xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineNegator.cpp (revision 95eb4b873b6a8b527c5bd78d7191975dfca38998)
1 //===- InstCombineNegator.cpp -----------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements sinking of negation into expression trees,
10 // as long as that can be done without increasing instruction count.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/TargetFolder.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Use.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/DebugCounter.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/InstCombine/InstCombiner.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <functional>
46 #include <type_traits>
47 #include <utility>
48 
49 namespace llvm {
50 class DataLayout;
51 class LLVMContext;
52 } // namespace llvm
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "instcombine"
57 
58 STATISTIC(NegatorTotalNegationsAttempted,
59           "Negator: Number of negations attempted to be sinked");
60 STATISTIC(NegatorNumTreesNegated,
61           "Negator: Number of negations successfully sinked");
62 STATISTIC(NegatorMaxDepthVisited, "Negator: Maximal traversal depth ever "
63                                   "reached while attempting to sink negation");
64 STATISTIC(NegatorTimesDepthLimitReached,
65           "Negator: How many times did the traversal depth limit was reached "
66           "during sinking");
67 STATISTIC(
68     NegatorNumValuesVisited,
69     "Negator: Total number of values visited during attempts to sink negation");
70 STATISTIC(NegatorNumNegationsFoundInCache,
71           "Negator: How many negations did we retrieve/reuse from cache");
72 STATISTIC(NegatorMaxTotalValuesVisited,
73           "Negator: Maximal number of values ever visited while attempting to "
74           "sink negation");
75 STATISTIC(NegatorNumInstructionsCreatedTotal,
76           "Negator: Number of new negated instructions created, total");
77 STATISTIC(NegatorMaxInstructionsCreated,
78           "Negator: Maximal number of new instructions created during negation "
79           "attempt");
80 STATISTIC(NegatorNumInstructionsNegatedSuccess,
81           "Negator: Number of new negated instructions created in successful "
82           "negation sinking attempts");
83 
84 DEBUG_COUNTER(NegatorCounter, "instcombine-negator",
85               "Controls Negator transformations in InstCombine pass");
86 
87 static cl::opt<bool>
88     NegatorEnabled("instcombine-negator-enabled", cl::init(true),
89                    cl::desc("Should we attempt to sink negations?"));
90 
91 static cl::opt<unsigned>
92     NegatorMaxDepth("instcombine-negator-max-depth",
93                     cl::init(NegatorDefaultMaxDepth),
94                     cl::desc("What is the maximal lookup depth when trying to "
95                              "check for viability of negation sinking."));
96 
97 Negator::Negator(LLVMContext &C, const DataLayout &DL, bool IsTrulyNegation_)
98     : Builder(C, TargetFolder(DL),
99               IRBuilderCallbackInserter([&](Instruction *I) {
100                 ++NegatorNumInstructionsCreatedTotal;
101                 NewInstructions.push_back(I);
102               })),
103       IsTrulyNegation(IsTrulyNegation_) {}
104 
105 #if LLVM_ENABLE_STATS
106 Negator::~Negator() {
107   NegatorMaxTotalValuesVisited.updateMax(NumValuesVisitedInThisNegator);
108 }
109 #endif
110 
111 // Due to the InstCombine's worklist management, there are no guarantees that
112 // each instruction we'll encounter has been visited by InstCombine already.
113 // In particular, most importantly for us, that means we have to canonicalize
114 // constants to RHS ourselves, since that is helpful sometimes.
115 std::array<Value *, 2> Negator::getSortedOperandsOfBinOp(Instruction *I) {
116   assert(I->getNumOperands() == 2 && "Only for binops!");
117   std::array<Value *, 2> Ops{I->getOperand(0), I->getOperand(1)};
118   if (I->isCommutative() && InstCombiner::getComplexity(I->getOperand(0)) <
119                                 InstCombiner::getComplexity(I->getOperand(1)))
120     std::swap(Ops[0], Ops[1]);
121   return Ops;
122 }
123 
124 // FIXME: can this be reworked into a worklist-based algorithm while preserving
125 // the depth-first, early bailout traversal?
126 [[nodiscard]] Value *Negator::visitImpl(Value *V, bool IsNSW, unsigned Depth) {
127   // -(undef) -> undef.
