xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineNegator.cpp (revision ca53e5aedfebcc1b4091b68e01b2d5cae923f85e)
1 //===- InstCombineNegator.cpp -----------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements sinking of negation into expression trees,
10 // as long as that can be done without increasing instruction count.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/TargetFolder.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DebugLoc.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Use.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/DebugCounter.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include <functional>
46 #include <tuple>
47 #include <type_traits>
48 #include <utility>
49 
50 namespace llvm {
51 class AssumptionCache;
52 class DataLayout;
53 class DominatorTree;
54 class LLVMContext;
55 } // namespace llvm
56 
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "instcombine"
60 
61 STATISTIC(NegatorTotalNegationsAttempted,
62           "Negator: Number of negations attempted to be sinked");
63 STATISTIC(NegatorNumTreesNegated,
64           "Negator: Number of negations successfully sinked");
65 STATISTIC(NegatorMaxDepthVisited, "Negator: Maximal traversal depth ever "
66                                   "reached while attempting to sink negation");
67 STATISTIC(NegatorTimesDepthLimitReached,
68           "Negator: How many times did the traversal depth limit was reached "
69           "during sinking");
70 STATISTIC(
71     NegatorNumValuesVisited,
72     "Negator: Total number of values visited during attempts to sink negation");
73 STATISTIC(NegatorNumNegationsFoundInCache,
74           "Negator: How many negations did we retrieve/reuse from cache");
75 STATISTIC(NegatorMaxTotalValuesVisited,
76           "Negator: Maximal number of values ever visited while attempting to "
77           "sink negation");
78 STATISTIC(NegatorNumInstructionsCreatedTotal,
79           "Negator: Number of new negated instructions created, total");
80 STATISTIC(NegatorMaxInstructionsCreated,
81           "Negator: Maximal number of new instructions created during negation "
82           "attempt");
83 STATISTIC(NegatorNumInstructionsNegatedSuccess,
84           "Negator: Number of new negated instructions created in successful "
85           "negation sinking attempts");
86 
87 DEBUG_COUNTER(NegatorCounter, "instcombine-negator",
88               "Controls Negator transformations in InstCombine pass");
89 
90 static cl::opt<bool>
91     NegatorEnabled("instcombine-negator-enabled", cl::init(true),
92                    cl::desc("Should we attempt to sink negations?"));
93 
94 static cl::opt<unsigned>
95     NegatorMaxDepth("instcombine-negator-max-depth",
96                     cl::init(NegatorDefaultMaxDepth),
97                     cl::desc("What is the maximal lookup depth when trying to "
98                              "check for viability of negation sinking."));
99 
100 Negator::Negator(LLVMContext &C, const DataLayout &DL_, AssumptionCache &AC_,
101                  const DominatorTree &DT_, bool IsTrulyNegation_)
102     : Builder(C, TargetFolder(DL_),
103               IRBuilderCallbackInserter([&](Instruction *I) {
104                 ++NegatorNumInstructionsCreatedTotal;
105                 NewInstructions.push_back(I);
106               })),
107       DL(DL_), AC(AC_), DT(DT_), IsTrulyNegation(IsTrulyNegation_) {}
108 
109 #if LLVM_ENABLE_STATS
110 Negator::~Negator() {
111   NegatorMaxTotalValuesVisited.updateMax(NumValuesVisitedInThisNegator);
112 }
113 #endif
114 
115 // FIXME: can this be reworked into a worklist-based algorithm while preserving
116 // the depth-first, early bailout traversal?
117 LLVM_NODISCARD Value *Negator::visitImpl(Value *V, unsigned Depth) {
118   // -(undef) -> undef.
119   if (match(V, m_Undef()))
120     return V;
121 
122   // In i1, negation can simply be ignored.
123   if (V->getType()->isIntOrIntVectorTy(1))
124     return V;
125 
126   Value *X;
127 
128   // -(-(X)) -> X.
129   if (match(V, m_Neg(m_Value(X))))
130     return X;
131 
132   // Integral constants can be freely negated.
