1 //===- InstCombinePHI.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitPHINode function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/CommandLine.h" 21 #include "llvm/Transforms/InstCombine/InstCombiner.h" 22 #include "llvm/Transforms/Utils/Local.h" 23 #include <optional> 24 25 using namespace llvm; 26 using namespace llvm::PatternMatch; 27 28 #define DEBUG_TYPE "instcombine" 29 30 static cl::opt<unsigned> 31 MaxNumPhis("instcombine-max-num-phis", cl::init(512), 32 cl::desc("Maximum number phis to handle in intptr/ptrint folding")); 33 34 STATISTIC(NumPHIsOfInsertValues, 35 "Number of phi-of-insertvalue turned into insertvalue-of-phis"); 36 STATISTIC(NumPHIsOfExtractValues, 37 "Number of phi-of-extractvalue turned into extractvalue-of-phi"); 38 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 39 40 /// The PHI arguments will be folded into a single operation with a PHI node 41 /// as input. The debug location of the single operation will be the merged 42 /// locations of the original PHI node arguments. 43 void InstCombinerImpl::PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN) { 44 auto *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); 45 Inst->setDebugLoc(FirstInst->getDebugLoc()); 46 // We do not expect a CallInst here, otherwise, N-way merging of DebugLoc 47 // will be inefficient. 48 assert(!isa<CallInst>(Inst)); 49 50 for (Value *V : drop_begin(PN.incoming_values())) { 51 auto *I = cast<Instruction>(V); 52 Inst->applyMergedLocation(Inst->getDebugLoc(), I->getDebugLoc()); 53 } 54 } 55 56 // Replace Integer typed PHI PN if the PHI's value is used as a pointer value. 57 // If there is an existing pointer typed PHI that produces the same value as PN, 58 // replace PN and the IntToPtr operation with it. Otherwise, synthesize a new 59 // PHI node: 60 // 61 // Case-1: 62 // bb1: 63 // int_init = PtrToInt(ptr_init) 64 // br label %bb2 65 // bb2: 66 // int_val = PHI([int_init, %bb1], [int_val_inc, %bb2] 67 // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2] 68 // ptr_val2 = IntToPtr(int_val) 69 // ... 70 // use(ptr_val2) 71 // ptr_val_inc = ... 72 // inc_val_inc = PtrToInt(ptr_val_inc) 73 // 74 // ==> 75 // bb1: 76 // br label %bb2 77 // bb2: 78 // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2] 79 // ... 80 // use(ptr_val) 81 // ptr_val_inc = ... 82 // 83 // Case-2: 84 // bb1: 85 // int_ptr = BitCast(ptr_ptr) 86 // int_init = Load(int_ptr) 87 // br label %bb2 88 // bb2: 89 // int_val = PHI([int_init, %bb1], [int_val_inc, %bb2] 90 // ptr_val2 = IntToPtr(int_val) 91 // ... 92 // use(ptr_val2) 93 // ptr_val_inc = ... 94 // inc_val_inc = PtrToInt(ptr_val_inc) 95 // ==> 96 // bb1: 97 // ptr_init = Load(ptr_ptr) 98 // br label %bb2 99 // bb2: 100 // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2] 101 // ... 102 // use(ptr_val) 103 // ptr_val_inc = ... 104 // ... 105 // 106 bool InstCombinerImpl::foldIntegerTypedPHI(PHINode &PN) { 107 if (!PN.getType()->isIntegerTy()) 108 return false; 109 if (!PN.hasOneUse()) 110 return false; 111 112 auto *IntToPtr = dyn_cast<IntToPtrInst>(PN.user_back()); 113 if (!IntToPtr) 114 return false; 115 116 // Check if the pointer is actually used as pointer: 117 auto HasPointerUse = [](Instruction *IIP) { 118 for (User *U : IIP->users()) { 119 Value *Ptr = nullptr; 120 if (LoadInst *LoadI = dyn_cast<LoadInst>(U)) { 121 Ptr = LoadI->getPointerOperand(); 122 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 123 Ptr = SI->getPointerOperand(); 124 } else if (GetElementPtrInst *GI = dyn_cast<GetElementPtrInst>(U)) { 125 Ptr = GI->getPointerOperand(); 126 } 127 128 if (Ptr && Ptr == IIP) 129 return true; 130 } 131 return false; 132 }; 133 134 if (!HasPointerUse(IntToPtr)) 135 return false; 136 137 if (DL.getPointerSizeInBits(IntToPtr->getAddressSpace()) != 138 DL.getTypeSizeInBits(IntToPtr->getOperand(0)->getType())) 139 return false; 140 141 SmallVector<Value *, 4> AvailablePtrVals; 142 for (auto Incoming : zip(PN.blocks(), PN.incoming_values())) { 143 BasicBlock *BB = std::get<0>(Incoming); 144 Value *Arg = std::get<1>(Incoming); 145 146 // First look backward: 147 if (auto *PI = dyn_cast<PtrToIntInst>(Arg)) { 148 AvailablePtrVals.emplace_back(PI->getOperand(0)); 149 continue; 150 } 151 152 // Next look forward: 153 Value *ArgIntToPtr = nullptr; 154 for (User *U : Arg->users()) { 155 if (isa<IntToPtrInst>(U) && U->getType() == IntToPtr->getType() && 156 (DT.dominates(cast<Instruction>(U), BB) || 157 cast<Instruction>(U)->getParent() == BB)) { 158 ArgIntToPtr = U; 159 break; 160 } 161 } 162 163 if (ArgIntToPtr) { 164 AvailablePtrVals.emplace_back(ArgIntToPtr); 165 continue; 166 } 167 168 // If Arg is defined by a PHI, allow it. This will also create 169 // more opportunities iteratively. 170 if (isa<PHINode>(Arg)) { 171 AvailablePtrVals.emplace_back(Arg); 172 continue; 173 } 174 175 // For a single use integer load: 176 auto *LoadI = dyn_cast<LoadInst>(Arg); 177 if (!LoadI) 178 return false; 179 180 if (!LoadI->hasOneUse()) 181 return false; 182 183 // Push the integer typed Load instruction into the available 184 // value set, and fix it up later when the pointer typed PHI 185 // is synthesized. 186 AvailablePtrVals.emplace_back(LoadI); 187 } 188 189 // Now search for a matching PHI 190 auto *BB = PN.getParent(); 191 assert(AvailablePtrVals.size() == PN.getNumIncomingValues() && 192 "Not enough available ptr typed incoming values"); 193 PHINode *MatchingPtrPHI = nullptr; 194 unsigned NumPhis = 0; 195 for (PHINode &PtrPHI : BB->phis()) { 196 // FIXME: consider handling this in AggressiveInstCombine 197 if (NumPhis++ > MaxNumPhis) 198 return false; 199 if (&PtrPHI == &PN || PtrPHI.getType() != IntToPtr->getType()) 200 continue; 201 if (any_of(zip(PN.blocks(), AvailablePtrVals), 202 [&](const auto &BlockAndValue) { 203 BasicBlock *BB = std::get<0>(BlockAndValue); 204 Value *V = std::get<1>(BlockAndValue); 205 return PtrPHI.getIncomingValueForBlock(BB) != V; 206 })) 207 continue; 208 MatchingPtrPHI = &PtrPHI; 209 break; 210 } 211 212 if (MatchingPtrPHI) { 213 assert(MatchingPtrPHI->getType() == IntToPtr->getType() && 214 "Phi's Type does not match with IntToPtr"); 215 // Explicitly replace the inttoptr (rather than inserting a ptrtoint) here, 216 // to make sure another transform can't undo it in the meantime. 217 replaceInstUsesWith(*IntToPtr, MatchingPtrPHI); 218 eraseInstFromFunction(*IntToPtr); 219 eraseInstFromFunction(PN); 220 return true; 221 } 222 223 // If it requires a conversion for every PHI operand, do not do it. 224 if (all_of(AvailablePtrVals, [&](Value *V) { 225 return (V->getType() != IntToPtr->getType()) || isa<IntToPtrInst>(V); 226 })) 227 return false; 228 229 // If any of the operand that requires casting is a terminator 230 // instruction, do not do it. Similarly, do not do the transform if the value 231 // is PHI in a block with no insertion point, for example, a catchswitch 232 // block, since we will not be able to insert a cast after the PHI. 233 if (any_of(AvailablePtrVals, [&](Value *V) { 234 if (V->getType() == IntToPtr->getType()) 235 return false; 236 auto *Inst = dyn_cast<Instruction>(V); 237 if (!Inst) 238 return false; 239 if (Inst->isTerminator()) 240 return true; 241 auto *BB = Inst->getParent(); 242 if (isa<PHINode>(Inst) && BB->getFirstInsertionPt() == BB->end()) 243 return true; 244 return false; 245 })) 246 return false; 247 248 PHINode *NewPtrPHI = PHINode::Create( 249 IntToPtr->getType(), PN.getNumIncomingValues(), PN.getName() + ".ptr"); 250 251 InsertNewInstBefore(NewPtrPHI, PN); 252 SmallDenseMap<Value *, Instruction *> Casts; 253 for (auto Incoming : zip(PN.blocks(), AvailablePtrVals)) { 254 auto *IncomingBB = std::get<0>(Incoming); 255 auto *IncomingVal = std::get<1>(Incoming); 256 257 if (IncomingVal->getType() == IntToPtr->getType()) { 258 NewPtrPHI->addIncoming(IncomingVal, IncomingBB); 259 continue; 260 } 261 262 #ifndef NDEBUG 263 LoadInst *LoadI = dyn_cast<LoadInst>(IncomingVal); 264 assert((isa<PHINode>(IncomingVal) || 265 IncomingVal->getType()->isPointerTy() || 266 (LoadI && LoadI->hasOneUse())) && 267 "Can not replace LoadInst with multiple uses"); 268 #endif 269 // Need to insert a BitCast. 