128   if (match(V, m_Undef()))
129     return V;
130 
131   // In i1, negation can simply be ignored.
132   if (V->getType()->isIntOrIntVectorTy(1))
133     return V;
134 
135   Value *X;
136 
137   // -(-(X)) -> X.
138   if (match(V, m_Neg(m_Value(X))))
139     return X;
140 
141   // Integral constants can be freely negated.
142   if (match(V, m_AnyIntegralConstant()))
143     return ConstantExpr::getNeg(cast<Constant>(V), /*HasNUW=*/false,
144                                 /*HasNSW=*/false);
145 
146   // If we have a non-instruction, then give up.
147   if (!isa<Instruction>(V))
148     return nullptr;
149 
150   // If we have started with a true negation (i.e. `sub 0, %y`), then if we've
151   // got instruction that does not require recursive reasoning, we can still
152   // negate it even if it has other uses, without increasing instruction count.
153   if (!V->hasOneUse() && !IsTrulyNegation)
154     return nullptr;
155 
156   auto *I = cast<Instruction>(V);
157   unsigned BitWidth = I->getType()->getScalarSizeInBits();
158 
159   // We must preserve the insertion point and debug info that is set in the
160   // builder at the time this function is called.
161   InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
162   // And since we are trying to negate instruction I, that tells us about the
163   // insertion point and the debug info that we need to keep.
164   Builder.SetInsertPoint(I);
165 
166   // In some cases we can give the answer without further recursion.
167   switch (I->getOpcode()) {
168   case Instruction::Add: {
169     std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
170     // `inc` is always negatible.
171     if (match(Ops[1], m_One()))
172       return Builder.CreateNot(Ops[0], I->getName() + ".neg");
173     break;
174   }
175   case Instruction::Xor:
176     // `not` is always negatible.
177     if (match(I, m_Not(m_Value(X))))
178       return Builder.CreateAdd(X, ConstantInt::get(X->getType(), 1),
179                                I->getName() + ".neg");
180     break;
181   case Instruction::AShr:
182   case Instruction::LShr: {
183     // Right-shift sign bit smear is negatible.
184     const APInt *Op1Val;
185     if (match(I->getOperand(1), m_APInt(Op1Val)) && *Op1Val == BitWidth - 1) {
186       Value *BO = I->getOpcode() == Instruction::AShr
187                       ? Builder.CreateLShr(I->getOperand(0), I->getOperand(1))
188                       : Builder.CreateAShr(I->getOperand(0), I->getOperand(1));
189       if (auto *NewInstr = dyn_cast<Instruction>(BO)) {
190         NewInstr->copyIRFlags(I);
191         NewInstr->setName(I->getName() + ".neg");
192       }
193       return BO;
194     }
195     // While we could negate exact arithmetic shift:
196     //   ashr exact %x, C  -->   sdiv exact i8 %x, -1<<C
197     // iff C != 0 and C u< bitwidth(%x), we don't want to,
198     // because division is *THAT* much worse than a shift.
199     break;
200   }
201   case Instruction::SExt:
202   case Instruction::ZExt:
203     // `*ext` of i1 is always negatible
204     if (I->getOperand(0)->getType()->isIntOrIntVectorTy(1))
205       return I->getOpcode() == Instruction::SExt
206                  ? Builder.CreateZExt(I->getOperand(0), I->getType(),
207                                       I->getName() + ".neg")
208                  : Builder.CreateSExt(I->getOperand(0), I->getType(),
209                                       I->getName() + ".neg");
210     break;
211   case Instruction::Select: {
212     // If both arms of the select are constants, we don't need to recurse.
213     // Therefore, this transform is not limited by uses.
214     auto *Sel = cast<SelectInst>(I);
215     Constant *TrueC, *FalseC;
216     if (match(Sel->getTrueValue(), m_ImmConstant(TrueC)) &&
217         match(Sel->getFalseValue(), m_ImmConstant(FalseC))) {
218       Constant *NegTrueC = ConstantExpr::getNeg(TrueC);
219       Constant *NegFalseC = ConstantExpr::getNeg(FalseC);
220       return Builder.CreateSelect(Sel->getCondition(), NegTrueC, NegFalseC,
221                                   I->getName() + ".neg", /*MDFrom=*/I);
222     }
223     break;
224   }
225   default:
226     break; // Other instructions require recursive reasoning.
