1 //===- InstCombineMulDivRem.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv, 10 // srem, urem, frem. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/InstrTypes.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/Operator.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/IR/Type.h" 30 #include "llvm/IR/Value.h" 31 #include "llvm/Support/Casting.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Transforms/InstCombine/InstCombiner.h" 34 #include "llvm/Transforms/Utils/BuildLibCalls.h" 35 #include <cassert> 36 37 #define DEBUG_TYPE "instcombine" 38 #include "llvm/Transforms/Utils/InstructionWorklist.h" 39 40 using namespace llvm; 41 using namespace PatternMatch; 42 43 /// The specific integer value is used in a context where it is known to be 44 /// non-zero. If this allows us to simplify the computation, do so and return 45 /// the new operand, otherwise return null. 46 static Value *simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC, 47 Instruction &CxtI) { 48 // If V has multiple uses, then we would have to do more analysis to determine 49 // if this is safe. For example, the use could be in dynamically unreached 50 // code. 51 if (!V->hasOneUse()) return nullptr; 52 53 bool MadeChange = false; 54 55 // ((1 << A) >>u B) --> (1 << (A-B)) 56 // Because V cannot be zero, we know that B is less than A. 57 Value *A = nullptr, *B = nullptr, *One = nullptr; 58 if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) && 59 match(One, m_One())) { 60 A = IC.Builder.CreateSub(A, B); 61 return IC.Builder.CreateShl(One, A); 62 } 63 64 // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it 65 // inexact. Similarly for <<. 66 BinaryOperator *I = dyn_cast<BinaryOperator>(V); 67 if (I && I->isLogicalShift() && 68 IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) { 69 // We know that this is an exact/nuw shift and that the input is a 70 // non-zero context as well. 71 if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) { 72 IC.replaceOperand(*I, 0, V2); 73 MadeChange = true; 74 } 75 76 if (I->getOpcode() == Instruction::LShr && !I->isExact()) { 77 I->setIsExact(); 78 MadeChange = true; 79 } 80 81 if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) { 82 I->setHasNoUnsignedWrap(); 83 MadeChange = true; 84 } 85 } 86 87 // TODO: Lots more we could do here: 88 // If V is a phi node, we can call this on each of its operands. 89 // "select cond, X, 0" can simplify to "X". 90 91 return MadeChange ? V : nullptr; 92 } 93 94 // TODO: This is a specific form of a much more general pattern. 95 // We could detect a select with any binop identity constant, or we 96 // could use SimplifyBinOp to see if either arm of the select reduces. 97 // But that needs to be done carefully and/or while removing potential 98 // reverse canonicalizations as in InstCombiner::foldSelectIntoOp(). 99 static Value *foldMulSelectToNegate(BinaryOperator &I, 100 InstCombiner::BuilderTy &Builder) { 101 Value *Cond, *OtherOp; 102 103 // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp 104 // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp 105 if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())), 106 m_Value(OtherOp)))) { 107 bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap(); 108 Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap); 109 return Builder.CreateSelect(Cond, OtherOp, Neg); 110 } 111 // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp 112 // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp 113 if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())), 