1 //===- InstCombineNegator.cpp -----------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements sinking of negation into expression trees, 10 // as long as that can be done without increasing instruction count. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/TargetFolder.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugLoc.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Use.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Compiler.h" 39 #include "llvm/Support/DebugCounter.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/InstCombine/InstCombiner.h" 43 #include <cassert> 44 #include <cstdint> 45 #include <functional> 46 #include <type_traits> 47 #include <utility> 48 49 namespace llvm { 50 class DataLayout; 51 class LLVMContext; 52 } // namespace llvm 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "instcombine" 57 58 STATISTIC(NegatorTotalNegationsAttempted, 59 "Negator: Number of negations attempted to be sinked"); 60 STATISTIC(NegatorNumTreesNegated, 61 "Negator: Number of negations successfully sinked"); 62 STATISTIC(NegatorMaxDepthVisited, "Negator: Maximal traversal depth ever " 63 "reached while attempting to sink negation"); 64 STATISTIC(NegatorTimesDepthLimitReached, 65 "Negator: How many times did the traversal depth limit was reached " 66 "during sinking"); 67 STATISTIC( 68 NegatorNumValuesVisited, 69 "Negator: Total number of values visited during attempts to sink negation"); 70 STATISTIC(NegatorNumNegationsFoundInCache, 71 "Negator: How many negations did we retrieve/reuse from cache"); 72 STATISTIC(NegatorMaxTotalValuesVisited, 73 "Negator: Maximal number of values ever visited while attempting to " 74 "sink negation"); 75 STATISTIC(NegatorNumInstructionsCreatedTotal, 76 "Negator: Number of new negated instructions created, total"); 77 STATISTIC(NegatorMaxInstructionsCreated, 78 "Negator: Maximal number of new instructions created during negation " 79 "attempt"); 80 STATISTIC(NegatorNumInstructionsNegatedSuccess, 81 "Negator: Number of new negated instructions created in successful " 82 "negation sinking attempts"); 83 84 DEBUG_COUNTER(NegatorCounter, "instcombine-negator", 85 "Controls Negator transformations in InstCombine pass"); 86 87 static cl::opt<bool> 88 NegatorEnabled("instcombine-negator-enabled", cl::init(true), 89 cl::desc("Should we attempt to sink negations?")); 90 91 static cl::opt<unsigned> 92 NegatorMaxDepth("instcombine-negator-max-depth", 93 cl::init(NegatorDefaultMaxDepth), 94 cl::desc("What is the maximal lookup depth when trying to " 95 "check for viability of negation sinking.")); 96 97 Negator::Negator(LLVMContext &C, const DataLayout &DL, bool IsTrulyNegation_) 98 : Builder(C, TargetFolder(DL), 99 IRBuilderCallbackInserter([&](Instruction *I) { 100 ++NegatorNumInstructionsCreatedTotal; 101 NewInstructions.push_back(I); 102 })), 103 IsTrulyNegation(IsTrulyNegation_) {} 104 105 #if LLVM_ENABLE_STATS 106 Negator::~Negator() { 107 NegatorMaxTotalValuesVisited.updateMax(NumValuesVisitedInThisNegator); 108 } 109 #endif 110 111 // Due to the InstCombine's worklist management, there are no guarantees that 112 // each instruction we'll encounter has been visited by InstCombine already. 113 // In particular, most importantly for us, that means we have to canonicalize 114 // constants to RHS ourselves, since that is helpful sometimes. 115 std::array<Value *, 2> Negator::getSortedOperandsOfBinOp(Instruction *I) { 116 assert(I->getNumOperands() == 2 && "Only for binops!"); 117 std::array<Value *, 2> Ops{I->getOperand(0), I->getOperand(1)}; 118 if (I->isCommutative() && InstCombiner::getComplexity(I->getOperand(0)) < 119 InstCombiner::getComplexity(I->getOperand(1))) 120 std::swap(Ops[0], Ops[1]); 121 return Ops; 122 } 123 124 // FIXME: can this be reworked into a worklist-based algorithm while preserving 125 // the depth-first, early bailout traversal? 