1 //===- InstCombineNegator.cpp -----------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements sinking of negation into expression trees, 10 // as long as that can be done without increasing instruction count. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/TargetFolder.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugLoc.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Use.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Compiler.h" 39 #include "llvm/Support/DebugCounter.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/InstCombine/InstCombiner.h" 43 #include <cassert> 44 #include <cstdint> 45 #include <functional> 46 #include <type_traits> 47 #include <utility> 48 49 namespace llvm { 50 class DataLayout; 51 class LLVMContext; 52 } // namespace llvm 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "instcombine" 57 58 STATISTIC(NegatorTotalNegationsAttempted, 59 "Negator: Number of negations attempted to be sinked"); 60 STATISTIC(NegatorNumTreesNegated, 61 "Negator: Number of negations successfully sinked"); 62 STATISTIC(NegatorMaxDepthVisited, "Negator: Maximal traversal depth ever " 63 "reached while attempting to sink negation"); 64 STATISTIC(NegatorTimesDepthLimitReached, 65 "Negator: How many times did the traversal depth limit was reached " 66 "during sinking"); 67 STATISTIC( 68 NegatorNumValuesVisited, 69 "Negator: Total number of values visited during attempts to sink negation"); 70 STATISTIC(NegatorNumNegationsFoundInCache, 71 "Negator: How many negations did we retrieve/reuse from cache"); 72 STATISTIC(NegatorMaxTotalValuesVisited, 73 "Negator: Maximal number of values ever visited while attempting to " 74 "sink negation"); 75 STATISTIC(NegatorNumInstructionsCreatedTotal, 76 "Negator: Number of new negated instructions created, total"); 77 STATISTIC(NegatorMaxInstructionsCreated, 78 "Negator: Maximal number of new instructions created during negation " 79 "attempt"); 80 STATISTIC(NegatorNumInstructionsNegatedSuccess, 81 "Negator: Number of new negated instructions created in successful " 82 "negation sinking attempts"); 83 84 DEBUG_COUNTER(NegatorCounter, "instcombine-negator", 85 "Controls Negator transformations in InstCombine pass"); 86 87 static cl::opt<bool> 88 NegatorEnabled("instcombine-negator-enabled", cl::init(true), 89 cl::desc("Should we attempt to sink negations?")); 90 91 static cl::opt<unsigned> 92 NegatorMaxDepth("instcombine-negator-max-depth", 93 cl::init(NegatorDefaultMaxDepth), 94 cl::desc("What is the maximal lookup depth when trying to " 95 "check for viability of negation sinking.")); 96 97 Negator::Negator(LLVMContext &C, const DataLayout &DL, bool IsTrulyNegation_) 98 : Builder(C, TargetFolder(DL), 99 IRBuilderCallbackInserter([&](Instruction *I) { 100 ++NegatorNumInstructionsCreatedTotal; 101 NewInstructions.push_back(I); 102 })), 103 IsTrulyNegation(IsTrulyNegation_) {} 104 105 #if LLVM_ENABLE_STATS 106 Negator::~Negator() { 107 NegatorMaxTotalValuesVisited.updateMax(NumValuesVisitedInThisNegator); 108 } 109 #endif 110 111 // Due to the InstCombine's worklist management, there are no guarantees that 112 // each instruction we'll encounter has been visited by InstCombine already. 113 // In particular, most importantly for us, that means we have to canonicalize 114 // constants to RHS ourselves, since that is helpful sometimes. 