xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineNegator.cpp (revision e64fe029e9d3ce476e77a478318e0c3cd201ff08)
1 //===- InstCombineNegator.cpp -----------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements sinking of negation into expression trees,
10 // as long as that can be done without increasing instruction count.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/ADT/iterator_range.h"
24 #include "llvm/Analysis/TargetFolder.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugLoc.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Use.h"
35 #include "llvm/IR/User.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Compiler.h"
40 #include "llvm/Support/DebugCounter.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/InstCombine/InstCombiner.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <functional>
47 #include <tuple>
48 #include <type_traits>
49 #include <utility>
50 
51 namespace llvm {
52 class AssumptionCache;
53 class DataLayout;
54 class DominatorTree;
55 class LLVMContext;
56 } // namespace llvm
57 
58 using namespace llvm;
59 
60 #define DEBUG_TYPE "instcombine"
61 
62 STATISTIC(NegatorTotalNegationsAttempted,
63           "Negator: Number of negations attempted to be sinked");
64 STATISTIC(NegatorNumTreesNegated,
65           "Negator: Number of negations successfully sinked");
66 STATISTIC(NegatorMaxDepthVisited, "Negator: Maximal traversal depth ever "
67                                   "reached while attempting to sink negation");
68 STATISTIC(NegatorTimesDepthLimitReached,
69           "Negator: How many times did the traversal depth limit was reached "
70           "during sinking");
71 STATISTIC(
72     NegatorNumValuesVisited,
73     "Negator: Total number of values visited during attempts to sink negation");
74 STATISTIC(NegatorNumNegationsFoundInCache,
75           "Negator: How many negations did we retrieve/reuse from cache");
76 STATISTIC(NegatorMaxTotalValuesVisited,
77           "Negator: Maximal number of values ever visited while attempting to "
78           "sink negation");
79 STATISTIC(NegatorNumInstructionsCreatedTotal,
80           "Negator: Number of new negated instructions created, total");
81 STATISTIC(NegatorMaxInstructionsCreated,
82           "Negator: Maximal number of new instructions created during negation "
83           "attempt");
84 STATISTIC(NegatorNumInstructionsNegatedSuccess,
85           "Negator: Number of new negated instructions created in successful "
86           "negation sinking attempts");
87 
88 DEBUG_COUNTER(NegatorCounter, "instcombine-negator",
89               "Controls Negator transformations in InstCombine pass");
90 
91 static cl::opt<bool>
92     NegatorEnabled("instcombine-negator-enabled", cl::init(true),
93                    cl::desc("Should we attempt to sink negations?"));
94 
95 static cl::opt<unsigned>
96     NegatorMaxDepth("instcombine-negator-max-depth",
97                     cl::init(NegatorDefaultMaxDepth),
98                     cl::desc("What is the maximal lookup depth when trying to "
99                              "check for viability of negation sinking."));
100 
101 Negator::Negator(LLVMContext &C, const DataLayout &DL_, AssumptionCache &AC_,
102                  const DominatorTree &DT_, bool IsTrulyNegation_)
103     : Builder(C, TargetFolder(DL_),
104               IRBuilderCallbackInserter([&](Instruction *I) {
105                 ++NegatorNumInstructionsCreatedTotal;
106                 NewInstructions.push_back(I);
107               })),
108       DL(DL_), AC(AC_), DT(DT_), IsTrulyNegation(IsTrulyNegation_) {}
109 
110 #if LLVM_ENABLE_STATS
111 Negator::~Negator() {
112   NegatorMaxTotalValuesVisited.updateMax(NumValuesVisitedInThisNegator);
113 }
114 #endif
115 
116 // Due to the InstCombine's worklist management, there are no guarantees that
117 // each instruction we'll encounter has been visited by InstCombine already.
118 // In particular, most importantly for us, that means we have to canonicalize
119 // constants to RHS ourselves, since that is helpful sometimes.