270 // For an integer Load instruction with a single use, the load + IntToPtr 271 // cast will be simplified into a pointer load: 272 // %v = load i64, i64* %a.ip, align 8 273 // %v.cast = inttoptr i64 %v to float ** 274 // ==> 275 // %v.ptrp = bitcast i64 * %a.ip to float ** 276 // %v.cast = load float *, float ** %v.ptrp, align 8 277 Instruction *&CI = Casts[IncomingVal]; 278 if (!CI) { 279 CI = CastInst::CreateBitOrPointerCast(IncomingVal, IntToPtr->getType(), 280 IncomingVal->getName() + ".ptr"); 281 if (auto *IncomingI = dyn_cast<Instruction>(IncomingVal)) { 282 BasicBlock::iterator InsertPos(IncomingI); 283 InsertPos++; 284 BasicBlock *BB = IncomingI->getParent(); 285 if (isa<PHINode>(IncomingI)) 286 InsertPos = BB->getFirstInsertionPt(); 287 assert(InsertPos != BB->end() && "should have checked above"); 288 InsertNewInstBefore(CI, *InsertPos); 289 } else { 290 auto *InsertBB = &IncomingBB->getParent()->getEntryBlock(); 291 InsertNewInstBefore(CI, *InsertBB->getFirstInsertionPt()); 292 } 293 } 294 NewPtrPHI->addIncoming(CI, IncomingBB); 295 } 296 297 // Explicitly replace the inttoptr (rather than inserting a ptrtoint) here, 298 // to make sure another transform can't undo it in the meantime. 299 replaceInstUsesWith(*IntToPtr, NewPtrPHI); 300 eraseInstFromFunction(*IntToPtr); 301 eraseInstFromFunction(PN); 302 return true; 303 } 304 305 // Remove RoundTrip IntToPtr/PtrToInt Cast on PHI-Operand and 306 // fold Phi-operand to bitcast. 307 Instruction *InstCombinerImpl::foldPHIArgIntToPtrToPHI(PHINode &PN) { 308 // convert ptr2int ( phi[ int2ptr(ptr2int(x))] ) --> ptr2int ( phi [ x ] ) 309 // Make sure all uses of phi are ptr2int. 310 if (!all_of(PN.users(), [](User *U) { return isa<PtrToIntInst>(U); })) 311 return nullptr; 312 313 // Iterating over all operands to check presence of target pointers for 314 // optimization. 315 bool OperandWithRoundTripCast = false; 316 for (unsigned OpNum = 0; OpNum != PN.getNumIncomingValues(); ++OpNum) { 317 if (auto *NewOp = 318 simplifyIntToPtrRoundTripCast(PN.getIncomingValue(OpNum))) { 319 replaceOperand(PN, OpNum, NewOp); 320 OperandWithRoundTripCast = true; 321 } 322 } 323 if (!OperandWithRoundTripCast) 324 return nullptr; 325 return &PN; 326 } 327 328 /// If we have something like phi [insertvalue(a,b,0), insertvalue(c,d,0)], 329 /// turn this into a phi[a,c] and phi[b,d] and a single insertvalue. 330 Instruction * 331 InstCombinerImpl::foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN) { 332 auto *FirstIVI = cast<InsertValueInst>(PN.getIncomingValue(0)); 333 334 // Scan to see if all operands are `insertvalue`'s with the same indicies, 335 // and all have a single use. 336 for (Value *V : drop_begin(PN.incoming_values())) { 337 auto *I = dyn_cast<InsertValueInst>(V); 338 if (!I || !I->hasOneUser() || I->getIndices() != FirstIVI->getIndices()) 339 return nullptr; 340 } 341 342 // For each operand of an `insertvalue` 343 std::array<PHINode *, 2> NewOperands; 344 for (int OpIdx : {0, 1}) { 345 auto *&NewOperand = NewOperands[OpIdx]; 346 // Create a new PHI node to receive the values the operand has in each 347 // incoming basic block. 348 NewOperand = PHINode::Create( 349 FirstIVI->getOperand(OpIdx)->getType(), PN.getNumIncomingValues(), 350 FirstIVI->getOperand(OpIdx)->getName() + ".pn"); 351 // And populate each operand's PHI with said values. 352 for (auto Incoming : zip(PN.blocks(), PN.incoming_values())) 353 NewOperand->addIncoming( 354 cast<InsertValueInst>(std::get<1>(Incoming))->getOperand(OpIdx), 355 std::get<0>(Incoming)); 356 InsertNewInstBefore(NewOperand, PN); 357 } 358 359 // And finally, create `insertvalue` over the newly-formed PHI nodes. 360 auto *NewIVI = InsertValueInst::Create(NewOperands[0], NewOperands[1], 361 FirstIVI->getIndices(), PN.getName()); 362 363 PHIArgMergedDebugLoc(NewIVI, PN); 364 ++NumPHIsOfInsertValues; 365 return NewIVI; 366 } 367 368 /// If we have something like phi [extractvalue(a,0), extractvalue(b,0)], 369 /// turn this into a phi[a,b] and a single extractvalue. 370 Instruction * 371 InstCombinerImpl::foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN) { 372 auto *FirstEVI = cast<ExtractValueInst>(PN.getIncomingValue(0)); 373 374 // Scan to see if all operands are `extractvalue`'s with the same indicies, 375 // and all have a single use. 376 for (Value *V : drop_begin(PN.incoming_values())) { 377 auto *I = dyn_cast<ExtractValueInst>(V); 378 if (!I || !I->hasOneUser() || I->getIndices() != FirstEVI->getIndices() || 379 I->getAggregateOperand()->getType() != 380 FirstEVI->getAggregateOperand()->getType()) 381 return nullptr; 382 } 383 384 // Create a new PHI node to receive the values the aggregate operand has 385 // in each incoming basic block. 386 auto *NewAggregateOperand = PHINode::Create( 387 FirstEVI->getAggregateOperand()->getType(), PN.getNumIncomingValues(), 388 FirstEVI->getAggregateOperand()->getName() + ".pn"); 389 // And populate the PHI with said values. 390 for (auto Incoming : zip(PN.blocks(), PN.incoming_values())) 391 NewAggregateOperand->addIncoming( 392 cast<ExtractValueInst>(std::get<1>(Incoming))->getAggregateOperand(), 393 std::get<0>(Incoming)); 394 InsertNewInstBefore(NewAggregateOperand, PN); 395 396 // And finally, create `extractvalue` over the newly-formed PHI nodes. 397 auto *NewEVI = ExtractValueInst::Create(NewAggregateOperand, 398 FirstEVI->getIndices(), PN.getName()); 399 400 PHIArgMergedDebugLoc(NewEVI, PN); 401 ++NumPHIsOfExtractValues; 402 return NewEVI; 403 } 404 405 /// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the 406 /// adds all have a single user, turn this into a phi and a single binop. 407 Instruction *InstCombinerImpl::foldPHIArgBinOpIntoPHI(PHINode &PN) { 408 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); 409 assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)); 410 unsigned Opc = FirstInst->getOpcode(); 411 Value *LHSVal = FirstInst->getOperand(0); 412 Value *RHSVal = FirstInst->getOperand(1); 413 414 Type *LHSType = LHSVal->getType(); 415 Type *RHSType = RHSVal->getType(); 416 417 // Scan to see if all operands are the same opcode, and all have one user. 418 for (Value *V : drop_begin(PN.incoming_values())) { 419 Instruction *I = dyn_cast<Instruction>(V); 420 if (!I || I->getOpcode() != Opc || !I->hasOneUser() || 421 // Verify type of the LHS matches so we don't fold cmp's of different 422 // types. 