115 std::array<Value *, 2> Negator::getSortedOperandsOfBinOp(Instruction *I) { 116 assert(I->getNumOperands() == 2 && "Only for binops!"); 117 std::array<Value *, 2> Ops{I->getOperand(0), I->getOperand(1)}; 118 if (I->isCommutative() && InstCombiner::getComplexity(I->getOperand(0)) < 119 InstCombiner::getComplexity(I->getOperand(1))) 120 std::swap(Ops[0], Ops[1]); 121 return Ops; 122 } 123 124 // FIXME: can this be reworked into a worklist-based algorithm while preserving 125 // the depth-first, early bailout traversal? 126 [[nodiscard]] Value *Negator::visitImpl(Value *V, bool IsNSW, unsigned Depth) { 127 // -(undef) -> undef. 128 if (match(V, m_Undef())) 129 return V; 130 131 // In i1, negation can simply be ignored. 132 if (V->getType()->isIntOrIntVectorTy(1)) 133 return V; 134 135 Value *X; 136 137 // -(-(X)) -> X. 138 if (match(V, m_Neg(m_Value(X)))) 139 return X; 140 141 // Integral constants can be freely negated. 142 if (match(V, m_AnyIntegralConstant())) 143 return ConstantExpr::getNeg(cast<Constant>(V), /*HasNUW=*/false, 144 /*HasNSW=*/false); 145 146 // If we have a non-instruction, then give up. 147 if (!isa<Instruction>(V)) 148 return nullptr; 149 150 // If we have started with a true negation (i.e. `sub 0, %y`), then if we've 151 // got instruction that does not require recursive reasoning, we can still 152 // negate it even if it has other uses, without increasing instruction count. 153 if (!V->hasOneUse() && !IsTrulyNegation) 154 return nullptr; 155 156 auto *I = cast<Instruction>(V); 157 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 158 159 // We must preserve the insertion point and debug info that is set in the 160 // builder at the time this function is called. 161 InstCombiner::BuilderTy::InsertPointGuard Guard(Builder); 162 // And since we are trying to negate instruction I, that tells us about the 163 // insertion point and the debug info that we need to keep. 164 Builder.SetInsertPoint(I); 165 166 // In some cases we can give the answer without further recursion. 167 switch (I->getOpcode()) { 168 case Instruction::Add: { 169 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I); 170 // `inc` is always negatible. 171 if (match(Ops[1], m_One())) 172 return Builder.CreateNot(Ops[0], I->getName() + ".neg"); 173 break; 174 } 175 case Instruction::Xor: 176 // `not` is always negatible. 177 if (match(I, m_Not(m_Value(X)))) 178 return Builder.CreateAdd(X, ConstantInt::get(X->getType(), 1), 179 I->getName() + ".neg"); 180 break; 181 case Instruction::AShr: 182 case Instruction::LShr: { 183 // Right-shift sign bit smear is negatible. 184 const APInt *Op1Val; 185 if (match(I->getOperand(1), m_APInt(Op1Val)) && *Op1Val == BitWidth - 1) { 186 Value *BO = I->getOpcode() == Instruction::AShr 187 ? Builder.CreateLShr(I->getOperand(0), I->getOperand(1)) 188 : Builder.CreateAShr(I->getOperand(0), I->getOperand(1)); 189 if (auto *NewInstr = dyn_cast<Instruction>(BO)) { 190 NewInstr->copyIRFlags(I); 191 NewInstr->setName(I->getName() + ".neg"); 192 } 193 return BO; 194 } 195 // While we could negate exact arithmetic shift: 196 // ashr exact %x, C --> sdiv exact i8 %x, -1<<C 197 // iff C != 0 and C u< bitwidth(%x), we don't want to, 198 // because division is *THAT* much worse than a shift. 199 break; 200 } 201 case Instruction::SExt: 202 case Instruction::ZExt: 203 // `*ext` of i1 is always negatible 204 if (I->getOperand(0)->getType()->isIntOrIntVectorTy(1)) 205 return I->getOpcode() == Instruction::SExt 206 ? Builder.CreateZExt(I->getOperand(0), I->getType(), 207 I->getName() + ".neg") 208 : Builder.CreateSExt(I->getOperand(0), I->getType(), 209 I->getName() + ".neg"); 210 break; 211 case Instruction::Select: { 212 // If both arms of the select are constants, we don't need to recurse. 