xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp (revision ee0fe82ee2892f5ece189db0eab38913aaab5f0f)
1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
10 // srem, urem, frem.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/KnownBits.h"
34 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
35 #include "llvm/Transforms/Utils/BuildLibCalls.h"
36 #include <cassert>
37 #include <cstddef>
38 #include <cstdint>
39 #include <utility>
40 
41 using namespace llvm;
42 using namespace PatternMatch;
43 
44 #define DEBUG_TYPE "instcombine"
45 
46 /// The specific integer value is used in a context where it is known to be
47 /// non-zero.  If this allows us to simplify the computation, do so and return
48 /// the new operand, otherwise return null.
49 static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC,
50                                         Instruction &CxtI) {
51   // If V has multiple uses, then we would have to do more analysis to determine
52   // if this is safe.  For example, the use could be in dynamically unreached
53   // code.
54   if (!V->hasOneUse()) return nullptr;
55 
56   bool MadeChange = false;
57 
58   // ((1 << A) >>u B) --> (1 << (A-B))
59   // Because V cannot be zero, we know that B is less than A.
60   Value *A = nullptr, *B = nullptr, *One = nullptr;
61   if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
62       match(One, m_One())) {
63     A = IC.Builder.CreateSub(A, B);
64     return IC.Builder.CreateShl(One, A);
65   }
66 
67   // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
68   // inexact.  Similarly for <<.
69   BinaryOperator *I = dyn_cast<BinaryOperator>(V);
70   if (I && I->isLogicalShift() &&
71       IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
72     // We know that this is an exact/nuw shift and that the input is a
73     // non-zero context as well.
74     if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
75       I->setOperand(0, V2);
76       MadeChange = true;
77     }
78 
79     if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
80       I->setIsExact();
81       MadeChange = true;
82     }
83 
84     if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
85       I->setHasNoUnsignedWrap();
86       MadeChange = true;
87     }
88   }
89 
90   // TODO: Lots more we could do here:
91   //    If V is a phi node, we can call this on each of its operands.
92   //    "select cond, X, 0" can simplify to "X".
93 
94   return MadeChange ? V : nullptr;
95 }
96 
97 /// A helper routine of InstCombiner::visitMul().
98 ///
99 /// If C is a scalar/vector of known powers of 2, then this function returns
100 /// a new scalar/vector obtained from logBase2 of C.
101 /// Return a null pointer otherwise.
102 static Constant *getLogBase2(Type *Ty, Constant *C) {
103   const APInt *IVal;
104   if (match(C, m_APInt(IVal)) && IVal->isPowerOf2())
105     return ConstantInt::get(Ty, IVal->logBase2());
106 
107   if (!Ty->isVectorTy())
108     return nullptr;
109 
110   SmallVector<Constant *, 4> Elts;
111   for (unsigned I = 0, E = Ty->getVectorNumElements(); I != E; ++I) {
112     Constant *Elt = C->getAggregateElement(I);
113     if (!Elt)
114       return nullptr;
115     if (isa<UndefValue>(Elt)) {
116       Elts.push_back(UndefValue::get(Ty->getScalarType()));
117       continue;
118     }
119     if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
120       return nullptr;
121     Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2()));
122   }
123 
124   return ConstantVector::get(Elts);
125 }
126 
127 Instruction *InstCombiner::visitMul(BinaryOperator &I) {
128   if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1),
129                                  SQ.getWithInstruction(&I)))
130     return replaceInstUsesWith(I, V);
131 
132   if (SimplifyAssociativeOrCommutative(I))
133     return &I;
134 
135   if (Instruction *X = foldVectorBinop(I))
136     return X;
137 
138   if (Value *V = SimplifyUsingDistributiveLaws(I))
139     return replaceInstUsesWith(I, V);
140 
141   // X * -1 == 0 - X
142   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
143   if (match(Op1, m_AllOnes())) {
144     BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
145     if (I.hasNoSignedWrap())
146       BO->setHasNoSignedWrap();
147     return BO;
148   }
149 
150   // Also allow combining multiply instructions on vectors.
151   {
152     Value *NewOp;
153     Constant *C1, *C2;
154     const APInt *IVal;
155     if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
156                         m_Constant(C1))) &&
157         match(C1, m_APInt(IVal))) {
158       // ((X << C2)*C1) == (X * (C1 << C2))
159       Constant *Shl = ConstantExpr::getShl(C1, C2);
160       BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
161       BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
162       if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
163         BO->setHasNoUnsignedWrap();
164       if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
165           Shl->isNotMinSignedValue())
166         BO->setHasNoSignedWrap();
167       return BO;
168     }
169 
170     if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
171       // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
172       if (Constant *NewCst = getLogBase2(NewOp->getType(), C1)) {
173         BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
174 
175         if (I.hasNoUnsignedWrap())
176           Shl->setHasNoUnsignedWrap();
177         if (I.hasNoSignedWrap()) {
178           const APInt *V;
179           if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
180             Shl->setHasNoSignedWrap();
181         }
182 
183         return Shl;
184       }
185     }
186   }
187 
188   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
189     // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
190     // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
191     // The "* (2**n)" thus becomes a potential shifting opportunity.
