1 //===- InstCombineMulDivRem.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv, 10 // srem, urem, frem. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/InstrTypes.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/Operator.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/IR/Type.h" 30 #include "llvm/IR/Value.h" 31 #include "llvm/Support/Casting.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/KnownBits.h" 34 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 35 #include "llvm/Transforms/Utils/BuildLibCalls.h" 36 #include <cassert> 37 #include <cstddef> 38 #include <cstdint> 39 #include <utility> 40 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 #define DEBUG_TYPE "instcombine" 45 46 /// The specific integer value is used in a context where it is known to be 47 /// non-zero. If this allows us to simplify the computation, do so and return 48 /// the new operand, otherwise return null. 49 static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC, 50 Instruction &CxtI) { 51 // If V has multiple uses, then we would have to do more analysis to determine 52 // if this is safe. For example, the use could be in dynamically unreached 53 // code. 54 if (!V->hasOneUse()) return nullptr; 55 56 bool MadeChange = false; 57 58 // ((1 << A) >>u B) --> (1 << (A-B)) 59 // Because V cannot be zero, we know that B is less than A. 60 Value *A = nullptr, *B = nullptr, *One = nullptr; 61 if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) && 62 match(One, m_One())) { 63 A = IC.Builder.CreateSub(A, B); 64 return IC.Builder.CreateShl(One, A); 65 } 66 67 // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it 68 // inexact. Similarly for <<. 69 BinaryOperator *I = dyn_cast<BinaryOperator>(V); 70 if (I && I->isLogicalShift() && 71 IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) { 72 // We know that this is an exact/nuw shift and that the input is a 73 // non-zero context as well. 74 if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) { 75 IC.replaceOperand(*I, 0, V2); 76 MadeChange = true; 77 } 78 79 if (I->getOpcode() == Instruction::LShr && !I->isExact()) { 80 I->setIsExact(); 81 MadeChange = true; 82 } 83 84 if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) { 85 I->setHasNoUnsignedWrap(); 86 MadeChange = true; 87 } 88 } 89 90 // TODO: Lots more we could do here: 91 // If V is a phi node, we can call this on each of its operands. 92 // "select cond, X, 0" can simplify to "X". 93 94 return MadeChange ? V : nullptr; 95 } 96 97 /// A helper routine of InstCombiner::visitMul(). 98 /// 99 /// If C is a scalar/fixed width vector of known powers of 2, then this 100 /// function returns a new scalar/fixed width vector obtained from logBase2 101 /// of C. 102 /// Return a null pointer otherwise. 103 static Constant *getLogBase2(Type *Ty, Constant *C) { 104 const APInt *IVal; 105 if (match(C, m_APInt(IVal)) && IVal->isPowerOf2()) 106 return ConstantInt::get(Ty, IVal->logBase2()); 107 108 // FIXME: We can extract pow of 2 of splat constant for scalable vectors. 109 if (!isa<FixedVectorType>(Ty)) 110 return nullptr; 111 112 SmallVector<Constant *, 4> Elts; 113 for (unsigned I = 0, E = cast<FixedVectorType>(Ty)->getNumElements(); I != E; 114 ++I) { 115 Constant *Elt = C->getAggregateElement(I); 116 if (!Elt) 117 return nullptr; 118 if (isa<UndefValue>(Elt)) { 119 Elts.push_back(UndefValue::get(Ty->getScalarType())); 120 continue; 121 } 122 if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2()) 123 return nullptr; 124 Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2())); 125 } 126 127 return ConstantVector::get(Elts); 128 } 129 130 // TODO: This is a specific form of a much more general pattern. 131 // We could detect a select with any binop identity constant, or we 132 // could use SimplifyBinOp to see if either arm of the select reduces. 133 // But that needs to be done carefully and/or while removing potential 134 // reverse canonicalizations as in InstCombiner::foldSelectIntoOp(). 135 static Value *foldMulSelectToNegate(BinaryOperator &I, 136 InstCombiner::BuilderTy &Builder) { 137 Value *Cond, *OtherOp; 138 139 // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp 140 // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp 141 if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())), 142 m_Value(OtherOp)))) 143 return Builder.CreateSelect(Cond, OtherOp, Builder.CreateNeg(OtherOp)); 144 145 // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp 146 // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp 147 if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())), 148 m_Value(OtherOp)))) 149 return Builder.CreateSelect(Cond, Builder.CreateNeg(OtherOp), OtherOp); 150 151 // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp 152 // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp 153 if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0), 154 m_SpecificFP(-1.0))), 155 m_Value(OtherOp)))) { 156 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 157 Builder.setFastMathFlags(I.getFastMathFlags()); 158 return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp)); 159 } 160 161 // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp 162 // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp 163 if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0), 164 m_SpecificFP(1.0))), 165 m_Value(OtherOp)))) { 166 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 167 Builder.setFastMathFlags(I.getFastMathFlags()); 168 return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp); 169 } 170 171 return nullptr; 172 } 173 174 Instruction *InstCombiner::visitMul(BinaryOperator &I) { 175 if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1), 176 SQ.getWithInstruction(&I))) 177 return replaceInstUsesWith(I, V); 178 179 if (SimplifyAssociativeOrCommutative(I)) 180 return &I; 181 182 if (Instruction *X = foldVectorBinop(I)) 183 return X; 184 185 if (Value *V = SimplifyUsingDistributiveLaws(I)) 186 return replaceInstUsesWith(I, V); 187 188 // X * -1 == 0 - X 189 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 190 if (match(Op1, m_AllOnes())) { 191 BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName()); 192 if (I.hasNoSignedWrap()) 193 BO->setHasNoSignedWrap(); 194 return BO; 195 } 196 197 // Also allow combining multiply instructions on vectors. 198 { 199 Value *NewOp; 200 Constant *C1, *C2; 201 const APInt *IVal; 202 if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)), 203 m_Constant(C1))) && 204 match(C1, m_APInt(IVal))) { 205 // ((X << C2)*C1) == (X * (C1 << C2)) 206 Constant *Shl = ConstantExpr::getShl(C1, C2); 207 BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0)); 208 BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl); 209 if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap()) 210 BO->setHasNoUnsignedWrap(); 211 if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() && 212 Shl->isNotMinSignedValue()) 213 BO->setHasNoSignedWrap(); 214 return BO; 215 } 216 217 if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) { 218 // Replace X*(2^C) with X << C, where C is either a scalar or a vector. 