213 // Therefore, this transform is not limited by uses. 214 auto *Sel = cast<SelectInst>(I); 215 Constant *TrueC, *FalseC; 216 if (match(Sel->getTrueValue(), m_ImmConstant(TrueC)) && 217 match(Sel->getFalseValue(), m_ImmConstant(FalseC))) { 218 Constant *NegTrueC = ConstantExpr::getNeg(TrueC); 219 Constant *NegFalseC = ConstantExpr::getNeg(FalseC); 220 return Builder.CreateSelect(Sel->getCondition(), NegTrueC, NegFalseC, 221 I->getName() + ".neg", /*MDFrom=*/I); 222 } 223 break; 224 } 225 default: 226 break; // Other instructions require recursive reasoning. 227 } 228 229 if (I->getOpcode() == Instruction::Sub && 230 (I->hasOneUse() || match(I->getOperand(0), m_ImmConstant()))) { 231 // `sub` is always negatible. 232 // However, only do this either if the old `sub` doesn't stick around, or 233 // it was subtracting from a constant. Otherwise, this isn't profitable. 234 return Builder.CreateSub(I->getOperand(1), I->getOperand(0), 235 I->getName() + ".neg", /* HasNUW */ false, 236 IsNSW && I->hasNoSignedWrap()); 237 } 238 239 // Some other cases, while still don't require recursion, 240 // are restricted to the one-use case. 241 if (!V->hasOneUse()) 242 return nullptr; 243 244 switch (I->getOpcode()) { 245 case Instruction::ZExt: { 246 // Negation of zext of signbit is signbit splat: 247 // 0 - (zext (i8 X u>> 7) to iN) --> sext (i8 X s>> 7) to iN 248 Value *SrcOp = I->getOperand(0); 249 unsigned SrcWidth = SrcOp->getType()->getScalarSizeInBits(); 250 const APInt &FullShift = APInt(SrcWidth, SrcWidth - 1); 251 if (IsTrulyNegation && 252 match(SrcOp, m_LShr(m_Value(X), m_SpecificIntAllowUndef(FullShift)))) { 253 Value *Ashr = Builder.CreateAShr(X, FullShift); 254 return Builder.CreateSExt(Ashr, I->getType()); 255 } 256 break; 257 } 258 case Instruction::And: { 259 Constant *ShAmt; 260 // sub(y,and(lshr(x,C),1)) --> add(ashr(shl(x,(BW-1)-C),BW-1),y) 261 if (match(I, m_c_And(m_OneUse(m_TruncOrSelf( 262 m_LShr(m_Value(X), m_ImmConstant(ShAmt)))), 263 m_One()))) { 264 unsigned BW = X->getType()->getScalarSizeInBits(); 265 Constant *BWMinusOne = ConstantInt::get(X->getType(), BW - 1); 266 Value *R = Builder.CreateShl(X, Builder.CreateSub(BWMinusOne, ShAmt)); 267 R = Builder.CreateAShr(R, BWMinusOne); 268 return Builder.CreateTruncOrBitCast(R, I->getType()); 269 } 270 break; 271 } 272 case Instruction::SDiv: 273 // `sdiv` is negatible if divisor is not undef/INT_MIN/1. 274 // While this is normally not behind a use-check, 275 // let's consider division to be special since it's costly. 276 if (auto *Op1C = dyn_cast<Constant>(I->getOperand(1))) { 277 if (!Op1C->containsUndefOrPoisonElement() && 278 Op1C->isNotMinSignedValue() && Op1C->isNotOneValue()) { 279 Value *BO = 280 Builder.CreateSDiv(I->getOperand(0), ConstantExpr::getNeg(Op1C), 281 I->getName() + ".neg"); 282 if (auto *NewInstr = dyn_cast<Instruction>(BO)) 283 NewInstr->setIsExact(I->isExact()); 284 return BO; 285 } 286 } 287 break; 288 } 289 290 // Rest of the logic is recursive, so if it's time to give up then it's time. 291 if (Depth > NegatorMaxDepth) { 292 LLVM_DEBUG(dbgs() << "Negator: reached maximal allowed traversal depth in " 293 << *V << ". Giving up.\n"); 294 ++NegatorTimesDepthLimitReached; 295 return nullptr; 296 } 297 298 switch (I->getOpcode()) { 299 case Instruction::Freeze: { 300 // `freeze` is negatible if its operand is negatible. 301 Value *NegOp = negate(I->getOperand(0), IsNSW, Depth + 1); 302 if (!NegOp) // Early return. 303 return nullptr; 304 return Builder.CreateFreeze(NegOp, I->getName() + ".neg"); 305 } 306 case Instruction::PHI: { 307 // `phi` is negatible if all the incoming values are negatible. 