133   if (match(V, m_AnyIntegralConstant()))
134     return ConstantExpr::getNeg(cast<Constant>(V), /*HasNUW=*/false,
135                                 /*HasNSW=*/false);
136 
137   // If we have a non-instruction, then give up.
138   if (!isa<Instruction>(V))
139     return nullptr;
140 
141   // If we have started with a true negation (i.e. `sub 0, %y`), then if we've
142   // got instruction that does not require recursive reasoning, we can still
143   // negate it even if it has other uses, without increasing instruction count.
144   if (!V->hasOneUse() && !IsTrulyNegation)
145     return nullptr;
146 
147   auto *I = cast<Instruction>(V);
148   unsigned BitWidth = I->getType()->getScalarSizeInBits();
149 
150   // We must preserve the insertion point and debug info that is set in the
151   // builder at the time this function is called.
152   InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
153   // And since we are trying to negate instruction I, that tells us about the
154   // insertion point and the debug info that we need to keep.
155   Builder.SetInsertPoint(I);
156 
157   // In some cases we can give the answer without further recursion.
158   switch (I->getOpcode()) {
159   case Instruction::Add:
160     // `inc` is always negatible.
161     if (match(I->getOperand(1), m_One()))
162       return Builder.CreateNot(I->getOperand(0), I->getName() + ".neg");
163     break;
164   case Instruction::Xor:
165     // `not` is always negatible.
166     if (match(I, m_Not(m_Value(X))))
167       return Builder.CreateAdd(X, ConstantInt::get(X->getType(), 1),
168                                I->getName() + ".neg");
169     break;
170   case Instruction::AShr:
171   case Instruction::LShr: {
172     // Right-shift sign bit smear is negatible.
173     const APInt *Op1Val;
174     if (match(I->getOperand(1), m_APInt(Op1Val)) && *Op1Val == BitWidth - 1) {
175       Value *BO = I->getOpcode() == Instruction::AShr
176                       ? Builder.CreateLShr(I->getOperand(0), I->getOperand(1))
177                       : Builder.CreateAShr(I->getOperand(0), I->getOperand(1));
178       if (auto *NewInstr = dyn_cast<Instruction>(BO)) {
179         NewInstr->copyIRFlags(I);
180         NewInstr->setName(I->getName() + ".neg");
181       }
182       return BO;
183     }
184     break;
185   }
186   case Instruction::SExt:
187   case Instruction::ZExt:
188     // `*ext` of i1 is always negatible
189     if (I->getOperand(0)->getType()->isIntOrIntVectorTy(1))
190       return I->getOpcode() == Instruction::SExt
191                  ? Builder.CreateZExt(I->getOperand(0), I->getType(),
192                                       I->getName() + ".neg")
193                  : Builder.CreateSExt(I->getOperand(0), I->getType(),
194                                       I->getName() + ".neg");
195     break;
196   default:
197     break; // Other instructions require recursive reasoning.
198   }
199 
200   // Some other cases, while still don't require recursion,
201   // are restricted to the one-use case.
202   if (!V->hasOneUse())
203     return nullptr;
204 
205   switch (I->getOpcode()) {
206   case Instruction::Sub:
207     // `sub` is always negatible.
208     // But if the old `sub` sticks around, even thought we don't increase
209     // instruction count, this is a likely regression since we increased
210     // live-range of *both* of the operands, which might lead to more spilling.
211     return Builder.CreateSub(I->getOperand(1), I->getOperand(0),
212                              I->getName() + ".neg");
213   case Instruction::SDiv:
214     // `sdiv` is negatible if divisor is not undef/INT_MIN/1.
215     // While this is normally not behind a use-check,
216     // let's consider division to be special since it's costly.