114 m_Value(OtherOp)))) { 115 bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap(); 116 Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap); 117 return Builder.CreateSelect(Cond, Neg, OtherOp); 118 } 119 120 // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp 121 // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp 122 if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0), 123 m_SpecificFP(-1.0))), 124 m_Value(OtherOp)))) { 125 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 126 Builder.setFastMathFlags(I.getFastMathFlags()); 127 return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp)); 128 } 129 130 // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp 131 // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp 132 if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0), 133 m_SpecificFP(1.0))), 134 m_Value(OtherOp)))) { 135 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 136 Builder.setFastMathFlags(I.getFastMathFlags()); 137 return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp); 138 } 139 140 return nullptr; 141 } 142 143 /// Reduce integer multiplication patterns that contain a (+/-1 << Z) factor. 144 /// Callers are expected to call this twice to handle commuted patterns. 145 static Value *foldMulShl1(BinaryOperator &Mul, bool CommuteOperands, 146 InstCombiner::BuilderTy &Builder) { 147 Value *X = Mul.getOperand(0), *Y = Mul.getOperand(1); 148 if (CommuteOperands) 149 std::swap(X, Y); 150 151 const bool HasNSW = Mul.hasNoSignedWrap(); 152 const bool HasNUW = Mul.hasNoUnsignedWrap(); 153 154 // X * (1 << Z) --> X << Z 155 Value *Z; 156 if (match(Y, m_Shl(m_One(), m_Value(Z)))) { 157 bool PropagateNSW = HasNSW && cast<ShlOperator>(Y)->hasNoSignedWrap(); 158 return Builder.CreateShl(X, Z, Mul.getName(), HasNUW, PropagateNSW); 159 } 160 161 // Similar to above, but an increment of the shifted value becomes an add: 162 // X * ((1 << Z) + 1) --> (X * (1 << Z)) + X --> (X << Z) + X 163 // This increases uses of X, so it may require a freeze, but that is still 164 // expected to be an improvement because it removes the multiply. 165 BinaryOperator *Shift; 166 if (match(Y, m_OneUse(m_Add(m_BinOp(Shift), m_One()))) && 167 match(Shift, m_OneUse(m_Shl(m_One(), m_Value(Z))))) { 168 bool PropagateNSW = HasNSW && Shift->hasNoSignedWrap(); 169 Value *FrX = Builder.CreateFreeze(X, X->getName() + ".fr"); 170 Value *Shl = Builder.CreateShl(FrX, Z, "mulshl", HasNUW, PropagateNSW); 171 return Builder.CreateAdd(Shl, FrX, Mul.getName(), HasNUW, PropagateNSW); 172 } 173 174 // Similar to above, but a decrement of the shifted value is disguised as 175 // 'not' and becomes a sub: 176 // X * (~(-1 << Z)) --> X * ((1 << Z) - 1) --> (X << Z) - X 177 // This increases uses of X, so it may require a freeze, but that is still 178 // expected to be an improvement because it removes the multiply. 179 if (match(Y, m_OneUse(m_Not(m_OneUse(m_Shl(m_AllOnes(), m_Value(Z))))))) { 180 Value *FrX = Builder.CreateFreeze(X, X->getName() + ".fr"); 181 Value *Shl = Builder.CreateShl(FrX, Z, "mulshl"); 182 return Builder.CreateSub(Shl, FrX, Mul.getName()); 183 } 184 185 return nullptr; 186 } 187 188 static Value *takeLog2(IRBuilderBase &Builder, Value *Op, unsigned Depth, 189 bool AssumeNonZero, bool DoFold); 190 191 Instruction *InstCombinerImpl::visitMul(BinaryOperator &I) { 192 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 193 if (Value *V = 194 simplifyMulInst(Op0, Op1, I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 195 SQ.getWithInstruction(&I))) 196 