1 //===- InstCombinePHI.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitPHINode function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Analysis/ValueTracking.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/CommandLine.h" 20 #include "llvm/Transforms/Utils/Local.h" 21 using namespace llvm; 22 using namespace llvm::PatternMatch; 23 24 #define DEBUG_TYPE "instcombine" 25 26 static cl::opt<unsigned> 27 MaxNumPhis("instcombine-max-num-phis", cl::init(512), 28 cl::desc("Maximum number phis to handle in intptr/ptrint folding")); 29 30 /// The PHI arguments will be folded into a single operation with a PHI node 31 /// as input. The debug location of the single operation will be the merged 32 /// locations of the original PHI node arguments. 33 void InstCombiner::PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN) { 34 auto *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); 35 Inst->setDebugLoc(FirstInst->getDebugLoc()); 36 // We do not expect a CallInst here, otherwise, N-way merging of DebugLoc 37 // will be inefficient. 38 assert(!isa<CallInst>(Inst)); 39 40 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { 41 auto *I = cast<Instruction>(PN.getIncomingValue(i)); 42 Inst->applyMergedLocation(Inst->getDebugLoc(), I->getDebugLoc()); 43 } 44 } 45 46 // Replace Integer typed PHI PN if the PHI's value is used as a pointer value. 47 // If there is an existing pointer typed PHI that produces the same value as PN, 48 // replace PN and the IntToPtr operation with it. Otherwise, synthesize a new 49 // PHI node: 50 // 51 // Case-1: 52 // bb1: 53 // int_init = PtrToInt(ptr_init) 54 // br label %bb2 55 // bb2: 56 // int_val = PHI([int_init, %bb1], [int_val_inc, %bb2] 57 // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2] 58 // ptr_val2 = IntToPtr(int_val) 59 // ... 60 // use(ptr_val2) 61 // ptr_val_inc = ... 62 // inc_val_inc = PtrToInt(ptr_val_inc) 63 // 64 // ==> 65 // bb1: 66 // br label %bb2 67 // bb2: 68 // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2] 69 // ... 70 // use(ptr_val) 71 // ptr_val_inc = ... 72 // 73 // Case-2: 74 // bb1: 75 // int_ptr = BitCast(ptr_ptr) 76 // int_init = Load(int_ptr) 77 // br label %bb2 78 // bb2: 79 // int_val = PHI([int_init, %bb1], [int_val_inc, %bb2] 80 // ptr_val2 = IntToPtr(int_val) 81 // ... 82 // use(ptr_val2) 83 // ptr_val_inc = ... 84 // inc_val_inc = PtrToInt(ptr_val_inc) 85 // ==> 86 // bb1: 87 // ptr_init = Load(ptr_ptr) 88 // br label %bb2 89 // bb2: 90 // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2] 91 // ... 92 // use(ptr_val) 93 // ptr_val_inc = ... 94 // ... 95 // 96 Instruction *InstCombiner::FoldIntegerTypedPHI(PHINode &PN) { 97 if (!PN.getType()->isIntegerTy()) 98 return nullptr; 99 if (!PN.hasOneUse()) 100 return nullptr; 101 102 auto *IntToPtr = dyn_cast<IntToPtrInst>(PN.user_back()); 103 if (!IntToPtr) 104 return nullptr; 105 106 // Check if the pointer is actually used as pointer: 107 auto HasPointerUse = [](Instruction *IIP) { 108 for (User *U : IIP->users()) { 109 Value *Ptr = nullptr; 110 if (LoadInst *LoadI = dyn_cast<LoadInst>(U)) { 111 Ptr = LoadI->getPointerOperand(); 112 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 113 Ptr = SI->getPointerOperand(); 114 } else if (GetElementPtrInst *GI = dyn_cast<GetElementPtrInst>(U)) { 115 Ptr = GI->getPointerOperand(); 116 } 117 118 if (Ptr && Ptr == IIP) 119 return true; 120 } 121 return false; 122 }; 123 124 if (!HasPointerUse(IntToPtr)) 125 return nullptr; 126 127 if (DL.getPointerSizeInBits(IntToPtr->getAddressSpace()) != 128 DL.getTypeSizeInBits(IntToPtr->getOperand(0)->getType())) 129 return nullptr; 130 131 SmallVector<Value *, 4> AvailablePtrVals; 132 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) { 133 Value *Arg = PN.getIncomingValue(i); 134 135 // First look backward: 136 if (auto *PI = dyn_cast<PtrToIntInst>(Arg)) { 137 AvailablePtrVals.emplace_back(PI->getOperand(0)); 138 continue; 139 } 140 141 // Next look forward: 142 Value *ArgIntToPtr = nullptr; 143 for (User *U : Arg->users()) { 144 if (isa<IntToPtrInst>(U) && U->getType() == IntToPtr->getType() && 145 (DT.dominates(cast<Instruction>(U), PN.getIncomingBlock(i)) || 146 cast<Instruction>(U)->getParent() == PN.getIncomingBlock(i))) { 147 ArgIntToPtr = U; 148 break; 149 } 150 } 151 152 if (ArgIntToPtr) { 153 AvailablePtrVals.emplace_back(ArgIntToPtr); 154 continue; 155 } 156 157 // If Arg is defined by a PHI, allow it. This will also create 158 // more opportunities iteratively. 159 if (isa<PHINode>(Arg)) { 160 AvailablePtrVals.emplace_back(Arg); 161 continue; 162 } 163 164 // For a single use integer load: 165 auto *LoadI = dyn_cast<LoadInst>(Arg); 166 if (!LoadI) 167 return nullptr; 168 169 if (!LoadI->hasOneUse()) 170 return nullptr; 171 172 // Push the integer typed Load instruction into the available 173 // value set, and fix it up later when the pointer typed PHI 174 // is synthesized. 175 AvailablePtrVals.emplace_back(LoadI); 176 } 177 178 // Now search for a matching PHI 179 auto *BB = PN.getParent(); 180 assert(AvailablePtrVals.size() == PN.getNumIncomingValues() && 181 "Not enough available ptr typed incoming values"); 182 PHINode *MatchingPtrPHI = nullptr; 183 unsigned NumPhis = 0; 184 for (auto II = BB->begin(); II != BB->end(); II++, NumPhis++) { 185 // FIXME: consider handling this in AggressiveInstCombine 186 PHINode *PtrPHI = dyn_cast<PHINode>(II); 187 if (!PtrPHI) 188 break; 189 if (NumPhis > MaxNumPhis) 190 return nullptr; 191 if (PtrPHI == &PN || PtrPHI->getType() != IntToPtr->getType()) 192 continue; 193 MatchingPtrPHI = PtrPHI; 194 for (unsigned i = 0; i != PtrPHI->getNumIncomingValues(); ++i) { 195 if (AvailablePtrVals[i] != 196 PtrPHI->getIncomingValueForBlock(PN.getIncomingBlock(i))) { 197 MatchingPtrPHI = nullptr; 198 break; 199 } 200 } 201 202 if (MatchingPtrPHI) 203 break; 204 } 205 206 if (MatchingPtrPHI) { 207 assert(MatchingPtrPHI->getType() == IntToPtr->getType() && 208 "Phi's Type does not match