423 I->getOperand(0)->getType() != LHSType || 424 I->getOperand(1)->getType() != RHSType) 425 return nullptr; 426 427 // If they are CmpInst instructions, check their predicates 428 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 429 if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate()) 430 return nullptr; 431 432 // Keep track of which operand needs a phi node. 433 if (I->getOperand(0) != LHSVal) LHSVal = nullptr; 434 if (I->getOperand(1) != RHSVal) RHSVal = nullptr; 435 } 436 437 // If both LHS and RHS would need a PHI, don't do this transformation, 438 // because it would increase the number of PHIs entering the block, 439 // which leads to higher register pressure. This is especially 440 // bad when the PHIs are in the header of a loop. 441 if (!LHSVal && !RHSVal) 442 return nullptr; 443 444 // Otherwise, this is safe to transform! 445 446 Value *InLHS = FirstInst->getOperand(0); 447 Value *InRHS = FirstInst->getOperand(1); 448 PHINode *NewLHS = nullptr, *NewRHS = nullptr; 449 if (!LHSVal) { 450 NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(), 451 FirstInst->getOperand(0)->getName() + ".pn"); 452 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0)); 453 InsertNewInstBefore(NewLHS, PN); 454 LHSVal = NewLHS; 455 } 456 457 if (!RHSVal) { 458 NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(), 459 FirstInst->getOperand(1)->getName() + ".pn"); 460 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0)); 461 InsertNewInstBefore(NewRHS, PN); 462 RHSVal = NewRHS; 463 } 464 465 // Add all operands to the new PHIs. 466 if (NewLHS || NewRHS) { 467 for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) { 468 BasicBlock *InBB = std::get<0>(Incoming); 469 Value *InVal = std::get<1>(Incoming); 470 Instruction *InInst = cast<Instruction>(InVal); 471 if (NewLHS) { 472 Value *NewInLHS = InInst->getOperand(0); 473 NewLHS->addIncoming(NewInLHS, InBB); 474 } 475 if (NewRHS) { 476 Value *NewInRHS = InInst->getOperand(1); 477 NewRHS->addIncoming(NewInRHS, InBB); 478 } 479 } 480 } 481 482 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) { 483 CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), 484 LHSVal, RHSVal); 485 PHIArgMergedDebugLoc(NewCI, PN); 486 return NewCI; 487 } 488 489 BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst); 490 BinaryOperator *NewBinOp = 491 BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal); 492 493 NewBinOp->copyIRFlags(PN.getIncomingValue(0)); 494 495 for (Value *V : drop_begin(PN.incoming_values())) 496 NewBinOp->andIRFlags(V); 497 498 PHIArgMergedDebugLoc(NewBinOp, PN); 499 return NewBinOp; 500 } 501 502 Instruction *InstCombinerImpl::foldPHIArgGEPIntoPHI(PHINode &PN) { 503 GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0)); 504 505 SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(), 506 FirstInst->op_end()); 507 // This is true if all GEP bases are allocas and if all indices into them are 508 // constants. 509 bool AllBasePointersAreAllocas = true; 510 511 // We don't want to replace this phi if the replacement would require 512 // more than one phi, which leads to higher register pressure. This is 513 // especially bad when the PHIs are in the header of a loop. 514 bool NeededPhi = false; 515 516 bool AllInBounds = true; 517 518 // Scan to see if all operands are the same opcode, and all have one user. 519 for (Value *V : drop_begin(PN.incoming_values())) { 520 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V); 521 if (!GEP || !GEP->hasOneUser() || 522 GEP->getSourceElementType() != FirstInst->getSourceElementType() || 523 GEP->getNumOperands() != FirstInst->getNumOperands()) 524 return nullptr; 525 526 AllInBounds &= GEP->isInBounds(); 527 528 // Keep track of whether or not all GEPs are of alloca pointers. 529 if (AllBasePointersAreAllocas && 530 (!isa<AllocaInst>(GEP->getOperand(0)) || 531 !GEP->hasAllConstantIndices())) 532 AllBasePointersAreAllocas = false; 533 534 // Compare the operand lists. 535 for (unsigned Op = 0, E = FirstInst->getNumOperands(); Op != E; ++Op) { 536 if (FirstInst->getOperand(Op) == GEP->getOperand(Op)) 537 continue; 538 539 // Don't merge two GEPs when two operands differ (introducing phi nodes) 540 // if one of the PHIs has a constant for the index. The index may be 541 // substantially cheaper to compute for the constants, so making it a 542 // variable index could pessimize the path. This also handles the case 543 // for struct indices, which must always be constant. 544 if (isa<ConstantInt>(FirstInst->getOperand(Op)) || 545 isa<ConstantInt>(GEP->getOperand(Op))) 546 return nullptr; 547 548 if (FirstInst->getOperand(Op)->getType() != 549 GEP->getOperand(Op)->getType()) 550 return nullptr; 551 552 // If we already needed a PHI for an earlier operand, and another operand 553 // also requires a PHI, we'd be introducing more PHIs than we're 554 // eliminating, which increases register pressure on entry to the PHI's 555 // block. 556 if (NeededPhi) 557 return nullptr; 558 559 FixedOperands[Op] = nullptr; // Needs a PHI. 560 NeededPhi = true; 561 } 562 } 563 564 // If all of the base pointers of the PHI'd GEPs are from allocas, don't 565 // bother doing this transformation. At best, this will just save a bit of 566 // offset calculation, but all the predecessors will have to materialize the 567 // stack address into a register anyway. We'd actually rather *clone* the 568 // load up into the predecessors so that we have a load of a gep of an alloca, 569 // which can usually all be folded into the load. 570 if (AllBasePointersAreAllocas) 571 return nullptr; 572 573 // Otherwise, this is safe to transform. Insert PHI nodes for each operand 574 // that is variable. 575 SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size()); 576 577 bool HasAnyPHIs = false; 578 for (unsigned I = 0, E = FixedOperands.size(); I != E; ++I) { 579 if (FixedOperands[I]) 580 continue; // operand doesn't need a phi. 581 Value *FirstOp = FirstInst->getOperand(I); 582 PHINode *NewPN = 583 PHINode::Create(FirstOp->getType(), E, FirstOp->getName() + ".pn"); 584 InsertNewInstBefore(NewPN, PN); 585 586 NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0)); 587 OperandPhis[I] = NewPN; 588 FixedOperands[I] = NewPN; 589 HasAnyPHIs = true; 590 } 591 592 // Add all operands to the new PHIs. 593 if (HasAnyPHIs) { 594 for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) { 595 BasicBlock *InBB = std::get<0>(Incoming); 596 Value *InVal = std::get<1>(Incoming); 597 GetElementPtrInst *InGEP = cast<GetElementPtrInst>(InVal); 598 599 for (unsigned Op = 0, E = OperandPhis.size(); Op != E; ++Op) 600 if (PHINode *OpPhi = OperandPhis[Op]) 601 OpPhi->addIncoming(InGEP->getOperand(Op), InBB); 602 } 603 } 604 605 Value *Base = FixedOperands[0]; 606 GetElementPtrInst *NewGEP = 607 GetElementPtrInst::Create(FirstInst->getSourceElementType(), Base, 608 ArrayRef(FixedOperands).slice(1)); 609 if (AllInBounds) NewGEP->setIsInBounds(); 610 PHIArgMergedDebugLoc(NewGEP, PN); 611 return NewGEP; 612 } 613 614 /// Return true if we know that it is safe to sink the load out of the block 615 /// that defines it. This means that it must be obvious the value of the load is 616 /// not changed from the point of the load to the end of the block it is in. 617 /// 618 /// Finally, it is safe, but not profitable, to sink a load targeting a 619 /// non-address-taken alloca. Doing so will cause us to not promote the alloca 620 /// to a register. 