return replaceInstUsesWith(I, V); 197 198 if (SimplifyAssociativeOrCommutative(I)) 199 return &I; 200 201 if (Instruction *X = foldVectorBinop(I)) 202 return X; 203 204 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 205 return Phi; 206 207 if (Value *V = foldUsingDistributiveLaws(I)) 208 return replaceInstUsesWith(I, V); 209 210 Type *Ty = I.getType(); 211 const unsigned BitWidth = Ty->getScalarSizeInBits(); 212 const bool HasNSW = I.hasNoSignedWrap(); 213 const bool HasNUW = I.hasNoUnsignedWrap(); 214 215 // X * -1 --> 0 - X 216 if (match(Op1, m_AllOnes())) { 217 return HasNSW ? BinaryOperator::CreateNSWNeg(Op0) 218 : BinaryOperator::CreateNeg(Op0); 219 } 220 221 // Also allow combining multiply instructions on vectors. 222 { 223 Value *NewOp; 224 Constant *C1, *C2; 225 const APInt *IVal; 226 if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)), 227 m_Constant(C1))) && 228 match(C1, m_APInt(IVal))) { 229 // ((X << C2)*C1) == (X * (C1 << C2)) 230 Constant *Shl = ConstantExpr::getShl(C1, C2); 231 BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0)); 232 BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl); 233 if (HasNUW && Mul->hasNoUnsignedWrap()) 234 BO->setHasNoUnsignedWrap(); 235 if (HasNSW && Mul->hasNoSignedWrap() && Shl->isNotMinSignedValue()) 236 BO->setHasNoSignedWrap(); 237 return BO; 238 } 239 240 if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) { 241 // Replace X*(2^C) with X << C, where C is either a scalar or a vector. 242 if (Constant *NewCst = ConstantExpr::getExactLogBase2(C1)) { 243 BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst); 244 245 if (HasNUW) 246 Shl->setHasNoUnsignedWrap(); 247 if (HasNSW) { 248 const APInt *V; 249 if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1) 250 Shl->setHasNoSignedWrap(); 251 } 252 253 return Shl; 254 } 255 } 256 } 257 258 if (Op0->hasOneUse() && match(Op1, m_NegatedPower2())) { 259 // Interpret X * (-1<<C) as (-X) * (1<<C) and try to sink the negation. 260 // The "* (1<<C)" thus becomes a potential shifting opportunity. 261 if (Value *NegOp0 = 262 Negator::Negate(/*IsNegation*/ true, HasNSW, Op0, *this)) { 263 auto *Op1C = cast<Constant>(Op1); 264 return replaceInstUsesWith( 265 I, Builder.CreateMul(NegOp0, ConstantExpr::getNeg(Op1C), "", 266 /* HasNUW */ false, 267 HasNSW && Op1C->isNotMinSignedValue())); 268 } 269 270 // Try to convert multiply of extended operand to narrow negate and shift 271 // for better analysis. 272 // This is valid if the shift amount (trailing zeros in the multiplier 273 // constant) clears more high bits than the bitwidth difference between 274 // source and destination types: 275 // ({z/s}ext X) * (-1<<C) --> (zext (-X)) << C 276 const APInt *NegPow2C; 277 Value *X; 278 if (match(Op0, m_ZExtOrSExt(m_Value(X))) && 279 match(Op1, m_APIntAllowUndef(NegPow2C))) { 280 unsigned SrcWidth = X->getType()->getScalarSizeInBits(); 281 unsigned ShiftAmt = NegPow2C->countr_zero(); 282 if (ShiftAmt >= BitWidth - SrcWidth) { 283 Value *N = Builder.CreateNeg(X, X->getName() + ".neg"); 284 Value *Z = Builder.CreateZExt(N, Ty, N->getName() + ".z"); 285 return BinaryOperator::CreateShl(Z, ConstantInt::get(Ty, ShiftAmt)); 286 } 287 } 288 } 289 290 if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I)) 291 return FoldedMul; 292 293 if (Value *FoldedMul = foldMulSelectToNegate(I, Builder)) 294 return replaceInstUsesWith(I, FoldedMul); 295 296 // Simplify mul instructions with a constant RHS. 297 Constant *MulC; 298 if (match(Op1, m_ImmConstant(MulC))) { 299 // Canonicalize (X+C1)*MulC -> X*MulC+C1*MulC. 300 // Canonicalize (X|C1)*MulC -> X*MulC+C1*MulC. 301 Value *X; 302 Constant *C1; 303 if (match(Op0, m_OneUse(m_AddLike(m_Value(X), m_ImmConstant(C1))))) { 304 // C1*MulC simplifies to a tidier constant. 