with IntToPtr"); 209 // The PtrToCast + IntToPtr will be simplified later 210 return CastInst::CreateBitOrPointerCast(MatchingPtrPHI, 211 IntToPtr->getOperand(0)->getType()); 212 } 213 214 // If it requires a conversion for every PHI operand, do not do it. 215 if (all_of(AvailablePtrVals, [&](Value *V) { 216 return (V->getType() != IntToPtr->getType()) || isa<IntToPtrInst>(V); 217 })) 218 return nullptr; 219 220 // If any of the operand that requires casting is a terminator 221 // instruction, do not do it. Similarly, do not do the transform if the value 222 // is PHI in a block with no insertion point, for example, a catchswitch 223 // block, since we will not be able to insert a cast after the PHI. 224 if (any_of(AvailablePtrVals, [&](Value *V) { 225 if (V->getType() == IntToPtr->getType()) 226 return false; 227 auto *Inst = dyn_cast<Instruction>(V); 228 if (!Inst) 229 return false; 230 if (Inst->isTerminator()) 231 return true; 232 auto *BB = Inst->getParent(); 233 if (isa<PHINode>(Inst) && BB->getFirstInsertionPt() == BB->end()) 234 return true; 235 return false; 236 })) 237 return nullptr; 238 239 PHINode *NewPtrPHI = PHINode::Create( 240 IntToPtr->getType(), PN.getNumIncomingValues(), PN.getName() + ".ptr"); 241 242 InsertNewInstBefore(NewPtrPHI, PN); 243 SmallDenseMap<Value *, Instruction *> Casts; 244 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) { 245 auto *IncomingBB = PN.getIncomingBlock(i); 246 auto *IncomingVal = AvailablePtrVals[i]; 247 248 if (IncomingVal->getType() == IntToPtr->getType()) { 249 NewPtrPHI->addIncoming(IncomingVal, IncomingBB); 250 continue; 251 } 252 253 #ifndef NDEBUG 254 LoadInst *LoadI = dyn_cast<LoadInst>(IncomingVal); 255 assert((isa<PHINode>(IncomingVal) || 256 IncomingVal->getType()->isPointerTy() || 257 (LoadI && LoadI->hasOneUse())) && 258 "Can not replace LoadInst with multiple uses"); 259 #endif 260 // Need to insert a BitCast. 261 // For an integer Load instruction with a single use, the load + IntToPtr 262 // cast will be simplified into a pointer load: 263 // %v = load i64, i64* %a.ip, align 8 264 // %v.cast = inttoptr i64 %v to float ** 265 // ==> 266 // %v.ptrp = bitcast i64 * %a.ip to float ** 267 // %v.cast = load float *, float ** %v.ptrp, align 8 268 Instruction *&CI = Casts[IncomingVal]; 269 if (!CI) { 270 CI = CastInst::CreateBitOrPointerCast(IncomingVal, IntToPtr->getType(), 271 IncomingVal->getName() + ".ptr"); 272 if (auto *IncomingI = dyn_cast<Instruction>(IncomingVal)) { 273 BasicBlock::iterator InsertPos(IncomingI); 274 InsertPos++; 275 BasicBlock *BB = IncomingI->getParent(); 276 if (isa<PHINode>(IncomingI)) 277 InsertPos = BB->getFirstInsertionPt(); 278 assert(InsertPos != BB->end() && "should have checked above"); 279 InsertNewInstBefore(CI, *InsertPos); 280 } else { 281 auto *InsertBB = &IncomingBB->getParent()->getEntryBlock(); 282 InsertNewInstBefore(CI, *InsertBB->getFirstInsertionPt()); 283 } 284 } 285 NewPtrPHI->addIncoming(CI, IncomingBB); 286 } 287 288 // The PtrToCast + IntToPtr will be simplified later 289 return CastInst::CreateBitOrPointerCast(NewPtrPHI, 290 IntToPtr->getOperand(0)->getType()); 291 } 292 293 /// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the 294 /// adds all have a single use, turn this into a phi and a single binop. 295 Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) { 296 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); 297 assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)); 298 unsigned Opc = FirstInst->getOpcode(); 299 Value *LHSVal = FirstInst->getOperand(0); 300 Value *RHSVal = FirstInst->getOperand(1); 301 302 Type *LHSType = LHSVal->getType(); 303 Type *RHSType = RHSVal->getType(); 304 305 // Scan to see if all operands are the same opcode, and all have one use. 306 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { 307 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i)); 308 if (!I || I->getOpcode() != Opc || !I->hasOneUse() || 309 // Verify type of the LHS matches so we don't fold cmp's of different 310 // types. 311 I->getOperand(0)->getType() != LHSType || 312 I->getOperand(1)->getType() != RHSType) 313 return nullptr; 314 315 // If they are CmpInst instructions, check their predicates 316 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 317 if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate()) 318 return nullptr; 319 320 // Keep track of which operand needs a phi node. 321 if (I->getOperand(0) != LHSVal) LHSVal = nullptr; 322 if (I->getOperand(1) != RHSVal) RHSVal = nullptr; 323 } 324 325 // If both LHS and RHS would need a PHI, don't do this transformation, 326 // because it would increase the number of PHIs entering the block, 327 // which leads to higher register pressure. This is especially 328 // bad when the PHIs are in the header of a loop. 329 if (!LHSVal && !RHSVal) 330 return nullptr; 331 332 // Otherwise, this is safe to transform! 333 334 Value *InLHS = FirstInst->getOperand(0); 335 Value *InRHS = FirstInst->getOperand(1); 336 PHINode *NewLHS = nullptr, *NewRHS = nullptr; 337 if (!LHSVal) { 338 NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(), 339 FirstInst->getOperand(0)->getName() + ".pn"); 340 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0)); 341 InsertNewInstBefore(NewLHS, PN); 342 LHSVal = NewLHS; 343 } 344 345 if (!RHSVal) { 346 NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(), 347 FirstInst->getOperand(1)->getName() + ".pn"); 348 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0)); 349 InsertNewInstBefore(NewRHS, PN); 350 RHSVal = NewRHS; 351 } 352 353 // Add all operands to the new PHIs. 354 if (NewLHS || NewRHS) { 355 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 356 Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i)); 357 if (NewLHS) { 358 Value *NewInLHS = InInst->getOperand(0); 359 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i)); 360 } 361 if (NewRHS) { 362 Value *NewInRHS = InInst->getOperand(1); 363 