621 static bool isSafeAndProfitableToSinkLoad(LoadInst *L) { 622 BasicBlock::iterator BBI = L->getIterator(), E = L->getParent()->end(); 623 624 for (++BBI; BBI != E; ++BBI) 625 if (BBI->mayWriteToMemory()) { 626 // Calls that only access inaccessible memory do not block sinking the 627 // load. 628 if (auto *CB = dyn_cast<CallBase>(BBI)) 629 if (CB->onlyAccessesInaccessibleMemory()) 630 continue; 631 return false; 632 } 633 634 // Check for non-address taken alloca. If not address-taken already, it isn't 635 // profitable to do this xform. 636 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) { 637 bool IsAddressTaken = false; 638 for (User *U : AI->users()) { 639 if (isa<LoadInst>(U)) continue; 640 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 641 // If storing TO the alloca, then the address isn't taken. 642 if (SI->getOperand(1) == AI) continue; 643 } 644 IsAddressTaken = true; 645 break; 646 } 647 648 if (!IsAddressTaken && AI->isStaticAlloca()) 649 return false; 650 } 651 652 // If this load is a load from a GEP with a constant offset from an alloca, 653 // then we don't want to sink it. In its present form, it will be 654 // load [constant stack offset]. Sinking it will cause us to have to 655 // materialize the stack addresses in each predecessor in a register only to 656 // do a shared load from register in the successor. 657 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0))) 658 if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0))) 659 if (AI->isStaticAlloca() && GEP->hasAllConstantIndices()) 660 return false; 661 662 return true; 663 } 664 665 Instruction *InstCombinerImpl::foldPHIArgLoadIntoPHI(PHINode &PN) { 666 LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0)); 667 668 // Can't forward swifterror through a phi. 669 if (FirstLI->getOperand(0)->isSwiftError()) 670 return nullptr; 671 672 // FIXME: This is overconservative; this transform is allowed in some cases 673 // for atomic operations. 674 if (FirstLI->isAtomic()) 675 return nullptr; 676 677 // When processing loads, we need to propagate two bits of information to the 678 // sunk load: whether it is volatile, and what its alignment is. 679 bool IsVolatile = FirstLI->isVolatile(); 680 Align LoadAlignment = FirstLI->getAlign(); 681 const unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace(); 682 683 // We can't sink the load if the loaded value could be modified between the 684 // load and the PHI. 685 if (FirstLI->getParent() != PN.getIncomingBlock(0) || 686 !isSafeAndProfitableToSinkLoad(FirstLI)) 687 return nullptr; 688 689 // If the PHI is of volatile loads and the load block has multiple 690 // successors, sinking it would remove a load of the volatile value from 691 // the path through the other successor. 692 if (IsVolatile && 693 FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1) 694 return nullptr; 695 696 for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) { 697 BasicBlock *InBB = std::get<0>(Incoming); 698 Value *InVal = std::get<1>(Incoming); 699 LoadInst *LI = dyn_cast<LoadInst>(InVal); 700 if (!LI || !LI->hasOneUser() || LI->isAtomic()) 701 return nullptr; 702 703 // Make sure all arguments are the same type of operation. 704 if (LI->isVolatile() != IsVolatile || 705 LI->getPointerAddressSpace() != LoadAddrSpace) 706 return nullptr; 707 708 // Can't forward swifterror through a phi. 709 if (LI->getOperand(0)->isSwiftError()) 710 return nullptr; 711 712 // We can't sink the load if the loaded value could be modified between 713 // the load and the PHI. 714 if (LI->getParent() != InBB || !isSafeAndProfitableToSinkLoad(LI)) 715 return nullptr; 716 717 LoadAlignment = std::min(LoadAlignment, LI->getAlign()); 718 719 // If the PHI is of volatile loads and the load block has multiple 720 // successors, sinking it would remove a load of the volatile value from 721 // the path through the other successor. 722 if (IsVolatile && LI->getParent()->getTerminator()->getNumSuccessors() != 1) 723 return nullptr; 724 } 725 726 // Okay, they are all the same operation. Create a new PHI node of the 727 // correct type, and PHI together all of the LHS's of the instructions. 728 PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(), 729 PN.getNumIncomingValues(), 730 PN.getName()+".in"); 731 732 Value *InVal = FirstLI->getOperand(0); 733 NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); 734 LoadInst *NewLI = 735 new LoadInst(FirstLI->getType(), NewPN, "", IsVolatile, LoadAlignment); 736 737 unsigned KnownIDs[] = { 738 LLVMContext::MD_tbaa, 739 LLVMContext::MD_range, 740 LLVMContext::MD_invariant_load, 741 LLVMContext::MD_alias_scope, 742 LLVMContext::MD_noalias, 743 LLVMContext::MD_nonnull, 744 LLVMContext::MD_align, 745 LLVMContext::MD_dereferenceable, 746 LLVMContext::MD_dereferenceable_or_null, 747 LLVMContext::MD_access_group, 748 LLVMContext::MD_noundef, 749 }; 750 751 for (unsigned ID : KnownIDs) 752 NewLI->setMetadata(ID, FirstLI->getMetadata(ID)); 753 754 // Add all operands to the new PHI and combine TBAA metadata. 755 for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) { 756 BasicBlock *BB = std::get<0>(Incoming); 757 Value *V = std::get<1>(Incoming); 758 LoadInst *LI = cast<LoadInst>(V); 759 combineMetadata(NewLI, LI, KnownIDs, true); 760 Value *NewInVal = LI->getOperand(0); 761 if (NewInVal != InVal) 762 InVal = nullptr; 763 NewPN->addIncoming(NewInVal, BB); 764 } 765 766 if (InVal) { 767 // The new PHI unions all of the same values together. This is really 768 // common, so we handle it intelligently here for compile-time speed. 769 NewLI->setOperand(0, InVal); 770 delete NewPN; 771 } else { 772 InsertNewInstBefore(NewPN, PN); 773 } 774 775 // If this was a volatile load that we are merging, make sure to loop through 776 // and mark all the input loads as non-volatile. If we don't do this, we will 777 // insert a new volatile load and the old ones will not be deletable. 778 if (IsVolatile) 779 for (Value *IncValue : PN.incoming_values()) 780 cast<LoadInst>(IncValue)->setVolatile(false); 781 782 PHIArgMergedDebugLoc(NewLI, PN); 783 return NewLI; 784 } 785 786 /// TODO: This function could handle other cast types, but then it might 787 /// require special-casing a cast from the 'i1' type. See the comment in 788 /// FoldPHIArgOpIntoPHI() about pessimizing illegal integer types. 789 Instruction *InstCombinerImpl::foldPHIArgZextsIntoPHI(PHINode &Phi) { 790 // We cannot create a new instruction after the PHI if the terminator is an 791 // EHPad because there is no valid insertion point. 792 if (Instruction *TI = Phi.getParent()->getTerminator()) 793 if (TI->isEHPad()) 794 return nullptr; 795 796 // Early exit for the common case of a phi with two operands. These are 797 // handled elsewhere. See the comment below where we check the count of zexts 798 // and constants for more details. 