219 if (Constant *NewCst = getLogBase2(NewOp->getType(), C1)) { 220 BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst); 221 222 if (I.hasNoUnsignedWrap()) 223 Shl->setHasNoUnsignedWrap(); 224 if (I.hasNoSignedWrap()) { 225 const APInt *V; 226 if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1) 227 Shl->setHasNoSignedWrap(); 228 } 229 230 return Shl; 231 } 232 } 233 } 234 235 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 236 // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n 237 // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n 238 // The "* (2**n)" thus becomes a potential shifting opportunity. 239 { 240 const APInt & Val = CI->getValue(); 241 const APInt &PosVal = Val.abs(); 242 if (Val.isNegative() && PosVal.isPowerOf2()) { 243 Value *X = nullptr, *Y = nullptr; 244 if (Op0->hasOneUse()) { 245 ConstantInt *C1; 246 Value *Sub = nullptr; 247 if (match(Op0, m_Sub(m_Value(Y), m_Value(X)))) 248 Sub = Builder.CreateSub(X, Y, "suba"); 249 else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1)))) 250 Sub = Builder.CreateSub(Builder.CreateNeg(C1), Y, "subc"); 251 if (Sub) 252 return 253 BinaryOperator::CreateMul(Sub, 254 ConstantInt::get(Y->getType(), PosVal)); 255 } 256 } 257 } 258 } 259 260 if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I)) 261 return FoldedMul; 262 263 if (Value *FoldedMul = foldMulSelectToNegate(I, Builder)) 264 return replaceInstUsesWith(I, FoldedMul); 265 266 // Simplify mul instructions with a constant RHS. 267 if (isa<Constant>(Op1)) { 268 // Canonicalize (X+C1)*CI -> X*CI+C1*CI. 269 Value *X; 270 Constant *C1; 271 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) { 272 Value *Mul = Builder.CreateMul(C1, Op1); 273 // Only go forward with the transform if C1*CI simplifies to a tidier 274 // constant. 275 if (!match(Mul, m_Mul(m_Value(), m_Value()))) 276 return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul); 277 } 278 } 279 280 // abs(X) * abs(X) -> X * X 281 // nabs(X) * nabs(X) -> X * X 282 if (Op0 == Op1) { 283 Value *X, *Y; 284 SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor; 285 if (SPF == SPF_ABS || SPF == SPF_NABS) 286 return BinaryOperator::CreateMul(X, X); 287 } 288 289 // -X * C --> X * -C 290 Value *X, *Y; 291 Constant *Op1C; 292 if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C))) 293 return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C)); 294 295 // -X * -Y --> X * Y 296 if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) { 297 auto *NewMul = BinaryOperator::CreateMul(X, Y); 298 if (I.hasNoSignedWrap() && 299 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() && 300 cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap()) 301 NewMul->setHasNoSignedWrap(); 302 return NewMul; 303 } 304 305 // -X * Y --> -(X * Y) 306 // X * -Y --> -(X * Y) 307 if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y)))) 308 return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y)); 309 310 // (X / Y) * Y = X - (X % Y) 311 // (X / Y) * -Y = (X % Y) - X 312 { 313 Value *Y = Op1; 314 BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0); 315 if (!Div || (Div->getOpcode() != Instruction::UDiv && 316 Div->getOpcode() != Instruction::SDiv)) { 317 Y = Op0; 318 Div = dyn_cast<BinaryOperator>(Op1); 319 } 320 Value *Neg = dyn_castNegVal(Y); 321 if (Div && Div->hasOneUse() && 322 (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) && 323 (Div->getOpcode() == Instruction::UDiv || 324 Div->getOpcode() == Instruction::SDiv)) { 325 Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1); 326 327 // If the division is exact, X % Y is zero, so we end up with X or -X. 328 if (Div->isExact()) { 329 if (DivOp1 == Y) 330 return replaceInstUsesWith(I, X); 331 return BinaryOperator::CreateNeg(X); 332 } 333 334 auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem 335 : Instruction::SRem; 336 Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1); 337 if (DivOp1 == Y) 338 return BinaryOperator::CreateSub(X, Rem); 339 return BinaryOperator::CreateSub(Rem, X); 340 } 341 } 342 343 /// i1 mul -> i1 and. 344 if (I.getType()->isIntOrIntVectorTy(1)) 345 return BinaryOperator::CreateAnd(Op0, Op1); 346 347 // X*(1 << Y) --> X << Y 348 // (1 << Y)*X --> X << Y 349 { 350 Value *Y; 351 BinaryOperator *BO = nullptr; 352 bool ShlNSW = false; 353 if (match(Op0, m_Shl(m_One(), m_Value(Y)))) { 354 BO = BinaryOperator::CreateShl(Op1, Y); 355 ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap(); 356 } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) { 357 BO = BinaryOperator::CreateShl(Op0, Y); 358 ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap(); 359 } 360 if (BO) { 361 if (I.hasNoUnsignedWrap()) 362 BO->setHasNoUnsignedWrap(); 363 if (I.hasNoSignedWrap() && ShlNSW) 364 BO->setHasNoSignedWrap(); 365 return BO; 366 } 367 } 368 369 // (zext bool X) * (zext bool Y) --> zext (and X, Y) 370 // (sext bool X) * (sext bool Y) --> zext (and X, Y) 371 // Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same) 372 if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) || 373 (match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) && 374 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() && 375 (Op0->hasOneUse() || Op1->hasOneUse())) { 376 Value *And = Builder.CreateAnd(X, Y, "mulbool"); 377 return CastInst::Create(Instruction::ZExt, And, I.getType()); 378 } 379 // (sext bool X) * (zext bool Y) --> sext (and X, Y) 380 // (zext bool X) * (sext bool Y) --> sext (and X, Y) 381 // Note: -1 * 1 == 1 * -1 == -1 382 if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) || 383 (match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) && 384 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() && 385 (Op0->hasOneUse() || Op1->hasOneUse())) { 386 Value *And = Builder.CreateAnd(X, Y, "mulbool"); 387 return CastInst::Create(Instruction::SExt, And, I.getType()); 388 } 389 390 // (bool X) * Y --> X ? Y : 0 391 // Y * (bool X) --> X ? Y : 0 392 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 393 return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0)); 394 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 395 return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0)); 396 397 // (lshr X, 31) * Y --> (ashr X, 31) & Y 398 // Y * (lshr X, 31) --> (ashr X, 31) & Y 399 // TODO: We are not checking one-use because the elimination of the multiply 400 // is better for analysis? 401 // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be 402 // more similar to what we're doing above. 