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i)); 364 } 365 } 366 } 367 368 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) { 369 CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), 370 LHSVal, RHSVal); 371 PHIArgMergedDebugLoc(NewCI, PN); 372 return NewCI; 373 } 374 375 BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst); 376 BinaryOperator *NewBinOp = 377 BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal); 378 379 NewBinOp->copyIRFlags(PN.getIncomingValue(0)); 380 381 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) 382 NewBinOp->andIRFlags(PN.getIncomingValue(i)); 383 384 PHIArgMergedDebugLoc(NewBinOp, PN); 385 return NewBinOp; 386 } 387 388 Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) { 389 GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0)); 390 391 SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(), 392 FirstInst->op_end()); 393 // This is true if all GEP bases are allocas and if all indices into them are 394 // constants. 395 bool AllBasePointersAreAllocas = true; 396 397 // We don't want to replace this phi if the replacement would require 398 // more than one phi, which leads to higher register pressure. This is 399 // especially bad when the PHIs are in the header of a loop. 400 bool NeededPhi = false; 401 402 bool AllInBounds = true; 403 404 // Scan to see if all operands are the same opcode, and all have one use. 405 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { 406 GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i)); 407 if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() || 408 GEP->getNumOperands() != FirstInst->getNumOperands()) 409 return nullptr; 410 411 AllInBounds &= GEP->isInBounds(); 412 413 // Keep track of whether or not all GEPs are of alloca pointers. 414 if (AllBasePointersAreAllocas && 415 (!isa<AllocaInst>(GEP->getOperand(0)) || 416 !GEP->hasAllConstantIndices())) 417 AllBasePointersAreAllocas = false; 418 419 // Compare the operand lists. 420 for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) { 421 if (FirstInst->getOperand(op) == GEP->getOperand(op)) 422 continue; 423 424 // Don't merge two GEPs when two operands differ (introducing phi nodes) 425 // if one of the PHIs has a constant for the index. The index may be 426 // substantially cheaper to compute for the constants, so making it a 427 // variable index could pessimize the path. This also handles the case 428 // for struct indices, which must always be constant. 429 if (isa<ConstantInt>(FirstInst->getOperand(op)) || 430 isa<ConstantInt>(GEP->getOperand(op))) 431 return nullptr; 432 433 if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType()) 434 return nullptr; 435 436 // If we already needed a PHI for an earlier operand, and another operand 437 // also requires a PHI, we'd be introducing more PHIs than we're 438 // eliminating, which increases register pressure on entry to the PHI's 439 // block. 440 if (NeededPhi) 441 return nullptr; 442 443 FixedOperands[op] = nullptr; // Needs a PHI. 444 NeededPhi = true; 445 } 446 } 447 448 // If all of the base pointers of the PHI'd GEPs are from allocas, don't 449 // bother doing this transformation. At best, this will just save a bit of 450 // offset calculation, but all the predecessors will have to materialize the 451 // stack address into a register anyway. We'd actually rather *clone* the 452 // load up into the predecessors so that we have a load of a gep of an alloca, 453 // which can usually all be folded into the load. 454 if (AllBasePointersAreAllocas) 455 return nullptr; 456 457 // Otherwise, this is safe to transform. Insert PHI nodes for each operand 458 // that is variable. 459 SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size()); 460 461 bool HasAnyPHIs = false; 462 for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) { 463 if (FixedOperands[i]) continue; // operand doesn't need a phi. 464 Value *FirstOp = FirstInst->getOperand(i); 465 PHINode *NewPN = PHINode::Create(FirstOp->getType(), e, 466 FirstOp->getName()+".pn"); 467 InsertNewInstBefore(NewPN, PN); 468 469 NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0)); 470 OperandPhis[i] = NewPN; 471 FixedOperands[i] = NewPN; 472 HasAnyPHIs = true; 473 } 474 475 476 // Add all operands to the new PHIs. 477 if (HasAnyPHIs) { 478 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 479 GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i)); 480 BasicBlock *InBB = PN.getIncomingBlock(i); 481 482 for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op) 483 if (PHINode *OpPhi = OperandPhis[op]) 484 OpPhi->addIncoming(InGEP->getOperand(op), InBB); 485 } 486 } 487 488 Value *Base = FixedOperands[0]; 489 GetElementPtrInst *NewGEP = 490 GetElementPtrInst::Create(FirstInst->getSourceElementType(), Base, 491 makeArrayRef(FixedOperands).slice(1)); 492 if (AllInBounds) NewGEP->setIsInBounds(); 493 PHIArgMergedDebugLoc(NewGEP, PN); 494 return NewGEP; 495 } 496 497 498 /// Return true if we know that it is safe to sink the load out of the block 499 /// that defines it. This means that it must be obvious the value of the load is 500 /// not changed from the point of the load to the end of the block it is in. 501 /// 502 /// Finally, it is safe, but not profitable, to sink a load targeting a 503 /// non-address-taken alloca. Doing so will cause us to not promote the alloca 504 /// to a register. 505 static bool isSafeAndProfitableToSinkLoad(LoadInst *L) { 506 BasicBlock::iterator BBI = L->getIterator(), E = L->getParent()->end(); 507 508 for (++BBI; BBI != E; ++BBI) 509 if (BBI->mayWriteToMemory()) 510 return false; 511 512 // Check for non-address taken alloca. If not address-taken already, it isn't 513 // profitable to do this xform. 514 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) { 515 bool isAddressTaken = false; 516 for (User *U : AI->users()) { 517 if (isa<LoadInst>(U)) continue; 518 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 519 // If storing TO the alloca, then the address isn't taken. 