1 //===- InstCombinePHI.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitPHINode function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Analysis/ValueTracking.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/CommandLine.h" 20 #include "llvm/Transforms/Utils/Local.h" 21 using namespace llvm; 22 using namespace llvm::PatternMatch; 23 24 #define DEBUG_TYPE "instcombine" 25 26 static cl::opt<unsigned> 27 MaxNumPhis("instcombine-max-num-phis", cl::init(512), 28 cl::desc("Maximum number phis to handle in intptr/ptrint folding")); 29 30 /// The PHI arguments will be folded into a single operation with a PHI node 31 /// as input. The debug location of the single operation will be the merged 32 /// locations of the original PHI node arguments. 33 void InstCombiner::PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN) { 34 auto *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); 35 Inst->setDebugLoc(FirstInst->getDebugLoc()); 36 // We do not expect a CallInst here, otherwise, N-way merging of DebugLoc 37 // will be inefficient. 38 assert(!isa<CallInst>(Inst)); 39 40 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { 41 auto *I = cast<Instruction>(PN.getIncomingValue(i)); 42 Inst->applyMergedLocation(Inst->getDebugLoc(), I->getDebugLoc()); 43 } 44 } 45 46 // Replace Integer typed PHI PN if the PHI's value is used as a pointer value. 47 // If there is an existing pointer typed PHI that produces the same value as PN, 48 // replace PN and the IntToPtr operation with it. Otherwise, synthesize a new 49 // PHI node: 50 // 51 // Case-1: 52 // bb1: 53 // int_init = PtrToInt(ptr_init) 54 // br label %bb2 55 // bb2: 56 // int_val = PHI([int_init, %bb1], [int_val_inc, %bb2] 57 // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2] 58 // ptr_val2 = IntToPtr(int_val) 59 // ... 60 // use(ptr_val2) 61 // ptr_val_inc = ... 62 // inc_val_inc = PtrToInt(ptr_val_inc) 63 // 64 // ==> 65 // bb1: 66 // br label %bb2 67 // bb2: 68 // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2] 69 // ... 70 // use(ptr_val) 71 // ptr_val_inc = ... 72 // 73 // Case-2: 74 // bb1: 75 // int_ptr = BitCast(ptr_ptr) 76 // int_init = Load(int_ptr) 77 // br label %bb2 78 // bb2: 79 // int_val = PHI([int_init, %bb1], [int_val_inc, %bb2] 80 // ptr_val2 = IntToPtr(int_val) 81 // ... 82 // use(ptr_val2) 83 // ptr_val_inc = ... 84 // inc_val_inc = PtrToInt(ptr_val_inc) 85 // ==> 86 // bb1: 87 // ptr_init = Load(ptr_ptr) 88 // br label %bb2 89 // bb2: 90 // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2] 91 // ... 92 // use(ptr_val) 93 // ptr_val_inc = ... 94 // ... 95 // 96 Instruction *InstCombiner::FoldIntegerTypedPHI(PHINode &PN) { 97 if (!PN.getType()->isIntegerTy()) 98 return nullptr; 99 if (!PN.hasOneUse()) 100 return nullptr; 101 102 auto *IntToPtr = dyn_cast<IntToPtrInst>(PN.user_back()); 103 if (!IntToPtr) 104 return nullptr; 105 106 // Check if the pointer is actually used as pointer: 107 auto HasPointerUse = [](Instruction *IIP) { 108 for (User *U : IIP->users()) { 109 Value *Ptr = nullptr; 110 if (LoadInst *LoadI = dyn_cast<LoadInst>(U)) { 111 Ptr = LoadI->getPointerOperand(); 112 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 113 Ptr = SI->getPointerOperand(); 114 } else if (GetElementPtrInst *GI = dyn_cast<GetElementPtrInst>(U)) { 115 Ptr = GI->getPointerOperand(); 116 } 117 118 if (Ptr && Ptr == IIP) 119 return true; 120 } 121 return false; 122 }; 123 124 if (!HasPointerUse(IntToPtr)) 125 return nullptr; 126 127 if (DL.getPointerSizeInBits(IntToPtr->getAddressSpace()) != 128 DL.getTypeSizeInBits(IntToPtr->getOperand(0)->getType())) 129 return nullptr; 130 131 SmallVector<Value *, 4> AvailablePtrVals; 132 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) { 133 Value *Arg = PN.getIncomingValue(i); 134 135 // First look backward: 136 if (auto *PI = dyn_cast<PtrToIntInst>(Arg)) { 137 AvailablePtrVals.emplace_back(PI->getOperand(0)); 138 continue; 139 } 140 141 // Next look forward: 142 Value *ArgIntToPtr = nullptr; 143 for (User *U : Arg->users()) { 144 if (isa<IntToPtrInst>(U) && U->getType() == IntToPtr->getType() && 145 (DT.dominates(cast<Instruction>(U), PN.getIncomingBlock(i)) || 146 cast<Instruction>(U)->getParent() == PN.getIncomingBlock(i))) { 147 ArgIntToPtr = U; 148 break; 149 } 150 } 151 152 if (ArgIntToPtr) { 153 AvailablePtrVals.emplace_back(ArgIntToPtr); 154 continue; 155 } 156 157 // If Arg is defined by a PHI, allow it. This will also create 158 // more opportunities iteratively. 159 if (isa<PHINode>(Arg)) { 160 AvailablePtrVals.emplace_back(Arg); 161 continue; 162 } 163 164 // For a single use integer load: 165 auto *LoadI = dyn_cast<LoadInst>(Arg); 166 if (!LoadI) 167 return nullptr; 168 169 if (!LoadI->hasOneUse()) 170 return nullptr; 171 172 // Push the integer typed Load instruction into the available 173 // value set, and fix it up later when the pointer typed PHI 174 // is synthesized. 175 AvailablePtrVals.emplace_back(LoadI); 176 } 177 178 // Now search for a matching PHI 179 auto *BB = PN.getParent(); 180 assert(AvailablePtrVals.size() == PN.getNumIncomingValues() && 181 "Not enough available ptr typed incoming values"); 182 PHINode *MatchingPtrPHI = nullptr; 183 unsigned NumPhis = 0; 184 for (auto II = BB->begin(); II != BB->end(); II++, NumPhis++) { 185 // FIXME: consider handling this in AggressiveInstCombine 186 PHINode *PtrPHI = dyn_cast<PHINode>(II); 187 if (!PtrPHI) 188 break; 189 if (NumPhis > MaxNumPhis) 190 return nullptr; 191 if (PtrPHI == &PN || PtrPHI->getType() != IntToPtr->getType()) 192 continue; 193 MatchingPtrPHI = PtrPHI; 194 for (unsigned i = 0; i != PtrPHI->getNumIncomingValues(); ++i) { 195 if (AvailablePtrVals[i] != 196 PtrPHI->getIncomingValueForBlock(PN.getIncomingBlock(i))) { 197 MatchingPtrPHI = nullptr; 198 break; 199 } 200 } 201 202 if (MatchingPtrPHI) 203 break; 204 } 205 206 if (MatchingPtrPHI) { 207 assert(MatchingPtrPHI->getType() == IntToPtr->getType() && 