126 [[nodiscard]] Value *Negator::visitImpl(Value *V, bool IsNSW, unsigned Depth) { 127 // -(undef) -> undef. 128 if (match(V, m_Undef())) 129 return V; 130 131 // In i1, negation can simply be ignored. 132 if (V->getType()->isIntOrIntVectorTy(1)) 133 return V; 134 135 Value *X; 136 137 // -(-(X)) -> X. 138 if (match(V, m_Neg(m_Value(X)))) 139 return X; 140 141 // Integral constants can be freely negated. 142 if (match(V, m_AnyIntegralConstant())) 143 return ConstantExpr::getNeg(cast<Constant>(V), 144 /*HasNSW=*/false); 145 146 // If we have a non-instruction, then give up. 147 if (!isa<Instruction>(V)) 148 return nullptr; 149 150 // If we have started with a true negation (i.e. `sub 0, %y`), then if we've 151 // got instruction that does not require recursive reasoning, we can still 152 // negate it even if it has other uses, without increasing instruction count. 153 if (!V->hasOneUse() && !IsTrulyNegation) 154 return nullptr; 155 156 auto *I = cast<Instruction>(V); 157 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 158 159 // We must preserve the insertion point and debug info that is set in the 160 // builder at the time this function is called. 161 InstCombiner::BuilderTy::InsertPointGuard Guard(Builder); 162 // And since we are trying to negate instruction I, that tells us about the 163 // insertion point and the debug info that we need to keep. 164 Builder.SetInsertPoint(I); 165 166 // In some cases we can give the answer without further recursion. 167 switch (I->getOpcode()) { 168 case Instruction::Add: { 169 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I); 170 // `inc` is always negatible. 171 if (match(Ops[1], m_One())) 172 return Builder.CreateNot(Ops[0], I->getName() + ".neg"); 173 break; 174 } 175 case Instruction::Xor: 176 // `not` is always negatible. 177 if (match(I, m_Not(m_Value(X)))) 178 return Builder.CreateAdd(X, ConstantInt::get(X->getType(), 1), 179 I->getName() + ".neg"); 180 break; 181 case Instruction::AShr: 182 case Instruction::LShr: { 183 // Right-shift sign bit smear is negatible. 184 const APInt *Op1Val; 185 if (match(I->getOperand(1), m_APInt(Op1Val)) && *Op1Val == BitWidth - 1) { 186 Value *BO = I->getOpcode() == Instruction::AShr 187 ? Builder.CreateLShr(I->getOperand(0), I->getOperand(1)) 188 : Builder.CreateAShr(I->getOperand(0), I->getOperand(1)); 189 if (auto *NewInstr = dyn_cast<Instruction>(BO)) { 190 NewInstr->copyIRFlags(I); 191 NewInstr->setName(I->getName() + ".neg"); 192 } 193 return BO; 194 } 195 // While we could negate exact arithmetic shift: 196 // ashr exact %x, C --> sdiv exact i8 %x, -1<<C 197 // iff C != 0 and C u< bitwidth(%x), we don't want to, 198 // because division is *THAT* much worse than a shift. 199 break; 200 } 201 case Instruction::SExt: 202 case Instruction::ZExt: 203 // `*ext` of i1 is always negatible 204 if (I->getOperand(0)->getType()->isIntOrIntVectorTy(1)) 205 return I->getOpcode() == Instruction::SExt 206 ? Builder.CreateZExt(I->getOperand(0), I->getType(), 207 I->getName() + ".neg") 208 : Builder.CreateSExt(I->getOperand(0), I->getType(), 209 I->getName() + ".neg"); 210 break; 211 case Instruction::Select: { 212 // If both arms of the select are constants, we don't need to recurse. 