWriteToMemory()) 498 return false; 499 500 // Check for non-address taken alloca. If not address-taken already, it isn't 501 // profitable to do this xform. 502 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) { 503 bool isAddressTaken = false; 504 for (User *U : AI->users()) { 505 if (isa<LoadInst>(U)) continue; 506 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 507 // If storing TO the alloca, then the address isn't taken. 508 if (SI->getOperand(1) == AI) continue; 509 } 510 isAddressTaken = true; 511 break; 512 } 513 514 if (!isAddressTaken && AI->isStaticAlloca()) 515 return false; 516 } 517 518 // If this load is a load from a GEP with a constant offset from an alloca, 519 // then we don't want to sink it. In its present form, it will be 520 // load [constant stack offset]. Sinking it will cause us to have to 521 // materialize the stack addresses in each predecessor in a register only to 522 // do a shared load from register in the successor. 523 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0))) 524 if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0))) 525 if (AI->isStaticAlloca() && GEP->hasAllConstantIndices()) 526 return false; 527 528 return true; 529 } 530 531 Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) { 532 LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0)); 533 534 // FIXME: This is overconservative; this transform is allowed in some cases 535 // for atomic operations. 536 if (FirstLI->isAtomic()) 537 return nullptr; 538 539 // When processing loads, we need to propagate two bits of information to the 540 // sunk load: whether it is volatile, and what its alignment is. We currently 541 // don't sink loads when some have their alignment specified and some don't. 542 // visitLoadInst will propagate an alignment onto the load when TD is around, 543 // and if TD isn't around, we can't handle the mixed case. 544 bool isVolatile = FirstLI->isVolatile(); 545 MaybeAlign LoadAlignment(FirstLI->getAlignment()); 546 unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace(); 547 548 // We can't sink the load if the loaded value could be modified between the 549 // load and the PHI. 550 if (FirstLI->getParent() != PN.getIncomingBlock(0) || 551 !isSafeAndProfitableToSinkLoad(FirstLI)) 552 return nullptr; 553 554 // If the PHI is of volatile loads and the load block has multiple 555 // successors, sinking it would remove a load of the volatile value from 556 // the path through the other successor. 557 if (isVolatile && 558 FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1) 559 return nullptr; 560 561 // Check to see if all arguments are the same operation. 562 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 563 LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i)); 564 if (!LI || !LI->hasOneUse()) 565 return nullptr; 566 567 // We can't sink the load if the loaded value could be modified between 568 // the load and the PHI. 569 if (LI->isVolatile() != isVolatile || 570 LI->getParent() != PN.getIncomingBlock(i) || 571 LI->getPointerAddressSpace() != LoadAddrSpace || 572 !isSafeAndProfitableToSinkLoad(LI)) 573 return nullptr; 574 575 // If some of the loads have an alignment specified but not all of them, 576 // we can't do the transformation. 577 if ((LoadAlignment.hasValue()) != (LI->getAlignment() != 0)) 578 return nullptr; 579 580 LoadAlignment = std::min(LoadAlignment, MaybeAlign(LI->getAlignment())); 581 582 // If the PHI is of volatile loads and the load block has multiple 583 // successors, sinking it would remove a load of the volatile value from 584 // the path through the other successor. 585 if (isVolatile && 586 LI->getParent()->getTerminator()->getNumSuccessors() != 1) 587 return nullptr; 588 } 589 590 // Okay, they are all the same operation. Create a new PHI node of the 591 // correct type, and PHI together all of the LHS's of the instructions. 