192     {
193       const APInt &   Val = CI->getValue();
194       const APInt &PosVal = Val.abs();
195       if (Val.isNegative() && PosVal.isPowerOf2()) {
196         Value *X = nullptr, *Y = nullptr;
197         if (Op0->hasOneUse()) {
198           ConstantInt *C1;
199           Value *Sub = nullptr;
200           if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
201             Sub = Builder.CreateSub(X, Y, "suba");
202           else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
203             Sub = Builder.CreateSub(Builder.CreateNeg(C1), Y, "subc");
204           if (Sub)
205             return
206               BinaryOperator::CreateMul(Sub,
207                                         ConstantInt::get(Y->getType(), PosVal));
208         }
209       }
210     }
211   }
212 
213   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
214     return FoldedMul;
215 
216   // Simplify mul instructions with a constant RHS.
217   if (isa<Constant>(Op1)) {
218     // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
219     Value *X;
220     Constant *C1;
221     if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
222       Value *Mul = Builder.CreateMul(C1, Op1);
223       // Only go forward with the transform if C1*CI simplifies to a tidier
224       // constant.
225       if (!match(Mul, m_Mul(m_Value(), m_Value())))
226         return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul);
227     }
228   }
229 
230   // -X * C --> X * -C
231   Value *X, *Y;
232   Constant *Op1C;
233   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
234     return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
235 
236   // -X * -Y --> X * Y
237   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
238     auto *NewMul = BinaryOperator::CreateMul(X, Y);
239     if (I.hasNoSignedWrap() &&
240         cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
241         cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
242       NewMul->setHasNoSignedWrap();
243     return NewMul;
244   }
245 
246   // -X * Y --> -(X * Y)
247   // X * -Y --> -(X * Y)
248   if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
249     return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
250 
251   // (X / Y) *  Y = X - (X % Y)
252   // (X / Y) * -Y = (X % Y) - X
253   {
254     Value *Y = Op1;
255     BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
256     if (!Div || (Div->getOpcode() != Instruction::UDiv &&
257                  Div->getOpcode() != Instruction::SDiv)) {
258       Y = Op0;
259       Div = dyn_cast<BinaryOperator>(Op1);
260     }
261     Value *Neg = dyn_castNegVal(Y);
262     if (Div && Div->hasOneUse() &&
263         (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
264         (Div->getOpcode() == Instruction::UDiv ||
265          Div->getOpcode() == Instruction::SDiv)) {
266       Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
267 
268       // If the division is exact, X % Y is zero, so we end up with X or -X.
269       if (Div->isExact()) {
270         if (DivOp1 == Y)
271           return replaceInstUsesWith(I, X);
272         return BinaryOperator::CreateNeg(X);
273       }
274 
275       auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
276                                                           : Instruction::SRem;
277       Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1);
278       if (DivOp1 == Y)
279         return BinaryOperator::CreateSub(X, Rem);
280       return BinaryOperator::CreateSub(Rem, X);
281     }
282   }
283 
284   /// i1 mul -> i1 and.
285   if (I.getType()->isIntOrIntVectorTy(1))
286     return BinaryOperator::CreateAnd(Op0, Op1);
287 
288   // X*(1 << Y) --> X << Y
289   // (1 << Y)*X --> X << Y
290   {
291     Value *Y;
292     BinaryOperator *BO = nullptr;
293     bool ShlNSW = false;
294     if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
295       BO = BinaryOperator::CreateShl(Op1, Y);
296       ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
297     } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
298       BO = BinaryOperator::CreateShl(Op0, Y);
299       ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
300     }
301     if (BO) {
302       if (I.hasNoUnsignedWrap())
303         BO->setHasNoUnsignedWrap();
304       if (I.hasNoSignedWrap() && ShlNSW)
305         BO->setHasNoSignedWrap();
306       return BO;
307     }
308   }
309 
310   // (bool X) * Y --> X ? Y : 0
311   // Y * (bool X) --> X ? Y : 0
312   if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
313     return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0));
314   if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
315     return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0));
316 
317   // (lshr X, 31) * Y --> (ashr X, 31) & Y
318   // Y * (lshr X, 31) --> (ashr X, 31) & Y
319   // TODO: We are not checking one-use because the elimination of the multiply
320   //       is better for analysis?
321   // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be
322   //       more similar to what we're doing above.
323   const APInt *C;
324   if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
325     return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1);
326   if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
327     return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0);
328 
329   if (Instruction *Ext = narrowMathIfNoOverflow(I))
330     return Ext;
331 
332   bool Changed = false;
333   if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) {
334     Changed = true;
335     I.setHasNoSignedWrap(true);
336   }
337 
338   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) {
339     Changed = true;
340     I.setHasNoUnsignedWrap(true);
341   }
342 
343   return Changed ? &I : nullptr;
344 }
345 
346 Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
347   if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1),
348                                   I.getFastMathFlags(),
349                                   SQ.getWithInstruction(&I)))
350     return replaceInstUsesWith(I, V);
351 
352   if (SimplifyAssociativeOrCommutative(I))
353     return &I;
354 
355   if (Instruction *X = foldVectorBinop(I))
356     return X;
357 
358   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
359     return FoldedMul;
360 
361   // X * -1.0 --> -X
362   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
363   if (match(Op1, m_SpecificFP(-1.0)))
364     return BinaryOperator::CreateFNegFMF(Op0, &I);
365 
366   // -X * -Y --> X * Y
367   Value *X, *Y;
368   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
369     return BinaryOperator::CreateFMulFMF(X, Y, &I);
370 
371   // -X * C --> X * -C
372   Constant *C;
373   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
374     return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
375 
376   // Sink negation: -X * Y --> -(X * Y)
377   // But don't transform constant expressions because there's an inverse fold.
378   if (match(Op0, m_OneUse(m_FNeg(m_Value(X)))) && !isa<ConstantExpr>(Op0))
379     return BinaryOperator::CreateFNegFMF(Builder.CreateFMulFMF(X, Op1, &I), &I);
380 
381   // Sink negation: Y * -X --> -(X * Y)
382   // But don't transform constant expressions because there's an inverse fold.