213 // Therefore, this transform is not limited by uses. 214 auto *Sel = cast<SelectInst>(I); 215 Constant *TrueC, *FalseC; 216 if (match(Sel->getTrueValue(), m_ImmConstant(TrueC)) && 217 match(Sel->getFalseValue(), m_ImmConstant(FalseC))) { 218 Constant *NegTrueC = ConstantExpr::getNeg(TrueC); 219 Constant *NegFalseC = ConstantExpr::getNeg(FalseC); 220 return Builder.CreateSelect(Sel->getCondition(), NegTrueC, NegFalseC, 221 I->getName() + ".neg", /*MDFrom=*/I); 222 } 223 break; 224 } 225 case Instruction::Call: 226 if (auto *CI = dyn_cast<CmpIntrinsic>(I); CI && CI->hasOneUse()) 227 return Builder.CreateIntrinsic(CI->getType(), CI->getIntrinsicID(), 228 {CI->getRHS(), CI->getLHS()}); 229 break; 230 default: 231 break; // Other instructions require recursive reasoning. 232 } 233 234 if (I->getOpcode() == Instruction::Sub && 235 (I->hasOneUse() || match(I->getOperand(0), m_ImmConstant()))) { 236 // `sub` is always negatible. 237 // However, only do this either if the old `sub` doesn't stick around, or 238 // it was subtracting from a constant. Otherwise, this isn't profitable. 239 return Builder.CreateSub(I->getOperand(1), I->getOperand(0), 240 I->getName() + ".neg", /* HasNUW */ false, 241 IsNSW && I->hasNoSignedWrap()); 242 } 243 244 // Some other cases, while still don't require recursion, 245 // are restricted to the one-use case. 246 if (!V->hasOneUse()) 247 return nullptr; 248 249 switch (I->getOpcode()) { 250 case Instruction::ZExt: { 251 // Negation of zext of signbit is signbit splat: 252 // 0 - (zext (i8 X u>> 7) to iN) --> sext (i8 X s>> 7) to iN 253 Value *SrcOp = I->getOperand(0); 254 unsigned SrcWidth = SrcOp->getType()->getScalarSizeInBits(); 255 const APInt &FullShift = APInt(SrcWidth, SrcWidth - 1); 256 if (IsTrulyNegation && 257 match(SrcOp, m_LShr(m_Value(X), m_SpecificIntAllowPoison(FullShift)))) { 258 Value *Ashr = Builder.CreateAShr(X, FullShift); 259 return Builder.CreateSExt(Ashr, I->getType()); 260 } 261 break; 262 } 263 case Instruction::And: { 264 Constant *ShAmt; 265 // sub(y,and(lshr(x,C),1)) --> add(ashr(shl(x,(BW-1)-C),BW-1),y) 266 if (match(I, m_And(m_OneUse(m_TruncOrSelf( 267 m_LShr(m_Value(X), m_ImmConstant(ShAmt)))), 268 m_One()))) { 269 unsigned BW = X->getType()->getScalarSizeInBits(); 270 Constant *BWMinusOne = ConstantInt::get(X->getType(), BW - 1); 271 Value *R = Builder.CreateShl(X, Builder.CreateSub(BWMinusOne, ShAmt)); 272 R = Builder.CreateAShr(R, BWMinusOne); 273 return Builder.CreateTruncOrBitCast(R, I->getType()); 274 } 275 break; 276 } 277 case Instruction::SDiv: 278 // `sdiv` is negatible if divisor is not undef/INT_MIN/1. 279 // While this is normally not behind a use-check, 280 // let's consider division to be special since it's costly. 281 if (auto *Op1C = dyn_cast<Constant>(I->getOperand(1))) { 282 if (!Op1C->containsUndefOrPoisonElement() && 283 Op1C->isNotMinSignedValue() && Op1C->isNotOneValue()) { 284 Value *BO = 285 Builder.CreateSDiv(I->getOperand(0), ConstantExpr::getNeg(Op1C), 286 I->getName() + ".neg"); 287 if (auto *NewInstr = dyn_cast<Instruction>(BO)) 288 NewInstr->setIsExact(I->isExact()); 289 return BO; 290 } 291 } 292 break; 293 } 294 295 // Rest of the logic is recursive, so if it's time to give up then it's time. 296 if (Depth > NegatorMaxDepth) { 297 LLVM_DEBUG(dbgs() << "Negator: reached maximal allowed traversal depth in " 298 << *V << ". Giving up.\n"); 299 ++NegatorTimesDepthLimitReached; 300 return nullptr; 301 } 302 303 switch (I->getOpcode()) { 304 case Instruction::Freeze: { 305 // `freeze` is negatible if its operand is negatible. 306 Value *NegOp = negate(I->getOperand(0), IsNSW, Depth + 1); 307 if (!NegOp) // Early return. 308 return nullptr; 309 return Builder.CreateFreeze(NegOp, I->getName() + ".neg"); 310 } 311 case Instruction::PHI: { 312 // `phi` is negatible if all the incoming values are negatible. 