308 auto *PHI = cast<PHINode>(I); 309 SmallVector<Value *, 4> NegatedIncomingValues(PHI->getNumOperands()); 310 for (auto I : zip(PHI->incoming_values(), NegatedIncomingValues)) { 311 if (!(std::get<1>(I) = 312 negate(std::get<0>(I), IsNSW, Depth + 1))) // Early return. 313 return nullptr; 314 } 315 // All incoming values are indeed negatible. Create negated PHI node. 316 PHINode *NegatedPHI = Builder.CreatePHI( 317 PHI->getType(), PHI->getNumOperands(), PHI->getName() + ".neg"); 318 for (auto I : zip(NegatedIncomingValues, PHI->blocks())) 319 NegatedPHI->addIncoming(std::get<0>(I), std::get<1>(I)); 320 return NegatedPHI; 321 } 322 case Instruction::Select: { 323 if (isKnownNegation(I->getOperand(1), I->getOperand(2))) { 324 // Of one hand of select is known to be negation of another hand, 325 // just swap the hands around. 326 auto *NewSelect = cast<SelectInst>(I->clone()); 327 // Just swap the operands of the select. 328 NewSelect->swapValues(); 329 // Don't swap prof metadata, we didn't change the branch behavior. 330 NewSelect->setName(I->getName() + ".neg"); 331 Builder.Insert(NewSelect); 332 return NewSelect; 333 } 334 // `select` is negatible if both hands of `select` are negatible. 335 Value *NegOp1 = negate(I->getOperand(1), IsNSW, Depth + 1); 336 if (!NegOp1) // Early return. 337 return nullptr; 338 Value *NegOp2 = negate(I->getOperand(2), IsNSW, Depth + 1); 339 if (!NegOp2) 340 return nullptr; 341 // Do preserve the metadata! 342 return Builder.CreateSelect(I->getOperand(0), NegOp1, NegOp2, 343 I->getName() + ".neg", /*MDFrom=*/I); 344 } 345 case Instruction::ShuffleVector: { 346 // `shufflevector` is negatible if both operands are negatible. 347 auto *Shuf = cast<ShuffleVectorInst>(I); 348 Value *NegOp0 = negate(I->getOperand(0), IsNSW, Depth + 1); 349 if (!NegOp0) // Early return. 350 return nullptr; 351 Value *NegOp1 = negate(I->getOperand(1), IsNSW, Depth + 1); 352 if (!NegOp1) 353 return nullptr; 354 return Builder.CreateShuffleVector(NegOp0, NegOp1, Shuf->getShuffleMask(), 355 I->getName() + ".neg"); 356 } 357 case Instruction::ExtractElement: { 358 // `extractelement` is negatible if source operand is negatible. 359 auto *EEI = cast<ExtractElementInst>(I); 360 Value *NegVector = negate(EEI->getVectorOperand(), IsNSW, Depth + 1); 361 if (!NegVector) // Early return. 362 return nullptr; 363 return Builder.CreateExtractElement(NegVector, EEI->getIndexOperand(), 364 I->getName() + ".neg"); 365 } 366 case Instruction::InsertElement: { 367 // `insertelement` is negatible if both the source vector and 368 // element-to-be-inserted are negatible. 369 auto *IEI = cast<InsertElementInst>(I); 370 Value *NegVector = negate(IEI->getOperand(0), IsNSW, Depth + 1); 371 if (!NegVector) // Early return. 372 return nullptr; 373 Value *NegNewElt = negate(IEI->getOperand(1), IsNSW, Depth + 1); 374 if (!NegNewElt) // Early return. 375 return nullptr; 376 return Builder.CreateInsertElement(NegVector, NegNewElt, IEI->getOperand(2), 377 I->getName() + ".neg"); 378 } 379 case Instruction::Trunc: { 380 // `trunc` is negatible if its operand is negatible. 381 Value *NegOp = negate(I->getOperand(0), /* IsNSW */ false, Depth + 1); 382 if (!NegOp) // Early return. 383 return nullptr; 384 return Builder.CreateTrunc(NegOp, I->getType(), I->getName() + ".neg"); 385 } 386 case Instruction::Shl: { 387 // `shl` is negatible if the first operand is negatible. 388 IsNSW &= I->hasNoSignedWrap(); 389 if (Value *NegOp0 = negate(I->getOperand(0), IsNSW, Depth + 1)) 390 return Builder.CreateShl(NegOp0, I->getOperand(1), I->getName() + ".neg", 391 /* HasNUW */ false, IsNSW); 392 // Otherwise, `shl %x, C` can be interpreted as `mul %x, 1<<C`. 