383   if (match(Op1, m_OneUse(m_FNeg(m_Value(X)))) && !isa<ConstantExpr>(Op1))
384     return BinaryOperator::CreateFNegFMF(Builder.CreateFMulFMF(X, Op0, &I), &I);
385 
386   // fabs(X) * fabs(X) -> X * X
387   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::fabs>(m_Value(X))))
388     return BinaryOperator::CreateFMulFMF(X, X, &I);
389 
390   // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
391   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
392     return replaceInstUsesWith(I, V);
393 
394   if (I.hasAllowReassoc()) {
395     // Reassociate constant RHS with another constant to form constant
396     // expression.
397     if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
398       Constant *C1;
399       if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
400         // (C1 / X) * C --> (C * C1) / X
401         Constant *CC1 = ConstantExpr::getFMul(C, C1);
402         if (CC1->isNormalFP())
403           return BinaryOperator::CreateFDivFMF(CC1, X, &I);
404       }
405       if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
406         // (X / C1) * C --> X * (C / C1)
407         Constant *CDivC1 = ConstantExpr::getFDiv(C, C1);
408         if (CDivC1->isNormalFP())
409           return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
410 
411         // If the constant was a denormal, try reassociating differently.
412         // (X / C1) * C --> X / (C1 / C)
413         Constant *C1DivC = ConstantExpr::getFDiv(C1, C);
414         if (Op0->hasOneUse() && C1DivC->isNormalFP())
415           return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
416       }
417 
418       // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
419       // canonicalized to 'fadd X, C'. Distributing the multiply may allow
420       // further folds and (X * C) + C2 is 'fma'.
421       if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
422         // (X + C1) * C --> (X * C) + (C * C1)
423         Constant *CC1 = ConstantExpr::getFMul(C, C1);
424         Value *XC = Builder.CreateFMulFMF(X, C, &I);
425         return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
426       }
427       if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
428         // (C1 - X) * C --> (C * C1) - (X * C)
429         Constant *CC1 = ConstantExpr::getFMul(C, C1);
430         Value *XC = Builder.CreateFMulFMF(X, C, &I);
431         return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
432       }
433     }
434 
435     Value *Z;
436     if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))),
437                            m_Value(Z)))) {
438       // Sink division: (X / Y) * Z --> (X * Z) / Y
439       Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
440       return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
441     }
442 
443     // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
444     // nnan disallows the possibility of returning a number if both operands are
445     // negative (in that case, we should return NaN).
446     if (I.hasNoNaNs() &&
447         match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) &&
448         match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
449       Value *XY = Builder.CreateFMulFMF(X, Y, &I);
450       Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
451       return replaceInstUsesWith(I, Sqrt);
452     }
453 
454     // Like the similar transform in instsimplify, this requires 'nsz' because
455     // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
456     if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 &&
457         Op0->hasNUses(2)) {
458       // Peek through fdiv to find squaring of square root:
459       // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
460       if (match(Op0, m_FDiv(m_Value(X),
461                             m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
462         Value *XX = Builder.CreateFMulFMF(X, X, &I);
463         return BinaryOperator::CreateFDivFMF(XX, Y, &I);
464       }
465       // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
466       if (match(Op0, m_FDiv(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y)),
467                             m_Value(X)))) {
468         Value *XX = Builder.CreateFMulFMF(X, X, &I);
469         return BinaryOperator::CreateFDivFMF(Y, XX, &I);
470       }
471     }
472 
473     // exp(X) * exp(Y) -> exp(X + Y)
474     // Match as long as at least one of exp has only one use.
475     if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
476         match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y))) &&
477         (Op0->hasOneUse() || Op1->hasOneUse())) {
478       Value *XY = Builder.CreateFAddFMF(X, Y, &I);
479       Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
480       return replaceInstUsesWith(I, Exp);
481     }
482 
483     // exp2(X) * exp2(Y) -> exp2(X + Y)
484     // Match as long as at least one of exp2 has only one use.
485     if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
486         match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y))) &&
487         (Op0->hasOneUse() || Op1->hasOneUse())) {
488       Value *XY = Builder.CreateFAddFMF(X, Y, &I);
489       Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
490       return replaceInstUsesWith(I, Exp2);
491     }
492 
493     // (X*Y) * X => (X*X) * Y where Y != X
494     //  The purpose is two-fold:
495     //   1) to form a power expression (of X).
496     //   2) potentially shorten the critical path: After transformation, the
497     //  latency of the instruction Y is amortized by the expression of X*X,
498     //  and therefore Y is in a "less critical" position compared to what it
499     //  was before the transformation.
500     if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
501         Op1 != Y) {
502       Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
503       return BinaryOperator::CreateFMulFMF(XX, Y, &I);
504     }
505     if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
506         Op0 != Y) {
507       Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
508       return BinaryOperator::CreateFMulFMF(XX, Y, &I);
509     }
510   }
511 
512   // log2(X * 0.5) * Y = log2(X) * Y - Y
513   if (I.isFast()) {
514     IntrinsicInst *Log2 = nullptr;
515     if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
516             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
517       Log2 = cast<IntrinsicInst>(Op0);
518       Y = Op1;
519     }
520     if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
521             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
522       Log2 = cast<IntrinsicInst>(Op1);
523       Y = Op0;
524     }
525     if (Log2) {
526       Log2->setArgOperand(0, X);
527       Log2->copyFastMathFlags(&I);
528       Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
529       return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
530     }
531   }
532 
533   return nullptr;
534 }
535 
536 /// Fold a divide or remainder with a select instruction divisor when one of the
537 /// select operands is zero. In that case, we can use the other select operand
538 /// because div/rem by zero is undefined.