313 auto *PHI = cast<PHINode>(I); 314 SmallVector<Value *, 4> NegatedIncomingValues(PHI->getNumOperands()); 315 for (auto I : zip(PHI->incoming_values(), NegatedIncomingValues)) { 316 if (!(std::get<1>(I) = 317 negate(std::get<0>(I), IsNSW, Depth + 1))) // Early return. 318 return nullptr; 319 } 320 // All incoming values are indeed negatible. Create negated PHI node. 321 PHINode *NegatedPHI = Builder.CreatePHI( 322 PHI->getType(), PHI->getNumOperands(), PHI->getName() + ".neg"); 323 for (auto I : zip(NegatedIncomingValues, PHI->blocks())) 324 NegatedPHI->addIncoming(std::get<0>(I), std::get<1>(I)); 325 return NegatedPHI; 326 } 327 case Instruction::Select: { 328 if (isKnownNegation(I->getOperand(1), I->getOperand(2), /*NeedNSW=*/false, 329 /*AllowPoison=*/false)) { 330 // Of one hand of select is known to be negation of another hand, 331 // just swap the hands around. 332 auto *NewSelect = cast<SelectInst>(I->clone()); 333 // Just swap the operands of the select. 334 NewSelect->swapValues(); 335 // Don't swap prof metadata, we didn't change the branch behavior. 336 NewSelect->setName(I->getName() + ".neg"); 337 Builder.Insert(NewSelect); 338 return NewSelect; 339 } 340 // `select` is negatible if both hands of `select` are negatible. 341 Value *NegOp1 = negate(I->getOperand(1), IsNSW, Depth + 1); 342 if (!NegOp1) // Early return. 343 return nullptr; 344 Value *NegOp2 = negate(I->getOperand(2), IsNSW, Depth + 1); 345 if (!NegOp2) 346 return nullptr; 347 // Do preserve the metadata! 348 return Builder.CreateSelect(I->getOperand(0), NegOp1, NegOp2, 349 I->getName() + ".neg", /*MDFrom=*/I); 350 } 351 case Instruction::ShuffleVector: { 352 // `shufflevector` is negatible if both operands are negatible. 353 auto *Shuf = cast<ShuffleVectorInst>(I); 354 Value *NegOp0 = negate(I->getOperand(0), IsNSW, Depth + 1); 355 if (!NegOp0) // Early return. 356 return nullptr; 357 Value *NegOp1 = negate(I->getOperand(1), IsNSW, Depth + 1); 358 if (!NegOp1) 359 return nullptr; 360 return Builder.CreateShuffleVector(NegOp0, NegOp1, Shuf->getShuffleMask(), 361 I->getName() + ".neg"); 362 } 363 case Instruction::ExtractElement: { 364 // `extractelement` is negatible if source operand is negatible. 365 auto *EEI = cast<ExtractElementInst>(I); 366 Value *NegVector = negate(EEI->getVectorOperand(), IsNSW, Depth + 1); 367 if (!NegVector) // Early return. 368 return nullptr; 369 return Builder.CreateExtractElement(NegVector, EEI->getIndexOperand(), 370 I->getName() + ".neg"); 371 } 372 case Instruction::InsertElement: { 373 // `insertelement` is negatible if both the source vector and 374 // element-to-be-inserted are negatible. 375 auto *IEI = cast<InsertElementInst>(I); 376 Value *NegVector = negate(IEI->getOperand(0), IsNSW, Depth + 1); 377 if (!NegVector) // Early return. 378 return nullptr; 379 Value *NegNewElt = negate(IEI->getOperand(1), IsNSW, Depth + 1); 380 if (!NegNewElt) // Early return. 381 return nullptr; 382 return Builder.CreateInsertElement(NegVector, NegNewElt, IEI->getOperand(2), 383 I->getName() + ".neg"); 384 } 385 case Instruction::Trunc: { 386 // `trunc` is negatible if its operand is negatible. 387 Value *NegOp = negate(I->getOperand(0), /* IsNSW */ false, Depth + 1); 388 if (!NegOp) // Early return. 389 return nullptr; 390 return Builder.CreateTrunc(NegOp, I->getType(), I->getName() + ".neg"); 391 } 392 case Instruction::Shl: { 393 // `shl` is negatible if the first operand is negatible. 