403 const APInt *C; 404 if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1) 405 return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1); 406 if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1) 407 return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0); 408 409 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 410 return Ext; 411 412 bool Changed = false; 413 if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) { 414 Changed = true; 415 I.setHasNoSignedWrap(true); 416 } 417 418 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) { 419 Changed = true; 420 I.setHasNoUnsignedWrap(true); 421 } 422 423 return Changed ? &I : nullptr; 424 } 425 426 Instruction *InstCombiner::foldFPSignBitOps(BinaryOperator &I) { 427 BinaryOperator::BinaryOps Opcode = I.getOpcode(); 428 assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) && 429 "Expected fmul or fdiv"); 430 431 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 432 Value *X, *Y; 433 434 // -X * -Y --> X * Y 435 // -X / -Y --> X / Y 436 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 437 return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I); 438 439 // fabs(X) * fabs(X) -> X * X 440 // fabs(X) / fabs(X) -> X / X 441 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::fabs>(m_Value(X)))) 442 return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I); 443 444 // fabs(X) * fabs(Y) --> fabs(X * Y) 445 // fabs(X) / fabs(Y) --> fabs(X / Y) 446 if (match(Op0, m_Intrinsic<Intrinsic::fabs>(m_Value(X))) && 447 match(Op1, m_Intrinsic<Intrinsic::fabs>(m_Value(Y))) && 448 (Op0->hasOneUse() || Op1->hasOneUse())) { 449 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 450 Builder.setFastMathFlags(I.getFastMathFlags()); 451 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 452 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY); 453 Fabs->takeName(&I); 454 return replaceInstUsesWith(I, Fabs); 455 } 456 457 return nullptr; 458 } 459 460 Instruction *InstCombiner::visitFMul(BinaryOperator &I) { 461 if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1), 462 I.getFastMathFlags(), 463 SQ.getWithInstruction(&I))) 464 return replaceInstUsesWith(I, V); 465 466 if (SimplifyAssociativeOrCommutative(I)) 467 return &I; 468 469 if (Instruction *X = foldVectorBinop(I)) 470 return X; 471 472 if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I)) 473 return FoldedMul; 474 475 if (Value *FoldedMul = foldMulSelectToNegate(I, Builder)) 476 return replaceInstUsesWith(I, FoldedMul); 477 478 if (Instruction *R = foldFPSignBitOps(I)) 479 return R; 480 481 // X * -1.0 --> -X 482 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 483 if (match(Op1, m_SpecificFP(-1.0))) 484 return UnaryOperator::CreateFNegFMF(Op0, &I); 485 486 // -X * C --> X * -C 487 Value *X, *Y; 488 Constant *C; 489 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C))) 490 return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I); 491 492 // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E) 493 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) 494 return replaceInstUsesWith(I, V); 495 496 if (I.hasAllowReassoc()) { 497 // Reassociate constant RHS with another constant to form constant 498 // expression. 499 if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) { 500 Constant *C1; 501 if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) { 502 // (C1 / X) * C --> (C * C1) / X 503 Constant *CC1 = ConstantExpr::getFMul(C, C1); 504 if (CC1->isNormalFP()) 505 return BinaryOperator::CreateFDivFMF(CC1, X, &I); 506 } 507 if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) { 508 // (X / C1) * C --> X * (C / C1) 509 Constant *CDivC1 = ConstantExpr::getFDiv(C, C1); 510 if (CDivC1->isNormalFP()) 511 return BinaryOperator::CreateFMulFMF(X, CDivC1, &I); 512 513 // If the constant was a denormal, try reassociating differently. 514 // (X / C1) * C --> X / (C1 / C) 515 Constant *C1DivC = ConstantExpr::getFDiv(C1, C); 516 if (Op0->hasOneUse() && C1DivC->isNormalFP()) 517 return BinaryOperator::CreateFDivFMF(X, C1DivC, &I); 518 } 519 520 // We do not need to match 'fadd C, X' and 'fsub X, C' because they are 521 // canonicalized to 'fadd X, C'. Distributing the multiply may allow 522 // further folds and (X * C) + C2 is 'fma'. 523 if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) { 524 // (X + C1) * C --> (X * C) + (C * C1) 525 Constant *CC1 = ConstantExpr::getFMul(C, C1); 526 Value *XC = Builder.CreateFMulFMF(X, C, &I); 527 return BinaryOperator::CreateFAddFMF(XC, CC1, &I); 528 } 529 if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) { 530 // (C1 - X) * C --> (C * C1) - (X * C) 531 Constant *CC1 = ConstantExpr::getFMul(C, C1); 532 Value *XC = Builder.CreateFMulFMF(X, C, &I); 533 return BinaryOperator::CreateFSubFMF(CC1, XC, &I); 534 } 535 } 536 537 Value *Z; 538 if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))), 539 m_Value(Z)))) { 540 // Sink division: (X / Y) * Z --> (X * Z) / Y 541 Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I); 542 return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I); 543 } 544 545 // sqrt(X) * sqrt(Y) -> sqrt(X * Y) 546 // nnan disallows the possibility of returning a number if both operands are 547 // negative (in that case, we should return NaN). 548 if (I.hasNoNaNs() && 549 match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) && 550 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) { 551 Value *XY = Builder.CreateFMulFMF(X, Y, &I); 552 Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I); 553 return replaceInstUsesWith(I, Sqrt); 554 } 555 556 // Like the similar transform in instsimplify, this requires 'nsz' because 557 // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0. 558 if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 && 559 Op0->hasNUses(2)) { 560 // Peek through fdiv to find squaring of square root: 561 // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y 562 if (match(Op0, m_FDiv(m_Value(X), 563 m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) { 564 Value *XX = Builder.CreateFMulFMF(X, X, &I); 565 return BinaryOperator::CreateFDivFMF(XX, Y, &I); 566 } 567 // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X) 568 if (match(Op0, m_FDiv(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y)), 569 m_Value(X)))) { 570 Value *XX = Builder.CreateFMulFMF(X, X, &I); 571 return BinaryOperator::CreateFDivFMF(Y, XX, &I); 572 } 573 } 574 575 // exp(X) * exp(Y) -> exp(X + Y) 576 // Match as long as at least one of exp has only one use. 577 if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) && 578 match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y))) && 579 (Op0->hasOneUse() || Op1->hasOneUse())) { 580 Value *XY = Builder.CreateFAddFMF(X, Y, &I); 581 Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I); 582 return replaceInstUsesWith(I, Exp); 583 } 584 585 // exp2(X) * exp2(Y) -> exp2(X + Y) 586 // Match as long as at least one of exp2 has only one use. 587 if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) && 588 match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y))) && 589 (Op0->hasOneUse() || Op1->hasOneUse())) { 590 Value *XY = Builder.CreateFAddFMF(X, Y, &I); 591 Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I); 592 return replaceInstUsesWith(I, Exp2); 593 } 594 595 // (X*Y) * X => (X*X) * Y where Y != X 596 // The purpose is two-fold: 597 // 1) to form a power expression (of X). 