305 Value *NewC = Builder.CreateMul(C1, MulC); 306 auto *BOp0 = cast<BinaryOperator>(Op0); 307 bool Op0NUW = 308 (BOp0->getOpcode() == Instruction::Or || BOp0->hasNoUnsignedWrap()); 309 Value *NewMul = Builder.CreateMul(X, MulC); 310 auto *BO = BinaryOperator::CreateAdd(NewMul, NewC); 311 if (HasNUW && Op0NUW) { 312 // If NewMulBO is constant we also can set BO to nuw. 313 if (auto *NewMulBO = dyn_cast<BinaryOperator>(NewMul)) 314 NewMulBO->setHasNoUnsignedWrap(); 315 BO->setHasNoUnsignedWrap(); 316 } 317 return BO; 318 } 319 } 320 321 // abs(X) * abs(X) -> X * X 322 // nabs(X) * nabs(X) -> X * X 323 if (Op0 == Op1) { 324 Value *X, *Y; 325 SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor; 326 if (SPF == SPF_ABS || SPF == SPF_NABS) 327 return BinaryOperator::CreateMul(X, X); 328 329 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) 330 return BinaryOperator::CreateMul(X, X); 331 } 332 333 { 334 Value *X, *Y; 335 // abs(X) * abs(Y) -> abs(X * Y) 336 if (I.hasNoSignedWrap() && 337 match(Op0, 338 m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One()))) && 339 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(Y), m_One())))) 340 return replaceInstUsesWith( 341 I, Builder.CreateBinaryIntrinsic(Intrinsic::abs, 342 Builder.CreateNSWMul(X, Y), 343 Builder.getTrue())); 344 } 345 346 // -X * C --> X * -C 347 Value *X, *Y; 348 Constant *Op1C; 349 if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C))) 350 return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C)); 351 352 // -X * -Y --> X * Y 353 if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) { 354 auto *NewMul = BinaryOperator::CreateMul(X, Y); 355 if (HasNSW && cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() && 356 cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap()) 357 NewMul->setHasNoSignedWrap(); 358 return NewMul; 359 } 360 361 // -X * Y --> -(X * Y) 362 // X * -Y --> -(X * Y) 363 if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y)))) 364 return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y)); 365 366 // (-X * Y) * -X --> (X * Y) * X 367 // (-X << Y) * -X --> (X << Y) * X 368 if (match(Op1, m_Neg(m_Value(X)))) { 369 if (Value *NegOp0 = Negator::Negate(false, /*IsNSW*/ false, Op0, *this)) 370 return BinaryOperator::CreateMul(NegOp0, X); 371 } 372 373 // (X / Y) * Y = X - (X % Y) 374 // (X / Y) * -Y = (X % Y) - X 375 { 376 Value *Y = Op1; 377 BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0); 378 if (!Div || (Div->getOpcode() != Instruction::UDiv && 379 Div->getOpcode() != Instruction::SDiv)) { 380 Y = Op0; 381 Div = dyn_cast<BinaryOperator>(Op1); 382 } 383 Value *Neg = dyn_castNegVal(Y); 384 if (Div && Div->hasOneUse() && 385 (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) && 386 (Div->getOpcode() == Instruction::UDiv || 387 Div->getOpcode() == Instruction::SDiv)) { 388 Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1); 389 390 // If the division is exact, X % Y is zero, so we end up with X or -X. 391 if (Div->isExact()) { 392 if (DivOp1 == Y) 393 return replaceInstUsesWith(I, X); 394 return BinaryOperator::CreateNeg(X); 395 } 396 397 auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem 398 : Instruction::SRem; 399 // X must be frozen because we are increasing its number of uses. 400 Value *XFreeze = Builder.CreateFreeze(X, X->getName() + ".fr"); 401 Value *Rem = Builder.CreateBinOp(RemOpc, XFreeze, DivOp1); 402 if (DivOp1 == Y) 403 return BinaryOperator::CreateSub(XFreeze, Rem); 404 return BinaryOperator::CreateSub(Rem, XFreeze); 405 } 406 } 407 408 // Fold the following two scenarios: 409 // 1) i1 mul -> i1 and. 410 // 2) X * Y --> X & Y, iff X, Y can be only {0,1}. 