592 PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(), 593 PN.getNumIncomingValues(), 594 PN.getName()+".in"); 595 596 Value *InVal = FirstLI->getOperand(0); 597 NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); 598 LoadInst *NewLI = 599 new LoadInst(FirstLI->getType(), NewPN, "", isVolatile, LoadAlignment); 600 601 unsigned KnownIDs[] = { 602 LLVMContext::MD_tbaa, 603 LLVMContext::MD_range, 604 LLVMContext::MD_invariant_load, 605 LLVMContext::MD_alias_scope, 606 LLVMContext::MD_noalias, 607 LLVMContext::MD_nonnull, 608 LLVMContext::MD_align, 609 LLVMContext::MD_dereferenceable, 610 LLVMContext::MD_dereferenceable_or_null, 611 LLVMContext::MD_access_group, 612 }; 613 614 for (unsigned ID : KnownIDs) 615 NewLI->setMetadata(ID, FirstLI->getMetadata(ID)); 616 617 // Add all operands to the new PHI and combine TBAA metadata. 618 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 619 LoadInst *LI = cast<LoadInst>(PN.getIncomingValue(i)); 620 combineMetadata(NewLI, LI, KnownIDs, true); 621 Value *NewInVal = LI->getOperand(0); 622 if (NewInVal != InVal) 623 InVal = nullptr; 624 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i)); 625 } 626 627 if (InVal) { 628 // The new PHI unions all of the same values together. This is really 629 // common, so we handle it intelligently here for compile-time speed. 630 NewLI->setOperand(0, InVal); 631 delete NewPN; 632 } else { 633 InsertNewInstBefore(NewPN, PN); 634 } 635 636 // If this was a volatile load that we are merging, make sure to loop through 637 // and mark all the input loads as non-volatile. If we don't do this, we will 638 // insert a new volatile load and the old ones will not be deletable. 639 if (isVolatile) 640 for (Value *IncValue : PN.incoming_values()) 641 cast<LoadInst>(IncValue)->setVolatile(false); 642 643 PHIArgMergedDebugLoc(NewLI, PN); 644 return NewLI; 645 } 646 647 /// TODO: This function could handle other cast types, but then it might 648 /// require special-casing a cast from the 'i1' type. See the comment in 649 /// FoldPHIArgOpIntoPHI() about pessimizing illegal integer types. 650 Instruction *InstCombiner::FoldPHIArgZextsIntoPHI(PHINode &Phi) { 651 // We cannot create a new instruction after the PHI if the terminator is an 652 // EHPad because there is no valid insertion point. 653 if (Instruction *TI = Phi.getParent()->getTerminator()) 654 if (TI->isEHPad()) 655 return nullptr; 656 657 // Early exit for the common case of a phi with two operands. These are 658 // handled elsewhere. See the comment below where we check the count of zexts 659 // and constants for more details. 660 unsigned NumIncomingValues = Phi.getNumIncomingValues(); 661 if (NumIncomingValues < 3) 662 return nullptr; 663 664 // Find the narrower type specified by the first zext. 665 Type *NarrowType = nullptr; 666 for (Value *V : Phi.incoming_values()) { 667 if (auto *Zext = dyn_cast<ZExtInst>(V)) { 668 NarrowType = Zext->getSrcTy(); 669 break; 670 } 671 } 672 if (!NarrowType) 673 return nullptr; 674 675 // Walk the phi operands checking that we only have zexts or constants that 676 // we can shrink for free. Store the new operands for the new phi. 677 SmallVector<Value *, 4> NewIncoming; 678 unsigned NumZexts = 0; 679 unsigned NumConsts = 0; 680 for (Value *V : Phi.incoming_values()) { 681 if (auto *Zext = dyn_cast<ZExtInst>(V)) { 682 // All zexts must be identical and have one use. 683 if (Zext->getSrcTy() != NarrowType || !Zext->hasOneUse()) 684 return nullptr; 685 NewIncoming.push_back(Zext->getOperand(0)); 686 NumZexts++; 687 } else if (auto *C = dyn_cast<Constant>(V)) { 688 // Make sure that constants can fit in the new type. 689 