120 std::array<Value *, 2> Negator::getSortedOperandsOfBinOp(Instruction *I) {
121   assert(I->getNumOperands() == 2 && "Only for binops!");
122   std::array<Value *, 2> Ops{I->getOperand(0), I->getOperand(1)};
123   if (I->isCommutative() && InstCombiner::getComplexity(I->getOperand(0)) <
124                                 InstCombiner::getComplexity(I->getOperand(1)))
125     std::swap(Ops[0], Ops[1]);
126   return Ops;
127 }
128 
129 // FIXME: can this be reworked into a worklist-based algorithm while preserving
130 // the depth-first, early bailout traversal?
131 [[nodiscard]] Value *Negator::visitImpl(Value *V, unsigned Depth) {
132   // -(undef) -> undef.
133   if (match(V, m_Undef()))
134     return V;
135 
136   // In i1, negation can simply be ignored.
137   if (V->getType()->isIntOrIntVectorTy(1))
138     return V;
139 
140   Value *X;
141 
142   // -(-(X)) -> X.
143   if (match(V, m_Neg(m_Value(X))))
144     return X;
145 
146   // Integral constants can be freely negated.
147   if (match(V, m_AnyIntegralConstant()))
148     return ConstantExpr::getNeg(cast<Constant>(V), /*HasNUW=*/false,
149                                 /*HasNSW=*/false);
150 
151   // If we have a non-instruction, then give up.
152   if (!isa<Instruction>(V))
153     return nullptr;
154 
155   // If we have started with a true negation (i.e. `sub 0, %y`), then if we've
156   // got instruction that does not require recursive reasoning, we can still
157   // negate it even if it has other uses, without increasing instruction count.
158   if (!V->hasOneUse() && !IsTrulyNegation)
159     return nullptr;
160 
161   auto *I = cast<Instruction>(V);
162   unsigned BitWidth = I->getType()->getScalarSizeInBits();
163 
164   // We must preserve the insertion point and debug info that is set in the
165   // builder at the time this function is called.
166   InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
167   // And since we are trying to negate instruction I, that tells us about the
168   // insertion point and the debug info that we need to keep.
169   Builder.SetInsertPoint(I);
170 
171   // In some cases we can give the answer without further recursion.
172   switch (I->getOpcode()) {
173   case Instruction::Add: {
174     std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
175     // `inc` is always negatible.
176     if (match(Ops[1], m_One()))
177       return Builder.CreateNot(Ops[0], I->getName() + ".neg");
178     break;
179   }
180   case Instruction::Xor:
181     // `not` is always negatible.
182     if (match(I, m_Not(m_Value(X))))
183       return Builder.CreateAdd(X, ConstantInt::get(X->getType(), 1),
184                                I->getName() + ".neg");
185     break;
186   case Instruction::AShr:
187   case Instruction::LShr: {
188     // Right-shift sign bit smear is negatible.
189     const APInt *Op1Val;
190     if (match(I->getOperand(1), m_APInt(Op1Val)) && *Op1Val == BitWidth - 1) {
191       Value *BO = I->getOpcode() == Instruction::AShr
192                       ? Builder.CreateLShr(I->getOperand(0), I->getOperand(1))
193                       : Builder.CreateAShr(I->getOperand(0), I->getOperand(1));
194       if (auto *NewInstr = dyn_cast<Instruction>(BO)) {
195         NewInstr->copyIRFlags(I);
196         NewInstr->setName(I->getName() + ".neg");
197       }
198       return BO;
199     }
200     // While we could negate exact arithmetic shift:
201     //   ashr exact %x, C  -->   sdiv exact i8 %x, -1<<C
202     // iff C != 0 and C u< bitwidth(%x), we don't want to,
203     // because division is *THAT* much worse than a shift.
204     break;
205   }
206   case Instruction::SExt:
207   case Instruction::ZExt:
208     // `*ext` of i1 is always negatible
209     if (I->getOperand(0)->getType()->isIntOrIntVectorTy(1))
210       return I->getOpcode() == Instruction::SExt
211                  ? Builder.CreateZExt(I->getOperand(0), I->getType(),
212                                       I->getName() + ".neg")
213                  : Builder.CreateSExt(I->getOperand(0), I->getType(),
214                                       I->getName() + ".neg");
215     break;
216   case Instruction::Select: {
217     // If both arms of the select are constants, we don't need to recurse.
218     // Therefore, this transform is not limited by uses.