393 auto *Op1C = dyn_cast<Constant>(I->getOperand(1)); 394 if (!Op1C || !IsTrulyNegation) 395 return nullptr; 396 return Builder.CreateMul( 397 I->getOperand(0), 398 ConstantExpr::getShl(Constant::getAllOnesValue(Op1C->getType()), Op1C), 399 I->getName() + ".neg", /* HasNUW */ false, IsNSW); 400 } 401 case Instruction::Or: { 402 if (!cast<PossiblyDisjointInst>(I)->isDisjoint()) 403 return nullptr; // Don't know how to handle `or` in general. 404 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I); 405 // `or`/`add` are interchangeable when operands have no common bits set. 406 // `inc` is always negatible. 407 if (match(Ops[1], m_One())) 408 return Builder.CreateNot(Ops[0], I->getName() + ".neg"); 409 // Else, just defer to Instruction::Add handling. 410 [[fallthrough]]; 411 } 412 case Instruction::Add: { 413 // `add` is negatible if both of its operands are negatible. 414 SmallVector<Value *, 2> NegatedOps, NonNegatedOps; 415 for (Value *Op : I->operands()) { 416 // Can we sink the negation into this operand? 417 if (Value *NegOp = negate(Op, /* IsNSW */ false, Depth + 1)) { 418 NegatedOps.emplace_back(NegOp); // Successfully negated operand! 419 continue; 420 } 421 // Failed to sink negation into this operand. IFF we started from negation 422 // and we manage to sink negation into one operand, we can still do this. 423 if (!IsTrulyNegation) 424 return nullptr; 425 NonNegatedOps.emplace_back(Op); // Just record which operand that was. 426 } 427 assert((NegatedOps.size() + NonNegatedOps.size()) == 2 && 428 "Internal consistency check failed."); 429 // Did we manage to sink negation into both of the operands? 430 if (NegatedOps.size() == 2) // Then we get to keep the `add`! 431 return Builder.CreateAdd(NegatedOps[0], NegatedOps[1], 432 I->getName() + ".neg"); 433 assert(IsTrulyNegation && "We should have early-exited then."); 434 // Completely failed to sink negation? 435 if (NonNegatedOps.size() == 2) 436 return nullptr; 437 // 0-(a+b) --> (-a)-b 438 return Builder.CreateSub(NegatedOps[0], NonNegatedOps[0], 439 I->getName() + ".neg"); 440 } 441 case Instruction::Xor: { 442 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I); 443 // `xor` is negatible if one of its operands is invertible. 444 // FIXME: InstCombineInverter? But how to connect Inverter and Negator? 445 if (auto *C = dyn_cast<Constant>(Ops[1])) { 446 if (IsTrulyNegation) { 447 Value *Xor = Builder.CreateXor(Ops[0], ConstantExpr::getNot(C)); 448 return Builder.CreateAdd(Xor, ConstantInt::get(Xor->getType(), 1), 449 I->getName() + ".neg"); 450 } 451 } 452 return nullptr; 453 } 454 case Instruction::Mul: { 455 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I); 456 // `mul` is negatible if one of its operands is negatible. 457 Value *NegatedOp, *OtherOp; 458 // First try the second operand, in case it's a constant it will be best to 459 // just invert it instead of sinking the `neg` deeper. 460 if (Value *NegOp1 = negate(Ops[1], /* IsNSW */ false, Depth + 1)) { 461 NegatedOp = NegOp1; 462 OtherOp = Ops[0]; 463 } else if (Value *NegOp0 = negate(Ops[0], /* IsNSW */ false, Depth + 1)) { 464 NegatedOp = NegOp0; 465 OtherOp = Ops[1]; 466 } else 467 // Can't negate either of them. 468 return nullptr; 469 return Builder.CreateMul(NegatedOp, OtherOp, I->getName() + ".neg", 470 /* HasNUW */ false, IsNSW && I->hasNoSignedWrap()); 471 } 472 default: 473 return nullptr; // Don't know, likely not negatible for free. 474 } 475 476 llvm_unreachable("Can't get here. We always return from switch."); 477 } 478 479 [[nodiscard]] Value *Negator::negate(Value *V, bool IsNSW, unsigned Depth) { 480 NegatorMaxDepthVisited.updateMax(Depth); 481 ++NegatorNumValuesVisited; 482 483 #if LLVM_ENABLE_STATS 484 ++NumValuesVisitedInThisNegator; 485 #endif 486 487 #ifndef NDEBUG 488 // We can't ever have a Value with such an address. 