208 "Phi's Type does not match with IntToPtr"); 209 // The PtrToCast + IntToPtr will be simplified later 210 return CastInst::CreateBitOrPointerCast(MatchingPtrPHI, 211 IntToPtr->getOperand(0)->getType()); 212 } 213 214 // If it requires a conversion for every PHI operand, do not do it. 215 if (all_of(AvailablePtrVals, [&](Value *V) { 216 return (V->getType() != IntToPtr->getType()) || isa<IntToPtrInst>(V); 217 })) 218 return nullptr; 219 220 // If any of the operand that requires casting is a terminator 221 // instruction, do not do it. 222 if (any_of(AvailablePtrVals, [&](Value *V) { 223 if (V->getType() == IntToPtr->getType()) 224 return false; 225 226 auto *Inst = dyn_cast<Instruction>(V); 227 return Inst && Inst->isTerminator(); 228 })) 229 return nullptr; 230 231 PHINode *NewPtrPHI = PHINode::Create( 232 IntToPtr->getType(), PN.getNumIncomingValues(), PN.getName() + ".ptr"); 233 234 InsertNewInstBefore(NewPtrPHI, PN); 235 SmallDenseMap<Value *, Instruction *> Casts; 236 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) { 237 auto *IncomingBB = PN.getIncomingBlock(i); 238 auto *IncomingVal = AvailablePtrVals[i]; 239 240 if (IncomingVal->getType() == IntToPtr->getType()) { 241 NewPtrPHI->addIncoming(IncomingVal, IncomingBB); 242 continue; 243 } 244 245 #ifndef NDEBUG 246 LoadInst *LoadI = dyn_cast<LoadInst>(IncomingVal); 247 assert((isa<PHINode>(IncomingVal) || 248 IncomingVal->getType()->isPointerTy() || 249 (LoadI && LoadI->hasOneUse())) && 250 "Can not replace LoadInst with multiple uses"); 251 #endif 252 // Need to insert a BitCast. 253 // For an integer Load instruction with a single use, the load + IntToPtr 254 // cast will be simplified into a pointer load: 255 // %v = load i64, i64* %a.ip, align 8 256 // %v.cast = inttoptr i64 %v to float ** 257 // ==> 258 // %v.ptrp = bitcast i64 * %a.ip to float ** 259 // %v.cast = load float *, float ** %v.ptrp, align 8 260 Instruction *&CI = Casts[IncomingVal]; 261 if (!CI) { 262 CI = CastInst::CreateBitOrPointerCast(IncomingVal, IntToPtr->getType(), 263 IncomingVal->getName() + ".ptr"); 264 if (auto *IncomingI = dyn_cast<Instruction>(IncomingVal)) { 265 BasicBlock::iterator InsertPos(IncomingI); 266 InsertPos++; 267 if (isa<PHINode>(IncomingI)) 268 InsertPos = IncomingI->getParent()->getFirstInsertionPt(); 269 InsertNewInstBefore(CI, *InsertPos); 270 } else { 271 auto *InsertBB = &IncomingBB->getParent()->getEntryBlock(); 272 InsertNewInstBefore(CI, *InsertBB->getFirstInsertionPt()); 273 } 274 } 275 NewPtrPHI->addIncoming(CI, IncomingBB); 276 } 277 278 // The PtrToCast + IntToPtr will be simplified later 279 return CastInst::CreateBitOrPointerCast(NewPtrPHI, 280 IntToPtr->getOperand(0)->getType()); 281 } 282 283 /// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the 284 /// adds all have a single use, turn this into a phi and a single binop. 285 Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) { 286 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); 287 assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)); 288 unsigned Opc = FirstInst->getOpcode(); 289 Value *LHSVal = FirstInst->getOperand(0); 290 Value *RHSVal = FirstInst->getOperand(1); 291 292 Type *LHSType = LHSVal->getType(); 293 Type *RHSType = RHSVal->getType(); 294 295 // Scan to see if all operands are the same opcode, and all have one use. 296 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { 297 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i)); 298 if (!I || I->getOpcode() != Opc || !I->hasOneUse() || 299 // Verify type of the LHS matches so we don't fold cmp's of different 300 // types. 301 I->getOperand(0)->getType() != LHSType || 302 I->getOperand(1)->getType() != RHSType) 303 return nullptr; 304 305 // If they are CmpInst instructions, check their predicates 306 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 307 if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate()) 308 return nullptr; 309 310 // Keep track of which operand needs a phi node. 311 if (I->getOperand(0) != LHSVal) LHSVal = nullptr; 312 if (I->getOperand(1) != RHSVal) RHSVal = nullptr; 313 } 314 315 // If both LHS and RHS would need a PHI, don't do this transformation, 316 // because it would increase the number of PHIs entering the block, 317 // which leads to higher register pressure. This is especially 318 // bad when the PHIs are in the header of a loop. 319 if (!LHSVal && !RHSVal) 320 return nullptr; 321 322 // Otherwise, this is safe to transform! 323 324 Value *InLHS = FirstInst->getOperand(0); 325 Value *InRHS = FirstInst->getOperand(1); 326 PHINode *NewLHS = nullptr, *NewRHS = nullptr; 327 if (!LHSVal) { 328 NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(), 329 FirstInst->getOperand(0)->getName() + ".pn"); 330 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0)); 331 InsertNewInstBefore(NewLHS, PN); 332 LHSVal = NewLHS; 333 } 334 335 if (!RHSVal) { 336 NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(), 337 FirstInst->getOperand(1)->getName() + ".pn"); 338 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0)); 339 InsertNewInstBefore(NewRHS, PN); 340 RHSVal = NewRHS; 341 } 342 343 // Add all operands to the new PHIs. 344 if (NewLHS || NewRHS) { 345 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 346 Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i)); 347 if (NewLHS) { 348 Value *NewInLHS = InInst->getOperand(0); 349 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i)); 350 } 351 if (NewRHS) { 352 Value *NewInRHS = InInst->getOperand(1); 353 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i)); 354 } 355 } 356 } 357 358 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) { 359 CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), 360 LHSVal, RHSVal); 361 PHIArgMergedDebugLoc(NewCI, PN); 362 return NewCI; 363 } 364 365 BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst); 366 BinaryOperator *NewBinOp = 367 BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal); 368 369 NewBinOp->copyIRFlags(PN.getIncomingValue(0)); 370 371 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) 372 NewBinOp->andIRFlags(PN.getIncomingValue(i)); 373 374 PHIArgMergedDebugLoc(NewBinOp, PN); 375 return NewBinOp; 376 } 377 378 Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) { 379 GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0)); 380 381 SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(), 382 FirstInst->op_end()); 383 // This is true if all GEP bases are allocas and if all indices into them are 384 // constants. 