598 // 2) potentially shorten the critical path: After transformation, the 599 // latency of the instruction Y is amortized by the expression of X*X, 600 // and therefore Y is in a "less critical" position compared to what it 601 // was before the transformation. 602 if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) && 603 Op1 != Y) { 604 Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I); 605 return BinaryOperator::CreateFMulFMF(XX, Y, &I); 606 } 607 if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) && 608 Op0 != Y) { 609 Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I); 610 return BinaryOperator::CreateFMulFMF(XX, Y, &I); 611 } 612 } 613 614 // log2(X * 0.5) * Y = log2(X) * Y - Y 615 if (I.isFast()) { 616 IntrinsicInst *Log2 = nullptr; 617 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>( 618 m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) { 619 Log2 = cast<IntrinsicInst>(Op0); 620 Y = Op1; 621 } 622 if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>( 623 m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) { 624 Log2 = cast<IntrinsicInst>(Op1); 625 Y = Op0; 626 } 627 if (Log2) { 628 Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I); 629 Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I); 630 return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I); 631 } 632 } 633 634 return nullptr; 635 } 636 637 /// Fold a divide or remainder with a select instruction divisor when one of the 638 /// select operands is zero. In that case, we can use the other select operand 639 /// because div/rem by zero is undefined. 640 bool InstCombiner::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) { 641 SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1)); 642 if (!SI) 643 return false; 644 645 int NonNullOperand; 646 if (match(SI->getTrueValue(), m_Zero())) 647 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y 648 NonNullOperand = 2; 649 else if (match(SI->getFalseValue(), m_Zero())) 650 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y 651 NonNullOperand = 1; 652 else 653 return false; 654 655 // Change the div/rem to use 'Y' instead of the select. 656 replaceOperand(I, 1, SI->getOperand(NonNullOperand)); 657 658 // Okay, we know we replace the operand of the div/rem with 'Y' with no 659 // problem. However, the select, or the condition of the select may have 660 // multiple uses. Based on our knowledge that the operand must be non-zero, 661 // propagate the known value for the select into other uses of it, and 662 // propagate a known value of the condition into its other users. 663 664 // If the select and condition only have a single use, don't bother with this, 665 // early exit. 666 Value *SelectCond = SI->getCondition(); 667 if (SI->use_empty() && SelectCond->hasOneUse()) 668 return true; 669 670 // Scan the current block backward, looking for other uses of SI. 671 BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin(); 672 Type *CondTy = SelectCond->getType(); 673 while (BBI != BBFront) { 674 --BBI; 675 // If we found an instruction that we can't assume will return, so 676 // information from below it cannot be propagated above it. 677 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI)) 678 break; 679 680 // Replace uses of the select or its condition with the known values. 681 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end(); 682 I != E; ++I) { 683 if (*I == SI) { 684 replaceUse(*I, SI->getOperand(NonNullOperand)); 685 Worklist.push(&*BBI); 686 } else if (*I == SelectCond) { 687 replaceUse(*I, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy) 688 : ConstantInt::getFalse(CondTy)); 689 Worklist.push(&*BBI); 690 } 691 } 692 693 // If we past the instruction, quit looking for it. 694 if (&*BBI == SI) 695 SI = nullptr; 696 if (&*BBI == SelectCond) 697 SelectCond = nullptr; 698 699 // If we ran out of things to eliminate, break out of the loop. 700 if (!SelectCond && !SI) 701 break; 702 703 } 704 return true; 705 } 706 707 /// True if the multiply can not be expressed in an int this size. 708 static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product, 709 bool IsSigned) { 710 bool Overflow; 711 Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow); 712 return Overflow; 713 } 714 715 /// True if C1 is a multiple of C2. Quotient contains C1/C2. 716 static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient, 717 bool IsSigned) { 718 assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal"); 719 720 // Bail if we will divide by zero. 721 if (C2.isNullValue()) 722 return false; 723 724 // Bail if we would divide INT_MIN by -1. 725 if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue()) 726 return false; 727 728 APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned); 729 if (IsSigned) 730 APInt::sdivrem(C1, C2, Quotient, Remainder); 731 else 732 APInt::udivrem(C1, C2, Quotient, Remainder); 733 734 return Remainder.isMinValue(); 735 } 736 737 /// This function implements the transforms common to both integer division 738 /// instructions (udiv and sdiv). It is called by the visitors to those integer 739 /// division instructions. 740 /// Common integer divide transforms 741 Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) { 742 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 743 bool IsSigned = I.getOpcode() == Instruction::SDiv; 744 Type *Ty = I.getType(); 745 746 // The RHS is known non-zero. 747 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) 748 return replaceOperand(I, 1, V); 749 750 // Handle cases involving: [su]div X, (select Cond, Y, Z) 751 // This does not apply for fdiv. 752 if (simplifyDivRemOfSelectWithZeroOp(I)) 753 return &I; 754 755 const APInt *C2; 756 if (match(Op1, m_APInt(C2))) { 757 Value *X; 758 const APInt *C1; 759 760 // (X / C1) / C2 -> X / (C1*C2) 761 if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) || 762 (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) { 763 APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned); 764 if (!multiplyOverflows(*C1, *C2, Product, IsSigned)) 765 return BinaryOperator::Create(I.getOpcode(), X, 766 ConstantInt::get(Ty, Product)); 767 } 768 769 if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) || 770 (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) { 771 APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned); 772 773 // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1. 774 if (isMultiple(*C2, *C1, Quotient, IsSigned)) { 775 auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X, 776 ConstantInt::get(Ty, Quotient)); 777 NewDiv->setIsExact(I.isExact()); 778 return NewDiv; 779 } 780 781 // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2. 