Constant *Trunc = ConstantExpr::getTrunc(C, NarrowType); 690 if (ConstantExpr::getZExt(Trunc, C->getType()) != C) 691 return nullptr; 692 NewIncoming.push_back(Trunc); 693 NumConsts++; 694 } else { 695 // If it's not a cast or a constant, bail out. 696 return nullptr; 697 } 698 } 699 700 // The more common cases of a phi with no constant operands or just one 701 // variable operand are handled by FoldPHIArgOpIntoPHI() and foldOpIntoPhi() 702 // respectively. foldOpIntoPhi() wants to do the opposite transform that is 703 // performed here. It tries to replicate a cast in the phi operand's basic 704 // block to expose other folding opportunities. Thus, InstCombine will 705 // infinite loop without this check. 706 if (NumConsts == 0 || NumZexts < 2) 707 return nullptr; 708 709 // All incoming values are zexts or constants that are safe to truncate. 710 // Create a new phi node of the narrow type, phi together all of the new 711 // operands, and zext the result back to the original type. 712 PHINode *NewPhi = PHINode::Create(NarrowType, NumIncomingValues, 713 Phi.getName() + ".shrunk"); 714 for (unsigned i = 0; i != NumIncomingValues; ++i) 715 NewPhi->addIncoming(NewIncoming[i], Phi.getIncomingBlock(i)); 716 717 InsertNewInstBefore(NewPhi, Phi); 718 return CastInst::CreateZExtOrBitCast(NewPhi, Phi.getType()); 719 } 720 721 /// If all operands to a PHI node are the same "unary" operator and they all are 722 /// only used by the PHI, PHI together their inputs, and do the operation once, 723 /// to the result of the PHI. 724 Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) { 725 // We cannot create a new instruction after the PHI if the terminator is an 726 // EHPad because there is no valid insertion point. 727 if (Instruction *TI = PN.getParent()->getTerminator()) 728 if (TI->isEHPad()) 729 return nullptr; 730 731 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); 732 733 if (isa<GetElementPtrInst>(FirstInst)) 734 return FoldPHIArgGEPIntoPHI(PN); 735 if (isa<LoadInst>(FirstInst)) 736 return FoldPHIArgLoadIntoPHI(PN); 737 738 // Scan the instruction, looking for input operations that can be folded away. 739 // If all input operands to the phi are the same instruction (e.g. a cast from 740 // the same type or "+42") we can pull the operation through the PHI, reducing 741 // code size and simplifying code. 742 Constant *ConstantOp = nullptr; 743 Type *CastSrcTy = nullptr; 744 745 if (isa<CastInst>(FirstInst)) { 746 CastSrcTy = FirstInst->getOperand(0)->getType(); 747 748 // Be careful about transforming integer PHIs. We don't want to pessimize 749 // the code by turning an i32 into an i1293. 750 if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) { 751 if (!shouldChangeType(PN.getType(), CastSrcTy)) 752 return nullptr; 753 } 754 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) { 755 // Can fold binop, compare or shift here if the RHS is a constant, 756 // otherwise call FoldPHIArgBinOpIntoPHI. 757 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1)); 758 if (!ConstantOp) 759 return FoldPHIArgBinOpIntoPHI(PN); 760 } else { 761 return nullptr; // Cannot fold this operation. 762 } 763 764 // Check to see if all arguments are the same operation. 765 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 766 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i)); 767 if (!I || !I->hasOneUse() || !I->isSameOperationAs(FirstInst)) 768 return nullptr; 769 if (CastSrcTy) { 770 if (I->getOperand(0)->getType() != CastSrcTy) 771 return nullptr; // Cast operation must match. 772 } else if (I->getOperand(1) != ConstantOp) { 773 return nullptr; 774 } 775 } 776 777 // Okay, they are all the same operation. Create a new PHI node of the 778 // correct type, and PHI together all of the LHS's of the instructions. 