385 bool AllBasePointersAreAllocas = true; 386 387 // We don't want to replace this phi if the replacement would require 388 // more than one phi, which leads to higher register pressure. This is 389 // especially bad when the PHIs are in the header of a loop. 390 bool NeededPhi = false; 391 392 bool AllInBounds = true; 393 394 // Scan to see if all operands are the same opcode, and all have one use. 395 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { 396 GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i)); 397 if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() || 398 GEP->getNumOperands() != FirstInst->getNumOperands()) 399 return nullptr; 400 401 AllInBounds &= GEP->isInBounds(); 402 403 // Keep track of whether or not all GEPs are of alloca pointers. 404 if (AllBasePointersAreAllocas && 405 (!isa<AllocaInst>(GEP->getOperand(0)) || 406 !GEP->hasAllConstantIndices())) 407 AllBasePointersAreAllocas = false; 408 409 // Compare the operand lists. 410 for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) { 411 if (FirstInst->getOperand(op) == GEP->getOperand(op)) 412 continue; 413 414 // Don't merge two GEPs when two operands differ (introducing phi nodes) 415 // if one of the PHIs has a constant for the index. The index may be 416 // substantially cheaper to compute for the constants, so making it a 417 // variable index could pessimize the path. This also handles the case 418 // for struct indices, which must always be constant. 419 if (isa<ConstantInt>(FirstInst->getOperand(op)) || 420 isa<ConstantInt>(GEP->getOperand(op))) 421 return nullptr; 422 423 if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType()) 424 return nullptr; 425 426 // If we already needed a PHI for an earlier operand, and another operand 427 // also requires a PHI, we'd be introducing more PHIs than we're 428 // eliminating, which increases register pressure on entry to the PHI's 429 // block. 430 if (NeededPhi) 431 return nullptr; 432 433 FixedOperands[op] = nullptr; // Needs a PHI. 434 NeededPhi = true; 435 } 436 } 437 438 // If all of the base pointers of the PHI'd GEPs are from allocas, don't 439 // bother doing this transformation. At best, this will just save a bit of 440 // offset calculation, but all the predecessors will have to materialize the 441 // stack address into a register anyway. We'd actually rather *clone* the 442 // load up into the predecessors so that we have a load of a gep of an alloca, 443 // which can usually all be folded into the load. 444 if (AllBasePointersAreAllocas) 445 return nullptr; 446 447 // Otherwise, this is safe to transform. Insert PHI nodes for each operand 448 // that is variable. 449 SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size()); 450 451 bool HasAnyPHIs = false; 452 for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) { 453 if (FixedOperands[i]) continue; // operand doesn't need a phi. 454 Value *FirstOp = FirstInst->getOperand(i); 455 PHINode *NewPN = PHINode::Create(FirstOp->getType(), e, 456 FirstOp->getName()+".pn"); 457 InsertNewInstBefore(NewPN, PN); 458 459 NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0)); 460 OperandPhis[i] = NewPN; 461 FixedOperands[i] = NewPN; 462 HasAnyPHIs = true; 463 } 464 465 466 // Add all operands to the new PHIs. 467 if (HasAnyPHIs) { 468 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 469 GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i)); 470 BasicBlock *InBB = PN.getIncomingBlock(i); 471 472 for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op) 473 if (PHINode *OpPhi = OperandPhis[op]) 474 OpPhi->addIncoming(InGEP->getOperand(op), InBB); 475 } 476 } 477 478 Value *Base = FixedOperands[0]; 479 GetElementPtrInst *NewGEP = 480 GetElementPtrInst::Create(FirstInst->getSourceElementType(), Base, 481 makeArrayRef(FixedOperands).slice(1)); 482 if (AllInBounds) NewGEP->setIsInBounds(); 483 PHIArgMergedDebugLoc(NewGEP, PN); 484 return NewGEP; 485 } 486 487 488 /// Return true if we know that it is safe to sink the load out of the block 489 /// that defines it. This means that it must be obvious the value of the load is 490 /// not changed from the point of the load to the end of the block it is in. 491 /// 492 /// Finally, it is safe, but not profitable, to sink a load targeting a 493 /// non-address-taken alloca. Doing so will cause us to not promote the alloca 494 /// to a register. 495 static bool isSafeAndProfitableToSinkLoad(LoadInst *L) { 496 BasicBlock::iterator BBI = L->getIterator(), E = L->getParent()->end(); 497 498 for (++BBI; BBI != E; ++BBI) 499 if (BBI->mayWriteToMemory()) 500 return false; 501 502 // Check for non-address taken alloca. If not address-taken already, it isn't 503 // profitable to do this xform. 504 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) { 505 bool isAddressTaken = false; 506 for (User *U : AI->users()) { 507 if (isa<LoadInst>(U)) continue; 508 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 509 // If storing TO the alloca, then the address isn't taken. 