219     auto *Sel = cast<SelectInst>(I);
220     Constant *TrueC, *FalseC;
221     if (match(Sel->getTrueValue(), m_ImmConstant(TrueC)) &&
222         match(Sel->getFalseValue(), m_ImmConstant(FalseC))) {
223       Constant *NegTrueC = ConstantExpr::getNeg(TrueC);
224       Constant *NegFalseC = ConstantExpr::getNeg(FalseC);
225       return Builder.CreateSelect(Sel->getCondition(), NegTrueC, NegFalseC,
226                                   I->getName() + ".neg", /*MDFrom=*/I);
227     }
228     break;
229   }
230   default:
231     break; // Other instructions require recursive reasoning.
232   }
233 
234   if (I->getOpcode() == Instruction::Sub &&
235       (I->hasOneUse() || match(I->getOperand(0), m_ImmConstant()))) {
236     // `sub` is always negatible.
237     // However, only do this either if the old `sub` doesn't stick around, or
238     // it was subtracting from a constant. Otherwise, this isn't profitable.
239     return Builder.CreateSub(I->getOperand(1), I->getOperand(0),
240                              I->getName() + ".neg");
241   }
242 
243   // Some other cases, while still don't require recursion,
244   // are restricted to the one-use case.
245   if (!V->hasOneUse())
246     return nullptr;
247 
248   switch (I->getOpcode()) {
249   case Instruction::ZExt: {
250     // Negation of zext of signbit is signbit splat:
251     // 0 - (zext (i8 X u>> 7) to iN) --> sext (i8 X s>> 7) to iN
252     Value *SrcOp = I->getOperand(0);
253     unsigned SrcWidth = SrcOp->getType()->getScalarSizeInBits();
254     const APInt &FullShift = APInt(SrcWidth, SrcWidth - 1);
255     if (IsTrulyNegation &&
256         match(SrcOp, m_LShr(m_Value(X), m_SpecificIntAllowUndef(FullShift)))) {
257       Value *Ashr = Builder.CreateAShr(X, FullShift);
258       return Builder.CreateSExt(Ashr, I->getType());
259     }
260     break;
261   }
262   case Instruction::And: {
263     Constant *ShAmt;
264     // sub(y,and(lshr(x,C),1)) --> add(ashr(shl(x,(BW-1)-C),BW-1),y)
265     if (match(I, m_c_And(m_OneUse(m_TruncOrSelf(
266                              m_LShr(m_Value(X), m_ImmConstant(ShAmt)))),
267                          m_One()))) {
268       unsigned BW = X->getType()->getScalarSizeInBits();
269       Constant *BWMinusOne = ConstantInt::get(X->getType(), BW - 1);
270       Value *R = Builder.CreateShl(X, Builder.CreateSub(BWMinusOne, ShAmt));
271       R = Builder.CreateAShr(R, BWMinusOne);
272       return Builder.CreateTruncOrBitCast(R, I->getType());
273     }
274     break;
275   }
276   case Instruction::SDiv:
277     // `sdiv` is negatible if divisor is not undef/INT_MIN/1.
278     // While this is normally not behind a use-check,
279     // let's consider division to be special since it's costly.
280     if (auto *Op1C = dyn_cast<Constant>(I->getOperand(1))) {
281       if (!Op1C->containsUndefOrPoisonElement() &&
282           Op1C->isNotMinSignedValue() && Op1C->isNotOneValue()) {
283         Value *BO =
284             Builder.CreateSDiv(I->getOperand(0), ConstantExpr::getNeg(Op1C),
285                                I->getName() + ".neg");
286         if (auto *NewInstr = dyn_cast<Instruction>(BO))
287           NewInstr->setIsExact(I->isExact());
288         return BO;
289       }
290     }
291     break;
292   }
293 
294   // Rest of the logic is recursive, so if it's time to give up then it's time.
295   if (Depth > NegatorMaxDepth) {
296     LLVM_DEBUG(dbgs() << "Negator: reached maximal allowed traversal depth in "
297                       << *V << ". Giving up.\n");
298     ++NegatorTimesDepthLimitReached;
299     return nullptr;
300   }
301 
302   switch (I->getOpcode()) {
303   case Instruction::Freeze: {
304     // `freeze` is negatible if its operand is negatible.