779 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(), 780 PN.getNumIncomingValues(), 781 PN.getName()+".in"); 782 783 Value *InVal = FirstInst->getOperand(0); 784 NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); 785 786 // Add all operands to the new PHI. 787 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 788 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0); 789 if (NewInVal != InVal) 790 InVal = nullptr; 791 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i)); 792 } 793 794 Value *PhiVal; 795 if (InVal) { 796 // The new PHI unions all of the same values together. This is really 797 // common, so we handle it intelligently here for compile-time speed. 798 PhiVal = InVal; 799 delete NewPN; 800 } else { 801 InsertNewInstBefore(NewPN, PN); 802 PhiVal = NewPN; 803 } 804 805 // Insert and return the new operation. 806 if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) { 807 CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal, 808 PN.getType()); 809 PHIArgMergedDebugLoc(NewCI, PN); 810 return NewCI; 811 } 812 813 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) { 814 BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp); 815 BinOp->copyIRFlags(PN.getIncomingValue(0)); 816 817 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) 818 BinOp->andIRFlags(PN.getIncomingValue(i)); 819 820 PHIArgMergedDebugLoc(BinOp, PN); 821 return BinOp; 822 } 823 824 CmpInst *CIOp = cast<CmpInst>(FirstInst); 825 CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), 826 PhiVal, ConstantOp); 827 PHIArgMergedDebugLoc(NewCI, PN); 828 return NewCI; 829 } 830 831 /// Return true if this PHI node is only used by a PHI node cycle that is dead. 832 static bool DeadPHICycle(PHINode *PN, 833 SmallPtrSetImpl<PHINode*> &PotentiallyDeadPHIs) { 834 if (PN->use_empty()) return true; 835 if (!PN->hasOneUse()) return false; 836 837 // Remember this node, and if we find the cycle, return. 838 if (!PotentiallyDeadPHIs.insert(PN).second) 839 return true; 840 841 // Don't scan crazily complex things. 842 if (PotentiallyDeadPHIs.size() == 16) 843 return false; 844 845 if (PHINode *PU = dyn_cast<PHINode>(PN->user_back())) 846 return DeadPHICycle(PU, PotentiallyDeadPHIs); 847 848 return false; 849 } 850 851 /// Return true if this phi node is always equal to NonPhiInVal. 852 /// This happens with mutually cyclic phi nodes like: 853 /// z = some value; x = phi (y, z); y = phi (x, z) 854 static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal, 855 SmallPtrSetImpl<PHINode*> &ValueEqualPHIs) { 856 // See if we already saw this PHI node. 857 if (!ValueEqualPHIs.insert(PN).second) 858 return true; 859 860 // Don't scan crazily complex things. 861 if (ValueEqualPHIs.size() == 16) 862 return false; 863 864 // Scan the operands to see if they are either phi nodes or are equal to 865 // the value. 866 for (Value *Op : PN->incoming_values()) { 867 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) { 868 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs)) 869 return false; 870 } else if (Op != NonPhiInVal) 871 return false; 872 } 873 874 return true; 875 } 876 877 /// Return an existing non-zero constant if this phi node has one, otherwise 878 /// return constant 1. 879 static ConstantInt *GetAnyNonZeroConstInt(PHINode &PN) { 880 assert(isa<IntegerType>(PN.getType()) && "Expect only integer type phi"); 881 for (Value *V : PN.operands()) 882 if (auto *ConstVA = dyn_cast<ConstantInt>(V)) 883 if (!ConstVA->isZero()) 884 return ConstVA; 885 return ConstantInt::get(cast<IntegerType>(PN.getType()), 1); 886 } 887 888 namespace { 889 struct PHIUsageRecord { 890 unsigned PHIId; // The ID # of the PHI (something determinstic to sort on) 891 unsigned Shift; // The amount shifted. 