782 if (isMultiple(*C1, *C2, Quotient, IsSigned)) { 783 auto *Mul = BinaryOperator::Create(Instruction::Mul, X, 784 ConstantInt::get(Ty, Quotient)); 785 auto *OBO = cast<OverflowingBinaryOperator>(Op0); 786 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap()); 787 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap()); 788 return Mul; 789 } 790 } 791 792 if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) && 793 *C1 != C1->getBitWidth() - 1) || 794 (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))))) { 795 APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned); 796 APInt C1Shifted = APInt::getOneBitSet( 797 C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue())); 798 799 // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1. 800 if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) { 801 auto *BO = BinaryOperator::Create(I.getOpcode(), X, 802 ConstantInt::get(Ty, Quotient)); 803 BO->setIsExact(I.isExact()); 804 return BO; 805 } 806 807 // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2. 808 if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) { 809 auto *Mul = BinaryOperator::Create(Instruction::Mul, X, 810 ConstantInt::get(Ty, Quotient)); 811 auto *OBO = cast<OverflowingBinaryOperator>(Op0); 812 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap()); 813 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap()); 814 return Mul; 815 } 816 } 817 818 if (!C2->isNullValue()) // avoid X udiv 0 819 if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I)) 820 return FoldedDiv; 821 } 822 823 if (match(Op0, m_One())) { 824 assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?"); 825 if (IsSigned) { 826 // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the 827 // result is one, if Op1 is -1 then the result is minus one, otherwise 828 // it's zero. 829 Value *Inc = Builder.CreateAdd(Op1, Op0); 830 Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3)); 831 return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0)); 832 } else { 833 // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the 834 // result is one, otherwise it's zero. 835 return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty); 836 } 837 } 838 839 // See if we can fold away this div instruction. 840 if (SimplifyDemandedInstructionBits(I)) 841 return &I; 842 843 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y 844 Value *X, *Z; 845 if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1 846 if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) || 847 (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1))))) 848 return BinaryOperator::Create(I.getOpcode(), X, Op1); 849 850 // (X << Y) / X -> 1 << Y 851 Value *Y; 852 if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y)))) 853 return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y); 854 if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y)))) 855 return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y); 856 857 // X / (X * Y) -> 1 / Y if the multiplication does not overflow. 858 if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) { 859 bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap(); 860 bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap(); 861 if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) { 862 replaceOperand(I, 0, ConstantInt::get(Ty, 1)); 863 replaceOperand(I, 1, Y); 864 return &I; 865 } 866 } 867 868 return nullptr; 869 } 870 871 static const unsigned MaxDepth = 6; 872 873 namespace { 874 875 using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1, 876 const BinaryOperator &I, 877 InstCombiner &IC); 878 879 /// Used to maintain state for visitUDivOperand(). 880 struct UDivFoldAction { 881 /// Informs visitUDiv() how to fold this operand. This can be zero if this 882 /// action joins two actions together. 883 FoldUDivOperandCb FoldAction; 884 885 /// Which operand to fold. 886 Value *OperandToFold; 887 888 union { 889 /// The instruction returned when FoldAction is invoked. 890 Instruction *FoldResult; 891 892 /// Stores the LHS action index if this action joins two actions together. 893 size_t SelectLHSIdx; 894 }; 895 896 UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand) 897 : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {} 898 UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS) 899 : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {} 900 }; 901 902 } // end anonymous namespace 903 904 // X udiv 2^C -> X >> C 905 static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1, 906 const BinaryOperator &I, InstCombiner &IC) { 907 Constant *C1 = getLogBase2(Op0->getType(), cast<Constant>(Op1)); 908 if (!C1) 909 llvm_unreachable("Failed to constant fold udiv -> logbase2"); 910 BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1); 911 if (I.isExact()) 912 LShr->setIsExact(); 913 return LShr; 914 } 915 916 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2) 917 // X udiv (zext (C1 << N)), where C1 is "1<<C2" --> X >> (N+C2) 918 static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I, 919 InstCombiner &IC) { 920 Value *ShiftLeft; 921 if (!match(Op1, m_ZExt(m_Value(ShiftLeft)))) 922 ShiftLeft = Op1; 923 924 Constant *CI; 925 Value *N; 926 if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N)))) 927 llvm_unreachable("match should never fail here!"); 928 Constant *Log2Base = getLogBase2(N->getType(), CI); 929 if (!Log2Base) 930 llvm_unreachable("getLogBase2 should never fail here!"); 931 N = IC.Builder.CreateAdd(N, Log2Base); 932 if (Op1 != ShiftLeft) 933 N = IC.Builder.CreateZExt(N, Op1->getType()); 934 BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N); 935 if (I.isExact()) 936 LShr->setIsExact(); 937 return LShr; 938 } 939 940 // Recursively visits the possible right hand operands of a udiv 941 // instruction, seeing through select instructions, to determine if we can 942 // replace the udiv with something simpler. If we find that an operand is not 943 // able to simplify the udiv, we abort the entire transformation. 944 static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I, 945 SmallVectorImpl<UDivFoldAction> &Actions, 946 unsigned Depth = 0) { 947 // Check to see if this is an unsigned division with an exact power of 2, 948 // if so, convert to a right shift. 949 if (match(Op1, m_Power2())) { 950 Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1)); 951 return Actions.size(); 952 } 953 954 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2) 955 if (match(Op1, m_Shl(m_Power2(), m_Value())) || 956 match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) { 957 Actions.push_back(UDivFoldAction(foldUDivShl, Op1)); 958 return Actions.size(); 959 } 960 961 // The remaining tests are all recursive, so bail out if we hit the limit. 962 if (Depth++ == MaxDepth) 963 return 0; 964 965 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 966 if (size_t LHSIdx = 967 visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth)) 968 if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) { 969 Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1)); 970 return Actions.size(); 971 } 972 973 return 0; 974 } 975 976 /// If we have zero-extended operands of an unsigned div or rem, we may be able 977 /// to narrow the operation (sink the zext below the math). 