227   }
228 
229   if (I->getOpcode() == Instruction::Sub &&
230       (I->hasOneUse() || match(I->getOperand(0), m_ImmConstant()))) {
231     // `sub` is always negatible.
232     // However, only do this either if the old `sub` doesn't stick around, or
233     // it was subtracting from a constant. Otherwise, this isn't profitable.
234     return Builder.CreateSub(I->getOperand(1), I->getOperand(0),
235                              I->getName() + ".neg", /* HasNUW */ false,
236                              IsNSW && I->hasNoSignedWrap());
237   }
238 
239   // Some other cases, while still don't require recursion,
240   // are restricted to the one-use case.
241   if (!V->hasOneUse())
242     return nullptr;
243 
244   switch (I->getOpcode()) {
245   case Instruction::ZExt: {
246     // Negation of zext of signbit is signbit splat:
247     // 0 - (zext (i8 X u>> 7) to iN) --> sext (i8 X s>> 7) to iN
248     Value *SrcOp = I->getOperand(0);
249     unsigned SrcWidth = SrcOp->getType()->getScalarSizeInBits();
250     const APInt &FullShift = APInt(SrcWidth, SrcWidth - 1);
251     if (IsTrulyNegation &&
252         match(SrcOp, m_LShr(m_Value(X), m_SpecificIntAllowUndef(FullShift)))) {
253       Value *Ashr = Builder.CreateAShr(X, FullShift);
254       return Builder.CreateSExt(Ashr, I->getType());
255     }
256     break;
257   }
258   case Instruction::And: {
259     Constant *ShAmt;
260     // sub(y,and(lshr(x,C),1)) --> add(ashr(shl(x,(BW-1)-C),BW-1),y)
261     if (match(I, m_c_And(m_OneUse(m_TruncOrSelf(
262                              m_LShr(m_Value(X), m_ImmConstant(ShAmt)))),
263                          m_One()))) {
264       unsigned BW = X->getType()->getScalarSizeInBits();
265       Constant *BWMinusOne = ConstantInt::get(X->getType(), BW - 1);
266       Value *R = Builder.CreateShl(X, Builder.CreateSub(BWMinusOne, ShAmt));
267       R = Builder.CreateAShr(R, BWMinusOne);
268       return Builder.CreateTruncOrBitCast(R, I->getType());
269     }
270     break;
271   }
272   case Instruction::SDiv:
273     // `sdiv` is negatible if divisor is not undef/INT_MIN/1.
274     // While this is normally not behind a use-check,
275     // let's consider division to be special since it's costly.
276     if (auto *Op1C = dyn_cast<Constant>(I->getOperand(1))) {
277       if (!Op1C->containsUndefOrPoisonElement() &&
278           Op1C->isNotMinSignedValue() && Op1C->isNotOneValue()) {
279         Value *BO =
280             Builder.CreateSDiv(I->getOperand(0), ConstantExpr::getNeg(Op1C),
281                                I->getName() + ".neg");
282         if (auto *NewInstr = dyn_cast<Instruction>(BO))
283           NewInstr->setIsExact(I->isExact());
284         return BO;
285       }
286     }
287     break;
288   }
289 
290   // Rest of the logic is recursive, so if it's time to give up then it's time.
291   if (Depth > NegatorMaxDepth) {
292     LLVM_DEBUG(dbgs() << "Negator: reached maximal allowed traversal depth in "
293                       << *V << ". Giving up.\n");
294     ++NegatorTimesDepthLimitReached;
295     return nullptr;
296   }
297 
298   switch (I->getOpcode()) {
299   case Instruction::Freeze: {
300     // `freeze` is negatible if its operand is negatible.
301     Value *NegOp = negate(I->getOperand(0), IsNSW, Depth + 1);
302     if (!NegOp) // Early return.
303       return nullptr;
304     return Builder.CreateFreeze(NegOp, I->getName() + ".neg");
305   }
306   case Instruction::PHI: {
307     // `phi` is negatible if all the incoming values are negatible.