799 unsigned NumIncomingValues = Phi.getNumIncomingValues(); 800 if (NumIncomingValues < 3) 801 return nullptr; 802 803 // Find the narrower type specified by the first zext. 804 Type *NarrowType = nullptr; 805 for (Value *V : Phi.incoming_values()) { 806 if (auto *Zext = dyn_cast<ZExtInst>(V)) { 807 NarrowType = Zext->getSrcTy(); 808 break; 809 } 810 } 811 if (!NarrowType) 812 return nullptr; 813 814 // Walk the phi operands checking that we only have zexts or constants that 815 // we can shrink for free. Store the new operands for the new phi. 816 SmallVector<Value *, 4> NewIncoming; 817 unsigned NumZexts = 0; 818 unsigned NumConsts = 0; 819 for (Value *V : Phi.incoming_values()) { 820 if (auto *Zext = dyn_cast<ZExtInst>(V)) { 821 // All zexts must be identical and have one user. 822 if (Zext->getSrcTy() != NarrowType || !Zext->hasOneUser()) 823 return nullptr; 824 NewIncoming.push_back(Zext->getOperand(0)); 825 NumZexts++; 826 } else if (auto *C = dyn_cast<Constant>(V)) { 827 // Make sure that constants can fit in the new type. 828 Constant *Trunc = ConstantExpr::getTrunc(C, NarrowType); 829 if (ConstantExpr::getZExt(Trunc, C->getType()) != C) 830 return nullptr; 831 NewIncoming.push_back(Trunc); 832 NumConsts++; 833 } else { 834 // If it's not a cast or a constant, bail out. 835 return nullptr; 836 } 837 } 838 839 // The more common cases of a phi with no constant operands or just one 840 // variable operand are handled by FoldPHIArgOpIntoPHI() and foldOpIntoPhi() 841 // respectively. foldOpIntoPhi() wants to do the opposite transform that is 842 // performed here. It tries to replicate a cast in the phi operand's basic 843 // block to expose other folding opportunities. Thus, InstCombine will 844 // infinite loop without this check. 845 if (NumConsts == 0 || NumZexts < 2) 846 return nullptr; 847 848 // All incoming values are zexts or constants that are safe to truncate. 849 // Create a new phi node of the narrow type, phi together all of the new 850 // operands, and zext the result back to the original type. 851 PHINode *NewPhi = PHINode::Create(NarrowType, NumIncomingValues, 852 Phi.getName() + ".shrunk"); 853 for (unsigned I = 0; I != NumIncomingValues; ++I) 854 NewPhi->addIncoming(NewIncoming[I], Phi.getIncomingBlock(I)); 855 856 InsertNewInstBefore(NewPhi, Phi); 857 return CastInst::CreateZExtOrBitCast(NewPhi, Phi.getType()); 858 } 859 860 /// If all operands to a PHI node are the same "unary" operator and they all are 861 /// only used by the PHI, PHI together their inputs, and do the operation once, 862 /// to the result of the PHI. 863 Instruction *InstCombinerImpl::foldPHIArgOpIntoPHI(PHINode &PN) { 864 // We cannot create a new instruction after the PHI if the terminator is an 865 // EHPad because there is no valid insertion point. 866 if (Instruction *TI = PN.getParent()->getTerminator()) 867 if (TI->isEHPad()) 868 return nullptr; 869 870 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); 871 872 if (isa<GetElementPtrInst>(FirstInst)) 873 return foldPHIArgGEPIntoPHI(PN); 874 if (isa<LoadInst>(FirstInst)) 875 return foldPHIArgLoadIntoPHI(PN); 876 if (isa<InsertValueInst>(FirstInst)) 877 return foldPHIArgInsertValueInstructionIntoPHI(PN); 878 if (isa<ExtractValueInst>(FirstInst)) 879 return foldPHIArgExtractValueInstructionIntoPHI(PN); 880 881 // Scan the instruction, looking for input operations that can be folded away. 882 // If all input operands to the phi are the same instruction (e.g. a cast from 883 // the same type or "+42") we can pull the operation through the PHI, reducing 884 // code size and simplifying code. 885 Constant *ConstantOp = nullptr; 886 Type *CastSrcTy = nullptr; 887 888 if (isa<CastInst>(FirstInst)) { 889 CastSrcTy = FirstInst->getOperand(0)->getType(); 890 891 // Be careful about transforming integer PHIs. We don't want to pessimize 892 // the code by turning an i32 into an i1293. 893 if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) { 894 if (!shouldChangeType(PN.getType(), CastSrcTy)) 895 return nullptr; 896 } 897 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) { 898 // Can fold binop, compare or shift here if the RHS is a constant, 899 // otherwise call FoldPHIArgBinOpIntoPHI. 900 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1)); 901 if (!ConstantOp) 902 return foldPHIArgBinOpIntoPHI(PN); 903 } else { 904 return nullptr; // Cannot fold this operation. 905 } 906 907 // Check to see if all arguments are the same operation. 908 for (Value *V : drop_begin(PN.incoming_values())) { 909 Instruction *I = dyn_cast<Instruction>(V); 910 if (!I || !I->hasOneUser() || !I->isSameOperationAs(FirstInst)) 911 return nullptr; 912 if (CastSrcTy) { 913 if (I->getOperand(0)->getType() != CastSrcTy) 914 return nullptr; // Cast operation must match. 915 } else if (I->getOperand(1) != ConstantOp) { 916 return nullptr; 917 } 918 } 919 920 // Okay, they are all the same operation. Create a new PHI node of the 921 // correct type, and PHI together all of the LHS's of the instructions. 922 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(), 923 PN.getNumIncomingValues(), 924 PN.getName()+".in"); 925 926 Value *InVal = FirstInst->getOperand(0); 927 NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); 928 929 // Add all operands to the new PHI. 930 for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) { 931 BasicBlock *BB = std::get<0>(Incoming); 932 Value *V = std::get<1>(Incoming); 933 Value *NewInVal = cast<Instruction>(V)->getOperand(0); 934 if (NewInVal != InVal) 935 InVal = nullptr; 936 NewPN->addIncoming(NewInVal, BB); 937 } 938 939 Value *PhiVal; 940 if (InVal) { 941 // The new PHI unions all of the same values together. This is really 942 // common, so we handle it intelligently here for compile-time speed. 943 PhiVal = InVal; 944 delete NewPN; 945 } else { 946 InsertNewInstBefore(NewPN, PN); 947 PhiVal = NewPN; 948 } 949 950 // Insert and return the new operation. 951 if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) { 952 CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal, 953 PN.getType()); 954 PHIArgMergedDebugLoc(NewCI, PN); 955 return NewCI; 956 } 957 958 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) { 959 BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp); 960 BinOp->copyIRFlags(PN.getIncomingValue(0)); 961 962 for (Value *V : drop_begin(PN.incoming_values())) 963 BinOp->andIRFlags(V); 964 965 PHIArgMergedDebugLoc(BinOp, PN); 966 return BinOp; 967 } 968 969 CmpInst *CIOp = cast<CmpInst>(FirstInst); 970 CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), 971 PhiVal, ConstantOp); 972 PHIArgMergedDebugLoc(NewCI, PN); 973 return NewCI; 974 } 975 976 /// Return true if this PHI node is only used by a PHI node cycle that is dead. 977 static bool isDeadPHICycle(PHINode *PN, 978 SmallPtrSetImpl<PHINode *> &PotentiallyDeadPHIs) { 979 if (PN->use_empty()) return true; 980 if (!PN->hasOneUse()) return false; 981 982 // Remember this node, and if we find the cycle, return. 983 if (!PotentiallyDeadPHIs.insert(PN).second) 984 return true; 985 986 // Don't scan crazily complex things. 987 if (PotentiallyDeadPHIs.size() == 16) 988 return false; 989 990 if (PHINode *PU = dyn_cast<PHINode>(PN->user_back())) 991 return isDeadPHICycle(PU, PotentiallyDeadPHIs); 992 993 return false; 994 } 995 996 /// Return true if this phi node is always equal to NonPhiInVal. 997 /// This happens with mutually cyclic phi nodes like: 998 /// z = some value; x = phi (y, z); y = phi (x, z) 999 static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal, 1000 SmallPtrSetImpl<PHINode*> &ValueEqualPHIs) { 1001 // See if we already saw this PHI node. 1002 if (!ValueEqualPHIs.insert(PN).second) 1003 return true; 1004 1005 // Don't scan crazily complex things. 