510 if (SI->getOperand(1) == AI) continue; 511 } 512 isAddressTaken = true; 513 break; 514 } 515 516 if (!isAddressTaken && AI->isStaticAlloca()) 517 return false; 518 } 519 520 // If this load is a load from a GEP with a constant offset from an alloca, 521 // then we don't want to sink it. In its present form, it will be 522 // load [constant stack offset]. Sinking it will cause us to have to 523 // materialize the stack addresses in each predecessor in a register only to 524 // do a shared load from register in the successor. 525 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0))) 526 if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0))) 527 if (AI->isStaticAlloca() && GEP->hasAllConstantIndices()) 528 return false; 529 530 return true; 531 } 532 533 Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) { 534 LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0)); 535 536 // FIXME: This is overconservative; this transform is allowed in some cases 537 // for atomic operations. 538 if (FirstLI->isAtomic()) 539 return nullptr; 540 541 // When processing loads, we need to propagate two bits of information to the 542 // sunk load: whether it is volatile, and what its alignment is. We currently 543 // don't sink loads when some have their alignment specified and some don't. 544 // visitLoadInst will propagate an alignment onto the load when TD is around, 545 // and if TD isn't around, we can't handle the mixed case. 546 bool isVolatile = FirstLI->isVolatile(); 547 MaybeAlign LoadAlignment(FirstLI->getAlignment()); 548 unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace(); 549 550 // We can't sink the load if the loaded value could be modified between the 551 // load and the PHI. 552 if (FirstLI->getParent() != PN.getIncomingBlock(0) || 553 !isSafeAndProfitableToSinkLoad(FirstLI)) 554 return nullptr; 555 556 // If the PHI is of volatile loads and the load block has multiple 557 // successors, sinking it would remove a load of the volatile value from 558 // the path through the other successor. 559 if (isVolatile && 560 FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1) 561 return nullptr; 562 563 // Check to see if all arguments are the same operation. 564 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 565 LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i)); 566 if (!LI || !LI->hasOneUse()) 567 return nullptr; 568 569 // We can't sink the load if the loaded value could be modified between 570 // the load and the PHI. 571 if (LI->isVolatile() != isVolatile || 572 LI->getParent() != PN.getIncomingBlock(i) || 573 LI->getPointerAddressSpace() != LoadAddrSpace || 574 !isSafeAndProfitableToSinkLoad(LI)) 575 return nullptr; 576 577 // If some of the loads have an alignment specified but not all of them, 578 // we can't do the transformation. 579 if ((LoadAlignment.hasValue()) != (LI->getAlignment() != 0)) 580 return nullptr; 581 582 LoadAlignment = std::min(LoadAlignment, MaybeAlign(LI->getAlignment())); 583 584 // If the PHI is of volatile loads and the load block has multiple 585 // successors, sinking it would remove a load of the volatile value from 586 // the path through the other successor. 587 if (isVolatile && 588 LI->getParent()->getTerminator()->getNumSuccessors() != 1) 589 return nullptr; 590 } 591 592 // Okay, they are all the same operation. Create a new PHI node of the 593 // correct type, and PHI together all of the LHS's of the instructions. 594 PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(), 595 PN.getNumIncomingValues(), 596 PN.getName()+".in"); 597 598 Value *InVal = FirstLI->getOperand(0); 599 NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); 600 LoadInst *NewLI = 601 new LoadInst(FirstLI->getType(), NewPN, "", isVolatile, LoadAlignment); 602 603 unsigned KnownIDs[] = { 604 LLVMContext::MD_tbaa, 605 LLVMContext::MD_range, 606 LLVMContext::MD_invariant_load, 607 LLVMContext::MD_alias_scope, 608 LLVMContext::MD_noalias, 609 LLVMContext::MD_nonnull, 610 LLVMContext::MD_align, 611 LLVMContext::MD_dereferenceable, 612 LLVMContext::MD_dereferenceable_or_null, 613 LLVMContext::MD_access_group, 614 }; 615 616 for (unsigned ID : KnownIDs) 617 NewLI->setMetadata(ID, FirstLI->getMetadata(ID)); 618 619 // Add all operands to the new PHI and combine TBAA metadata. 620 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 621 LoadInst *LI = cast<LoadInst>(PN.getIncomingValue(i)); 622 combineMetadata(NewLI, LI, KnownIDs, true); 623 Value *NewInVal = LI->getOperand(0); 624 if (NewInVal != InVal) 625 InVal = nullptr; 626 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i)); 627 } 628 629 if (InVal) { 630 // The new PHI unions all of the same values together. This is really 631 // common, so we handle it intelligently here for compile-time speed. 632 NewLI->setOperand(0, InVal); 633 delete NewPN; 634 } else { 635 InsertNewInstBefore(NewPN, PN); 636 } 637 638 // If this was a volatile load that we are merging, make sure to loop through 639 // and mark all the input loads as non-volatile. If we don't do this, we will 640 // insert a new volatile load and the old ones will not be deletable. 641 if (isVolatile) 642 for (Value *IncValue : PN.incoming_values()) 643 cast<LoadInst>(IncValue)->setVolatile(false); 644 645 PHIArgMergedDebugLoc(NewLI, PN); 646 return NewLI; 647 } 648 649 /// TODO: This function could handle other cast types, but then it might 650 /// require special-casing a cast from the 'i1' type. See the comment in 651 /// FoldPHIArgOpIntoPHI() about pessimizing illegal integer types. 652 Instruction *InstCombiner::FoldPHIArgZextsIntoPHI(PHINode &Phi) { 653 // We cannot create a new instruction after the PHI if the terminator is an 654 // EHPad because there is no valid insertion point. 655 if (Instruction *TI = Phi.getParent()->getTerminator()) 656 if (TI->isEHPad()) 657 return nullptr; 658 659 // Early exit for the common case of a phi with two operands. These are 660 // handled elsewhere. See the comment below where we check the count of zexts 661 // and constants for more details. 