305     Value *NegOp = negate(I->getOperand(0), Depth + 1);
306     if (!NegOp) // Early return.
307       return nullptr;
308     return Builder.CreateFreeze(NegOp, I->getName() + ".neg");
309   }
310   case Instruction::PHI: {
311     // `phi` is negatible if all the incoming values are negatible.
312     auto *PHI = cast<PHINode>(I);
313     SmallVector<Value *, 4> NegatedIncomingValues(PHI->getNumOperands());
314     for (auto I : zip(PHI->incoming_values(), NegatedIncomingValues)) {
315       if (!(std::get<1>(I) =
316                 negate(std::get<0>(I), Depth + 1))) // Early return.
317         return nullptr;
318     }
319     // All incoming values are indeed negatible. Create negated PHI node.
320     PHINode *NegatedPHI = Builder.CreatePHI(
321         PHI->getType(), PHI->getNumOperands(), PHI->getName() + ".neg");
322     for (auto I : zip(NegatedIncomingValues, PHI->blocks()))
323       NegatedPHI->addIncoming(std::get<0>(I), std::get<1>(I));
324     return NegatedPHI;
325   }
326   case Instruction::Select: {
327     if (isKnownNegation(I->getOperand(1), I->getOperand(2))) {
328       // Of one hand of select is known to be negation of another hand,
329       // just swap the hands around.
330       auto *NewSelect = cast<SelectInst>(I->clone());
331       // Just swap the operands of the select.
332       NewSelect->swapValues();
333       // Don't swap prof metadata, we didn't change the branch behavior.
334       NewSelect->setName(I->getName() + ".neg");
335       Builder.Insert(NewSelect);
336       return NewSelect;
337     }
338     // `select` is negatible if both hands of `select` are negatible.
339     Value *NegOp1 = negate(I->getOperand(1), Depth + 1);
340     if (!NegOp1) // Early return.
341       return nullptr;
342     Value *NegOp2 = negate(I->getOperand(2), Depth + 1);
343     if (!NegOp2)
344       return nullptr;
345     // Do preserve the metadata!
346     return Builder.CreateSelect(I->getOperand(0), NegOp1, NegOp2,
347                                 I->getName() + ".neg", /*MDFrom=*/I);
348   }
349   case Instruction::ShuffleVector: {
350     // `shufflevector` is negatible if both operands are negatible.
351     auto *Shuf = cast<ShuffleVectorInst>(I);
352     Value *NegOp0 = negate(I->getOperand(0), Depth + 1);
353     if (!NegOp0) // Early return.
354       return nullptr;
355     Value *NegOp1 = negate(I->getOperand(1), Depth + 1);
356     if (!NegOp1)
357       return nullptr;
358     return Builder.CreateShuffleVector(NegOp0, NegOp1, Shuf->getShuffleMask(),
359                                        I->getName() + ".neg");
360   }
361   case Instruction::ExtractElement: {
362     // `extractelement` is negatible if source operand is negatible.
363     auto *EEI = cast<ExtractElementInst>(I);
364     Value *NegVector = negate(EEI->getVectorOperand(), Depth + 1);
365     if (!NegVector) // Early return.
366       return nullptr;
367     return Builder.CreateExtractElement(NegVector, EEI->getIndexOperand(),
368                                         I->getName() + ".neg");
369   }
370   case Instruction::InsertElement: {
371     // `insertelement` is negatible if both the source vector and
372     // element-to-be-inserted are negatible.
373     auto *IEI = cast<InsertElementInst>(I);
374     Value *NegVector = negate(IEI->getOperand(0), Depth + 1);
375     if (!NegVector) // Early return.
376       return nullptr;
377     Value *NegNewElt = negate(IEI->getOperand(1), Depth + 1);
378     if (!NegNewElt) // Early return.
379       return nullptr;
380     return Builder.CreateInsertElement(NegVector, NegNewElt, IEI->getOperand(2),
381                                        I->getName() + ".neg");
382   }
383   case Instruction::Trunc: {
384     // `trunc` is negatible if its operand is negatible.
385     Value *NegOp = negate(I->getOperand(0), Depth + 1);
386     if (!NegOp) // Early return.