1006 if (ValueEqualPHIs.size() == 16) 1007 return false; 1008 1009 // Scan the operands to see if they are either phi nodes or are equal to 1010 // the value. 1011 for (Value *Op : PN->incoming_values()) { 1012 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) { 1013 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs)) 1014 return false; 1015 } else if (Op != NonPhiInVal) 1016 return false; 1017 } 1018 1019 return true; 1020 } 1021 1022 /// Return an existing non-zero constant if this phi node has one, otherwise 1023 /// return constant 1. 1024 static ConstantInt *getAnyNonZeroConstInt(PHINode &PN) { 1025 assert(isa<IntegerType>(PN.getType()) && "Expect only integer type phi"); 1026 for (Value *V : PN.operands()) 1027 if (auto *ConstVA = dyn_cast<ConstantInt>(V)) 1028 if (!ConstVA->isZero()) 1029 return ConstVA; 1030 return ConstantInt::get(cast<IntegerType>(PN.getType()), 1); 1031 } 1032 1033 namespace { 1034 struct PHIUsageRecord { 1035 unsigned PHIId; // The ID # of the PHI (something determinstic to sort on) 1036 unsigned Shift; // The amount shifted. 1037 Instruction *Inst; // The trunc instruction. 1038 1039 PHIUsageRecord(unsigned Pn, unsigned Sh, Instruction *User) 1040 : PHIId(Pn), Shift(Sh), Inst(User) {} 1041 1042 bool operator<(const PHIUsageRecord &RHS) const { 1043 if (PHIId < RHS.PHIId) return true; 1044 if (PHIId > RHS.PHIId) return false; 1045 if (Shift < RHS.Shift) return true; 1046 if (Shift > RHS.Shift) return false; 1047 return Inst->getType()->getPrimitiveSizeInBits() < 1048 RHS.Inst->getType()->getPrimitiveSizeInBits(); 1049 } 1050 }; 1051 1052 struct LoweredPHIRecord { 1053 PHINode *PN; // The PHI that was lowered. 1054 unsigned Shift; // The amount shifted. 1055 unsigned Width; // The width extracted. 1056 1057 LoweredPHIRecord(PHINode *Phi, unsigned Sh, Type *Ty) 1058 : PN(Phi), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {} 1059 1060 // Ctor form used by DenseMap. 1061 LoweredPHIRecord(PHINode *Phi, unsigned Sh) : PN(Phi), Shift(Sh), Width(0) {} 1062 }; 1063 } // namespace 1064 1065 namespace llvm { 1066 template<> 1067 struct DenseMapInfo<LoweredPHIRecord> { 1068 static inline LoweredPHIRecord getEmptyKey() { 1069 return LoweredPHIRecord(nullptr, 0); 1070 } 1071 static inline LoweredPHIRecord getTombstoneKey() { 1072 return LoweredPHIRecord(nullptr, 1); 1073 } 1074 static unsigned getHashValue(const LoweredPHIRecord &Val) { 1075 return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^ 1076 (Val.Width>>3); 1077 } 1078 static bool isEqual(const LoweredPHIRecord &LHS, 1079 const LoweredPHIRecord &RHS) { 1080 return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift && 1081 LHS.Width == RHS.Width; 1082 } 1083 }; 1084 } // namespace llvm 1085 1086 1087 /// This is an integer PHI and we know that it has an illegal type: see if it is 1088 /// only used by trunc or trunc(lshr) operations. If so, we split the PHI into 1089 /// the various pieces being extracted. This sort of thing is introduced when 1090 /// SROA promotes an aggregate to large integer values. 1091 /// 1092 /// TODO: The user of the trunc may be an bitcast to float/double/vector or an 1093 /// inttoptr. We should produce new PHIs in the right type. 1094 /// 1095 Instruction *InstCombinerImpl::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) { 1096 // PHIUsers - Keep track of all of the truncated values extracted from a set 1097 // of PHIs, along with their offset. These are the things we want to rewrite. 1098 SmallVector<PHIUsageRecord, 16> PHIUsers; 1099 1100 // PHIs are often mutually cyclic, so we keep track of a whole set of PHI 1101 // nodes which are extracted from. PHIsToSlice is a set we use to avoid 1102 // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to 1103 // check the uses of (to ensure they are all extracts). 1104 SmallVector<PHINode*, 8> PHIsToSlice; 1105 SmallPtrSet<PHINode*, 8> PHIsInspected; 1106 1107 PHIsToSlice.push_back(&FirstPhi); 1108 PHIsInspected.insert(&FirstPhi); 1109 1110 for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) { 1111 PHINode *PN = PHIsToSlice[PHIId]; 1112 1113 // Scan the input list of the PHI. If any input is an invoke, and if the 1114 // input is defined in the predecessor, then we won't be split the critical 1115 // edge which is required to insert a truncate. Because of this, we have to 1116 // bail out. 1117 for (auto Incoming : zip(PN->blocks(), PN->incoming_values())) { 1118 BasicBlock *BB = std::get<0>(Incoming); 1119 Value *V = std::get<1>(Incoming); 1120 InvokeInst *II = dyn_cast<InvokeInst>(V); 1121 if (!II) 1122 continue; 1123 if (II->getParent() != BB) 1124 continue; 1125 1126 // If we have a phi, and if it's directly in the predecessor, then we have 1127 // a critical edge where we need to put the truncate. Since we can't 1128 // split the edge in instcombine, we have to bail out. 1129 return nullptr; 1130 } 1131 1132 // If the incoming value is a PHI node before a catchswitch, we cannot 1133 // extract the value within that BB because we cannot insert any non-PHI 1134 // instructions in the BB. 1135 for (auto *Pred : PN->blocks()) 1136 if (Pred->getFirstInsertionPt() == Pred->end()) 1137 return nullptr; 1138 1139 for (User *U : PN->users()) { 1140 Instruction *UserI = cast<Instruction>(U); 1141 1142 // If the user is a PHI, inspect its uses recursively. 1143 if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) { 1144 if (PHIsInspected.insert(UserPN).second) 1145 PHIsToSlice.push_back(UserPN); 1146 continue; 1147 } 1148 1149 // Truncates are always ok. 1150 if (isa<TruncInst>(UserI)) { 1151 PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI)); 1152 continue; 1153 } 1154 1155 // Otherwise it must be a lshr which can only be used by one trunc. 1156 if (UserI->getOpcode() != Instruction::LShr || 1157 !UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) || 1158 !isa<ConstantInt>(UserI->getOperand(1))) 1159 return nullptr; 1160 1161 // Bail on out of range shifts. 1162 unsigned SizeInBits = UserI->getType()->getScalarSizeInBits(); 1163 if (cast<ConstantInt>(UserI->getOperand(1))->getValue().uge(SizeInBits)) 1164 return nullptr; 1165 1166 unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue(); 1167 PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back())); 1168 } 1169 } 1170 1171 // If we have no users, they must be all self uses, just nuke the PHI. 1172 if (PHIUsers.empty()) 1173 return replaceInstUsesWith(FirstPhi, PoisonValue::get(FirstPhi.getType())); 1174 1175 // If this phi node is transformable, create new PHIs for all the pieces 1176 // extracted out of it. First, sort the users by their offset and size. 1177 array_pod_sort(PHIUsers.begin(), PHIUsers.end()); 1178 1179 LLVM_DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n'; 1180 for (unsigned I = 1; I != PHIsToSlice.size(); ++I) dbgs() 1181 << "AND USER PHI #" << I << ": " << *PHIsToSlice[I] << '\n'); 1182 1183 // PredValues - This is a temporary used when rewriting PHI nodes. It is 1184 // hoisted out here to avoid construction/destruction thrashing. 