662 unsigned NumIncomingValues = Phi.getNumIncomingValues(); 663 if (NumIncomingValues < 3) 664 return nullptr; 665 666 // Find the narrower type specified by the first zext. 667 Type *NarrowType = nullptr; 668 for (Value *V : Phi.incoming_values()) { 669 if (auto *Zext = dyn_cast<ZExtInst>(V)) { 670 NarrowType = Zext->getSrcTy(); 671 break; 672 } 673 } 674 if (!NarrowType) 675 return nullptr; 676 677 // Walk the phi operands checking that we only have zexts or constants that 678 // we can shrink for free. Store the new operands for the new phi. 679 SmallVector<Value *, 4> NewIncoming; 680 unsigned NumZexts = 0; 681 unsigned NumConsts = 0; 682 for (Value *V : Phi.incoming_values()) { 683 if (auto *Zext = dyn_cast<ZExtInst>(V)) { 684 // All zexts must be identical and have one use. 685 if (Zext->getSrcTy() != NarrowType || !Zext->hasOneUse()) 686 return nullptr; 687 NewIncoming.push_back(Zext->getOperand(0)); 688 NumZexts++; 689 } else if (auto *C = dyn_cast<Constant>(V)) { 690 // Make sure that constants can fit in the new type. 691 Constant *Trunc = ConstantExpr::getTrunc(C, NarrowType); 692 if (ConstantExpr::getZExt(Trunc, C->getType()) != C) 693 return nullptr; 694 NewIncoming.push_back(Trunc); 695 NumConsts++; 696 } else { 697 // If it's not a cast or a constant, bail out. 698 return nullptr; 699 } 700 } 701 702 // The more common cases of a phi with no constant operands or just one 703 // variable operand are handled by FoldPHIArgOpIntoPHI() and foldOpIntoPhi() 704 // respectively. foldOpIntoPhi() wants to do the opposite transform that is 705 // performed here. It tries to replicate a cast in the phi operand's basic 706 // block to expose other folding opportunities. Thus, InstCombine will 707 // infinite loop without this check. 708 if (NumConsts == 0 || NumZexts < 2) 709 return nullptr; 710 711 // All incoming values are zexts or constants that are safe to truncate. 712 // Create a new phi node of the narrow type, phi together all of the new 713 // operands, and zext the result back to the original type. 714 PHINode *NewPhi = PHINode::Create(NarrowType, NumIncomingValues, 715 Phi.getName() + ".shrunk"); 716 for (unsigned i = 0; i != NumIncomingValues; ++i) 717 NewPhi->addIncoming(NewIncoming[i], Phi.getIncomingBlock(i)); 718 719 InsertNewInstBefore(NewPhi, Phi); 720 return CastInst::CreateZExtOrBitCast(NewPhi, Phi.getType()); 721 } 722 723 /// If all operands to a PHI node are the same "unary" operator and they all are 724 /// only used by the PHI, PHI together their inputs, and do the operation once, 725 /// to the result of the PHI. 726 Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) { 727 // We cannot create a new instruction after the PHI if the terminator is an 728 // EHPad because there is no valid insertion point. 729 if (Instruction *TI = PN.getParent()->getTerminator()) 730 if (TI->isEHPad()) 731 return nullptr; 732 733 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); 734 735 if (isa<GetElementPtrInst>(FirstInst)) 736 return FoldPHIArgGEPIntoPHI(PN); 737 if (isa<LoadInst>(FirstInst)) 738 return FoldPHIArgLoadIntoPHI(PN); 739 740 // Scan the instruction, looking for input operations that can be folded away. 741 // If all input operands to the phi are the same instruction (e.g. a cast from 742 // the same type or "+42") we can pull the operation through the PHI, reducing 743 // code size and simplifying code. 744 Constant *ConstantOp = nullptr; 745 Type *CastSrcTy = nullptr; 746 747 if (isa<CastInst>(FirstInst)) { 748 CastSrcTy = FirstInst->getOperand(0)->getType(); 749 750 // Be careful about transforming integer PHIs. We don't want to pessimize 751 // the code by turning an i32 into an i1293. 752 if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) { 753 if (!shouldChangeType(PN.getType(), CastSrcTy)) 754 return nullptr; 755 } 756 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) { 757 // Can fold binop, compare or shift here if the RHS is a constant, 758 // otherwise call FoldPHIArgBinOpIntoPHI. 759 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1)); 760 if (!ConstantOp) 761 return FoldPHIArgBinOpIntoPHI(PN); 762 } else { 763 return nullptr; // Cannot fold this operation. 764 } 765 766 // Check to see if all arguments are the same operation. 767 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 768 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i)); 769 if (!I || !I->hasOneUse() || !I->isSameOperationAs(FirstInst)) 770 return nullptr; 771 if (CastSrcTy) { 772 if (I->getOperand(0)->getType() != CastSrcTy) 773 return nullptr; // Cast operation must match. 774 } else if (I->getOperand(1) != ConstantOp) { 775 return nullptr; 776 } 777 } 778 779 // Okay, they are all the same operation. Create a new PHI node of the 780 // correct type, and PHI together all of the LHS's of the instructions. 781 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(), 782 PN.getNumIncomingValues(), 783 PN.getName()+".in"); 784 785 Value *InVal = FirstInst->getOperand(0); 786 NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); 787 788 // Add all operands to the new PHI. 789 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 790 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0); 791 if (NewInVal != InVal) 792 InVal = nullptr; 793 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i)); 794 } 795 796 Value *PhiVal; 797 if (InVal) { 798 // The new PHI unions all of the same values together. This is really 799 // common, so we handle it intelligently here for compile-time speed. 800 PhiVal = InVal; 801 delete NewPN; 802 } else { 803 InsertNewInstBefore(NewPN, PN); 804 PhiVal = NewPN; 805 } 806 807 // Insert and return the new operation. 