308     auto *PHI = cast<PHINode>(I);
309     SmallVector<Value *, 4> NegatedIncomingValues(PHI->getNumOperands());
310     for (auto I : zip(PHI->incoming_values(), NegatedIncomingValues)) {
311       if (!(std::get<1>(I) =
312                 negate(std::get<0>(I), IsNSW, Depth + 1))) // Early return.
313         return nullptr;
314     }
315     // All incoming values are indeed negatible. Create negated PHI node.
316     PHINode *NegatedPHI = Builder.CreatePHI(
317         PHI->getType(), PHI->getNumOperands(), PHI->getName() + ".neg");
318     for (auto I : zip(NegatedIncomingValues, PHI->blocks()))
319       NegatedPHI->addIncoming(std::get<0>(I), std::get<1>(I));
320     return NegatedPHI;
321   }
322   case Instruction::Select: {
323     if (isKnownNegation(I->getOperand(1), I->getOperand(2))) {
324       // Of one hand of select is known to be negation of another hand,
325       // just swap the hands around.
326       auto *NewSelect = cast<SelectInst>(I->clone());
327       // Just swap the operands of the select.
328       NewSelect->swapValues();
329       // Don't swap prof metadata, we didn't change the branch behavior.
330       NewSelect->setName(I->getName() + ".neg");
331       Builder.Insert(NewSelect);
332       return NewSelect;
333     }
334     // `select` is negatible if both hands of `select` are negatible.
335     Value *NegOp1 = negate(I->getOperand(1), IsNSW, Depth + 1);
336     if (!NegOp1) // Early return.
337       return nullptr;
338     Value *NegOp2 = negate(I->getOperand(2), IsNSW, Depth + 1);
339     if (!NegOp2)
340       return nullptr;
341     // Do preserve the metadata!
342     return Builder.CreateSelect(I->getOperand(0), NegOp1, NegOp2,
343                                 I->getName() + ".neg", /*MDFrom=*/I);
344   }
345   case Instruction::ShuffleVector: {
346     // `shufflevector` is negatible if both operands are negatible.
347     auto *Shuf = cast<ShuffleVectorInst>(I);
348     Value *NegOp0 = negate(I->getOperand(0), IsNSW, Depth + 1);
349     if (!NegOp0) // Early return.
350       return nullptr;
351     Value *NegOp1 = negate(I->getOperand(1), IsNSW, Depth + 1);
352     if (!NegOp1)
353       return nullptr;
354     return Builder.CreateShuffleVector(NegOp0, NegOp1, Shuf->getShuffleMask(),
355                                        I->getName() + ".neg");
356   }
357   case Instruction::ExtractElement: {
358     // `extractelement` is negatible if source operand is negatible.
359     auto *EEI = cast<ExtractElementInst>(I);
360     Value *NegVector = negate(EEI->getVectorOperand(), IsNSW, Depth + 1);
361     if (!NegVector) // Early return.
362       return nullptr;
363     return Builder.CreateExtractElement(NegVector, EEI->getIndexOperand(),
364                                         I->getName() + ".neg");
365   }
366   case Instruction::InsertElement: {
367     // `insertelement` is negatible if both the source vector and
368     // element-to-be-inserted are negatible.
369     auto *IEI = cast<InsertElementInst>(I);
370     Value *NegVector = negate(IEI->getOperand(0), IsNSW, Depth + 1);
371     if (!NegVector) // Early return.
372       return nullptr;
373     Value *NegNewElt = negate(IEI->getOperand(1), IsNSW, Depth + 1);
374     if (!NegNewElt) // Early return.
375       return nullptr;
376     return Builder.CreateInsertElement(NegVector, NegNewElt, IEI->getOperand(2),
377                                        I->getName() + ".neg");
378   }
379   case Instruction::Trunc: {
380     // `trunc` is negatible if its operand is negatible.
381     Value *NegOp = negate(I->getOperand(0), /* IsNSW */ false, Depth + 1);
382     if (!NegOp) // Early return.
383       return nullptr;
384     return Builder.CreateTrunc(NegOp, I->getType(), I->getName() + ".neg");
385   }
386   case Instruction::Shl: {
387     // `shl` is negatible if the first operand is negatible.