892 Instruction *Inst; // The trunc instruction. 893 894 PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User) 895 : PHIId(pn), Shift(Sh), Inst(User) {} 896 897 bool operator<(const PHIUsageRecord &RHS) const { 898 if (PHIId < RHS.PHIId) return true; 899 if (PHIId > RHS.PHIId) return false; 900 if (Shift < RHS.Shift) return true; 901 if (Shift > RHS.Shift) return false; 902 return Inst->getType()->getPrimitiveSizeInBits() < 903 RHS.Inst->getType()->getPrimitiveSizeInBits(); 904 } 905 }; 906 907 struct LoweredPHIRecord { 908 PHINode *PN; // The PHI that was lowered. 909 unsigned Shift; // The amount shifted. 910 unsigned Width; // The width extracted. 911 912 LoweredPHIRecord(PHINode *pn, unsigned Sh, Type *Ty) 913 : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {} 914 915 // Ctor form used by DenseMap. 916 LoweredPHIRecord(PHINode *pn, unsigned Sh) 917 : PN(pn), Shift(Sh), Width(0) {} 918 }; 919 } 920 921 namespace llvm { 922 template<> 923 struct DenseMapInfo<LoweredPHIRecord> { 924 static inline LoweredPHIRecord getEmptyKey() { 925 return LoweredPHIRecord(nullptr, 0); 926 } 927 static inline LoweredPHIRecord getTombstoneKey() { 928 return LoweredPHIRecord(nullptr, 1); 929 } 930 static unsigned getHashValue(const LoweredPHIRecord &Val) { 931 return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^ 932 (Val.Width>>3); 933 } 934 static bool isEqual(const LoweredPHIRecord &LHS, 935 const LoweredPHIRecord &RHS) { 936 return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift && 937 LHS.Width == RHS.Width; 938 } 939 }; 940 } 941 942 943 /// This is an integer PHI and we know that it has an illegal type: see if it is 944 /// only used by trunc or trunc(lshr) operations. If so, we split the PHI into 945 /// the various pieces being extracted. This sort of thing is introduced when 946 /// SROA promotes an aggregate to large integer values. 947 /// 948 /// TODO: The user of the trunc may be an bitcast to float/double/vector or an 949 /// inttoptr. We should produce new PHIs in the right type. 950 /// 951 Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) { 952 // PHIUsers - Keep track of all of the truncated values extracted from a set 953 // of PHIs, along with their offset. These are the things we want to rewrite. 954 SmallVector<PHIUsageRecord, 16> PHIUsers; 955 956 // PHIs are often mutually cyclic, so we keep track of a whole set of PHI 957 // nodes which are extracted from. PHIsToSlice is a set we use to avoid 958 // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to 959 // check the uses of (to ensure they are all extracts). 960 SmallVector<PHINode*, 8> PHIsToSlice; 961 SmallPtrSet<PHINode*, 8> PHIsInspected; 962 963 PHIsToSlice.push_back(&FirstPhi); 964 PHIsInspected.insert(&FirstPhi); 965 966 for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) { 967 PHINode *PN = PHIsToSlice[PHIId]; 968 969 // Scan the input list of the PHI. If any input is an invoke, and if the 970 // input is defined in the predecessor, then we won't be split the critical 971 // edge which is required to insert a truncate. Because of this, we have to 972 // bail out. 973 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 974 InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i)); 975 if (!II) continue; 976 if (II->getParent() != PN->getIncomingBlock(i)) 977 continue; 978 979 // If we have a phi, and if it's directly in the predecessor, then we have 980 // a critical edge where we need to put the truncate. Since we can't 981 // split the edge in instcombine, we have to bail out. 982 return nullptr; 983 } 984 985 for (User *U : PN->users()) { 986 Instruction *UserI = cast<Instruction>(U); 987 988 // If the user is a PHI, inspect its uses recursively. 