387       return nullptr;
388     return Builder.CreateTrunc(NegOp, I->getType(), I->getName() + ".neg");
389   }
390   case Instruction::Shl: {
391     // `shl` is negatible if the first operand is negatible.
392     if (Value *NegOp0 = negate(I->getOperand(0), Depth + 1))
393       return Builder.CreateShl(NegOp0, I->getOperand(1), I->getName() + ".neg");
394     // Otherwise, `shl %x, C` can be interpreted as `mul %x, 1<<C`.
395     auto *Op1C = dyn_cast<Constant>(I->getOperand(1));
396     if (!Op1C || !IsTrulyNegation)
397       return nullptr;
398     return Builder.CreateMul(
399         I->getOperand(0),
400         ConstantExpr::getShl(Constant::getAllOnesValue(Op1C->getType()), Op1C),
401         I->getName() + ".neg");
402   }
403   case Instruction::Or: {
404     if (!haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1), DL, &AC, I,
405                              &DT))
406       return nullptr; // Don't know how to handle `or` in general.
407     std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
408     // `or`/`add` are interchangeable when operands have no common bits set.
409     // `inc` is always negatible.
410     if (match(Ops[1], m_One()))
411       return Builder.CreateNot(Ops[0], I->getName() + ".neg");
412     // Else, just defer to Instruction::Add handling.
413     [[fallthrough]];
414   }
415   case Instruction::Add: {
416     // `add` is negatible if both of its operands are negatible.
417     SmallVector<Value *, 2> NegatedOps, NonNegatedOps;
418     for (Value *Op : I->operands()) {
419       // Can we sink the negation into this operand?
420       if (Value *NegOp = negate(Op, Depth + 1)) {
421         NegatedOps.emplace_back(NegOp); // Successfully negated operand!
422         continue;
423       }
424       // Failed to sink negation into this operand. IFF we started from negation
425       // and we manage to sink negation into one operand, we can still do this.
426       if (!IsTrulyNegation)
427         return nullptr;
428       NonNegatedOps.emplace_back(Op); // Just record which operand that was.
429     }
430     assert((NegatedOps.size() + NonNegatedOps.size()) == 2 &&
431            "Internal consistency check failed.");
432     // Did we manage to sink negation into both of the operands?
433     if (NegatedOps.size() == 2) // Then we get to keep the `add`!
434       return Builder.CreateAdd(NegatedOps[0], NegatedOps[1],
435                                I->getName() + ".neg");
436     assert(IsTrulyNegation && "We should have early-exited then.");
437     // Completely failed to sink negation?
438     if (NonNegatedOps.size() == 2)
439       return nullptr;
440     // 0-(a+b) --> (-a)-b
441     return Builder.CreateSub(NegatedOps[0], NonNegatedOps[0],
442                              I->getName() + ".neg");
443   }
444   case Instruction::Xor: {
445     std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
446     // `xor` is negatible if one of its operands is invertible.
447     // FIXME: InstCombineInverter? But how to connect Inverter and Negator?
448     if (auto *C = dyn_cast<Constant>(Ops[1])) {
449       Value *Xor = Builder.CreateXor(Ops[0], ConstantExpr::getNot(C));
450       return Builder.CreateAdd(Xor, ConstantInt::get(Xor->getType(), 1),
451                                I->getName() + ".neg");
452     }
453     return nullptr;
454   }
455   case Instruction::Mul: {
456     std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
457     // `mul` is negatible if one of its operands is negatible.
458     Value *NegatedOp, *OtherOp;
459     // First try the second operand, in case it's a constant it will be best to
460     // just invert it instead of sinking the `neg` deeper.
461     if (Value *NegOp1 = negate(Ops[1], Depth + 1)) {
462       NegatedOp = NegOp1;
463       OtherOp = Ops[0];
464     } else if (Value *NegOp0 = negate(Ops[0], Depth + 1)) {
465       NegatedOp = NegOp0;
466       OtherOp = Ops[1];
467     } else
468       // Can't negate either of them.
469       return nullptr;
470     return Builder.CreateMul(NegatedOp, OtherOp, I->getName() + ".neg");
471   }
472   default:
473     return nullptr; // Don't know, likely not negatible for free.