217     if (auto *Op1C = dyn_cast<Constant>(I->getOperand(1))) {
218       if (!Op1C->containsUndefElement() && Op1C->isNotMinSignedValue() &&
219           Op1C->isNotOneValue()) {
220         Value *BO =
221             Builder.CreateSDiv(I->getOperand(0), ConstantExpr::getNeg(Op1C),
222                                I->getName() + ".neg");
223         if (auto *NewInstr = dyn_cast<Instruction>(BO))
224           NewInstr->setIsExact(I->isExact());
225         return BO;
226       }
227     }
228     break;
229   }
230 
231   // Rest of the logic is recursive, so if it's time to give up then it's time.
232   if (Depth > NegatorMaxDepth) {
233     LLVM_DEBUG(dbgs() << "Negator: reached maximal allowed traversal depth in "
234                       << *V << ". Giving up.\n");
235     ++NegatorTimesDepthLimitReached;
236     return nullptr;
237   }
238 
239   switch (I->getOpcode()) {
240   case Instruction::PHI: {
241     // `phi` is negatible if all the incoming values are negatible.
242     auto *PHI = cast<PHINode>(I);
243     SmallVector<Value *, 4> NegatedIncomingValues(PHI->getNumOperands());
244     for (auto I : zip(PHI->incoming_values(), NegatedIncomingValues)) {
245       if (!(std::get<1>(I) =
246                 negate(std::get<0>(I), Depth + 1))) // Early return.
247         return nullptr;
248     }
249     // All incoming values are indeed negatible. Create negated PHI node.
250     PHINode *NegatedPHI = Builder.CreatePHI(
251         PHI->getType(), PHI->getNumOperands(), PHI->getName() + ".neg");
252     for (auto I : zip(NegatedIncomingValues, PHI->blocks()))
253       NegatedPHI->addIncoming(std::get<0>(I), std::get<1>(I));
254     return NegatedPHI;
255   }
256   case Instruction::Select: {
257     {
258       // `abs`/`nabs` is always negatible.
259       Value *LHS, *RHS;
260       SelectPatternFlavor SPF =
261           matchSelectPattern(I, LHS, RHS, /*CastOp=*/nullptr, Depth).Flavor;
262       if (SPF == SPF_ABS || SPF == SPF_NABS) {
263         auto *NewSelect = cast<SelectInst>(I->clone());
264         // Just swap the operands of the select.
265         NewSelect->swapValues();
266         // Don't swap prof metadata, we didn't change the branch behavior.
267         NewSelect->setName(I->getName() + ".neg");
268         Builder.Insert(NewSelect);
269         return NewSelect;
270       }
271     }
272     // `select` is negatible if both hands of `select` are negatible.
273     Value *NegOp1 = negate(I->getOperand(1), Depth + 1);
274     if (!NegOp1) // Early return.
275       return nullptr;
276     Value *NegOp2 = negate(I->getOperand(2), Depth + 1);
277     if (!NegOp2)
278       return nullptr;
279     // Do preserve the metadata!
280     return Builder.CreateSelect(I->getOperand(0), NegOp1, NegOp2,
281                                 I->getName() + ".neg", /*MDFrom=*/I);
282   }
283   case Instruction::ShuffleVector: {
284     // `shufflevector` is negatible if both operands are negatible.
285     auto *Shuf = cast<ShuffleVectorInst>(I);
286     Value *NegOp0 = negate(I->getOperand(0), Depth + 1);
287     if (!NegOp0) // Early return.
288       return nullptr;
289     Value *NegOp1 = negate(I->getOperand(1), Depth + 1);
290     if (!NegOp1)
291       return nullptr;
292     return Builder.CreateShuffleVector(NegOp0, NegOp1, Shuf->getShuffleMask(),
293                                        I->getName() + ".neg");
294   }
295   case Instruction::ExtractElement: {
296     // `extractelement` is negatible if source operand is negatible.
297     auto *EEI = cast<ExtractElementInst>(I);
298     Value *NegVector = negate(EEI->getVectorOperand(), Depth + 1);
299     if (!NegVector) // Early return.
300       return nullptr;
301     return Builder.CreateExtractElement(NegVector, EEI->getIndexOperand(),
302                                         I->getName() + ".neg");
303   }
304   case Instruction::InsertElement: {
305     // `insertelement` is negatible if both the source vector and
306     // element-to-be-inserted are negatible.