411 // Note: We could use known bits to generalize this and related patterns with 412 // shifts/truncs 413 if (Ty->isIntOrIntVectorTy(1) || 414 (match(Op0, m_And(m_Value(), m_One())) && 415 match(Op1, m_And(m_Value(), m_One())))) 416 return BinaryOperator::CreateAnd(Op0, Op1); 417 418 if (Value *R = foldMulShl1(I, /* CommuteOperands */ false, Builder)) 419 return replaceInstUsesWith(I, R); 420 if (Value *R = foldMulShl1(I, /* CommuteOperands */ true, Builder)) 421 return replaceInstUsesWith(I, R); 422 423 // (zext bool X) * (zext bool Y) --> zext (and X, Y) 424 // (sext bool X) * (sext bool Y) --> zext (and X, Y) 425 // Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same) 426 if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) || 427 (match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) && 428 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() && 429 (Op0->hasOneUse() || Op1->hasOneUse() || X == Y)) { 430 Value *And = Builder.CreateAnd(X, Y, "mulbool"); 431 return CastInst::Create(Instruction::ZExt, And, Ty); 432 } 433 // (sext bool X) * (zext bool Y) --> sext (and X, Y) 434 // (zext bool X) * (sext bool Y) --> sext (and X, Y) 435 // Note: -1 * 1 == 1 * -1 == -1 436 if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) || 437 (match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) && 438 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() && 439 (Op0->hasOneUse() || Op1->hasOneUse())) { 440 Value *And = Builder.CreateAnd(X, Y, "mulbool"); 441 return CastInst::Create(Instruction::SExt, And, Ty); 442 } 443 444 // (zext bool X) * Y --> X ? Y : 0 445 // Y * (zext bool X) --> X ? Y : 0 446 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 447 return SelectInst::Create(X, Op1, ConstantInt::getNullValue(Ty)); 448 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 449 return SelectInst::Create(X, Op0, ConstantInt::getNullValue(Ty)); 450 451 Constant *ImmC; 452 if (match(Op1, m_ImmConstant(ImmC))) { 453 // (sext bool X) * C --> X ? -C : 0 454 if (match(Op0, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 455 Constant *NegC = ConstantExpr::getNeg(ImmC); 456 return SelectInst::Create(X, NegC, ConstantInt::getNullValue(Ty)); 457 } 458 459 // (ashr i32 X, 31) * C --> (X < 0) ? -C : 0 460 const APInt *C; 461 if (match(Op0, m_OneUse(m_AShr(m_Value(X), m_APInt(C)))) && 462 *C == C->getBitWidth() - 1) { 463 Constant *NegC = ConstantExpr::getNeg(ImmC); 464 Value *IsNeg = Builder.CreateIsNeg(X, "isneg"); 465 return SelectInst::Create(IsNeg, NegC, ConstantInt::getNullValue(Ty)); 466 } 467 } 468 469 // (lshr X, 31) * Y --> (X < 0) ? Y : 0 470 // TODO: We are not checking one-use because the elimination of the multiply 471 // is better for analysis? 