394 IsNSW &= I->hasNoSignedWrap(); 395 if (Value *NegOp0 = negate(I->getOperand(0), IsNSW, Depth + 1)) 396 return Builder.CreateShl(NegOp0, I->getOperand(1), I->getName() + ".neg", 397 /* HasNUW */ false, IsNSW); 398 // Otherwise, `shl %x, C` can be interpreted as `mul %x, 1<<C`. 399 Constant *Op1C; 400 if (!match(I->getOperand(1), m_ImmConstant(Op1C)) || !IsTrulyNegation) 401 return nullptr; 402 return Builder.CreateMul( 403 I->getOperand(0), 404 Builder.CreateShl(Constant::getAllOnesValue(Op1C->getType()), Op1C), 405 I->getName() + ".neg", /* HasNUW */ false, IsNSW); 406 } 407 case Instruction::Or: { 408 if (!cast<PossiblyDisjointInst>(I)->isDisjoint()) 409 return nullptr; // Don't know how to handle `or` in general. 410 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I); 411 // `or`/`add` are interchangeable when operands have no common bits set. 412 // `inc` is always negatible. 413 if (match(Ops[1], m_One())) 414 return Builder.CreateNot(Ops[0], I->getName() + ".neg"); 415 // Else, just defer to Instruction::Add handling. 416 [[fallthrough]]; 417 } 418 case Instruction::Add: { 419 // `add` is negatible if both of its operands are negatible. 420 SmallVector<Value *, 2> NegatedOps, NonNegatedOps; 421 for (Value *Op : I->operands()) { 422 // Can we sink the negation into this operand? 423 if (Value *NegOp = negate(Op, /* IsNSW */ false, Depth + 1)) { 424 NegatedOps.emplace_back(NegOp); // Successfully negated operand! 425 continue; 426 } 427 // Failed to sink negation into this operand. IFF we started from negation 428 // and we manage to sink negation into one operand, we can still do this. 429 if (!IsTrulyNegation) 430 return nullptr; 431 NonNegatedOps.emplace_back(Op); // Just record which operand that was. 432 } 433 assert((NegatedOps.size() + NonNegatedOps.size()) == 2 && 434 "Internal consistency check failed."); 435 // Did we manage to sink negation into both of the operands? 436 if (NegatedOps.size() == 2) // Then we get to keep the `add`! 437 return Builder.CreateAdd(NegatedOps[0], NegatedOps[1], 438 I->getName() + ".neg"); 439 assert(IsTrulyNegation && "We should have early-exited then."); 440 // Completely failed to sink negation? 441 if (NonNegatedOps.size() == 2) 442 return nullptr; 443 // 0-(a+b) --> (-a)-b 444 return Builder.CreateSub(NegatedOps[0], NonNegatedOps[0], 445 I->getName() + ".neg"); 446 } 447 case Instruction::Xor: { 448 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I); 449 // `xor` is negatible if one of its operands is invertible. 450 // FIXME: InstCombineInverter? But how to connect Inverter and Negator? 451 if (auto *C = dyn_cast<Constant>(Ops[1])) { 452 if (IsTrulyNegation) { 453 Value *Xor = Builder.CreateXor(Ops[0], ConstantExpr::getNot(C)); 454 return Builder.CreateAdd(Xor, ConstantInt::get(Xor->getType(), 1), 455 I->getName() + ".neg"); 456 } 457 } 458 return nullptr; 459 } 460 case Instruction::Mul: { 461 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I); 462 // `mul` is negatible if one of its operands is negatible. 463 Value *NegatedOp, *OtherOp; 464 // First try the second operand, in case it's a constant it will be best to 465 // just invert it instead of sinking the `neg` deeper. 466 if (Value *NegOp1 = negate(Ops[1], /* IsNSW */ false, Depth + 1)) { 467 NegatedOp = NegOp1; 468 OtherOp = Ops[0]; 469 } else if (Value *NegOp0 = negate(Ops[0], /* IsNSW */ false, Depth + 1)) { 470 NegatedOp = NegOp0; 471 OtherOp = Ops[1]; 472 } else 473 // Can't negate either of them. 474 return nullptr; 475 return Builder.CreateMul(NegatedOp, OtherOp, I->getName() + ".neg", 476 /* HasNUW */ false, IsNSW && I->hasNoSignedWrap()); 477 } 478 default: 479 return nullptr; // Don't know, likely not negatible for free. 480 } 481 482 llvm_unreachable("Can't get here. We always return from switch."); 483 } 484 485 [[nodiscard]] Value *Negator::negate(Value *V, bool IsNSW, unsigned Depth) { 486 NegatorMaxDepthVisited.updateMax(Depth); 487 ++NegatorNumValuesVisited; 488 489 #if LLVM_ENABLE_STATS 490 ++NumValuesVisitedInThisNegator; 491 #endif 492 493 #ifndef NDEBUG 494 // We can't ever have a Value with such an address. 