520 if (SI->getOperand(1) == AI) continue; 521 } 522 isAddressTaken = true; 523 break; 524 } 525 526 if (!isAddressTaken && AI->isStaticAlloca()) 527 return false; 528 } 529 530 // If this load is a load from a GEP with a constant offset from an alloca, 531 // then we don't want to sink it. In its present form, it will be 532 // load [constant stack offset]. Sinking it will cause us to have to 533 // materialize the stack addresses in each predecessor in a register only to 534 // do a shared load from register in the successor. 535 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0))) 536 if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0))) 537 if (AI->isStaticAlloca() && GEP->hasAllConstantIndices()) 538 return false; 539 540 return true; 541 } 542 543 Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) { 544 LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0)); 545 546 // FIXME: This is overconservative; this transform is allowed in some cases 547 // for atomic operations. 548 if (FirstLI->isAtomic()) 549 return nullptr; 550 551 // When processing loads, we need to propagate two bits of information to the 552 // sunk load: whether it is volatile, and what its alignment is. We currently 553 // don't sink loads when some have their alignment specified and some don't. 554 // visitLoadInst will propagate an alignment onto the load when TD is around, 555 // and if TD isn't around, we can't handle the mixed case. 556 bool isVolatile = FirstLI->isVolatile(); 557 MaybeAlign LoadAlignment(FirstLI->getAlignment()); 558 unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace(); 559 560 // We can't sink the load if the loaded value could be modified between the 561 // load and the PHI. 562 if (FirstLI->getParent() != PN.getIncomingBlock(0) || 563 !isSafeAndProfitableToSinkLoad(FirstLI)) 564 return nullptr; 565 566 // If the PHI is of volatile loads and the load block has multiple 567 // successors, sinking it would remove a load of the volatile value from 568 // the path through the other successor. 569 if (isVolatile && 570 FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1) 571 return nullptr; 572 573 // Check to see if all arguments are the same operation. 574 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 575 LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i)); 576 if (!LI || !LI->hasOneUse()) 577 return nullptr; 578 579 // We can't sink the load if the loaded value could be modified between 580 // the load and the PHI. 581 if (LI->isVolatile() != isVolatile || 582 LI->getParent() != PN.getIncomingBlock(i) || 583 LI->getPointerAddressSpace() != LoadAddrSpace || 584 !isSafeAndProfitableToSinkLoad(LI)) 585 return nullptr; 586 587 // If some of the loads have an alignment specified but not all of them, 588 // we can't do the transformation. 589 if ((LoadAlignment.hasValue()) != (LI->getAlignment() != 0)) 590 return nullptr; 591 592 LoadAlignment = std::min(LoadAlignment, MaybeAlign(LI->getAlignment())); 593 594 // If the PHI is of volatile loads and the load block has multiple 595 // successors, sinking it would remove a load of the volatile value from 596 // the path through the other successor. 597 if (isVolatile && 598 LI->getParent()->getTerminator()->getNumSuccessors() != 1) 599 return nullptr; 600 } 601 602 // Okay, they are all the same operation. Create a new PHI node of the 603 // correct type, and PHI together all of the LHS's of the instructions. 604 PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(), 605 PN.getNumIncomingValues(), 606 PN.getName()+".in"); 607 608 Value *InVal = FirstLI->getOperand(0); 609 NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); 610 LoadInst *NewLI = 611 new LoadInst(FirstLI->getType(), NewPN, "", isVolatile, LoadAlignment); 612 613 unsigned KnownIDs[] = { 614 LLVMContext::MD_tbaa, 615 LLVMContext::MD_range, 616 LLVMContext::MD_invariant_load, 617 LLVMContext::MD_alias_scope, 618 LLVMContext::MD_noalias, 619 LLVMContext::MD_nonnull, 620 LLVMContext::MD_align, 621 LLVMContext::MD_dereferenceable, 622 LLVMContext::MD_dereferenceable_or_null, 623 LLVMContext::MD_access_group, 624 }; 625 626 for (unsigned ID : KnownIDs) 627 NewLI->setMetadata(ID, FirstLI->getMetadata(ID)); 628 629 // Add all operands to the new PHI and combine TBAA metadata. 630 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 631 LoadInst *LI = cast<LoadInst>(PN.getIncomingValue(i)); 632 combineMetadata(NewLI, LI, KnownIDs, true); 633 Value *NewInVal = LI->getOperand(0); 634 if (NewInVal != InVal) 635 InVal = nullptr; 636 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i)); 637 } 638 639 if (InVal) { 640 // The new PHI unions all of the same values together. This is really 641 // common, so we handle it intelligently here for compile-time speed. 642 NewLI->setOperand(0, InVal); 643 delete NewPN; 644 } else { 645 InsertNewInstBefore(NewPN, PN); 646 } 647 648 // If this was a volatile load that we are merging, make sure to loop through 649 // and mark all the input loads as non-volatile. If we don't do this, we will 650 // insert a new volatile load and the old ones will not be deletable. 651 if (isVolatile) 652 for (Value *IncValue : PN.incoming_values()) 653 cast<LoadInst>(IncValue)->setVolatile(false); 654 655 PHIArgMergedDebugLoc(NewLI, PN); 656 return NewLI; 657 } 658 659 /// TODO: This function could handle other cast types, but then it might 660 /// require special-casing a cast from the 'i1' type. See the comment in 661 /// FoldPHIArgOpIntoPHI() about pessimizing illegal integer types. 662 Instruction *InstCombiner::FoldPHIArgZextsIntoPHI(PHINode &Phi) { 663 // We cannot create a new instruction after the PHI if the terminator is an 664 // EHPad because there is no valid insertion point. 665 if (Instruction *TI = Phi.getParent()->getTerminator()) 666 if (TI->isEHPad()) 667 return nullptr; 668 669 // Early exit for the common case of a phi with two operands. These are 670 // handled elsewhere. See the comment below where we check the count of zexts 671 // and constants for more details. 