472 const APInt *C; 473 if (match(&I, m_c_BinOp(m_LShr(m_Value(X), m_APInt(C)), m_Value(Y))) && 474 *C == C->getBitWidth() - 1) { 475 Value *IsNeg = Builder.CreateIsNeg(X, "isneg"); 476 return SelectInst::Create(IsNeg, Y, ConstantInt::getNullValue(Ty)); 477 } 478 479 // (and X, 1) * Y --> (trunc X) ? Y : 0 480 if (match(&I, m_c_BinOp(m_OneUse(m_And(m_Value(X), m_One())), m_Value(Y)))) { 481 Value *Tr = Builder.CreateTrunc(X, CmpInst::makeCmpResultType(Ty)); 482 return SelectInst::Create(Tr, Y, ConstantInt::getNullValue(Ty)); 483 } 484 485 // ((ashr X, 31) | 1) * X --> abs(X) 486 // X * ((ashr X, 31) | 1) --> abs(X) 487 if (match(&I, m_c_BinOp(m_Or(m_AShr(m_Value(X), 488 m_SpecificIntAllowUndef(BitWidth - 1)), 489 m_One()), 490 m_Deferred(X)))) { 491 Value *Abs = Builder.CreateBinaryIntrinsic( 492 Intrinsic::abs, X, ConstantInt::getBool(I.getContext(), HasNSW)); 493 Abs->takeName(&I); 494 return replaceInstUsesWith(I, Abs); 495 } 496 497 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 498 return Ext; 499 500 if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I)) 501 return Res; 502 503 // (mul Op0 Op1): 504 // if Log2(Op0) folds away -> 505 // (shl Op1, Log2(Op0)) 506 // if Log2(Op1) folds away -> 507 // (shl Op0, Log2(Op1)) 508 if (takeLog2(Builder, Op0, /*Depth*/ 0, /*AssumeNonZero*/ false, 509 /*DoFold*/ false)) { 510 Value *Res = takeLog2(Builder, Op0, /*Depth*/ 0, /*AssumeNonZero*/ false, 511 /*DoFold*/ true); 512 BinaryOperator *Shl = BinaryOperator::CreateShl(Op1, Res); 513 // We can only propegate nuw flag. 514 Shl->setHasNoUnsignedWrap(HasNUW); 515 return Shl; 516 } 517 if (takeLog2(Builder, Op1, /*Depth*/ 0, /*AssumeNonZero*/ false, 518 /*DoFold*/ false)) { 519 Value *Res = takeLog2(Builder, Op1, /*Depth*/ 0, /*AssumeNonZero*/ false, 520 /*DoFold*/ true); 521 BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, Res); 522 // We can only propegate nuw flag. 523 Shl->setHasNoUnsignedWrap(HasNUW); 524 return Shl; 525 } 526 527 bool Changed = false; 528 if (!HasNSW && willNotOverflowSignedMul(Op0, Op1, I)) { 529 Changed = true; 530 I.setHasNoSignedWrap(true); 531 } 532 533 if (!HasNUW && willNotOverflowUnsignedMul(Op0, Op1, I)) { 534 Changed = true; 535 I.setHasNoUnsignedWrap(true); 536 } 537 538 return Changed ? &I : nullptr; 539 } 540 541 Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) { 542 BinaryOperator::BinaryOps Opcode = I.getOpcode(); 543 assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) && 544 "Expected fmul or fdiv"); 545 546 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 547 Value *X, *Y; 548 549 // -X * -Y --> X * Y 550 // -X / -Y --> X / Y 551 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 552 return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I); 553 554 // fabs(X) * fabs(X) -> X * X 555 // fabs(X) / fabs(X) -> X / X 556 if (Op0 == Op1 && match(Op0, m_FAbs(m_Value(X)))) 557 return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I); 558 559 // fabs(X) * fabs(Y) --> fabs(X * Y) 560 // fabs(X) / fabs(Y) --> fabs(X / Y) 561 if (match(Op0, m_FAbs(m_Value(X))) && match(Op1, m_FAbs(m_Value(Y))) && 562 (Op0->hasOneUse() || Op1->hasOneUse())) { 563 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 564 Builder.setFastMathFlags(I.getFastMathFlags()); 565 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 566 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY); 567 Fabs->takeName(&I); 568 return replaceInstUsesWith(I, Fabs); 569 } 570 571 return nullptr; 572 } 573 574 Instruction *InstCombinerImpl::foldFMulReassoc(BinaryOperator &I) { 575 Value *Op0 = I.getOperand(0); 576 Value *Op1 = I.getOperand(1); 577 Value *X, *Y; 578 Constant *C; 579 580 // Reassociate constant RHS with another constant to form constant 581 // expression. 