489 Value *Placeholder = reinterpret_cast<Value *>(static_cast<uintptr_t>(-1)); 490 #endif 491 492 // Did we already try to negate this value? 493 auto NegationsCacheIterator = NegationsCache.find(V); 494 if (NegationsCacheIterator != NegationsCache.end()) { 495 ++NegatorNumNegationsFoundInCache; 496 Value *NegatedV = NegationsCacheIterator->second; 497 assert(NegatedV != Placeholder && "Encountered a cycle during negation."); 498 return NegatedV; 499 } 500 501 #ifndef NDEBUG 502 // We did not find a cached result for negation of V. While there, 503 // let's temporairly cache a placeholder value, with the idea that if later 504 // during negation we fetch it from cache, we'll know we're in a cycle. 505 NegationsCache[V] = Placeholder; 506 #endif 507 508 // No luck. Try negating it for real. 509 Value *NegatedV = visitImpl(V, IsNSW, Depth); 510 // And cache the (real) result for the future. 511 NegationsCache[V] = NegatedV; 512 513 return NegatedV; 514 } 515 516 [[nodiscard]] std::optional<Negator::Result> Negator::run(Value *Root, 517 bool IsNSW) { 518 Value *Negated = negate(Root, IsNSW, /*Depth=*/0); 519 if (!Negated) { 520 // We must cleanup newly-inserted instructions, to avoid any potential 521 // endless combine looping. 522 for (Instruction *I : llvm::reverse(NewInstructions)) 523 I->eraseFromParent(); 524 return std::nullopt; 525 } 526 return std::make_pair(ArrayRef<Instruction *>(NewInstructions), Negated); 527 } 528 529 [[nodiscard]] Value *Negator::Negate(bool LHSIsZero, bool IsNSW, Value *Root, 530 InstCombinerImpl &IC) { 531 ++NegatorTotalNegationsAttempted; 532 LLVM_DEBUG(dbgs() << "Negator: attempting to sink negation into " << *Root 533 << "\n"); 534 535 if (!NegatorEnabled || !DebugCounter::shouldExecute(NegatorCounter)) 536 return nullptr; 537 538 Negator N(Root->getContext(), IC.getDataLayout(), LHSIsZero); 539 std::optional<Result> Res = N.run(Root, IsNSW); 540 if (!Res) { // Negation failed. 541 LLVM_DEBUG(dbgs() << "Negator: failed to sink negation into " << *Root 542 << "\n"); 543 return nullptr; 544 } 545 546 LLVM_DEBUG(dbgs() << "Negator: successfully sunk negation into " << *Root 547 << "\n NEW: " << *Res->second << "\n"); 548 ++NegatorNumTreesNegated; 549 550 // We must temporarily unset the 'current' insertion point and DebugLoc of the 551 // InstCombine's IRBuilder so that it won't interfere with the ones we have 552 // already specified when producing negated instructions. 553 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder); 554 IC.Builder.ClearInsertionPoint(); 555 IC.Builder.SetCurrentDebugLocation(DebugLoc()); 556 557 // And finally, we must add newly-created instructions into the InstCombine's 558 // worklist (in a proper order!) so it can attempt to combine them. 559 LLVM_DEBUG(dbgs() << "Negator: Propagating " << Res->first.size() 560 << " instrs to InstCombine\n"); 561 NegatorMaxInstructionsCreated.updateMax(Res->first.size()); 562 NegatorNumInstructionsNegatedSuccess += Res->first.size(); 563 564 // They are in def-use order, so nothing fancy, just insert them in order. 565 for (Instruction *I : Res->first) 566 IC.Builder.Insert(I, I->getName()); 567 568 // And return the new root. 569 return Res->second; 570 } 571