808 if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) { 809 CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal, 810 PN.getType()); 811 PHIArgMergedDebugLoc(NewCI, PN); 812 return NewCI; 813 } 814 815 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) { 816 BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp); 817 BinOp->copyIRFlags(PN.getIncomingValue(0)); 818 819 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) 820 BinOp->andIRFlags(PN.getIncomingValue(i)); 821 822 PHIArgMergedDebugLoc(BinOp, PN); 823 return BinOp; 824 } 825 826 CmpInst *CIOp = cast<CmpInst>(FirstInst); 827 CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), 828 PhiVal, ConstantOp); 829 PHIArgMergedDebugLoc(NewCI, PN); 830 return NewCI; 831 } 832 833 /// Return true if this PHI node is only used by a PHI node cycle that is dead. 834 static bool DeadPHICycle(PHINode *PN, 835 SmallPtrSetImpl<PHINode*> &PotentiallyDeadPHIs) { 836 if (PN->use_empty()) return true; 837 if (!PN->hasOneUse()) return false; 838 839 // Remember this node, and if we find the cycle, return. 840 if (!PotentiallyDeadPHIs.insert(PN).second) 841 return true; 842 843 // Don't scan crazily complex things. 844 if (PotentiallyDeadPHIs.size() == 16) 845 return false; 846 847 if (PHINode *PU = dyn_cast<PHINode>(PN->user_back())) 848 return DeadPHICycle(PU, PotentiallyDeadPHIs); 849 850 return false; 851 } 852 853 /// Return true if this phi node is always equal to NonPhiInVal. 854 /// This happens with mutually cyclic phi nodes like: 855 /// z = some value; x = phi (y, z); y = phi (x, z) 856 static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal, 857 SmallPtrSetImpl<PHINode*> &ValueEqualPHIs) { 858 // See if we already saw this PHI node. 859 if (!ValueEqualPHIs.insert(PN).second) 860 return true; 861 862 // Don't scan crazily complex things. 863 if (ValueEqualPHIs.size() == 16) 864 return false; 865 866 // Scan the operands to see if they are either phi nodes or are equal to 867 // the value. 868 for (Value *Op : PN->incoming_values()) { 869 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) { 870 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs)) 871 return false; 872 } else if (Op != NonPhiInVal) 873 return false; 874 } 875 876 return true; 877 } 878 879 /// Return an existing non-zero constant if this phi node has one, otherwise 880 /// return constant 1. 881 static ConstantInt *GetAnyNonZeroConstInt(PHINode &PN) { 882 assert(isa<IntegerType>(PN.getType()) && "Expect only integer type phi"); 883 for (Value *V : PN.operands()) 884 if (auto *ConstVA = dyn_cast<ConstantInt>(V)) 885 if (!ConstVA->isZero()) 886 return ConstVA; 887 return ConstantInt::get(cast<IntegerType>(PN.getType()), 1); 888 } 889 890 namespace { 891 struct PHIUsageRecord { 892 unsigned PHIId; // The ID # of the PHI (something determinstic to sort on) 893 unsigned Shift; // The amount shifted. 894 Instruction *Inst; // The trunc instruction. 895 896 PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User) 897 : PHIId(pn), Shift(Sh), Inst(User) {} 898 899 bool operator<(const PHIUsageRecord &RHS) const { 900 if (PHIId < RHS.PHIId) return true; 901 if (PHIId > RHS.PHIId) return false; 902 if (Shift < RHS.Shift) return true; 903 if (Shift > RHS.Shift) return false; 904 return Inst->getType()->getPrimitiveSizeInBits() < 905 RHS.Inst->getType()->getPrimitiveSizeInBits(); 906 } 907 }; 908 909 struct LoweredPHIRecord { 910 PHINode *PN; // The PHI that was lowered. 911 unsigned Shift; // The amount shifted. 912 unsigned Width; // The width extracted. 913 914 LoweredPHIRecord(PHINode *pn, unsigned Sh, Type *Ty) 915 : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {} 916 917 // Ctor form used by DenseMap. 918 LoweredPHIRecord(PHINode *pn, unsigned Sh) 919 : PN(pn), Shift(Sh), Width(0) {} 920 }; 921 } 922 923 namespace llvm { 924 template<> 925 struct DenseMapInfo<LoweredPHIRecord> { 926 static inline LoweredPHIRecord getEmptyKey() { 927 return LoweredPHIRecord(nullptr, 0); 928 } 929 static inline LoweredPHIRecord getTombstoneKey() { 930 return LoweredPHIRecord(nullptr, 1); 931 } 932 static unsigned getHashValue(const LoweredPHIRecord &Val) { 933 return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^ 934 (Val.Width>>3); 935 } 936 static bool isEqual(const LoweredPHIRecord &LHS, 937 const LoweredPHIRecord &RHS) { 938 return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift && 939 LHS.Width == RHS.Width; 940 } 941 }; 942 } 943 944 945 /// This is an integer PHI and we know that it has an illegal type: see if it is 946 /// only used by trunc or trunc(lshr) operations. If so, we split the PHI into 947 /// the various pieces being extracted. This sort of thing is introduced when 948 /// SROA promotes an aggregate to large integer values. 949 /// 950 /// TODO: The user of the trunc may be an bitcast to float/double/vector or an 951 /// inttoptr. We should produce new PHIs in the right type. 952 /// 953 Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) { 954 // PHIUsers - Keep track of all of the truncated values extracted from a set 955 // of PHIs, along with their offset. These are the things we want to rewrite. 956 SmallVector<PHIUsageRecord, 16> PHIUsers; 957 958 // PHIs are often mutually cyclic, so we keep track of a whole set of PHI 959 // nodes which are extracted from. PHIsToSlice is a set we use to avoid 960 // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to 961 // check the uses of (to ensure they are all extracts). 962 SmallVector<PHINode*, 8> PHIsToSlice; 963 SmallPtrSet<PHINode*, 8> PHIsInspected; 964 965 PHIsToSlice.push_back(&FirstPhi); 966 PHIsInspected.insert(&FirstPhi); 967 968 for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) { 969 PHINode *PN = PHIsToSlice[PHIId]; 970 971 // Scan the input list of the PHI. If any input is an invoke, and if the 972 // input is defined in the predecessor, then we won't be split the critical 973 // edge which is required to insert a truncate. Because of this, we have to 974 // bail out. 975 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 976 InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i)); 977 if (!II) continue; 978 if (II->getParent() != PN->getIncomingBlock(i)) 979 continue; 980 981 // If we have a phi, and if it's directly in the predecessor, then we have 982 // a critical edge where we need to put the truncate. Since we can't 983 // split the edge in instcombine, we have to bail out. 984 return nullptr; 985 } 986 987 for (User *U : PN->users()) { 988 Instruction *UserI = cast<Instruction>(U); 989 990 // If the user is a PHI, inspect its uses recursively. 