539 bool InstCombiner::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
540   SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
541   if (!SI)
542     return false;
543 
544   int NonNullOperand;
545   if (match(SI->getTrueValue(), m_Zero()))
546     // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
547     NonNullOperand = 2;
548   else if (match(SI->getFalseValue(), m_Zero()))
549     // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
550     NonNullOperand = 1;
551   else
552     return false;
553 
554   // Change the div/rem to use 'Y' instead of the select.
555   I.setOperand(1, SI->getOperand(NonNullOperand));
556 
557   // Okay, we know we replace the operand of the div/rem with 'Y' with no
558   // problem.  However, the select, or the condition of the select may have
559   // multiple uses.  Based on our knowledge that the operand must be non-zero,
560   // propagate the known value for the select into other uses of it, and
561   // propagate a known value of the condition into its other users.
562 
563   // If the select and condition only have a single use, don't bother with this,
564   // early exit.
565   Value *SelectCond = SI->getCondition();
566   if (SI->use_empty() && SelectCond->hasOneUse())
567     return true;
568 
569   // Scan the current block backward, looking for other uses of SI.
570   BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
571   Type *CondTy = SelectCond->getType();
572   while (BBI != BBFront) {
573     --BBI;
574     // If we found an instruction that we can't assume will return, so
575     // information from below it cannot be propagated above it.
576     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
577       break;
578 
579     // Replace uses of the select or its condition with the known values.
580     for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
581          I != E; ++I) {
582       if (*I == SI) {
583         *I = SI->getOperand(NonNullOperand);
584         Worklist.Add(&*BBI);
585       } else if (*I == SelectCond) {
586         *I = NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
587                                  : ConstantInt::getFalse(CondTy);
588         Worklist.Add(&*BBI);
589       }
590     }
591 
592     // If we past the instruction, quit looking for it.
593     if (&*BBI == SI)
594       SI = nullptr;
595     if (&*BBI == SelectCond)
596       SelectCond = nullptr;
597 
598     // If we ran out of things to eliminate, break out of the loop.
599     if (!SelectCond && !SI)
600       break;
601 
602   }
603   return true;
604 }
605 
606 /// True if the multiply can not be expressed in an int this size.
607 static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
608                               bool IsSigned) {
609   bool Overflow;
610   Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
611   return Overflow;
612 }
613 
614 /// True if C1 is a multiple of C2. Quotient contains C1/C2.
615 static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
616                        bool IsSigned) {
617   assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
618 
619   // Bail if we will divide by zero.
620   if (C2.isNullValue())
621     return false;
622 
623   // Bail if we would divide INT_MIN by -1.
624   if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue())
625     return false;
626 
627   APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned);
628   if (IsSigned)
629     APInt::sdivrem(C1, C2, Quotient, Remainder);
630   else
631     APInt::udivrem(C1, C2, Quotient, Remainder);
632 
633   return Remainder.isMinValue();
634 }
635 
636 /// This function implements the transforms common to both integer division
637 /// instructions (udiv and sdiv). It is called by the visitors to those integer
638 /// division instructions.
639 /// Common integer divide transforms
640 Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
641   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
642   bool IsSigned = I.getOpcode() == Instruction::SDiv;
643   Type *Ty = I.getType();
644 
645   // The RHS is known non-zero.
646   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
647     I.setOperand(1, V);
648     return &I;
649   }
650 
651   // Handle cases involving: [su]div X, (select Cond, Y, Z)
652   // This does not apply for fdiv.
653   if (simplifyDivRemOfSelectWithZeroOp(I))
654     return &I;
655 
656   const APInt *C2;
657   if (match(Op1, m_APInt(C2))) {
658     Value *X;
659     const APInt *C1;
660 
661     // (X / C1) / C2  -> X / (C1*C2)
662     if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
663         (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
664       APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
665       if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
666         return BinaryOperator::Create(I.getOpcode(), X,
667                                       ConstantInt::get(Ty, Product));
668     }
669 
670     if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
671         (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
672       APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
673 
674       // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
675       if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
676         auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
677                                               ConstantInt::get(Ty, Quotient));
678         NewDiv->setIsExact(I.isExact());
679         return NewDiv;
680       }
681 
682       // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
683       if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
684         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
685                                            ConstantInt::get(Ty, Quotient));
686         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
687         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
688         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
689         return Mul;
690       }
691     }
692 
693     if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
694          *C1 != C1->getBitWidth() - 1) ||
695         (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))))) {
696       APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
697       APInt C1Shifted = APInt::getOneBitSet(
698           C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
699 
700       // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
701       if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
702         auto *BO = BinaryOperator::Create(I.getOpcode(), X,
703                                           ConstantInt::get(Ty, Quotient));
704         BO->setIsExact(I.isExact());
705         return BO;
706       }
707 
708       // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
709       if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
710         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
711                                            ConstantInt::get(Ty, Quotient));
712         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
713         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
714         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
715         return Mul;
716       }
717     }
718 
719     if (!C2->isNullValue()) // avoid X udiv 0
720       if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
721         return FoldedDiv;
722   }
723 
724   if (match(Op0, m_One())) {
725     assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
726     if (IsSigned) {
727       // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
728       // result is one, if Op1 is -1 then the result is minus one, otherwise
729       // it's zero.