989 if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) { 990 if (PHIsInspected.insert(UserPN).second) 991 PHIsToSlice.push_back(UserPN); 992 continue; 993 } 994 995 // Truncates are always ok. 996 if (isa<TruncInst>(UserI)) { 997 PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI)); 998 continue; 999 } 1000 1001 // Otherwise it must be a lshr which can only be used by one trunc. 1002 if (UserI->getOpcode() != Instruction::LShr || 1003 !UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) || 1004 !isa<ConstantInt>(UserI->getOperand(1))) 1005 return nullptr; 1006 1007 // Bail on out of range shifts. 1008 unsigned SizeInBits = UserI->getType()->getScalarSizeInBits(); 1009 if (cast<ConstantInt>(UserI->getOperand(1))->getValue().uge(SizeInBits)) 1010 return nullptr; 1011 1012 unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue(); 1013 PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back())); 1014 } 1015 } 1016 1017 // If we have no users, they must be all self uses, just nuke the PHI. 1018 if (PHIUsers.empty()) 1019 return replaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType())); 1020 1021 // If this phi node is transformable, create new PHIs for all the pieces 1022 // extracted out of it. First, sort the users by their offset and size. 1023 array_pod_sort(PHIUsers.begin(), PHIUsers.end()); 1024 1025 LLVM_DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n'; 1026 for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i) dbgs() 1027 << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] << '\n';); 1028 1029 // PredValues - This is a temporary used when rewriting PHI nodes. It is 1030 // hoisted out here to avoid construction/destruction thrashing. 1031 DenseMap<BasicBlock*, Value*> PredValues; 1032 1033 // ExtractedVals - Each new PHI we introduce is saved here so we don't 1034 // introduce redundant PHIs. 1035 DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals; 1036 1037 for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) { 1038 unsigned PHIId = PHIUsers[UserI].PHIId; 1039 PHINode *PN = PHIsToSlice[PHIId]; 1040 unsigned Offset = PHIUsers[UserI].Shift; 1041 Type *Ty = PHIUsers[UserI].Inst->getType(); 1042 1043 PHINode *EltPHI; 1044 1045 // If we've already lowered a user like this, reuse the previously lowered 1046 // value. 1047 if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) { 1048 1049 // Otherwise, Create the new PHI node for this user. 1050 EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(), 1051 PN->getName()+".off"+Twine(Offset), PN); 1052 assert(EltPHI->getType() != PN->getType() && 1053 "Truncate didn't shrink phi?"); 1054 1055 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1056 BasicBlock *Pred = PN->getIncomingBlock(i); 1057 Value *&PredVal = PredValues[Pred]; 1058 1059 // If we already have a value for this predecessor, reuse it. 1060 if (PredVal) { 1061 EltPHI->addIncoming(PredVal, Pred); 1062 continue; 1063 } 1064 1065 // Handle the PHI self-reuse case. 1066 Value *InVal = PN->getIncomingValue(i); 1067 if (InVal == PN) { 1068 PredVal = EltPHI; 1069 EltPHI->addIncoming(PredVal, Pred); 1070 continue; 1071 } 1072 1073 if (PHINode *InPHI = dyn_cast<PHINode>(PN)) { 1074 // If the incoming value was a PHI, and if it was one of the PHIs we 1075 // already rewrote it, just use the lowered value. 1076 if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) { 1077 PredVal = Res; 1078 EltPHI->addIncoming(PredVal, Pred); 1079 continue; 1080 } 1081 } 1082 1083 // Otherwise, do an extract in the predecessor. 1084 Builder.SetInsertPoint(Pred->getTerminator()); 1085 Value *Res = InVal; 1086 if (Offset) 1087 Res = Builder.CreateLShr(Res, ConstantInt::get(InVal->getType(), 1088 Offset), "extract"); 1089 Res = Builder.CreateTrunc(Res, Ty, "extract.t"); 1090 PredVal = Res; 1091 EltPHI->addIncoming(Res, Pred); 1092 1093 // If the incoming value was a PHI, and if it was one of the PHIs we are 1094 // rewriting, we will ultimately delete the code we inserted. This 1095 // means we need to revisit that PHI to make sure we extract out the 1096 // needed piece. 