582 if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) { 583 Constant *C1; 584 if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) { 585 // (C1 / X) * C --> (C * C1) / X 586 Constant *CC1 = 587 ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL); 588 if (CC1 && CC1->isNormalFP()) 589 return BinaryOperator::CreateFDivFMF(CC1, X, &I); 590 } 591 if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) { 592 // (X / C1) * C --> X * (C / C1) 593 Constant *CDivC1 = 594 ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C1, DL); 595 if (CDivC1 && CDivC1->isNormalFP()) 596 return BinaryOperator::CreateFMulFMF(X, CDivC1, &I); 597 598 // If the constant was a denormal, try reassociating differently. 599 // (X / C1) * C --> X / (C1 / C) 600 Constant *C1DivC = 601 ConstantFoldBinaryOpOperands(Instruction::FDiv, C1, C, DL); 602 if (C1DivC && Op0->hasOneUse() && C1DivC->isNormalFP()) 603 return BinaryOperator::CreateFDivFMF(X, C1DivC, &I); 604 } 605 606 // We do not need to match 'fadd C, X' and 'fsub X, C' because they are 607 // canonicalized to 'fadd X, C'. Distributing the multiply may allow 608 // further folds and (X * C) + C2 is 'fma'. 609 if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) { 610 // (X + C1) * C --> (X * C) + (C * C1) 611 if (Constant *CC1 = 612 ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL)) { 613 Value *XC = Builder.CreateFMulFMF(X, C, &I); 614 return BinaryOperator::CreateFAddFMF(XC, CC1, &I); 615 } 616 } 617 if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) { 618 // (C1 - X) * C --> (C * C1) - (X * C) 619 if (Constant *CC1 = 620 ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL)) { 621 Value *XC = Builder.CreateFMulFMF(X, C, &I); 622 return BinaryOperator::CreateFSubFMF(CC1, XC, &I); 623 } 624 } 625 } 626 627 Value *Z; 628 if (match(&I, 629 m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))), m_Value(Z)))) { 630 // Sink division: (X / Y) * Z --> (X * Z) / Y 631 Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I); 632 return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I); 633 } 634 635 // sqrt(X) * sqrt(Y) -> sqrt(X * Y) 636 // nnan disallows the possibility of returning a number if both operands are 637 // negative (in that case, we should return NaN). 638 if (I.hasNoNaNs() && match(Op0, m_OneUse(m_Sqrt(m_Value(X)))) && 639 match(Op1, m_OneUse(m_Sqrt(m_Value(Y))))) { 640 Value *XY = Builder.CreateFMulFMF(X, Y, &I); 641 Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I); 642 return replaceInstUsesWith(I, Sqrt); 643 } 644 645 // The following transforms are done irrespective of the number of uses 646 // for the expression "1.0/sqrt(X)". 647 // 1) 1.0/sqrt(X) * X -> X/sqrt(X) 648 // 2) X * 1.0/sqrt(X) -> X/sqrt(X) 649 // We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it 650 // has the necessary (reassoc) fast-math-flags. 651 if (I.hasNoSignedZeros() && 652 match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) && 653 match(Y, m_Sqrt(m_Value(X))) && Op1 == X) 654 return BinaryOperator::CreateFDivFMF(X, Y, &I); 655 if (I.hasNoSignedZeros() && 656 match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) && 657 match(Y, m_Sqrt(m_Value(X))) && Op0 == X) 658 return BinaryOperator::CreateFDivFMF(X, Y, &I); 659 660 // Like the similar transform in instsimplify, this requires 'nsz' because 661 // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0. 