672 unsigned NumIncomingValues = Phi.getNumIncomingValues(); 673 if (NumIncomingValues < 3) 674 return nullptr; 675 676 // Find the narrower type specified by the first zext. 677 Type *NarrowType = nullptr; 678 for (Value *V : Phi.incoming_values()) { 679 if (auto *Zext = dyn_cast<ZExtInst>(V)) { 680 NarrowType = Zext->getSrcTy(); 681 break; 682 } 683 } 684 if (!NarrowType) 685 return nullptr; 686 687 // Walk the phi operands checking that we only have zexts or constants that 688 // we can shrink for free. Store the new operands for the new phi. 689 SmallVector<Value *, 4> NewIncoming; 690 unsigned NumZexts = 0; 691 unsigned NumConsts = 0; 692 for (Value *V : Phi.incoming_values()) { 693 if (auto *Zext = dyn_cast<ZExtInst>(V)) { 694 // All zexts must be identical and have one use. 695 if (Zext->getSrcTy() != NarrowType || !Zext->hasOneUse()) 696 return nullptr; 697 NewIncoming.push_back(Zext->getOperand(0)); 698 NumZexts++; 699 } else if (auto *C = dyn_cast<Constant>(V)) { 700 // Make sure that constants can fit in the new type. 701 Constant *Trunc = ConstantExpr::getTrunc(C, NarrowType); 702 if (ConstantExpr::getZExt(Trunc, C->getType()) != C) 703 return nullptr; 704 NewIncoming.push_back(Trunc); 705 NumConsts++; 706 } else { 707 // If it's not a cast or a constant, bail out. 708 return nullptr; 709 } 710 } 711 712 // The more common cases of a phi with no constant operands or just one 713 // variable operand are handled by FoldPHIArgOpIntoPHI() and foldOpIntoPhi() 714 // respectively. foldOpIntoPhi() wants to do the opposite transform that is 715 // performed here. It tries to replicate a cast in the phi operand's basic 716 // block to expose other folding opportunities. Thus, InstCombine will 717 // infinite loop without this check. 718 if (NumConsts == 0 || NumZexts < 2) 719 return nullptr; 720 721 // All incoming values are zexts or constants that are safe to truncate. 722 // Create a new phi node of the narrow type, phi together all of the new 723 // operands, and zext the result back to the original type. 724 PHINode *NewPhi = PHINode::Create(NarrowType, NumIncomingValues, 725 Phi.getName() + ".shrunk"); 726 for (unsigned i = 0; i != NumIncomingValues; ++i) 727 NewPhi->addIncoming(NewIncoming[i], Phi.getIncomingBlock(i)); 728 729 InsertNewInstBefore(NewPhi, Phi); 730 return CastInst::CreateZExtOrBitCast(NewPhi, Phi.getType()); 731 } 732 733 /// If all operands to a PHI node are the same "unary" operator and they all are 734 /// only used by the PHI, PHI together their inputs, and do the operation once, 735 /// to the result of the PHI. 736 Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) { 737 // We cannot create a new instruction after the PHI if the terminator is an 738 // EHPad because there is no valid insertion point. 739 if (Instruction *TI = PN.getParent()->getTerminator()) 740 if (TI->isEHPad()) 741 return nullptr; 742 743 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); 744 745 if (isa<GetElementPtrInst>(FirstInst)) 746 return FoldPHIArgGEPIntoPHI(PN); 747 if (isa<LoadInst>(FirstInst)) 748 return FoldPHIArgLoadIntoPHI(PN); 749 750 // Scan the instruction, looking for input operations that can be folded away. 751 // If all input operands to the phi are the same instruction (e.g. a cast from 752 // the same type or "+42") we can pull the operation through the PHI, reducing 753 // code size and simplifying code. 754 Constant *ConstantOp = nullptr; 755 Type *CastSrcTy = nullptr; 756 757 if (isa<CastInst>(FirstInst)) { 758 CastSrcTy = FirstInst->getOperand(0)->getType(); 759 760 // Be careful about transforming integer PHIs. We don't want to pessimize 761 // the code by turning an i32 into an i1293. 762 if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) { 763 if (!shouldChangeType(PN.getType(), CastSrcTy)) 764 return nullptr; 765 } 766 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) { 767 // Can fold binop, compare or shift here if the RHS is a constant, 768 // otherwise call FoldPHIArgBinOpIntoPHI. 769 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1)); 770 if (!ConstantOp) 771 return FoldPHIArgBinOpIntoPHI(PN); 772 } else { 773 return nullptr; // Cannot fold this operation. 774 } 775 776 // Check to see if all arguments are the same operation. 777 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 778 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i)); 779 if (!I || !I->hasOneUse() || !I->isSameOperationAs(FirstInst)) 780 return nullptr; 781 if (CastSrcTy) { 782 if (I->getOperand(0)->getType() != CastSrcTy) 783 return nullptr; // Cast operation must match. 784 } else if (I->getOperand(1) != ConstantOp) { 785 return nullptr; 786 } 787 } 788 789 // Okay, they are all the same operation. Create a new PHI node of the 790 // correct type, and PHI together all of the LHS's of the instructions. 791 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(), 792 PN.getNumIncomingValues(), 793 PN.getName()+".in"); 794 795 Value *InVal = FirstInst->getOperand(0); 796 NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); 797 798 // Add all operands to the new PHI. 799 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 800 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0); 801 if (NewInVal != InVal) 802 InVal = nullptr; 803 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i)); 804 } 805 806 Value *PhiVal; 807 if (InVal) { 808 // The new PHI unions all of the same values together. This is really 809 // common, so we handle it intelligently here for compile-time speed. 810 PhiVal = InVal; 811 delete NewPN; 812 } else { 813 InsertNewInstBefore(NewPN, PN); 814 PhiVal = NewPN; 815 } 816 817 // Insert and return the new operation. 