991 if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) { 992 if (PHIsInspected.insert(UserPN).second) 993 PHIsToSlice.push_back(UserPN); 994 continue; 995 } 996 997 // Truncates are always ok. 998 if (isa<TruncInst>(UserI)) { 999 PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI)); 1000 continue; 1001 } 1002 1003 // Otherwise it must be a lshr which can only be used by one trunc. 1004 if (UserI->getOpcode() != Instruction::LShr || 1005 !UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) || 1006 !isa<ConstantInt>(UserI->getOperand(1))) 1007 return nullptr; 1008 1009 // Bail on out of range shifts. 1010 unsigned SizeInBits = UserI->getType()->getScalarSizeInBits(); 1011 if (cast<ConstantInt>(UserI->getOperand(1))->getValue().uge(SizeInBits)) 1012 return nullptr; 1013 1014 unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue(); 1015 PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back())); 1016 } 1017 } 1018 1019 // If we have no users, they must be all self uses, just nuke the PHI. 1020 if (PHIUsers.empty()) 1021 return replaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType())); 1022 1023 // If this phi node is transformable, create new PHIs for all the pieces 1024 // extracted out of it. First, sort the users by their offset and size. 1025 array_pod_sort(PHIUsers.begin(), PHIUsers.end()); 1026 1027 LLVM_DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n'; 1028 for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i) dbgs() 1029 << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] << '\n';); 1030 1031 // PredValues - This is a temporary used when rewriting PHI nodes. It is 1032 // hoisted out here to avoid construction/destruction thrashing. 1033 DenseMap<BasicBlock*, Value*> PredValues; 1034 1035 // ExtractedVals - Each new PHI we introduce is saved here so we don't 1036 // introduce redundant PHIs. 1037 DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals; 1038 1039 for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) { 1040 unsigned PHIId = PHIUsers[UserI].PHIId; 1041 PHINode *PN = PHIsToSlice[PHIId]; 1042 unsigned Offset = PHIUsers[UserI].Shift; 1043 Type *Ty = PHIUsers[UserI].Inst->getType(); 1044 1045 PHINode *EltPHI; 1046 1047 // If we've already lowered a user like this, reuse the previously lowered 1048 // value. 1049 if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) { 1050 1051 // Otherwise, Create the new PHI node for this user. 1052 EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(), 1053 PN->getName()+".off"+Twine(Offset), PN); 1054 assert(EltPHI->getType() != PN->getType() && 1055 "Truncate didn't shrink phi?"); 1056 1057 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1058 BasicBlock *Pred = PN->getIncomingBlock(i); 1059 Value *&PredVal = PredValues[Pred]; 1060 1061 // If we already have a value for this predecessor, reuse it. 1062 if (PredVal) { 1063 EltPHI->addIncoming(PredVal, Pred); 1064 continue; 1065 } 1066 1067 // Handle the PHI self-reuse case. 1068 Value *InVal = PN->getIncomingValue(i); 1069 if (InVal == PN) { 1070 PredVal = EltPHI; 1071 EltPHI->addIncoming(PredVal, Pred); 1072 continue; 1073 } 1074 1075 if (PHINode *InPHI = dyn_cast<PHINode>(PN)) { 1076 // If the incoming value was a PHI, and if it was one of the PHIs we 1077 // already rewrote it, just use the lowered value. 1078 if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) { 1079 PredVal = Res; 1080 EltPHI->addIncoming(PredVal, Pred); 1081 continue; 1082 } 1083 } 1084 1085 // Otherwise, do an extract in the predecessor. 1086 Builder.SetInsertPoint(Pred->getTerminator()); 1087 Value *Res = InVal; 1088 if (Offset) 1089 Res = Builder.CreateLShr(Res, ConstantInt::get(InVal->getType(), 1090 Offset), "extract"); 1091 Res = Builder.CreateTrunc(Res, Ty, "extract.t"); 1092 PredVal = Res; 1093 EltPHI->addIncoming(Res, Pred); 1094 1095 // If the incoming value was a PHI, and if it was one of the PHIs we are 1096 // rewriting, we will ultimately delete the code we inserted. This 1097 // means we need to revisit that PHI to make sure we extract out the 1098 // needed piece. 1099 if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i))) 1100 if (PHIsInspected.count(OldInVal)) { 1101 unsigned RefPHIId = 1102 find(PHIsToSlice, OldInVal) - PHIsToSlice.begin(); 1103 PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset, 1104 cast<Instruction>(Res))); 1105 ++UserE; 1106 } 1107 } 1108 PredValues.clear(); 1109 1110 LLVM_DEBUG(dbgs() << " Made element PHI for offset " << Offset << ": " 1111 << *EltPHI << '\n'); 1112 ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI; 1113 } 1114 1115 // Replace the use of this piece with the PHI node. 1116 replaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI); 1117 } 1118 1119 // Replace all the remaining uses of the PHI nodes (self uses and the lshrs) 1120 // with undefs. 