1097 if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i))) 1098 if (PHIsInspected.count(OldInVal)) { 1099 unsigned RefPHIId = 1100 find(PHIsToSlice, OldInVal) - PHIsToSlice.begin(); 1101 PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset, 1102 cast<Instruction>(Res))); 1103 ++UserE; 1104 } 1105 } 1106 PredValues.clear(); 1107 1108 LLVM_DEBUG(dbgs() << " Made element PHI for offset " << Offset << ": " 1109 << *EltPHI << '\n'); 1110 ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI; 1111 } 1112 1113 // Replace the use of this piece with the PHI node. 1114 replaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI); 1115 } 1116 1117 // Replace all the remaining uses of the PHI nodes (self uses and the lshrs) 1118 // with undefs. 1119 Value *Undef = UndefValue::get(FirstPhi.getType()); 1120 for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i) 1121 replaceInstUsesWith(*PHIsToSlice[i], Undef); 1122 return replaceInstUsesWith(FirstPhi, Undef); 1123 } 1124 1125 // PHINode simplification 1126 // 1127 Instruction *InstCombiner::visitPHINode(PHINode &PN) { 1128 if (Value *V = SimplifyInstruction(&PN, SQ.getWithInstruction(&PN))) 1129 return replaceInstUsesWith(PN, V); 1130 1131 if (Instruction *Result = FoldPHIArgZextsIntoPHI(PN)) 1132 return Result; 1133 1134 // If all PHI operands are the same operation, pull them through the PHI, 1135 // reducing code size. 1136 if (isa<Instruction>(PN.getIncomingValue(0)) && 1137 isa<Instruction>(PN.getIncomingValue(1)) && 1138 cast<Instruction>(PN.getIncomingValue(0))->getOpcode() == 1139 cast<Instruction>(PN.getIncomingValue(1))->getOpcode() && 1140 // FIXME: The hasOneUse check will fail for PHIs that use the value more 1141 // than themselves more than once. 1142 PN.getIncomingValue(0)->hasOneUse()) 1143 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN)) 1144 return Result; 1145 1146 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if 1147 // this PHI only has a single use (a PHI), and if that PHI only has one use (a 1148 // PHI)... break the cycle. 1149 if (PN.hasOneUse()) { 1150 if (Instruction *Result = FoldIntegerTypedPHI(PN)) 1151 return Result; 1152 1153 Instruction *PHIUser = cast<Instruction>(PN.user_back()); 1154 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) { 1155 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs; 1156 PotentiallyDeadPHIs.insert(&PN); 1157 if (DeadPHICycle(PU, PotentiallyDeadPHIs)) 1158 return replaceInstUsesWith(PN, UndefValue::get(PN.getType())); 1159 } 1160 1161 // If this phi has a single use, and if that use just computes a value for 1162 // the next iteration of a loop, delete the phi. This occurs with unused 1163 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this 1164 // common case here is good because the only other things that catch this 1165 // are induction variable analysis (sometimes) and ADCE, which is only run 1166 // late. 1167 if (PHIUser->hasOneUse() && 1168 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) && 1169 PHIUser->user_back() == &PN) { 1170 return replaceInstUsesWith(PN, UndefValue::get(PN.getType())); 1171 } 1172 // When a PHI is used only to be compared with zero, it is safe to replace 1173 // an incoming value proved as known nonzero with any non-zero constant. 1174 // For example, in the code below, the incoming value %v can be replaced 1175 // with any non-zero constant based on the fact that the PHI is only used to 1176 // be compared with zero and %v is a known non-zero value: 1177 // %v = select %cond, 1, 2 1178 // %p = phi [%v, BB] ... 