307     auto *IEI = cast<InsertElementInst>(I);
308     Value *NegVector = negate(IEI->getOperand(0), Depth + 1);
309     if (!NegVector) // Early return.
310       return nullptr;
311     Value *NegNewElt = negate(IEI->getOperand(1), Depth + 1);
312     if (!NegNewElt) // Early return.
313       return nullptr;
314     return Builder.CreateInsertElement(NegVector, NegNewElt, IEI->getOperand(2),
315                                        I->getName() + ".neg");
316   }
317   case Instruction::Trunc: {
318     // `trunc` is negatible if its operand is negatible.
319     Value *NegOp = negate(I->getOperand(0), Depth + 1);
320     if (!NegOp) // Early return.
321       return nullptr;
322     return Builder.CreateTrunc(NegOp, I->getType(), I->getName() + ".neg");
323   }
324   case Instruction::Shl: {
325     // `shl` is negatible if the first operand is negatible.
326     Value *NegOp0 = negate(I->getOperand(0), Depth + 1);
327     if (!NegOp0) // Early return.
328       return nullptr;
329     return Builder.CreateShl(NegOp0, I->getOperand(1), I->getName() + ".neg");
330   }
331   case Instruction::Or:
332     if (!haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1), DL, &AC, I,
333                              &DT))
334       return nullptr; // Don't know how to handle `or` in general.
335     // `or`/`add` are interchangeable when operands have no common bits set.
336     // `inc` is always negatible.
337     if (match(I->getOperand(1), m_One()))
338       return Builder.CreateNot(I->getOperand(0), I->getName() + ".neg");
339     // Else, just defer to Instruction::Add handling.
340     LLVM_FALLTHROUGH;
341   case Instruction::Add: {
342     // `add` is negatible if both of its operands are negatible.
343     Value *NegOp0 = negate(I->getOperand(0), Depth + 1);
344     if (!NegOp0) // Early return.
345       return nullptr;
346     Value *NegOp1 = negate(I->getOperand(1), Depth + 1);
347     if (!NegOp1)
348       return nullptr;
349     return Builder.CreateAdd(NegOp0, NegOp1, I->getName() + ".neg");
350   }
351   case Instruction::Xor:
352     // `xor` is negatible if one of its operands is invertible.
353     // FIXME: InstCombineInverter? But how to connect Inverter and Negator?
354     if (auto *C = dyn_cast<Constant>(I->getOperand(1))) {
355       Value *Xor = Builder.CreateXor(I->getOperand(0), ConstantExpr::getNot(C));
356       return Builder.CreateAdd(Xor, ConstantInt::get(Xor->getType(), 1),
357                                I->getName() + ".neg");
358     }
359     return nullptr;
360   case Instruction::Mul: {
361     // `mul` is negatible if one of its operands is negatible.
362     Value *NegatedOp, *OtherOp;
363     // First try the second operand, in case it's a constant it will be best to
364     // just invert it instead of sinking the `neg` deeper.
365     if (Value *NegOp1 = negate(I->getOperand(1), Depth + 1)) {
366       NegatedOp = NegOp1;
367       OtherOp = I->getOperand(0);
368     } else if (Value *NegOp0 = negate(I->getOperand(0), Depth + 1)) {
369       NegatedOp = NegOp0;
370       OtherOp = I->getOperand(1);
371     } else
372       // Can't negate either of them.
373       return nullptr;
374     return Builder.CreateMul(NegatedOp, OtherOp, I->getName() + ".neg");
375   }
376   default:
377     return nullptr; // Don't know, likely not negatible for free.
378   }
379 
380   llvm_unreachable("Can't get here. We always return from switch.");
381 }
382 
383 LLVM_NODISCARD Value *Negator::negate(Value *V, unsigned Depth) {
384   NegatorMaxDepthVisited.updateMax(Depth);
385   ++NegatorNumValuesVisited;
386 
387 #if LLVM_ENABLE_STATS
388   ++NumValuesVisitedInThisNegator;
389 #endif
390 
391 #ifndef NDEBUG
392   // We can't ever have a Value with such an address.