1121 Value *Undef = UndefValue::get(FirstPhi.getType()); 1122 for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i) 1123 replaceInstUsesWith(*PHIsToSlice[i], Undef); 1124 return replaceInstUsesWith(FirstPhi, Undef); 1125 } 1126 1127 // PHINode simplification 1128 // 1129 Instruction *InstCombiner::visitPHINode(PHINode &PN) { 1130 if (Value *V = SimplifyInstruction(&PN, SQ.getWithInstruction(&PN))) 1131 return replaceInstUsesWith(PN, V); 1132 1133 if (Instruction *Result = FoldPHIArgZextsIntoPHI(PN)) 1134 return Result; 1135 1136 // If all PHI operands are the same operation, pull them through the PHI, 1137 // reducing code size. 1138 if (isa<Instruction>(PN.getIncomingValue(0)) && 1139 isa<Instruction>(PN.getIncomingValue(1)) && 1140 cast<Instruction>(PN.getIncomingValue(0))->getOpcode() == 1141 cast<Instruction>(PN.getIncomingValue(1))->getOpcode() && 1142 // FIXME: The hasOneUse check will fail for PHIs that use the value more 1143 // than themselves more than once. 1144 PN.getIncomingValue(0)->hasOneUse()) 1145 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN)) 1146 return Result; 1147 1148 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if 1149 // this PHI only has a single use (a PHI), and if that PHI only has one use (a 1150 // PHI)... break the cycle. 1151 if (PN.hasOneUse()) { 1152 if (Instruction *Result = FoldIntegerTypedPHI(PN)) 1153 return Result; 1154 1155 Instruction *PHIUser = cast<Instruction>(PN.user_back()); 1156 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) { 1157 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs; 1158 PotentiallyDeadPHIs.insert(&PN); 1159 if (DeadPHICycle(PU, PotentiallyDeadPHIs)) 1160 return replaceInstUsesWith(PN, UndefValue::get(PN.getType())); 1161 } 1162 1163 // If this phi has a single use, and if that use just computes a value for 1164 // the next iteration of a loop, delete the phi. This occurs with unused 1165 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this 1166 // common case here is good because the only other things that catch this 1167 // are induction variable analysis (sometimes) and ADCE, which is only run 1168 // late. 1169 if (PHIUser->hasOneUse() && 1170 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) && 1171 PHIUser->user_back() == &PN) { 1172 return replaceInstUsesWith(PN, UndefValue::get(PN.getType())); 1173 } 1174 // When a PHI is used only to be compared with zero, it is safe to replace 1175 // an incoming value proved as known nonzero with any non-zero constant. 1176 // For example, in the code below, the incoming value %v can be replaced 1177 // with any non-zero constant based on the fact that the PHI is only used to 1178 // be compared with zero and %v is a known non-zero value: 1179 // %v = select %cond, 1, 2 1180 // %p = phi [%v, BB] ... 1181 // icmp eq, %p, 0 1182 auto *CmpInst = dyn_cast<ICmpInst>(PHIUser); 1183 // FIXME: To be simple, handle only integer type for now. 1184 if (CmpInst && isa<IntegerType>(PN.getType()) && CmpInst->isEquality() && 1185 match(CmpInst->getOperand(1), m_Zero())) { 1186 ConstantInt *NonZeroConst = nullptr; 1187 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1188 Instruction *CtxI = PN.getIncomingBlock(i)->getTerminator(); 1189 Value *VA = PN.getIncomingValue(i); 1190 if (isKnownNonZero(VA, DL, 0, &AC, CtxI, &DT)) { 1191 if (!NonZeroConst) 1192 NonZeroConst = GetAnyNonZeroConstInt(PN); 1193 PN.setIncomingValue(i, NonZeroConst); 1194 } 1195 } 1196 } 1197 } 1198 1199 // We sometimes end up with phi cycles that non-obviously end up being the 1200 // same value, for example: 1201 // z = some value; x = phi (y, z); y = phi (x, z) 1202 // where the phi nodes don't necessarily need to be in the same block. Do a 1203 // quick check to see if the PHI node only contains a single non-phi value, if 1204 // so, scan to see if the phi cycle is actually equal to that value. 1205 { 1206 unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues(); 1207 // Scan for the first non-phi operand. 1208 while (InValNo != NumIncomingVals && 1209 isa<PHINode>(PN.getIncomingValue(InValNo))) 1210 ++InValNo; 1211 1212 if (InValNo != NumIncomingVals) { 1213 Value *NonPhiInVal = PN.getIncomingValue(InValNo); 1214 1215 // Scan the rest of the operands to see if there are any conflicts, if so 1216 // there is no need to recursively scan other phis. 1217 for (++InValNo; InValNo != NumIncomingVals; ++InValNo) { 1218 Value *OpVal = PN.getIncomingValue(InValNo); 1219 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal)) 1220 break; 1221 } 1222 1223 // If we scanned over all operands, then we have one unique value plus 1224 // phi values. Scan PHI nodes to see if they all merge in each other or 1225 // the value. 1226 if (InValNo == NumIncomingVals) { 1227 SmallPtrSet<PHINode*, 16> ValueEqualPHIs; 1228 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs)) 1229 return replaceInstUsesWith(PN, NonPhiInVal); 1230 } 1231 } 1232 } 1233 1234 // If there are multiple PHIs, sort their operands so that they all list 1235 // the blocks in the same order. This will help identical PHIs be eliminated 1236 // by other passes. Other passes shouldn't depend on this for correctness 1237 // however. 1238 PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin()); 1239 if (&PN != FirstPN) 1240 for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) { 1241 BasicBlock *BBA = PN.getIncomingBlock(i); 1242 BasicBlock *BBB = FirstPN->getIncomingBlock(i); 1243 if (BBA != BBB) { 1244 Value *VA = PN.getIncomingValue(i); 1245 unsigned j = PN.getBasicBlockIndex(BBB); 1246 Value *VB = PN.getIncomingValue(j); 1247 PN.setIncomingBlock(i, BBB); 1248 PN.setIncomingValue(i, VB); 1249 PN.setIncomingBlock(j, BBA); 1250 PN.setIncomingValue(j, VA); 1251 // NOTE: Instcombine normally would want us to "return &PN" if we 1252 // modified any of the operands of an instruction. However, since we 1253 // aren't adding or removing uses (just rearranging them) we don't do 1254 // this in this case. 1255 } 1256 } 1257 1258 // If this is an integer PHI and we know that it has an illegal type, see if 1259 // it is only used by trunc or trunc(lshr) operations. If so, we split the 1260 // PHI into the various pieces being extracted. This sort of thing is 1261 // introduced when SROA promotes an aggregate to a single large integer type. 1262 if (PN.getType()->isIntegerTy() && 1263 !DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits())) 1264 if (Instruction *Res = SliceUpIllegalIntegerPHI(PN)) 1265 return Res; 1266 1267 return nullptr; 1268 } 1269