1179 // icmp eq, %p, 0 1180 auto *CmpInst = dyn_cast<ICmpInst>(PHIUser); 1181 // FIXME: To be simple, handle only integer type for now. 1182 if (CmpInst && isa<IntegerType>(PN.getType()) && CmpInst->isEquality() && 1183 match(CmpInst->getOperand(1), m_Zero())) { 1184 ConstantInt *NonZeroConst = nullptr; 1185 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1186 Instruction *CtxI = PN.getIncomingBlock(i)->getTerminator(); 1187 Value *VA = PN.getIncomingValue(i); 1188 if (isKnownNonZero(VA, DL, 0, &AC, CtxI, &DT)) { 1189 if (!NonZeroConst) 1190 NonZeroConst = GetAnyNonZeroConstInt(PN); 1191 PN.setIncomingValue(i, NonZeroConst); 1192 } 1193 } 1194 } 1195 } 1196 1197 // We sometimes end up with phi cycles that non-obviously end up being the 1198 // same value, for example: 1199 // z = some value; x = phi (y, z); y = phi (x, z) 1200 // where the phi nodes don't necessarily need to be in the same block. Do a 1201 // quick check to see if the PHI node only contains a single non-phi value, if 1202 // so, scan to see if the phi cycle is actually equal to that value. 1203 { 1204 unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues(); 1205 // Scan for the first non-phi operand. 1206 while (InValNo != NumIncomingVals && 1207 isa<PHINode>(PN.getIncomingValue(InValNo))) 1208 ++InValNo; 1209 1210 if (InValNo != NumIncomingVals) { 1211 Value *NonPhiInVal = PN.getIncomingValue(InValNo); 1212 1213 // Scan the rest of the operands to see if there are any conflicts, if so 1214 // there is no need to recursively scan other phis. 1215 for (++InValNo; InValNo != NumIncomingVals; ++InValNo) { 1216 Value *OpVal = PN.getIncomingValue(InValNo); 1217 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal)) 1218 break; 1219 } 1220 1221 // If we scanned over all operands, then we have one unique value plus 1222 // phi values. Scan PHI nodes to see if they all merge in each other or 1223 // the value. 1224 if (InValNo == NumIncomingVals) { 1225 SmallPtrSet<PHINode*, 16> ValueEqualPHIs; 1226 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs)) 1227 return replaceInstUsesWith(PN, NonPhiInVal); 1228 } 1229 } 1230 } 1231 1232 // If there are multiple PHIs, sort their operands so that they all list 1233 // the blocks in the same order. This will help identical PHIs be eliminated 1234 // by other passes. Other passes shouldn't depend on this for correctness 1235 // however. 1236 PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin()); 1237 if (&PN != FirstPN) 1238 for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) { 1239 BasicBlock *BBA = PN.getIncomingBlock(i); 1240 BasicBlock *BBB = FirstPN->getIncomingBlock(i); 1241 if (BBA != BBB) { 1242 Value *VA = PN.getIncomingValue(i); 1243 unsigned j = PN.getBasicBlockIndex(BBB); 1244 Value *VB = PN.getIncomingValue(j); 1245 PN.setIncomingBlock(i, BBB); 1246 PN.setIncomingValue(i, VB); 1247 PN.setIncomingBlock(j, BBA); 1248 PN.setIncomingValue(j, VA); 1249 // NOTE: Instcombine normally would want us to "return &PN" if we 1250 // modified any of the operands of an instruction. However, since we 1251 // aren't adding or removing uses (just rearranging them) we don't do 1252 // this in this case. 1253 } 1254 } 1255 1256 // If this is an integer PHI and we know that it has an illegal type, see if 1257 // it is only used by trunc or trunc(lshr) operations. If so, we split the 1258 // PHI into the various pieces being extracted. This sort of thing is 1259 // introduced when SROA promotes an aggregate to a single large integer type. 1260 if (PN.getType()->isIntegerTy() && 1261 !DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits())) 1262 if (Instruction *Res = SliceUpIllegalIntegerPHI(PN)) 1263 return Res; 1264 1265 return nullptr; 1266 } 1267