978 static Instruction *narrowUDivURem(BinaryOperator &I, 979 InstCombiner::BuilderTy &Builder) { 980 Instruction::BinaryOps Opcode = I.getOpcode(); 981 Value *N = I.getOperand(0); 982 Value *D = I.getOperand(1); 983 Type *Ty = I.getType(); 984 Value *X, *Y; 985 if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) && 986 X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) { 987 // udiv (zext X), (zext Y) --> zext (udiv X, Y) 988 // urem (zext X), (zext Y) --> zext (urem X, Y) 989 Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y); 990 return new ZExtInst(NarrowOp, Ty); 991 } 992 993 Constant *C; 994 if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) || 995 (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) { 996 // If the constant is the same in the smaller type, use the narrow version. 997 Constant *TruncC = ConstantExpr::getTrunc(C, X->getType()); 998 if (ConstantExpr::getZExt(TruncC, Ty) != C) 999 return nullptr; 1000 1001 // udiv (zext X), C --> zext (udiv X, C') 1002 // urem (zext X), C --> zext (urem X, C') 1003 // udiv C, (zext X) --> zext (udiv C', X) 1004 // urem C, (zext X) --> zext (urem C', X) 1005 Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC) 1006 : Builder.CreateBinOp(Opcode, TruncC, X); 1007 return new ZExtInst(NarrowOp, Ty); 1008 } 1009 1010 return nullptr; 1011 } 1012 1013 Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { 1014 if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1), 1015 SQ.getWithInstruction(&I))) 1016 return replaceInstUsesWith(I, V); 1017 1018 if (Instruction *X = foldVectorBinop(I)) 1019 return X; 1020 1021 // Handle the integer div common cases 1022 if (Instruction *Common = commonIDivTransforms(I)) 1023 return Common; 1024 1025 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1026 Value *X; 1027 const APInt *C1, *C2; 1028 if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) { 1029 // (X lshr C1) udiv C2 --> X udiv (C2 << C1) 1030 bool Overflow; 1031 APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow); 1032 if (!Overflow) { 1033 bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value())); 1034 BinaryOperator *BO = BinaryOperator::CreateUDiv( 1035 X, ConstantInt::get(X->getType(), C2ShlC1)); 1036 if (IsExact) 1037 BO->setIsExact(); 1038 return BO; 1039 } 1040 } 1041 1042 // Op0 / C where C is large (negative) --> zext (Op0 >= C) 1043 // TODO: Could use isKnownNegative() to handle non-constant values. 1044 Type *Ty = I.getType(); 1045 if (match(Op1, m_Negative())) { 1046 Value *Cmp = Builder.CreateICmpUGE(Op0, Op1); 1047 return CastInst::CreateZExtOrBitCast(Cmp, Ty); 1048 } 1049 // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined) 1050 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 1051 Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty)); 1052 return CastInst::CreateZExtOrBitCast(Cmp, Ty); 1053 } 1054 1055 if (Instruction *NarrowDiv = narrowUDivURem(I, Builder)) 1056 return NarrowDiv; 1057 1058 // If the udiv operands are non-overflowing multiplies with a common operand, 1059 // then eliminate the common factor: 1060 // (A * B) / (A * X) --> B / X (and commuted variants) 1061 // TODO: The code would be reduced if we had m_c_NUWMul pattern matching. 1062 // TODO: If -reassociation handled this generally, we could remove this. 1063 Value *A, *B; 1064 if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) { 1065 if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) || 1066 match(Op1, m_NUWMul(m_Value(X), m_Specific(A)))) 1067 return BinaryOperator::CreateUDiv(B, X); 1068 if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) || 1069 match(Op1, m_NUWMul(m_Value(X), m_Specific(B)))) 1070 return BinaryOperator::CreateUDiv(A, X); 1071 } 1072 1073 // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...)))) 1074 SmallVector<UDivFoldAction, 6> UDivActions; 1075 if (visitUDivOperand(Op0, Op1, I, UDivActions)) 1076 for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) { 1077 FoldUDivOperandCb Action = UDivActions[i].FoldAction; 1078 Value *ActionOp1 = UDivActions[i].OperandToFold; 1079 Instruction *Inst; 1080 if (Action) 1081 Inst = Action(Op0, ActionOp1, I, *this); 1082 else { 1083 // This action joins two actions together. The RHS of this action is 1084 // simply the last action we processed, we saved the LHS action index in 1085 // the joining action. 1086 size_t SelectRHSIdx = i - 1; 1087 Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult; 1088 size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx; 1089 Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult; 1090 Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(), 1091 SelectLHS, SelectRHS); 1092 } 1093 1094 // If this is the last action to process, return it to the InstCombiner. 1095 // Otherwise, we insert it before the UDiv and record it so that we may 1096 // use it as part of a joining action (i.e., a SelectInst). 1097 if (e - i != 1) { 1098 Inst->insertBefore(&I); 1099 UDivActions[i].FoldResult = Inst; 1100 } else 1101 return Inst; 1102 } 1103 1104 return nullptr; 1105 } 1106 1107 Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { 1108 if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1), 1109 SQ.getWithInstruction(&I))) 1110 return replaceInstUsesWith(I, V); 1111 1112 if (Instruction *X = foldVectorBinop(I)) 1113 return X; 1114 1115 // Handle the integer div common cases 1116 if (Instruction *Common = commonIDivTransforms(I)) 1117 return Common; 1118 1119 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1120 Value *X; 1121 // sdiv Op0, -1 --> -Op0 1122 // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined) 1123 if (match(Op1, m_AllOnes()) || 1124 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1125 return BinaryOperator::CreateNeg(Op0); 1126 1127 // X / INT_MIN --> X == INT_MIN 1128 if (match(Op1, m_SignMask())) 1129 return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), I.getType()); 1130 1131 const APInt *Op1C; 1132 if (match(Op1, m_APInt(Op1C))) { 1133 // sdiv exact X, C --> ashr exact X, log2(C) 1134 if (I.isExact() && Op1C->isNonNegative() && Op1C->isPowerOf2()) { 1135 Value *ShAmt = ConstantInt::get(Op1->getType(), Op1C->exactLogBase2()); 1136 return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName()); 1137 } 1138 1139 // If the dividend is sign-extended and the constant divisor is small enough 1140 // to fit in the source type, shrink the division to the narrower type: 1141 // (sext X) sdiv C --> sext (X sdiv C) 1142 Value *Op0Src; 1143 if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) && 1144 Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) { 1145 1146 // In the general case, we need to make sure that the dividend is not the 1147 // minimum signed value because dividing that by -1 is UB. But here, we 1148 // know that the -1 divisor case is already handled above. 1149 1150 Constant *NarrowDivisor = 1151 ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType()); 1152 Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor); 1153 return new SExtInst(NarrowOp, Op0->getType()); 1154 } 1155 1156 // -X / C --> X / -C (if the negation doesn't overflow). 