730       Value *Inc = Builder.CreateAdd(Op1, Op0);
731       Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
732       return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0));
733     } else {
734       // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
735       // result is one, otherwise it's zero.
736       return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
737     }
738   }
739 
740   // See if we can fold away this div instruction.
741   if (SimplifyDemandedInstructionBits(I))
742     return &I;
743 
744   // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
745   Value *X, *Z;
746   if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
747     if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
748         (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
749       return BinaryOperator::Create(I.getOpcode(), X, Op1);
750 
751   // (X << Y) / X -> 1 << Y
752   Value *Y;
753   if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
754     return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
755   if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
756     return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
757 
758   // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
759   if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
760     bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
761     bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
762     if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
763       I.setOperand(0, ConstantInt::get(Ty, 1));
764       I.setOperand(1, Y);
765       return &I;
766     }
767   }
768 
769   return nullptr;
770 }
771 
772 static const unsigned MaxDepth = 6;
773 
774 namespace {
775 
776 using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1,
777                                            const BinaryOperator &I,
778                                            InstCombiner &IC);
779 
780 /// Used to maintain state for visitUDivOperand().
781 struct UDivFoldAction {
782   /// Informs visitUDiv() how to fold this operand.  This can be zero if this
783   /// action joins two actions together.
784   FoldUDivOperandCb FoldAction;
785 
786   /// Which operand to fold.
787   Value *OperandToFold;
788 
789   union {
790     /// The instruction returned when FoldAction is invoked.
791     Instruction *FoldResult;
792 
793     /// Stores the LHS action index if this action joins two actions together.
794     size_t SelectLHSIdx;
795   };
796 
797   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
798       : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
799   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
800       : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
801 };
802 
803 } // end anonymous namespace
804 
805 // X udiv 2^C -> X >> C
806 static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
807                                     const BinaryOperator &I, InstCombiner &IC) {
808   Constant *C1 = getLogBase2(Op0->getType(), cast<Constant>(Op1));
809   if (!C1)
810     llvm_unreachable("Failed to constant fold udiv -> logbase2");
811   BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1);
812   if (I.isExact())
813     LShr->setIsExact();
814   return LShr;
815 }
816 
817 // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
818 // X udiv (zext (C1 << N)), where C1 is "1<<C2"  -->  X >> (N+C2)
819 static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
820                                 InstCombiner &IC) {
821   Value *ShiftLeft;
822   if (!match(Op1, m_ZExt(m_Value(ShiftLeft))))
823     ShiftLeft = Op1;
824 
825   Constant *CI;
826   Value *N;
827   if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N))))
828     llvm_unreachable("match should never fail here!");
829   Constant *Log2Base = getLogBase2(N->getType(), CI);
830   if (!Log2Base)
831     llvm_unreachable("getLogBase2 should never fail here!");
832   N = IC.Builder.CreateAdd(N, Log2Base);
833   if (Op1 != ShiftLeft)
834     N = IC.Builder.CreateZExt(N, Op1->getType());
835   BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
836   if (I.isExact())
837     LShr->setIsExact();
838   return LShr;
839 }
840 
841 // Recursively visits the possible right hand operands of a udiv
842 // instruction, seeing through select instructions, to determine if we can
843 // replace the udiv with something simpler.  If we find that an operand is not
844 // able to simplify the udiv, we abort the entire transformation.
845 static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
846                                SmallVectorImpl<UDivFoldAction> &Actions,
847                                unsigned Depth = 0) {
848   // Check to see if this is an unsigned division with an exact power of 2,
849   // if so, convert to a right shift.
850   if (match(Op1, m_Power2())) {
851     Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
852     return Actions.size();
853   }
854 
855   // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
856   if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
857       match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
858     Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
859     return Actions.size();
860   }
861 
862   // The remaining tests are all recursive, so bail out if we hit the limit.
863   if (Depth++ == MaxDepth)
864     return 0;
865 
866   if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
867     if (size_t LHSIdx =
868             visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
869       if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
870         Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
871         return Actions.size();
872       }
873 
874   return 0;
875 }
876 
877 /// If we have zero-extended operands of an unsigned div or rem, we may be able
878 /// to narrow the operation (sink the zext below the math).
879 static Instruction *narrowUDivURem(BinaryOperator &I,
880                                    InstCombiner::BuilderTy &Builder) {
881   Instruction::BinaryOps Opcode = I.getOpcode();
882   Value *N = I.getOperand(0);
883   Value *D = I.getOperand(1);
884   Type *Ty = I.getType();
885   Value *X, *Y;
886   if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
887       X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
888     // udiv (zext X), (zext Y) --> zext (udiv X, Y)
889     // urem (zext X), (zext Y) --> zext (urem X, Y)
890     Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
891     return new ZExtInst(NarrowOp, Ty);
892   }
893 
894   Constant *C;
895   if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) ||
896       (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) {
897     // If the constant is the same in the smaller type, use the narrow version.