1185 DenseMap<BasicBlock*, Value*> PredValues; 1186 1187 // ExtractedVals - Each new PHI we introduce is saved here so we don't 1188 // introduce redundant PHIs. 1189 DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals; 1190 1191 for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) { 1192 unsigned PHIId = PHIUsers[UserI].PHIId; 1193 PHINode *PN = PHIsToSlice[PHIId]; 1194 unsigned Offset = PHIUsers[UserI].Shift; 1195 Type *Ty = PHIUsers[UserI].Inst->getType(); 1196 1197 PHINode *EltPHI; 1198 1199 // If we've already lowered a user like this, reuse the previously lowered 1200 // value. 1201 if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) { 1202 1203 // Otherwise, Create the new PHI node for this user. 1204 EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(), 1205 PN->getName()+".off"+Twine(Offset), PN); 1206 assert(EltPHI->getType() != PN->getType() && 1207 "Truncate didn't shrink phi?"); 1208 1209 for (auto Incoming : zip(PN->blocks(), PN->incoming_values())) { 1210 BasicBlock *Pred = std::get<0>(Incoming); 1211 Value *InVal = std::get<1>(Incoming); 1212 Value *&PredVal = PredValues[Pred]; 1213 1214 // If we already have a value for this predecessor, reuse it. 1215 if (PredVal) { 1216 EltPHI->addIncoming(PredVal, Pred); 1217 continue; 1218 } 1219 1220 // Handle the PHI self-reuse case. 1221 if (InVal == PN) { 1222 PredVal = EltPHI; 1223 EltPHI->addIncoming(PredVal, Pred); 1224 continue; 1225 } 1226 1227 if (PHINode *InPHI = dyn_cast<PHINode>(PN)) { 1228 // If the incoming value was a PHI, and if it was one of the PHIs we 1229 // already rewrote it, just use the lowered value. 1230 if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) { 1231 PredVal = Res; 1232 EltPHI->addIncoming(PredVal, Pred); 1233 continue; 1234 } 1235 } 1236 1237 // Otherwise, do an extract in the predecessor. 1238 Builder.SetInsertPoint(Pred->getTerminator()); 1239 Value *Res = InVal; 1240 if (Offset) 1241 Res = Builder.CreateLShr( 1242 Res, ConstantInt::get(InVal->getType(), Offset), "extract"); 1243 Res = Builder.CreateTrunc(Res, Ty, "extract.t"); 1244 PredVal = Res; 1245 EltPHI->addIncoming(Res, Pred); 1246 1247 // If the incoming value was a PHI, and if it was one of the PHIs we are 1248 // rewriting, we will ultimately delete the code we inserted. This 1249 // means we need to revisit that PHI to make sure we extract out the 1250 // needed piece. 1251 if (PHINode *OldInVal = dyn_cast<PHINode>(InVal)) 1252 if (PHIsInspected.count(OldInVal)) { 1253 unsigned RefPHIId = 1254 find(PHIsToSlice, OldInVal) - PHIsToSlice.begin(); 1255 PHIUsers.push_back( 1256 PHIUsageRecord(RefPHIId, Offset, cast<Instruction>(Res))); 1257 ++UserE; 1258 } 1259 } 1260 PredValues.clear(); 1261 1262 LLVM_DEBUG(dbgs() << " Made element PHI for offset " << Offset << ": " 1263 << *EltPHI << '\n'); 1264 ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI; 1265 } 1266 1267 // Replace the use of this piece with the PHI node. 1268 replaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI); 1269 } 1270 1271 // Replace all the remaining uses of the PHI nodes (self uses and the lshrs) 1272 // with poison. 1273 Value *Poison = PoisonValue::get(FirstPhi.getType()); 1274 for (PHINode *PHI : drop_begin(PHIsToSlice)) 1275 replaceInstUsesWith(*PHI, Poison); 1276 return replaceInstUsesWith(FirstPhi, Poison); 1277 } 1278 1279 static Value *simplifyUsingControlFlow(InstCombiner &Self, PHINode &PN, 1280 const DominatorTree &DT) { 1281 // Simplify the following patterns: 1282 // if (cond) 1283 // / \ 1284 // ... ... 1285 // \ / 1286 // phi [true] [false] 1287 // and 1288 // switch (cond) 1289 // case v1: / \ case v2: 1290 // ... ... 1291 // \ / 1292 // phi [v1] [v2] 1293 // Make sure all inputs are constants. 1294 if (!all_of(PN.operands(), [](Value *V) { return isa<ConstantInt>(V); })) 1295 return nullptr; 1296 1297 BasicBlock *BB = PN.getParent(); 1298 // Do not bother with unreachable instructions. 1299 if (!DT.isReachableFromEntry(BB)) 1300 return nullptr; 1301 1302 // Determine which value the condition of the idom has for which successor. 1303 LLVMContext &Context = PN.getContext(); 1304 auto *IDom = DT.getNode(BB)->getIDom()->getBlock(); 1305 Value *Cond; 1306 SmallDenseMap<ConstantInt *, BasicBlock *, 8> SuccForValue; 1307 SmallDenseMap<BasicBlock *, unsigned, 8> SuccCount; 1308 auto AddSucc = [&](ConstantInt *C, BasicBlock *Succ) { 1309 SuccForValue[C] = Succ; 1310 ++SuccCount[Succ]; 1311 }; 1312 if (auto *BI = dyn_cast<BranchInst>(IDom->getTerminator())) { 1313 if (BI->isUnconditional()) 1314 return nullptr; 1315 1316 Cond = BI->getCondition(); 1317 AddSucc(ConstantInt::getTrue(Context), BI->getSuccessor(0)); 1318 AddSucc(ConstantInt::getFalse(Context), BI->getSuccessor(1)); 1319 } else if (auto *SI = dyn_cast<SwitchInst>(IDom->getTerminator())) { 1320 Cond = SI->getCondition(); 1321 ++SuccCount[SI->getDefaultDest()]; 1322 for (auto Case : SI->cases()) 1323 AddSucc(Case.getCaseValue(), Case.getCaseSuccessor()); 1324 } else { 1325 return nullptr; 1326 } 1327 1328 if (Cond->getType() != PN.getType()) 1329 return nullptr; 1330 1331 // Check that edges outgoing from the idom's terminators dominate respective 1332 // inputs of the Phi. 1333 std::optional<bool> Invert; 1334 for (auto Pair : zip(PN.incoming_values(), PN.blocks())) { 1335 auto *Input = cast<ConstantInt>(std::get<0>(Pair)); 1336 BasicBlock *Pred = std::get<1>(Pair); 1337 auto IsCorrectInput = [&](ConstantInt *Input) { 1338 // The input needs to be dominated by the corresponding edge of the idom. 1339 // This edge cannot be a multi-edge, as that would imply that multiple 1340 // different condition values follow the same edge. 1341 auto It = SuccForValue.find(Input); 1342 return It != SuccForValue.end() && SuccCount[It->second] == 1 && 1343 DT.dominates(BasicBlockEdge(IDom, It->second), 1344 BasicBlockEdge(Pred, BB)); 1345 }; 1346 1347 // Depending on the constant, the condition may need to be inverted. 1348 bool NeedsInvert; 1349 if (IsCorrectInput(Input)) 1350 NeedsInvert = false; 1351 else if (IsCorrectInput(cast<ConstantInt>(ConstantExpr::getNot(Input)))) 1352 NeedsInvert = true; 1353 else 1354 return nullptr; 1355 1356 // Make sure the inversion requirement is always the same. 1357 if (Invert && *Invert != NeedsInvert) 1358 return nullptr; 1359 1360 Invert = NeedsInvert; 1361 } 1362 1363 if (!*Invert) 1364 return Cond; 1365 1366 // This Phi is actually opposite to branching condition of IDom. We invert 1367 // the condition that will potentially open up some opportunities for 1368 // sinking. 1369 auto InsertPt = BB->getFirstInsertionPt(); 1370 if (InsertPt != BB->end()) { 1371 Self.Builder.SetInsertPoint(&*InsertPt); 1372 return Self.Builder.CreateNot(Cond); 1373 } 1374 1375 return nullptr; 1376 } 1377 1378 // PHINode simplification 1379 // 1380 Instruction *InstCombinerImpl::visitPHINode(PHINode &PN) { 1381 if (Value *V = simplifyInstruction(&PN, SQ.getWithInstruction(&PN))) 1382 return replaceInstUsesWith(PN, V); 1383 1384 if (Instruction *Result = foldPHIArgZextsIntoPHI(PN)) 1385 return Result; 1386 1387 if (Instruction *Result = foldPHIArgIntToPtrToPHI(PN)) 1388 return Result; 1389 1390 // If all PHI operands are the same operation, pull them through the PHI, 1391 // reducing code size. 1392 auto *Inst0 = dyn_cast<Instruction>(PN.getIncomingValue(0)); 1393 auto *Inst1 = dyn_cast<Instruction>(PN.getIncomingValue(1)); 1394 if (Inst0 && Inst1 && Inst0->getOpcode() == Inst1->getOpcode() && 1395 Inst0->hasOneUser()) 1396 if (Instruction *Result = foldPHIArgOpIntoPHI(PN)) 1397 return Result; 1398 1399 // If the incoming values are pointer casts of the same original value, 1400 // replace the phi with a single cast iff we can insert a non-PHI instruction. 