818 if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) { 819 CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal, 820 PN.getType()); 821 PHIArgMergedDebugLoc(NewCI, PN); 822 return NewCI; 823 } 824 825 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) { 826 BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp); 827 BinOp->copyIRFlags(PN.getIncomingValue(0)); 828 829 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) 830 BinOp->andIRFlags(PN.getIncomingValue(i)); 831 832 PHIArgMergedDebugLoc(BinOp, PN); 833 return BinOp; 834 } 835 836 CmpInst *CIOp = cast<CmpInst>(FirstInst); 837 CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), 838 PhiVal, ConstantOp); 839 PHIArgMergedDebugLoc(NewCI, PN); 840 return NewCI; 841 } 842 843 /// Return true if this PHI node is only used by a PHI node cycle that is dead. 844 static bool DeadPHICycle(PHINode *PN, 845 SmallPtrSetImpl<PHINode*> &PotentiallyDeadPHIs) { 846 if (PN->use_empty()) return true; 847 if (!PN->hasOneUse()) return false; 848 849 // Remember this node, and if we find the cycle, return. 850 if (!PotentiallyDeadPHIs.insert(PN).second) 851 return true; 852 853 // Don't scan crazily complex things. 854 if (PotentiallyDeadPHIs.size() == 16) 855 return false; 856 857 if (PHINode *PU = dyn_cast<PHINode>(PN->user_back())) 858 return DeadPHICycle(PU, PotentiallyDeadPHIs); 859 860 return false; 861 } 862 863 /// Return true if this phi node is always equal to NonPhiInVal. 864 /// This happens with mutually cyclic phi nodes like: 865 /// z = some value; x = phi (y, z); y = phi (x, z) 866 static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal, 867 SmallPtrSetImpl<PHINode*> &ValueEqualPHIs) { 868 // See if we already saw this PHI node. 869 if (!ValueEqualPHIs.insert(PN).second) 870 return true; 871 872 // Don't scan crazily complex things. 873 if (ValueEqualPHIs.size() == 16) 874 return false; 875 876 // Scan the operands to see if they are either phi nodes or are equal to 877 // the value. 878 for (Value *Op : PN->incoming_values()) { 879 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) { 880 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs)) 881 return false; 882 } else if (Op != NonPhiInVal) 883 return false; 884 } 885 886 return true; 887 } 888 889 /// Return an existing non-zero constant if this phi node has one, otherwise 890 /// return constant 1. 891 static ConstantInt *GetAnyNonZeroConstInt(PHINode &PN) { 892 assert(isa<IntegerType>(PN.getType()) && "Expect only integer type phi"); 893 for (Value *V : PN.operands()) 894 if (auto *ConstVA = dyn_cast<ConstantInt>(V)) 895 if (!ConstVA->isZero()) 896 return ConstVA; 897 return ConstantInt::get(cast<IntegerType>(PN.getType()), 1); 898 } 899 900 namespace { 901 struct PHIUsageRecord { 902 unsigned PHIId; // The ID # of the PHI (something determinstic to sort on) 903 unsigned Shift; // The amount shifted. 904 Instruction *Inst; // The trunc instruction. 905 906 PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User) 907 : PHIId(pn), Shift(Sh), Inst(User) {} 908 909 bool operator<(const PHIUsageRecord &RHS) const { 910 if (PHIId < RHS.PHIId) return true; 911 if (PHIId > RHS.PHIId) return false; 912 if (Shift < RHS.Shift) return true; 913 if (Shift > RHS.Shift) return false; 914 return Inst->getType()->getPrimitiveSizeInBits() < 915 RHS.Inst->getType()->getPrimitiveSizeInBits(); 916 } 917 }; 918 919 struct LoweredPHIRecord { 920 PHINode *PN; // The PHI that was lowered. 921 unsigned Shift; // The amount shifted. 922 unsigned Width; // The width extracted. 923 924 LoweredPHIRecord(PHINode *pn, unsigned Sh, Type *Ty) 925 : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {} 926 927 // Ctor form used by DenseMap. 928 LoweredPHIRecord(PHINode *pn, unsigned Sh) 929 : PN(pn), Shift(Sh), Width(0) {} 930 }; 931 } 932 933 namespace llvm { 934 template<> 935 struct DenseMapInfo<LoweredPHIRecord> { 936 static inline LoweredPHIRecord getEmptyKey() { 937 return LoweredPHIRecord(nullptr, 0); 938 } 939 static inline LoweredPHIRecord getTombstoneKey() { 940 return LoweredPHIRecord(nullptr, 1); 941 } 942 static unsigned getHashValue(const LoweredPHIRecord &Val) { 943 return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^ 944 (Val.Width>>3); 945 } 946 static bool isEqual(const LoweredPHIRecord &LHS, 947 const LoweredPHIRecord &RHS) { 948 return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift && 949 LHS.Width == RHS.Width; 950 } 951 }; 952 } 953 954 955 /// This is an integer PHI and we know that it has an illegal type: see if it is 956 /// only used by trunc or trunc(lshr) operations. If so, we split the PHI into 957 /// the various pieces being extracted. This sort of thing is introduced when 958 /// SROA promotes an aggregate to large integer values. 959 /// 960 /// TODO: The user of the trunc may be an bitcast to float/double/vector or an 961 /// inttoptr. We should produce new PHIs in the right type. 962 /// 963 Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) { 964 // PHIUsers - Keep track of all of the truncated values extracted from a set 965 // of PHIs, along with their offset. These are the things we want to rewrite. 966 SmallVector<PHIUsageRecord, 16> PHIUsers; 967 968 // PHIs are often mutually cyclic, so we keep track of a whole set of PHI 969 // nodes which are extracted from. PHIsToSlice is a set we use to avoid 970 // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to 971 // check the uses of (to ensure they are all extracts). 972 SmallVector<PHINode*, 8> PHIsToSlice; 973 SmallPtrSet<PHINode*, 8> PHIsInspected; 974 975 PHIsToSlice.push_back(&FirstPhi); 976 PHIsInspected.insert(&FirstPhi); 977 978 for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) { 979 PHINode *PN = PHIsToSlice[PHIId]; 980 981 // Scan the input list of the PHI. If any input is an invoke, and if the 982 // input is defined in the predecessor, then we won't be split the critical 983 // edge which is required to insert a truncate. Because of this, we have to 984 // bail out. 985 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 986 InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i)); 987 if (!II) continue; 988 if (II->getParent() != PN->getIncomingBlock(i)) 989 continue; 990 991 // If we have a phi, and if it's directly in the predecessor, then we have 992 // a critical edge where we need to put the truncate. Since we can't 993 // split the edge in instcombine, we have to bail out. 994 return nullptr; 995 } 996 997 for (User *U : PN->users()) { 998 Instruction *UserI = cast<Instruction>(U); 999 1000 // If the user is a PHI, inspect its uses recursively. 