898     Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
899     if (ConstantExpr::getZExt(TruncC, Ty) != C)
900       return nullptr;
901 
902     // udiv (zext X), C --> zext (udiv X, C')
903     // urem (zext X), C --> zext (urem X, C')
904     // udiv C, (zext X) --> zext (udiv C', X)
905     // urem C, (zext X) --> zext (urem C', X)
906     Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC)
907                                        : Builder.CreateBinOp(Opcode, TruncC, X);
908     return new ZExtInst(NarrowOp, Ty);
909   }
910 
911   return nullptr;
912 }
913 
914 Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
915   if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1),
916                                   SQ.getWithInstruction(&I)))
917     return replaceInstUsesWith(I, V);
918 
919   if (Instruction *X = foldVectorBinop(I))
920     return X;
921 
922   // Handle the integer div common cases
923   if (Instruction *Common = commonIDivTransforms(I))
924     return Common;
925 
926   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
927   Value *X;
928   const APInt *C1, *C2;
929   if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
930     // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
931     bool Overflow;
932     APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
933     if (!Overflow) {
934       bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
935       BinaryOperator *BO = BinaryOperator::CreateUDiv(
936           X, ConstantInt::get(X->getType(), C2ShlC1));
937       if (IsExact)
938         BO->setIsExact();
939       return BO;
940     }
941   }
942 
943   // Op0 / C where C is large (negative) --> zext (Op0 >= C)
944   // TODO: Could use isKnownNegative() to handle non-constant values.
945   Type *Ty = I.getType();
946   if (match(Op1, m_Negative())) {
947     Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
948     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
949   }
950   // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
951   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
952     Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
953     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
954   }
955 
956   if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
957     return NarrowDiv;
958 
959   // If the udiv operands are non-overflowing multiplies with a common operand,
960   // then eliminate the common factor:
961   // (A * B) / (A * X) --> B / X (and commuted variants)
962   // TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
963   // TODO: If -reassociation handled this generally, we could remove this.
964   Value *A, *B;
965   if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
966     if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
967         match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
968       return BinaryOperator::CreateUDiv(B, X);
969     if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
970         match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
971       return BinaryOperator::CreateUDiv(A, X);
972   }
973 
974   // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
975   SmallVector<UDivFoldAction, 6> UDivActions;
976   if (visitUDivOperand(Op0, Op1, I, UDivActions))
977     for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
978       FoldUDivOperandCb Action = UDivActions[i].FoldAction;
979       Value *ActionOp1 = UDivActions[i].OperandToFold;
980       Instruction *Inst;
981       if (Action)
982         Inst = Action(Op0, ActionOp1, I, *this);
983       else {
984         // This action joins two actions together.  The RHS of this action is
985         // simply the last action we processed, we saved the LHS action index in
986         // the joining action.
987         size_t SelectRHSIdx = i - 1;
988         Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
989         size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
990         Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
991         Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
992                                   SelectLHS, SelectRHS);
993       }
994 
995       // If this is the last action to process, return it to the InstCombiner.
996       // Otherwise, we insert it before the UDiv and record it so that we may
997       // use it as part of a joining action (i.e., a SelectInst).
998       if (e - i != 1) {
999         Inst->insertBefore(&I);
1000         UDivActions[i].FoldResult = Inst;
1001       } else
1002         return Inst;
1003     }
1004 
1005   return nullptr;
1006 }
1007 
1008 Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
1009   if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1),
1010                                   SQ.getWithInstruction(&I)))
1011     return replaceInstUsesWith(I, V);
1012 
1013   if (Instruction *X = foldVectorBinop(I))
1014     return X;
1015 
1016   // Handle the integer div common cases
1017   if (Instruction *Common = commonIDivTransforms(I))
1018     return Common;
1019 
1020   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1021   Value *X;
1022   // sdiv Op0, -1 --> -Op0
1023   // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
1024   if (match(Op1, m_AllOnes()) ||
1025       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1026     return BinaryOperator::CreateNeg(Op0);
1027 
1028   // X / INT_MIN --> X == INT_MIN
1029   if (match(Op1, m_SignMask()))
1030     return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), I.getType());
1031 
1032   const APInt *Op1C;
1033   if (match(Op1, m_APInt(Op1C))) {
1034     // sdiv exact X, C  -->  ashr exact X, log2(C)
1035     if (I.isExact() && Op1C->isNonNegative() && Op1C->isPowerOf2()) {
1036       Value *ShAmt = ConstantInt::get(Op1->getType(), Op1C->exactLogBase2());
1037       return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
1038     }
1039 
1040     // If the dividend is sign-extended and the constant divisor is small enough
1041     // to fit in the source type, shrink the division to the narrower type:
1042     // (sext X) sdiv C --> sext (X sdiv C)
1043     Value *Op0Src;
1044     if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
1045         Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
1046 
1047       // In the general case, we need to make sure that the dividend is not the
1048       // minimum signed value because dividing that by -1 is UB. But here, we
1049       // know that the -1 divisor case is already handled above.
1050 
1051       Constant *NarrowDivisor =
1052           ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
1053       Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
1054       return new SExtInst(NarrowOp, Op0->getType());
1055     }
1056 
1057     // -X / C --> X / -C (if the negation doesn't overflow).
1058     // TODO: This could be enhanced to handle arbitrary vector constants by
1059     //       checking if all elements are not the min-signed-val.
1060     if (!Op1C->isMinSignedValue() &&
1061         match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
1062       Constant *NegC = ConstantInt::get(I.getType(), -(*Op1C));
1063       Instruction *BO = BinaryOperator::CreateSDiv(X, NegC);
1064       BO->setIsExact(I.isExact());
1065       return BO;
1066     }
1067   }
1068 
1069   // -X / Y --> -(X / Y)
1070   Value *Y;
1071   if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1072     return BinaryOperator::CreateNSWNeg(
1073         Builder.CreateSDiv(X, Y, I.getName(), I.isExact()));
1074 
1075   // If the sign bits of both operands are zero (i.e. we can prove they are
1076   // unsigned inputs), turn this into a udiv.