1401 if (PN.getType()->isPointerTy() && 1402 PN.getParent()->getFirstInsertionPt() != PN.getParent()->end()) { 1403 Value *IV0 = PN.getIncomingValue(0); 1404 Value *IV0Stripped = IV0->stripPointerCasts(); 1405 // Set to keep track of values known to be equal to IV0Stripped after 1406 // stripping pointer casts. 1407 SmallPtrSet<Value *, 4> CheckedIVs; 1408 CheckedIVs.insert(IV0); 1409 if (IV0 != IV0Stripped && 1410 all_of(PN.incoming_values(), [&CheckedIVs, IV0Stripped](Value *IV) { 1411 return !CheckedIVs.insert(IV).second || 1412 IV0Stripped == IV->stripPointerCasts(); 1413 })) { 1414 return CastInst::CreatePointerCast(IV0Stripped, PN.getType()); 1415 } 1416 } 1417 1418 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if 1419 // this PHI only has a single use (a PHI), and if that PHI only has one use (a 1420 // PHI)... break the cycle. 1421 if (PN.hasOneUse()) { 1422 if (foldIntegerTypedPHI(PN)) 1423 return nullptr; 1424 1425 Instruction *PHIUser = cast<Instruction>(PN.user_back()); 1426 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) { 1427 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs; 1428 PotentiallyDeadPHIs.insert(&PN); 1429 if (isDeadPHICycle(PU, PotentiallyDeadPHIs)) 1430 return replaceInstUsesWith(PN, PoisonValue::get(PN.getType())); 1431 } 1432 1433 // If this phi has a single use, and if that use just computes a value for 1434 // the next iteration of a loop, delete the phi. This occurs with unused 1435 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this 1436 // common case here is good because the only other things that catch this 1437 // are induction variable analysis (sometimes) and ADCE, which is only run 1438 // late. 1439 if (PHIUser->hasOneUse() && 1440 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) && 1441 PHIUser->user_back() == &PN) { 1442 return replaceInstUsesWith(PN, PoisonValue::get(PN.getType())); 1443 } 1444 // When a PHI is used only to be compared with zero, it is safe to replace 1445 // an incoming value proved as known nonzero with any non-zero constant. 1446 // For example, in the code below, the incoming value %v can be replaced 1447 // with any non-zero constant based on the fact that the PHI is only used to 1448 // be compared with zero and %v is a known non-zero value: 1449 // %v = select %cond, 1, 2 1450 // %p = phi [%v, BB] ... 1451 // icmp eq, %p, 0 1452 auto *CmpInst = dyn_cast<ICmpInst>(PHIUser); 1453 // FIXME: To be simple, handle only integer type for now. 1454 if (CmpInst && isa<IntegerType>(PN.getType()) && CmpInst->isEquality() && 1455 match(CmpInst->getOperand(1), m_Zero())) { 1456 ConstantInt *NonZeroConst = nullptr; 1457 bool MadeChange = false; 1458 for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) { 1459 Instruction *CtxI = PN.getIncomingBlock(I)->getTerminator(); 1460 Value *VA = PN.getIncomingValue(I); 1461 if (isKnownNonZero(VA, DL, 0, &AC, CtxI, &DT)) { 1462 if (!NonZeroConst) 1463 NonZeroConst = getAnyNonZeroConstInt(PN); 1464 1465 if (NonZeroConst != VA) { 1466 replaceOperand(PN, I, NonZeroConst); 1467 MadeChange = true; 1468 } 1469 } 1470 } 1471 if (MadeChange) 1472 return &PN; 1473 } 1474 } 1475 1476 // We sometimes end up with phi cycles that non-obviously end up being the 1477 // same value, for example: 1478 // z = some value; x = phi (y, z); y = phi (x, z) 1479 // where the phi nodes don't necessarily need to be in the same block. Do a 1480 // quick check to see if the PHI node only contains a single non-phi value, if 1481 // so, scan to see if the phi cycle is actually equal to that value. 1482 { 1483 unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues(); 1484 // Scan for the first non-phi operand. 1485 while (InValNo != NumIncomingVals && 1486 isa<PHINode>(PN.getIncomingValue(InValNo))) 1487 ++InValNo; 1488 1489 if (InValNo != NumIncomingVals) { 1490 Value *NonPhiInVal = PN.getIncomingValue(InValNo); 1491 1492 // Scan the rest of the operands to see if there are any conflicts, if so 1493 // there is no need to recursively scan other phis. 1494 for (++InValNo; InValNo != NumIncomingVals; ++InValNo) { 1495 Value *OpVal = PN.getIncomingValue(InValNo); 1496 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal)) 1497 break; 1498 } 1499 1500 // If we scanned over all operands, then we have one unique value plus 1501 // phi values. Scan PHI nodes to see if they all merge in each other or 1502 // the value. 1503 if (InValNo == NumIncomingVals) { 1504 SmallPtrSet<PHINode*, 16> ValueEqualPHIs; 1505 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs)) 1506 return replaceInstUsesWith(PN, NonPhiInVal); 1507 } 1508 } 1509 } 1510 1511 // If there are multiple PHIs, sort their operands so that they all list 1512 // the blocks in the same order. This will help identical PHIs be eliminated 1513 // by other passes. Other passes shouldn't depend on this for correctness 1514 // however. 1515 PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin()); 1516 if (&PN != FirstPN) 1517 for (unsigned I = 0, E = FirstPN->getNumIncomingValues(); I != E; ++I) { 1518 BasicBlock *BBA = PN.getIncomingBlock(I); 1519 BasicBlock *BBB = FirstPN->getIncomingBlock(I); 1520 if (BBA != BBB) { 1521 Value *VA = PN.getIncomingValue(I); 1522 unsigned J = PN.getBasicBlockIndex(BBB); 1523 Value *VB = PN.getIncomingValue(J); 1524 PN.setIncomingBlock(I, BBB); 1525 PN.setIncomingValue(I, VB); 1526 PN.setIncomingBlock(J, BBA); 1527 PN.setIncomingValue(J, VA); 1528 // NOTE: Instcombine normally would want us to "return &PN" if we 1529 // modified any of the operands of an instruction. However, since we 1530 // aren't adding or removing uses (just rearranging them) we don't do 1531 // this in this case. 1532 } 1533 } 1534 1535 // Is there an identical PHI node in this basic block? 1536 for (PHINode &IdenticalPN : PN.getParent()->phis()) { 1537 // Ignore the PHI node itself. 1538 if (&IdenticalPN == &PN) 1539 continue; 1540 // Note that even though we've just canonicalized this PHI, due to the 1541 // worklist visitation order, there are no guarantess that *every* PHI 1542 // has been canonicalized, so we can't just compare operands ranges. 1543 if (!PN.isIdenticalToWhenDefined(&IdenticalPN)) 1544 continue; 1545 // Just use that PHI instead then. 1546 ++NumPHICSEs; 1547 return replaceInstUsesWith(PN, &IdenticalPN); 1548 } 1549 1550 // If this is an integer PHI and we know that it has an illegal type, see if 1551 // it is only used by trunc or trunc(lshr) operations. If so, we split the 1552 // PHI into the various pieces being extracted. This sort of thing is 1553 // introduced when SROA promotes an aggregate to a single large integer type. 1554 if (PN.getType()->isIntegerTy() && 1555 !DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits())) 1556 if (Instruction *Res = SliceUpIllegalIntegerPHI(PN)) 1557 return Res; 1558 1559 // Ultimately, try to replace this Phi with a dominating condition. 1560 if (auto *V = simplifyUsingControlFlow(*this, PN, DT)) 1561 return replaceInstUsesWith(PN, V); 1562 1563 return nullptr; 1564 } 1565