1157 // TODO: This could be enhanced to handle arbitrary vector constants by 1158 // checking if all elements are not the min-signed-val. 1159 if (!Op1C->isMinSignedValue() && 1160 match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) { 1161 Constant *NegC = ConstantInt::get(I.getType(), -(*Op1C)); 1162 Instruction *BO = BinaryOperator::CreateSDiv(X, NegC); 1163 BO->setIsExact(I.isExact()); 1164 return BO; 1165 } 1166 } 1167 1168 // -X / Y --> -(X / Y) 1169 Value *Y; 1170 if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y)))) 1171 return BinaryOperator::CreateNSWNeg( 1172 Builder.CreateSDiv(X, Y, I.getName(), I.isExact())); 1173 1174 // If the sign bits of both operands are zero (i.e. we can prove they are 1175 // unsigned inputs), turn this into a udiv. 1176 APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits())); 1177 if (MaskedValueIsZero(Op0, Mask, 0, &I)) { 1178 if (MaskedValueIsZero(Op1, Mask, 0, &I)) { 1179 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set 1180 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); 1181 BO->setIsExact(I.isExact()); 1182 return BO; 1183 } 1184 1185 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) { 1186 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y) 1187 // Safe because the only negative value (1 << Y) can take on is 1188 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have 1189 // the sign bit set. 1190 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); 1191 BO->setIsExact(I.isExact()); 1192 return BO; 1193 } 1194 } 1195 1196 return nullptr; 1197 } 1198 1199 /// Remove negation and try to convert division into multiplication. 1200 static Instruction *foldFDivConstantDivisor(BinaryOperator &I) { 1201 Constant *C; 1202 if (!match(I.getOperand(1), m_Constant(C))) 1203 return nullptr; 1204 1205 // -X / C --> X / -C 1206 Value *X; 1207 if (match(I.getOperand(0), m_FNeg(m_Value(X)))) 1208 return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I); 1209 1210 // If the constant divisor has an exact inverse, this is always safe. If not, 1211 // then we can still create a reciprocal if fast-math-flags allow it and the 1212 // constant is a regular number (not zero, infinite, or denormal). 1213 if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP()))) 1214 return nullptr; 1215 1216 // Disallow denormal constants because we don't know what would happen 1217 // on all targets. 1218 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that 1219 // denorms are flushed? 1220 auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C); 1221 if (!RecipC->isNormalFP()) 1222 return nullptr; 1223 1224 // X / C --> X * (1 / C) 1225 return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I); 1226 } 1227 1228 /// Remove negation and try to reassociate constant math. 1229 static Instruction *foldFDivConstantDividend(BinaryOperator &I) { 1230 Constant *C; 1231 if (!match(I.getOperand(0), m_Constant(C))) 1232 return nullptr; 1233 1234 // C / -X --> -C / X 1235 Value *X; 1236 if (match(I.getOperand(1), m_FNeg(m_Value(X)))) 1237 return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I); 1238 1239 if (!I.hasAllowReassoc() || !I.hasAllowReciprocal()) 1240 return nullptr; 1241 1242 // Try to reassociate C / X expressions where X includes another constant. 1243 Constant *C2, *NewC = nullptr; 1244 if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) { 1245 // C / (X * C2) --> (C / C2) / X 1246 NewC = ConstantExpr::getFDiv(C, C2); 1247 } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) { 1248 // C / (X / C2) --> (C * C2) / X 1249 NewC = ConstantExpr::getFMul(C, C2); 1250 } 1251 // Disallow denormal constants because we don't know what would happen 1252 // on all targets. 1253 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that 1254 // denorms are flushed? 1255 if (!NewC || !NewC->isNormalFP()) 1256 return nullptr; 1257 1258 return BinaryOperator::CreateFDivFMF(NewC, X, &I); 1259 } 1260 1261 Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { 1262 if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1), 1263 I.getFastMathFlags(), 1264 SQ.getWithInstruction(&I))) 1265 return replaceInstUsesWith(I, V); 1266 1267 if (Instruction *X = foldVectorBinop(I)) 1268 return X; 1269 1270 if (Instruction *R = foldFDivConstantDivisor(I)) 1271 return R; 1272 1273 if (Instruction *R = foldFDivConstantDividend(I)) 1274 return R; 1275 1276 if (Instruction *R = foldFPSignBitOps(I)) 1277 return R; 1278 1279 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1280 if (isa<Constant>(Op0)) 1281 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1282 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1283 return R; 1284 1285 if (isa<Constant>(Op1)) 1286 if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) 1287 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1288 return R; 1289 1290 if (I.hasAllowReassoc() && I.hasAllowReciprocal()) { 1291 Value *X, *Y; 1292 if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) && 1293 (!isa<Constant>(Y) || !isa<Constant>(Op1))) { 1294 // (X / Y) / Z => X / (Y * Z) 1295 Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I); 1296 return BinaryOperator::CreateFDivFMF(X, YZ, &I); 1297 } 1298 if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) && 1299 (!isa<Constant>(Y) || !isa<Constant>(Op0))) { 1300 // Z / (X / Y) => (Y * Z) / X 1301 Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I); 1302 return BinaryOperator::CreateFDivFMF(YZ, X, &I); 1303 } 1304 // Z / (1.0 / Y) => (Y * Z) 1305 // 1306 // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The 1307 // m_OneUse check is avoided because even in the case of the multiple uses 1308 // for 1.0/Y, the number of instructions remain the same and a division is 1309 // replaced by a multiplication. 1310 if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) 1311 return BinaryOperator::CreateFMulFMF(Y, Op0, &I); 1312 } 1313 1314 if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) { 1315 // sin(X) / cos(X) -> tan(X) 1316 // cos(X) / sin(X) -> 1/tan(X) (cotangent) 1317 Value *X; 1318 bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) && 1319 match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X))); 1320 bool IsCot = 1321 !