1001 if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) { 1002 if (PHIsInspected.insert(UserPN).second) 1003 PHIsToSlice.push_back(UserPN); 1004 continue; 1005 } 1006 1007 // Truncates are always ok. 1008 if (isa<TruncInst>(UserI)) { 1009 PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI)); 1010 continue; 1011 } 1012 1013 // Otherwise it must be a lshr which can only be used by one trunc. 1014 if (UserI->getOpcode() != Instruction::LShr || 1015 !UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) || 1016 !isa<ConstantInt>(UserI->getOperand(1))) 1017 return nullptr; 1018 1019 // Bail on out of range shifts. 1020 unsigned SizeInBits = UserI->getType()->getScalarSizeInBits(); 1021 if (cast<ConstantInt>(UserI->getOperand(1))->getValue().uge(SizeInBits)) 1022 return nullptr; 1023 1024 unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue(); 1025 PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back())); 1026 } 1027 } 1028 1029 // If we have no users, they must be all self uses, just nuke the PHI. 1030 if (PHIUsers.empty()) 1031 return replaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType())); 1032 1033 // If this phi node is transformable, create new PHIs for all the pieces 1034 // extracted out of it. First, sort the users by their offset and size. 1035 array_pod_sort(PHIUsers.begin(), PHIUsers.end()); 1036 1037 LLVM_DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n'; 1038 for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i) dbgs() 1039 << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] << '\n';); 1040 1041 // PredValues - This is a temporary used when rewriting PHI nodes. It is 1042 // hoisted out here to avoid construction/destruction thrashing. 1043 DenseMap<BasicBlock*, Value*> PredValues; 1044 1045 // ExtractedVals - Each new PHI we introduce is saved here so we don't 1046 // introduce redundant PHIs. 1047 DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals; 1048 1049 for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) { 1050 unsigned PHIId = PHIUsers[UserI].PHIId; 1051 PHINode *PN = PHIsToSlice[PHIId]; 1052 unsigned Offset = PHIUsers[UserI].Shift; 1053 Type *Ty = PHIUsers[UserI].Inst->getType(); 1054 1055 PHINode *EltPHI; 1056 1057 // If we've already lowered a user like this, reuse the previously lowered 1058 // value. 1059 if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) { 1060 1061 // Otherwise, Create the new PHI node for this user. 1062 EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(), 1063 PN->getName()+".off"+Twine(Offset), PN); 1064 assert(EltPHI->getType() != PN->getType() && 1065 "Truncate didn't shrink phi?"); 1066 1067 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1068 BasicBlock *Pred = PN->getIncomingBlock(i); 1069 Value *&PredVal = PredValues[Pred]; 1070 1071 // If we already have a value for this predecessor, reuse it. 1072 if (PredVal) { 1073 EltPHI->addIncoming(PredVal, Pred); 1074 continue; 1075 } 1076 1077 // Handle the PHI self-reuse case. 1078 Value *InVal = PN->getIncomingValue(i); 1079 if (InVal == PN) { 1080 PredVal = EltPHI; 1081 EltPHI->addIncoming(PredVal, Pred); 1082 continue; 1083 } 1084 1085 if (PHINode *InPHI = dyn_cast<PHINode>(PN)) { 1086 // If the incoming value was a PHI, and if it was one of the PHIs we 1087 // already rewrote it, just use the lowered value. 1088 if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) { 1089 PredVal = Res; 1090 EltPHI->addIncoming(PredVal, Pred); 1091 continue; 1092 } 1093 } 1094 1095 // Otherwise, do an extract in the predecessor. 1096 Builder.SetInsertPoint(Pred->getTerminator()); 1097 Value *Res = InVal; 1098 if (Offset) 1099 Res = Builder.CreateLShr(Res, ConstantInt::get(InVal->getType(), 1100 Offset), "extract"); 1101 Res = Builder.CreateTrunc(Res, Ty, "extract.t"); 1102 PredVal = Res; 1103 EltPHI->addIncoming(Res, Pred); 1104 1105 // If the incoming value was a PHI, and if it was one of the PHIs we are 1106 // rewriting, we will ultimately delete the code we inserted. This 1107 // means we need to revisit that PHI to make sure we extract out the 1108 // needed piece. 1109 if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i))) 1110 if (PHIsInspected.count(OldInVal)) { 1111 unsigned RefPHIId = 1112 find(PHIsToSlice, OldInVal) - PHIsToSlice.begin(); 1113 PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset, 1114 cast<Instruction>(Res))); 1115 ++UserE; 1116 } 1117 } 1118 PredValues.clear(); 1119 1120 LLVM_DEBUG(dbgs() << " Made element PHI for offset " << Offset << ": " 1121 << *EltPHI << '\n'); 1122 ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI; 1123 } 1124 1125 // Replace the use of this piece with the PHI node. 1126 replaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI); 1127 } 1128 1129 // Replace all the remaining uses of the PHI nodes (self uses and the lshrs) 1130 // with undefs. 