1077   APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1078   if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
1079     if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
1080       // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
1081       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1082       BO->setIsExact(I.isExact());
1083       return BO;
1084     }
1085 
1086     if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1087       // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1088       // Safe because the only negative value (1 << Y) can take on is
1089       // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1090       // the sign bit set.
1091       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1092       BO->setIsExact(I.isExact());
1093       return BO;
1094     }
1095   }
1096 
1097   return nullptr;
1098 }
1099 
1100 /// Remove negation and try to convert division into multiplication.
1101 static Instruction *foldFDivConstantDivisor(BinaryOperator &I) {
1102   Constant *C;
1103   if (!match(I.getOperand(1), m_Constant(C)))
1104     return nullptr;
1105 
1106   // -X / C --> X / -C
1107   Value *X;
1108   if (match(I.getOperand(0), m_FNeg(m_Value(X))))
1109     return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
1110 
1111   // If the constant divisor has an exact inverse, this is always safe. If not,
1112   // then we can still create a reciprocal if fast-math-flags allow it and the
1113   // constant is a regular number (not zero, infinite, or denormal).
1114   if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
1115     return nullptr;
1116 
1117   // Disallow denormal constants because we don't know what would happen
1118   // on all targets.
1119   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1120   // denorms are flushed?
1121   auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
1122   if (!RecipC->isNormalFP())
1123     return nullptr;
1124 
1125   // X / C --> X * (1 / C)
1126   return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
1127 }
1128 
1129 /// Remove negation and try to reassociate constant math.
1130 static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
1131   Constant *C;
1132   if (!match(I.getOperand(0), m_Constant(C)))
1133     return nullptr;
1134 
1135   // C / -X --> -C / X
1136   Value *X;
1137   if (match(I.getOperand(1), m_FNeg(m_Value(X))))
1138     return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
1139 
1140   if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
1141     return nullptr;
1142 
1143   // Try to reassociate C / X expressions where X includes another constant.
1144   Constant *C2, *NewC = nullptr;
1145   if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
1146     // C / (X * C2) --> (C / C2) / X
1147     NewC = ConstantExpr::getFDiv(C, C2);
1148   } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
1149     // C / (X / C2) --> (C * C2) / X
1150     NewC = ConstantExpr::getFMul(C, C2);
1151   }
1152   // Disallow denormal constants because we don't know what would happen
1153   // on all targets.
1154   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1155   // denorms are flushed?
1156   if (!NewC || !NewC->isNormalFP())
1157     return nullptr;
1158 
1159   return BinaryOperator::CreateFDivFMF(NewC, X, &I);
1160 }
1161 
1162 Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
1163   if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1),
1164                                   I.getFastMathFlags(),
1165                                   SQ.getWithInstruction(&I)))
1166     return replaceInstUsesWith(I, V);
1167 
1168   if (Instruction *X = foldVectorBinop(I))
1169     return X;
1170 
1171   if (Instruction *R = foldFDivConstantDivisor(I))
1172     return R;
1173 
1174   if (Instruction *R = foldFDivConstantDividend(I))
1175     return R;
1176 
1177   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1178   if (isa<Constant>(Op0))
1179     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1180       if (Instruction *R = FoldOpIntoSelect(I, SI))
1181         return R;
1182 
1183   if (isa<Constant>(Op1))
1184     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1185       if (Instruction *R = FoldOpIntoSelect(I, SI))
1186         return R;
1187 
1188   if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
1189     Value *X, *Y;
1190     if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1191         (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
1192       // (X / Y) / Z => X / (Y * Z)
1193       Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
1194       return BinaryOperator::CreateFDivFMF(X, YZ, &I);
1195     }
1196     if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1197         (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
1198       // Z / (X / Y) => (Y * Z) / X
1199       Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
1200       return BinaryOperator::CreateFDivFMF(YZ, X, &I);
1201     }
1202   }
1203 
1204   if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
1205     // sin(X) / cos(X) -> tan(X)
1206     // cos(X) / sin(X) -> 1/tan(X) (cotangent)
1207     Value *X;
1208     bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
1209                  match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
1210     bool IsCot =
1211         !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
1212                   match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
1213 
1214     if ((IsTan || IsCot) && hasUnaryFloatFn(&TLI, I.getType(), LibFunc_tan,
1215                                             LibFunc_tanf, LibFunc_tanl)) {
1216       IRBuilder<> B(&I);
1217       IRBuilder<>::FastMathFlagGuard FMFGuard(B);
1218       B.setFastMathFlags(I.getFastMathFlags());
1219       AttributeList Attrs =
1220           cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
1221       Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
1222                                         LibFunc_tanl, B, Attrs);
1223       if (IsCot)
1224         Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
1225       return replaceInstUsesWith(I, Res);
1226     }
1227   }
1228 
1229   // -X / -Y -> X / Y
1230   Value *X, *Y;
1231   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) {
1232     I.setOperand(0, X);
1233     I.setOperand(1, Y);
1234     return &I;
1235   }
1236 
1237   // X / (X * Y) --> 1.0 / Y
1238   // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
1239   // We can ignore the possibility that X is infinity because INF/INF is NaN.
1240   if (I.hasNoNaNs() && I.hasAllowReassoc() &&
1241       match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
1242     I.setOperand(0, ConstantFP::get(I.getType(), 1.0));
1243     I.setOperand(1, Y);
1244     return &I;
1245   }
1246 
1247   return nullptr;
1248 }
1249 
1250 /// This function implements the transforms common to both integer remainder
1251 /// instructions (urem and srem). It is called by the visitors to those integer
1252 /// remainder instructions.
1253 /// Common integer remainder transforms
1254 Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
1255   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1256 
1257   // The RHS is known non-zero.