474   }
475 
476   llvm_unreachable("Can't get here. We always return from switch.");
477 }
478 
479 [[nodiscard]] Value *Negator::negate(Value *V, unsigned Depth) {
480   NegatorMaxDepthVisited.updateMax(Depth);
481   ++NegatorNumValuesVisited;
482 
483 #if LLVM_ENABLE_STATS
484   ++NumValuesVisitedInThisNegator;
485 #endif
486 
487 #ifndef NDEBUG
488   // We can't ever have a Value with such an address.
489   Value *Placeholder = reinterpret_cast<Value *>(static_cast<uintptr_t>(-1));
490 #endif
491 
492   // Did we already try to negate this value?
493   auto NegationsCacheIterator = NegationsCache.find(V);
494   if (NegationsCacheIterator != NegationsCache.end()) {
495     ++NegatorNumNegationsFoundInCache;
496     Value *NegatedV = NegationsCacheIterator->second;
497     assert(NegatedV != Placeholder && "Encountered a cycle during negation.");
498     return NegatedV;
499   }
500 
501 #ifndef NDEBUG
502   // We did not find a cached result for negation of V. While there,
503   // let's temporairly cache a placeholder value, with the idea that if later
504   // during negation we fetch it from cache, we'll know we're in a cycle.
505   NegationsCache[V] = Placeholder;
506 #endif
507 
508   // No luck. Try negating it for real.
509   Value *NegatedV = visitImpl(V, Depth);
510   // And cache the (real) result for the future.
511   NegationsCache[V] = NegatedV;
512 
513   return NegatedV;
514 }
515 
516 [[nodiscard]] std::optional<Negator::Result> Negator::run(Value *Root) {
517   Value *Negated = negate(Root, /*Depth=*/0);
518   if (!Negated) {
519     // We must cleanup newly-inserted instructions, to avoid any potential
520     // endless combine looping.
521     for (Instruction *I : llvm::reverse(NewInstructions))
522       I->eraseFromParent();
523     return std::nullopt;
524   }
525   return std::make_pair(ArrayRef<Instruction *>(NewInstructions), Negated);
526 }
527 
528 [[nodiscard]] Value *Negator::Negate(bool LHSIsZero, Value *Root,
529                                      InstCombinerImpl &IC) {
530   ++NegatorTotalNegationsAttempted;
531   LLVM_DEBUG(dbgs() << "Negator: attempting to sink negation into " << *Root
532                     << "\n");
533 
534   if (!NegatorEnabled || !DebugCounter::shouldExecute(NegatorCounter))
535     return nullptr;
536 
537   Negator N(Root->getContext(), IC.getDataLayout(), IC.getAssumptionCache(),
538             IC.getDominatorTree(), LHSIsZero);
539   std::optional<Result> Res = N.run(Root);
540   if (!Res) { // Negation failed.
541     LLVM_DEBUG(dbgs() << "Negator: failed to sink negation into " << *Root
542                       << "\n");
543     return nullptr;
544   }
545 
546   LLVM_DEBUG(dbgs() << "Negator: successfully sunk negation into " << *Root
547                     << "\n         NEW: " << *Res->second << "\n");
548   ++NegatorNumTreesNegated;
549 
550   // We must temporarily unset the 'current' insertion point and DebugLoc of the
551   // InstCombine's IRBuilder so that it won't interfere with the ones we have
552   // already specified when producing negated instructions.
553   InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
554   IC.Builder.ClearInsertionPoint();
555   IC.Builder.SetCurrentDebugLocation(DebugLoc());
556 
557   // And finally, we must add newly-created instructions into the InstCombine's
558   // worklist (in a proper order!) so it can attempt to combine them.
559   LLVM_DEBUG(dbgs() << "Negator: Propagating " << Res->first.size()
560                     << " instrs to InstCombine\n");
561   NegatorMaxInstructionsCreated.updateMax(Res->first.size());
562   NegatorNumInstructionsNegatedSuccess += Res->first.size();
563 
564   // They are in def-use order, so nothing fancy, just insert them in order.
565   for (Instruction *I : Res->first)
566     IC.Builder.Insert(I, I->getName());
567 
568   // And return the new root.
569   return Res->second;
570 }
571