1131 Value *Undef = UndefValue::get(FirstPhi.getType()); 1132 for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i) 1133 replaceInstUsesWith(*PHIsToSlice[i], Undef); 1134 return replaceInstUsesWith(FirstPhi, Undef); 1135 } 1136 1137 // PHINode simplification 1138 // 1139 Instruction *InstCombiner::visitPHINode(PHINode &PN) { 1140 if (Value *V = SimplifyInstruction(&PN, SQ.getWithInstruction(&PN))) 1141 return replaceInstUsesWith(PN, V); 1142 1143 if (Instruction *Result = FoldPHIArgZextsIntoPHI(PN)) 1144 return Result; 1145 1146 // If all PHI operands are the same operation, pull them through the PHI, 1147 // reducing code size. 1148 if (isa<Instruction>(PN.getIncomingValue(0)) && 1149 isa<Instruction>(PN.getIncomingValue(1)) && 1150 cast<Instruction>(PN.getIncomingValue(0))->getOpcode() == 1151 cast<Instruction>(PN.getIncomingValue(1))->getOpcode() && 1152 // FIXME: The hasOneUse check will fail for PHIs that use the value more 1153 // than themselves more than once. 1154 PN.getIncomingValue(0)->hasOneUse()) 1155 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN)) 1156 return Result; 1157 1158 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if 1159 // this PHI only has a single use (a PHI), and if that PHI only has one use (a 1160 // PHI)... break the cycle. 1161 if (PN.hasOneUse()) { 1162 if (Instruction *Result = FoldIntegerTypedPHI(PN)) 1163 return Result; 1164 1165 Instruction *PHIUser = cast<Instruction>(PN.user_back()); 1166 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) { 1167 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs; 1168 PotentiallyDeadPHIs.insert(&PN); 1169 if (DeadPHICycle(PU, PotentiallyDeadPHIs)) 1170 return replaceInstUsesWith(PN, UndefValue::get(PN.getType())); 1171 } 1172 1173 // If this phi has a single use, and if that use just computes a value for 1174 // the next iteration of a loop, delete the phi. This occurs with unused 1175 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this 1176 // common case here is good because the only other things that catch this 1177 // are induction variable analysis (sometimes) and ADCE, which is only run 1178 // late. 1179 if (PHIUser->hasOneUse() && 1180 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) && 1181 PHIUser->user_back() == &PN) { 1182 return replaceInstUsesWith(PN, UndefValue::get(PN.getType())); 1183 } 1184 // When a PHI is used only to be compared with zero, it is safe to replace 1185 // an incoming value proved as known nonzero with any non-zero constant. 1186 // For example, in the code below, the incoming value %v can be replaced 1187 // with any non-zero constant based on the fact that the PHI is only used to 1188 // be compared with zero and %v is a known non-zero value: 1189 // %v = select %cond, 1, 2 1190 // %p = phi [%v, BB] ... 1191 // icmp eq, %p, 0 1192 auto *CmpInst = dyn_cast<ICmpInst>(PHIUser); 1193 // FIXME: To be simple, handle only integer type for now. 1194 if (CmpInst && isa<IntegerType>(PN.getType()) && CmpInst->isEquality() && 1195 match(CmpInst->getOperand(1), m_Zero())) { 1196 ConstantInt *NonZeroConst = nullptr; 1197 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1198 Instruction *CtxI = PN.getIncomingBlock(i)->getTerminator(); 1199 Value *VA = PN.getIncomingValue(i); 1200 if (isKnownNonZero(VA, DL, 0, &AC, CtxI, &DT)) { 1201 if (!NonZeroConst) 1202 NonZeroConst = GetAnyNonZeroConstInt(PN); 1203 PN.setIncomingValue(i, NonZeroConst); 1204 } 1205 } 1206 } 1207 } 1208 1209 // We sometimes end up with phi cycles that non-obviously end up being the 1210 // same value, for example: 1211 // z = some value; x = phi (y, z); y = phi (x, z) 1212 // where the phi nodes don't necessarily need to be in the same block. Do a 1213 // quick check to see if the PHI node only contains a single non-phi value, if 1214 // so, scan to see if the phi cycle is actually equal to that value. 1215 { 1216 unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues(); 1217 // Scan for the first non-phi operand. 1218 while (InValNo != NumIncomingVals && 1219 isa<PHINode>(PN.getIncomingValue(InValNo))) 1220 ++InValNo; 1221 1222 if (InValNo != NumIncomingVals) { 1223 Value *NonPhiInVal = PN.getIncomingValue(InValNo); 1224 1225 // Scan the rest of the operands to see if there are any conflicts, if so 1226 // there is no need to recursively scan other phis. 1227 for (++InValNo; InValNo != NumIncomingVals; ++InValNo) { 1228 Value *OpVal = PN.getIncomingValue(InValNo); 1229 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal)) 1230 break; 1231 } 1232 1233 // If we scanned over all operands, then we have one unique value plus 1234 // phi values. Scan PHI nodes to see if they all merge in each other or 1235 // the value. 1236 if (InValNo == NumIncomingVals) { 1237 SmallPtrSet<PHINode*, 16> ValueEqualPHIs; 1238 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs)) 1239 return replaceInstUsesWith(PN, NonPhiInVal); 1240 } 1241 } 1242 } 1243 1244 // If there are multiple PHIs, sort their operands so that they all list 1245 // the blocks in the same order. This will help identical PHIs be eliminated 1246 // by other passes. Other passes shouldn't depend on this for correctness 1247 // however. 1248 PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin()); 1249 if (&PN != FirstPN) 1250 for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) { 1251 BasicBlock *BBA = PN.getIncomingBlock(i); 1252 BasicBlock *BBB = FirstPN->getIncomingBlock(i); 1253 if (BBA != BBB) { 1254 Value *VA = PN.getIncomingValue(i); 1255 unsigned j = PN.getBasicBlockIndex(BBB); 1256 Value *VB = PN.getIncomingValue(j); 1257 PN.setIncomingBlock(i, BBB); 1258 PN.setIncomingValue(i, VB); 1259 PN.setIncomingBlock(j, BBA); 1260 PN.setIncomingValue(j, VA); 1261 // NOTE: Instcombine normally would want us to "return &PN" if we 1262 // modified any of the operands of an instruction. However, since we 1263 // aren't adding or removing uses (just rearranging them) we don't do 1264 // this in this case. 1265 } 1266 } 1267 1268 // If this is an integer PHI and we know that it has an illegal type, see if 1269 // it is only used by trunc or trunc(lshr) operations. If so, we split the 1270 // PHI into the various pieces being extracted. This sort of thing is 1271 // introduced when SROA promotes an aggregate to a single large integer type. 1272 if (PN.getType()->isIntegerTy() && 1273 !DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits())) 1274 if (Instruction *Res = SliceUpIllegalIntegerPHI(PN)) 1275 return Res; 1276 1277 return nullptr; 1278 } 1279