393   Value *Placeholder = reinterpret_cast<Value *>(static_cast<uintptr_t>(-1));
394 #endif
395 
396   // Did we already try to negate this value?
397   auto NegationsCacheIterator = NegationsCache.find(V);
398   if (NegationsCacheIterator != NegationsCache.end()) {
399     ++NegatorNumNegationsFoundInCache;
400     Value *NegatedV = NegationsCacheIterator->second;
401     assert(NegatedV != Placeholder && "Encountered a cycle during negation.");
402     return NegatedV;
403   }
404 
405 #ifndef NDEBUG
406   // We did not find a cached result for negation of V. While there,
407   // let's temporairly cache a placeholder value, with the idea that if later
408   // during negation we fetch it from cache, we'll know we're in a cycle.
409   NegationsCache[V] = Placeholder;
410 #endif
411 
412   // No luck. Try negating it for real.
413   Value *NegatedV = visitImpl(V, Depth);
414   // And cache the (real) result for the future.
415   NegationsCache[V] = NegatedV;
416 
417   return NegatedV;
418 }
419 
420 LLVM_NODISCARD Optional<Negator::Result> Negator::run(Value *Root) {
421   Value *Negated = negate(Root, /*Depth=*/0);
422   if (!Negated) {
423     // We must cleanup newly-inserted instructions, to avoid any potential
424     // endless combine looping.
425     llvm::for_each(llvm::reverse(NewInstructions),
426                    [&](Instruction *I) { I->eraseFromParent(); });
427     return llvm::None;
428   }
429   return std::make_pair(ArrayRef<Instruction *>(NewInstructions), Negated);
430 }
431 
432 LLVM_NODISCARD Value *Negator::Negate(bool LHSIsZero, Value *Root,
433                                       InstCombiner &IC) {
434   ++NegatorTotalNegationsAttempted;
435   LLVM_DEBUG(dbgs() << "Negator: attempting to sink negation into " << *Root
436                     << "\n");
437 
438   if (!NegatorEnabled || !DebugCounter::shouldExecute(NegatorCounter))
439     return nullptr;
440 
441   Negator N(Root->getContext(), IC.getDataLayout(), IC.getAssumptionCache(),
442             IC.getDominatorTree(), LHSIsZero);
443   Optional<Result> Res = N.run(Root);
444   if (!Res) { // Negation failed.
445     LLVM_DEBUG(dbgs() << "Negator: failed to sink negation into " << *Root
446                       << "\n");
447     return nullptr;
448   }
449 
450   LLVM_DEBUG(dbgs() << "Negator: successfully sunk negation into " << *Root
451                     << "\n         NEW: " << *Res->second << "\n");
452   ++NegatorNumTreesNegated;
453 
454   // We must temporarily unset the 'current' insertion point and DebugLoc of the
455   // InstCombine's IRBuilder so that it won't interfere with the ones we have
456   // already specified when producing negated instructions.
457   InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
458   IC.Builder.ClearInsertionPoint();
459   IC.Builder.SetCurrentDebugLocation(DebugLoc());
460 
461   // And finally, we must add newly-created instructions into the InstCombine's
462   // worklist (in a proper order!) so it can attempt to combine them.
463   LLVM_DEBUG(dbgs() << "Negator: Propagating " << Res->first.size()
464                     << " instrs to InstCombine\n");
465   NegatorMaxInstructionsCreated.updateMax(Res->first.size());
466   NegatorNumInstructionsNegatedSuccess += Res->first.size();
467 
468   // They are in def-use order, so nothing fancy, just insert them in order.
469   llvm::for_each(Res->first,
470                  [&](Instruction *I) { IC.Builder.Insert(I, I->getName()); });
471 
472   // And return the new root.
473   return Res->second;
474 }
475