1258   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
1259     I.setOperand(1, V);
1260     return &I;
1261   }
1262 
1263   // Handle cases involving: rem X, (select Cond, Y, Z)
1264   if (simplifyDivRemOfSelectWithZeroOp(I))
1265     return &I;
1266 
1267   if (isa<Constant>(Op1)) {
1268     if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1269       if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1270         if (Instruction *R = FoldOpIntoSelect(I, SI))
1271           return R;
1272       } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
1273         const APInt *Op1Int;
1274         if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
1275             (I.getOpcode() == Instruction::URem ||
1276              !Op1Int->isMinSignedValue())) {
1277           // foldOpIntoPhi will speculate instructions to the end of the PHI's
1278           // predecessor blocks, so do this only if we know the srem or urem
1279           // will not fault.
1280           if (Instruction *NV = foldOpIntoPhi(I, PN))
1281             return NV;
1282         }
1283       }
1284 
1285       // See if we can fold away this rem instruction.
1286       if (SimplifyDemandedInstructionBits(I))
1287         return &I;
1288     }
1289   }
1290 
1291   return nullptr;
1292 }
1293 
1294 Instruction *InstCombiner::visitURem(BinaryOperator &I) {
1295   if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1),
1296                                   SQ.getWithInstruction(&I)))
1297     return replaceInstUsesWith(I, V);
1298 
1299   if (Instruction *X = foldVectorBinop(I))
1300     return X;
1301 
1302   if (Instruction *common = commonIRemTransforms(I))
1303     return common;
1304 
1305   if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
1306     return NarrowRem;
1307 
1308   // X urem Y -> X and Y-1, where Y is a power of 2,
1309   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1310   Type *Ty = I.getType();
1311   if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1312     Constant *N1 = Constant::getAllOnesValue(Ty);
1313     Value *Add = Builder.CreateAdd(Op1, N1);
1314     return BinaryOperator::CreateAnd(Op0, Add);
1315   }
1316 
1317   // 1 urem X -> zext(X != 1)
1318   if (match(Op0, m_One()))
1319     return CastInst::CreateZExtOrBitCast(Builder.CreateICmpNE(Op1, Op0), Ty);
1320 
1321   // X urem C -> X < C ? X : X - C, where C >= signbit.
1322   if (match(Op1, m_Negative())) {
1323     Value *Cmp = Builder.CreateICmpULT(Op0, Op1);
1324     Value *Sub = Builder.CreateSub(Op0, Op1);
1325     return SelectInst::Create(Cmp, Op0, Sub);
1326   }
1327 
1328   // If the divisor is a sext of a boolean, then the divisor must be max
1329   // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
1330   // max unsigned value. In that case, the remainder is 0:
1331   // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
1332   Value *X;
1333   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1334     Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1335     return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0);
1336   }
1337 
1338   return nullptr;
1339 }
1340 
1341 Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
1342   if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1),
1343                                   SQ.getWithInstruction(&I)))
1344     return replaceInstUsesWith(I, V);
1345 
1346   if (Instruction *X = foldVectorBinop(I))
1347     return X;
1348 
1349   // Handle the integer rem common cases
1350   if (Instruction *Common = commonIRemTransforms(I))
1351     return Common;
1352 
1353   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1354   {
1355     const APInt *Y;
1356     // X % -Y -> X % Y
1357     if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue()) {
1358       Worklist.AddValue(I.getOperand(1));
1359       I.setOperand(1, ConstantInt::get(I.getType(), -*Y));
1360       return &I;
1361     }
1362   }
1363 
1364   // -X srem Y --> -(X srem Y)
1365   Value *X, *Y;
1366   if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1367     return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y));
1368 
1369   // If the sign bits of both operands are zero (i.e. we can prove they are
1370   // unsigned inputs), turn this into a urem.
1371   APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1372   if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
1373       MaskedValueIsZero(Op0, Mask, 0, &I)) {
1374     // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1375     return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1376   }
1377 
1378   // If it's a constant vector, flip any negative values positive.
1379   if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1380     Constant *C = cast<Constant>(Op1);
1381     unsigned VWidth = C->getType()->getVectorNumElements();
1382 
1383     bool hasNegative = false;
1384     bool hasMissing = false;
1385     for (unsigned i = 0; i != VWidth; ++i) {
1386       Constant *Elt = C->getAggregateElement(i);
1387       if (!Elt) {
1388         hasMissing = true;
1389         break;
1390       }
1391 
1392       if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
1393         if (RHS->isNegative())
1394           hasNegative = true;
1395     }
1396 
1397     if (hasNegative && !hasMissing) {
1398       SmallVector<Constant *, 16> Elts(VWidth);
1399       for (unsigned i = 0; i != VWidth; ++i) {
1400         Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
1401         if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
1402           if (RHS->isNegative())
1403             Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
1404         }
1405       }
1406 
1407       Constant *NewRHSV = ConstantVector::get(Elts);
1408       if (NewRHSV != C) {  // Don't loop on -MININT
1409         Worklist.AddValue(I.getOperand(1));
1410         I.setOperand(1, NewRHSV);
1411         return &I;
1412       }
1413     }
1414   }
1415 
1416   return nullptr;
1417 }
1418 
1419 Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
1420   if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1),
1421                                   I.getFastMathFlags(),
1422                                   SQ.getWithInstruction(&I)))
1423     return replaceInstUsesWith(I, V);
1424 
1425   if (Instruction *X = foldVectorBinop(I))
1426     return X;
1427 
1428   return nullptr;
1429 }
1430