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) && 1322 match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X))); 1323 1324 if ((IsTan || IsCot) && 1325 hasFloatFn(&TLI, I.getType(), LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) { 1326 IRBuilder<> B(&I); 1327 IRBuilder<>::FastMathFlagGuard FMFGuard(B); 1328 B.setFastMathFlags(I.getFastMathFlags()); 1329 AttributeList Attrs = 1330 cast<CallBase>(Op0)->getCalledFunction()->getAttributes(); 1331 Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf, 1332 LibFunc_tanl, B, Attrs); 1333 if (IsCot) 1334 Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res); 1335 return replaceInstUsesWith(I, Res); 1336 } 1337 } 1338 1339 // X / (X * Y) --> 1.0 / Y 1340 // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed. 1341 // We can ignore the possibility that X is infinity because INF/INF is NaN. 1342 Value *X, *Y; 1343 if (I.hasNoNaNs() && I.hasAllowReassoc() && 1344 match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) { 1345 replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0)); 1346 replaceOperand(I, 1, Y); 1347 return &I; 1348 } 1349 1350 // X / fabs(X) -> copysign(1.0, X) 1351 // fabs(X) / X -> copysign(1.0, X) 1352 if (I.hasNoNaNs() && I.hasNoInfs() && 1353 (match(&I, 1354 m_FDiv(m_Value(X), m_Intrinsic<Intrinsic::fabs>(m_Deferred(X)))) || 1355 match(&I, m_FDiv(m_Intrinsic<Intrinsic::fabs>(m_Value(X)), 1356 m_Deferred(X))))) { 1357 Value *V = Builder.CreateBinaryIntrinsic( 1358 Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I); 1359 return replaceInstUsesWith(I, V); 1360 } 1361 return nullptr; 1362 } 1363 1364 /// This function implements the transforms common to both integer remainder 1365 /// instructions (urem and srem). It is called by the visitors to those integer 1366 /// remainder instructions. 1367 /// Common integer remainder transforms 1368 Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) { 1369 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1370 1371 // The RHS is known non-zero. 1372 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) 1373 return replaceOperand(I, 1, V); 1374 1375 // Handle cases involving: rem X, (select Cond, Y, Z) 1376 if (simplifyDivRemOfSelectWithZeroOp(I)) 1377 return &I; 1378 1379 if (isa<Constant>(Op1)) { 1380 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) { 1381 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) { 1382 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1383 return R; 1384 } else if (auto *PN = dyn_cast<PHINode>(Op0I)) { 1385 const APInt *Op1Int; 1386 if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() && 1387 (I.getOpcode() == Instruction::URem || 1388 !Op1Int->isMinSignedValue())) { 1389 // foldOpIntoPhi will speculate instructions to the end of the PHI's 1390 // predecessor blocks, so do this only if we know the srem or urem 1391 // will not fault. 1392 if (Instruction *NV = foldOpIntoPhi(I, PN)) 1393 return NV; 1394 } 1395 } 1396 1397 // See if we can fold away this rem instruction. 1398 if (SimplifyDemandedInstructionBits(I)) 1399 return &I; 1400 } 1401 } 1402 1403 return nullptr; 1404 } 1405 1406 Instruction *InstCombiner::visitURem(BinaryOperator &I) { 1407 if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1), 1408 SQ.getWithInstruction(&I))) 1409 return replaceInstUsesWith(I, V); 1410 1411 if (Instruction *X = foldVectorBinop(I)) 1412 return X; 1413 1414 if (Instruction *common = commonIRemTransforms(I)) 1415 return common; 1416 1417 if (Instruction *NarrowRem = narrowUDivURem(I, Builder)) 1418 return NarrowRem; 1419 1420 // X urem Y -> X and Y-1, where Y is a power of 2, 1421 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1422 Type *Ty = I.getType(); 1423 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) { 1424 // This may increase instruction count, we don't enforce that Y is a 1425 // constant. 1426 Constant *N1 = Constant::getAllOnesValue(Ty); 1427 Value *Add = Builder.CreateAdd(Op1, N1); 1428 return BinaryOperator::CreateAnd(Op0, Add); 1429 } 1430 1431 // 1 urem X -> zext(X != 1) 1432 if (match(Op0, m_One())) { 1433 Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1)); 1434 return CastInst::CreateZExtOrBitCast(Cmp, Ty); 1435 } 1436 1437 // X urem C -> X < C ? X : X - C, where C >= signbit. 1438 if (match(Op1, m_Negative())) { 1439 Value *Cmp = Builder.CreateICmpULT(Op0, Op1); 1440 Value *Sub = Builder.CreateSub(Op0, Op1); 1441 return SelectInst::Create(Cmp, Op0, Sub); 1442 } 1443 1444 // If the divisor is a sext of a boolean, then the divisor must be max 1445 // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also 1446 // max unsigned value. In that case, the remainder is 0: 1447 // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0 1448 Value *X; 1449 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 1450 Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty)); 1451 return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0); 1452 } 1453 1454 return nullptr; 1455 } 1456 1457 Instruction *InstCombiner::visitSRem(BinaryOperator &I) { 1458 if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1), 1459 SQ.getWithInstruction(&I))) 1460 return replaceInstUsesWith(I, V); 1461 1462 if (Instruction *X = foldVectorBinop(I)) 1463 return X; 1464 1465 // Handle the integer rem common cases 1466 if (Instruction *Common = commonIRemTransforms(I)) 1467 return Common; 1468 1469 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1470 { 1471 const APInt *Y; 1472 // X % -Y -> X % Y 1473 if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue()) 1474 return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y)); 1475 } 1476 1477 // -X srem Y --> -(X srem Y) 1478 Value *X, *Y; 1479 if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y)))) 1480 return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y)); 1481 1482 // If the sign bits of both operands are zero (i.e. we can prove they are 1483 // unsigned inputs), turn this into a urem. 1484 APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits())); 1485 if (MaskedValueIsZero(Op1, Mask, 0, &I) && 1486 MaskedValueIsZero(Op0, Mask, 0, &I)) { 1487 // X srem Y -> X urem Y, iff X and Y don't have sign bit set 1488 return BinaryOperator::CreateURem(Op0, Op1, I.getName()); 1489 } 1490 1491 // If it's a constant vector, flip any negative values positive. 1492 if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) { 1493 Constant *C = cast<Constant>(Op1); 1494 unsigned VWidth = cast<VectorType>(C->getType())->getNumElements(); 1495 1496 bool hasNegative = false; 1497 bool hasMissing = false; 1498 for (unsigned i = 0; i != VWidth; ++i) { 1499 Constant *Elt = C->getAggregateElement(i); 1500 if (!Elt) { 1501 hasMissing = true; 1502 break; 1503 } 1504 1505 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt)) 1506 if (RHS->isNegative()) 1507 hasNegative = true; 1508 } 1509 1510 if (hasNegative && !hasMissing) { 1511 SmallVector<Constant *, 16> Elts(VWidth); 1512 for (unsigned i = 0; i != VWidth; ++i) { 1513 Elts[i] = C->getAggregateElement(i); // Handle undef, etc. 1514 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) { 1515 if (RHS->isNegative()) 1516 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS)); 1517 } 1518 } 1519 1520 Constant *NewRHSV = ConstantVector::get(Elts); 1521 if (NewRHSV != C) // Don't loop on -MININT 1522 return replaceOperand(I, 1, NewRHSV); 1523 } 1524 } 1525 1526 return nullptr; 1527 } 1528 1529 Instruction *InstCombiner::visitFRem(BinaryOperator &I) { 1530 if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1), 1531 I.getFastMathFlags(), 1532 SQ.getWithInstruction(&I))) 1533 return replaceInstUsesWith(I, V); 1534 1535 if (Instruction *X = foldVectorBinop(I)) 1536 return X; 1537 1538 return nullptr; 1539 } 1540