388     IsNSW &= I->hasNoSignedWrap();
389     if (Value *NegOp0 = negate(I->getOperand(0), IsNSW, Depth + 1))
390       return Builder.CreateShl(NegOp0, I->getOperand(1), I->getName() + ".neg",
391                                /* HasNUW */ false, IsNSW);
392     // Otherwise, `shl %x, C` can be interpreted as `mul %x, 1<<C`.
393     auto *Op1C = dyn_cast<Constant>(I->getOperand(1));
394     if (!Op1C || !IsTrulyNegation)
395       return nullptr;
396     return Builder.CreateMul(
397         I->getOperand(0),
398         ConstantExpr::getShl(Constant::getAllOnesValue(Op1C->getType()), Op1C),
399         I->getName() + ".neg", /* HasNUW */ false, IsNSW);
400   }
401   case Instruction::Or: {
402     if (!cast<PossiblyDisjointInst>(I)->isDisjoint())
403       return nullptr; // Don't know how to handle `or` in general.
404     std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
405     // `or`/`add` are interchangeable when operands have no common bits set.
406     // `inc` is always negatible.
407     if (match(Ops[1], m_One()))
408       return Builder.CreateNot(Ops[0], I->getName() + ".neg");
409     // Else, just defer to Instruction::Add handling.
410     [[fallthrough]];
411   }
412   case Instruction::Add: {
413     // `add` is negatible if both of its operands are negatible.
414     SmallVector<Value *, 2> NegatedOps, NonNegatedOps;
415     for (Value *Op : I->operands()) {
416       // Can we sink the negation into this operand?
417       if (Value *NegOp = negate(Op, /* IsNSW */ false, Depth + 1)) {
418         NegatedOps.emplace_back(NegOp); // Successfully negated operand!
419         continue;
420       }
421       // Failed to sink negation into this operand. IFF we started from negation
422       // and we manage to sink negation into one operand, we can still do this.
423       if (!IsTrulyNegation)
424         return nullptr;
425       NonNegatedOps.emplace_back(Op); // Just record which operand that was.
426     }
427     assert((NegatedOps.size() + NonNegatedOps.size()) == 2 &&
428            "Internal consistency check failed.");
429     // Did we manage to sink negation into both of the operands?
430     if (NegatedOps.size() == 2) // Then we get to keep the `add`!
431       return Builder.CreateAdd(NegatedOps[0], NegatedOps[1],
432                                I->getName() + ".neg");
433     assert(IsTrulyNegation && "We should have early-exited then.");
434     // Completely failed to sink negation?
435     if (NonNegatedOps.size() == 2)
436       return nullptr;
437     // 0-(a+b) --> (-a)-b
438     return Builder.CreateSub(NegatedOps[0], NonNegatedOps[0],
439                              I->getName() + ".neg");
440   }
441   case Instruction::Xor: {
442     std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
443     // `xor` is negatible if one of its operands is invertible.
444     // FIXME: InstCombineInverter? But how to connect Inverter and Negator?
445     if (auto *C = dyn_cast<Constant>(Ops[1])) {
446       if (IsTrulyNegation) {
447         Value *Xor = Builder.CreateXor(Ops[0], ConstantExpr::getNot(C));
448         return Builder.CreateAdd(Xor, ConstantInt::get(Xor->getType(), 1),
449                                  I->getName() + ".neg");
450       }
451     }
452     return nullptr;
453   }
454   case Instruction::Mul: {
455     std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
456     // `mul` is negatible if one of its operands is negatible.
457     Value *NegatedOp, *OtherOp;
458     // First try the second operand, in case it's a constant it will be best to
459     // just invert it instead of sinking the `neg` deeper.
460     if (Value *NegOp1 = negate(Ops[1], /* IsNSW */ false, Depth + 1)) {
461       NegatedOp = NegOp1;
462       OtherOp = Ops[0];
463     } else if (Value *NegOp0 = negate(Ops[0], /* IsNSW */ false, Depth + 1)) {
464       NegatedOp = NegOp0;
465       OtherOp = Ops[1];
466     } else
467       // Can't negate either of them.
468       return nullptr;
469     return Builder.CreateMul(NegatedOp, OtherOp, I->getName() + ".neg",
470                              /* HasNUW */ false, IsNSW && I->hasNoSignedWrap());
471   }
472   default:
473     return nullptr; // Don't know, likely not negatible for free.