495 Value *Placeholder = reinterpret_cast<Value *>(static_cast<uintptr_t>(-1)); 496 #endif 497 498 // Did we already try to negate this value? 499 auto NegationsCacheIterator = NegationsCache.find(V); 500 if (NegationsCacheIterator != NegationsCache.end()) { 501 ++NegatorNumNegationsFoundInCache; 502 Value *NegatedV = NegationsCacheIterator->second; 503 assert(NegatedV != Placeholder && "Encountered a cycle during negation."); 504 return NegatedV; 505 } 506 507 #ifndef NDEBUG 508 // We did not find a cached result for negation of V. While there, 509 // let's temporairly cache a placeholder value, with the idea that if later 510 // during negation we fetch it from cache, we'll know we're in a cycle. 511 NegationsCache[V] = Placeholder; 512 #endif 513 514 // No luck. Try negating it for real. 515 Value *NegatedV = visitImpl(V, IsNSW, Depth); 516 // And cache the (real) result for the future. 517 NegationsCache[V] = NegatedV; 518 519 return NegatedV; 520 } 521 522 [[nodiscard]] std::optional<Negator::Result> Negator::run(Value *Root, 523 bool IsNSW) { 524 Value *Negated = negate(Root, IsNSW, /*Depth=*/0); 525 if (!Negated) { 526 // We must cleanup newly-inserted instructions, to avoid any potential 527 // endless combine looping. 528 for (Instruction *I : llvm::reverse(NewInstructions)) 529 I->eraseFromParent(); 530 return std::nullopt; 531 } 532 return std::make_pair(ArrayRef<Instruction *>(NewInstructions), Negated); 533 } 534 535 [[nodiscard]] Value *Negator::Negate(bool LHSIsZero, bool IsNSW, Value *Root, 536 InstCombinerImpl &IC) { 537 ++NegatorTotalNegationsAttempted; 538 LLVM_DEBUG(dbgs() << "Negator: attempting to sink negation into " << *Root 539 << "\n"); 540 541 if (!NegatorEnabled || !DebugCounter::shouldExecute(NegatorCounter)) 542 return nullptr; 543 544 Negator N(Root->getContext(), IC.getDataLayout(), LHSIsZero); 545 std::optional<Result> Res = N.run(Root, IsNSW); 546 if (!Res) { // Negation failed. 547 LLVM_DEBUG(dbgs() << "Negator: failed to sink negation into " << *Root 548 << "\n"); 549 return nullptr; 550 } 551 552 LLVM_DEBUG(dbgs() << "Negator: successfully sunk negation into " << *Root 553 << "\n NEW: " << *Res->second << "\n"); 554 ++NegatorNumTreesNegated; 555 556 // We must temporarily unset the 'current' insertion point and DebugLoc of the 557 // InstCombine's IRBuilder so that it won't interfere with the ones we have 558 // already specified when producing negated instructions. 559 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder); 560 IC.Builder.ClearInsertionPoint(); 561 IC.Builder.SetCurrentDebugLocation(DebugLoc()); 562 563 // And finally, we must add newly-created instructions into the InstCombine's 564 // worklist (in a proper order!) so it can attempt to combine them. 565 LLVM_DEBUG(dbgs() << "Negator: Propagating " << Res->first.size() 566 << " instrs to InstCombine\n"); 567 NegatorMaxInstructionsCreated.updateMax(Res->first.size()); 568 NegatorNumInstructionsNegatedSuccess += Res->first.size(); 569 570 // They are in def-use order, so nothing fancy, just insert them in order. 571 for (Instruction *I : Res->first) 572 IC.Builder.Insert(I, I->getName()); 573 574 // And return the new root. 575 return Res->second; 576 } 577