474   }
475 
476   llvm_unreachable("Can't get here. We always return from switch.");
477 }
478 
479 [[nodiscard]] Value *Negator::negate(Value *V, bool IsNSW, unsigned Depth) {
480   NegatorMaxDepthVisited.updateMax(Depth);
481   ++NegatorNumValuesVisited;
482 
483 #if LLVM_ENABLE_STATS
484   ++NumValuesVisitedInThisNegator;
485 #endif
486 
487 #ifndef NDEBUG
488   // We can't ever have a Value with such an address.
489   Value *Placeholder = reinterpret_cast<Value *>(static_cast<uintptr_t>(-1));
490 #endif
491 
492   // Did we already try to negate this value?
493   auto NegationsCacheIterator = NegationsCache.find(V);
494   if (NegationsCacheIterator != NegationsCache.end()) {
495     ++NegatorNumNegationsFoundInCache;
496     Value *NegatedV = NegationsCacheIterator->second;
497     assert(NegatedV != Placeholder && "Encountered a cycle during negation.");
498     return NegatedV;
499   }
500 
501 #ifndef NDEBUG
502   // We did not find a cached result for negation of V. While there,
503   // let's temporairly cache a placeholder value, with the idea that if later
504   // during negation we fetch it from cache, we'll know we're in a cycle.
505   NegationsCache[V] = Placeholder;
506 #endif
507 
508   // No luck. Try negating it for real.
509   Value *NegatedV = visitImpl(V, IsNSW, Depth);
510   // And cache the (real) result for the future.
511   NegationsCache[V] = NegatedV;
512 
513   return NegatedV;
514 }
515 
516 [[nodiscard]] std::optional<Negator::Result> Negator::run(Value *Root,
517                                                           bool IsNSW) {
518   Value *Negated = negate(Root, IsNSW, /*Depth=*/0);
519   if (!Negated) {
520     // We must cleanup newly-inserted instructions, to avoid any potential
521     // endless combine looping.
522     for (Instruction *I : llvm::reverse(NewInstructions))
523       I->eraseFromParent();
524     return std::nullopt;
525   }
526   return std::make_pair(ArrayRef<Instruction *>(NewInstructions), Negated);
527 }
528 
529 [[nodiscard]] Value *Negator::Negate(bool LHSIsZero, bool IsNSW, Value *Root,
530                                      InstCombinerImpl &IC) {
531   ++NegatorTotalNegationsAttempted;
532   LLVM_DEBUG(dbgs() << "Negator: attempting to sink negation into " << *Root
533                     << "\n");
534 
535   if (!NegatorEnabled || !DebugCounter::shouldExecute(NegatorCounter))
536     return nullptr;
537 
538   Negator N(Root->getContext(), IC.getDataLayout(), LHSIsZero);
539   std::optional<Result> Res = N.run(Root, IsNSW);
540   if (!Res) { // Negation failed.
541     LLVM_DEBUG(dbgs() << "Negator: failed to sink negation into " << *Root
542                       << "\n");
543     return nullptr;
544   }
545 
546   LLVM_DEBUG(dbgs() << "Negator: successfully sunk negation into " << *Root
547                     << "\n         NEW: " << *Res->second << "\n");
548   ++NegatorNumTreesNegated;
549 
550   // We must temporarily unset the 'current' insertion point and DebugLoc of the
551   // InstCombine's IRBuilder so that it won't interfere with the ones we have
552   // already specified when producing negated instructions.
553   InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
554   IC.Builder.ClearInsertionPoint();
555   IC.Builder.SetCurrentDebugLocation(DebugLoc());
556 
557   // And finally, we must add newly-created instructions into the InstCombine's
558   // worklist (in a proper order!) so it can attempt to combine them.
559   LLVM_DEBUG(dbgs() << "Negator: Propagating " << Res->first.size()
560                     << " instrs to InstCombine\n");
561   NegatorMaxInstructionsCreated.updateMax(Res->first.size());
562   NegatorNumInstructionsNegatedSuccess += Res->first.size();
563 
564   // They are in def-use order, so nothing fancy, just insert them in order.
565   for (Instruction *I : Res->first)
566     IC.Builder.Insert(I, I->getName());
567 
568   // And return the new root.
569   return Res->second;
570 }
571