662 if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 && Op0->hasNUses(2)) { 663 // Peek through fdiv to find squaring of square root: 664 // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y 665 if (match(Op0, m_FDiv(m_Value(X), m_Sqrt(m_Value(Y))))) { 666 Value *XX = Builder.CreateFMulFMF(X, X, &I); 667 return BinaryOperator::CreateFDivFMF(XX, Y, &I); 668 } 669 // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X) 670 if (match(Op0, m_FDiv(m_Sqrt(m_Value(Y)), m_Value(X)))) { 671 Value *XX = Builder.CreateFMulFMF(X, X, &I); 672 return BinaryOperator::CreateFDivFMF(Y, XX, &I); 673 } 674 } 675 676 // pow(X, Y) * X --> pow(X, Y+1) 677 // X * pow(X, Y) --> pow(X, Y+1) 678 if (match(&I, m_c_FMul(m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Value(X), 679 m_Value(Y))), 680 m_Deferred(X)))) { 681 Value *Y1 = Builder.CreateFAddFMF(Y, ConstantFP::get(I.getType(), 1.0), &I); 682 Value *Pow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, Y1, &I); 683 return replaceInstUsesWith(I, Pow); 684 } 685 686 if (I.isOnlyUserOfAnyOperand()) { 687 // pow(X, Y) * pow(X, Z) -> pow(X, Y + Z) 688 if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) && 689 match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) { 690 auto *YZ = Builder.CreateFAddFMF(Y, Z, &I); 691 auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I); 692 return replaceInstUsesWith(I, NewPow); 693 } 694 // pow(X, Y) * pow(Z, Y) -> pow(X * Z, Y) 695 if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) && 696 match(Op1, m_Intrinsic<Intrinsic::pow>(m_Value(Z), m_Specific(Y)))) { 697 auto *XZ = Builder.CreateFMulFMF(X, Z, &I); 698 auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, XZ, Y, &I); 699 return replaceInstUsesWith(I, NewPow); 700 } 701 702 // powi(x, y) * powi(x, z) -> powi(x, y + z) 703 if (match(Op0, m_Intrinsic<Intrinsic::powi>(m_Value(X), m_Value(Y))) && 704 match(Op1, m_Intrinsic<Intrinsic::powi>(m_Specific(X), m_Value(Z))) && 705 Y->getType() == Z->getType()) { 706 auto *YZ = Builder.CreateAdd(Y, Z); 707 auto *NewPow = Builder.CreateIntrinsic( 708 Intrinsic::powi, {X->getType(), YZ->getType()}, {X, YZ}, &I); 709 return replaceInstUsesWith(I, NewPow); 710 } 711 712 // exp(X) * exp(Y) -> exp(X + Y) 713 if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) && 714 match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) { 715 Value *XY = Builder.CreateFAddFMF(X, Y, &I); 716 Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I); 717 return replaceInstUsesWith(I, Exp); 718 } 719 720 // exp2(X) * exp2(Y) -> exp2(X + Y) 721 if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) && 722 match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) { 723 Value *XY = Builder.CreateFAddFMF(X, Y, &I); 724 Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I); 725 return replaceInstUsesWith(I, Exp2); 726 } 727 } 728 729 // (X*Y) * X => (X*X) * Y where Y != X 730 // The purpose is two-fold: 731 // 1) to form a power expression (of X). 732 // 2) potentially shorten the critical path: After transformation, the 733 // latency of the instruction Y is amortized by the expression of X*X, 734 // and therefore Y is in a "less critical" position compared to what it 735 // was before the transformation. 736 if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) && Op1 != Y) { 737 Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I); 738 return BinaryOperator::CreateFMulFMF(XX, Y, &I); 739 } 740 if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) && Op0 != Y) { 741 Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I); 742 return BinaryOperator::CreateFMulFMF(XX, Y, &I); 743 } 744 745 return nullptr; 746 } 747 748 Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) { 749 if (Value *V = simplifyFMulInst(I.getOperand(0), I.getOperand(1), 750 I.getFastMathFlags(), 751 SQ.getWithInstruction(&I))) 752 return replaceInstUsesWith(I, V); 753 754 if (SimplifyAssociativeOrCommutative(I)) 755 return &I; 756 757 if (Instruction *X = foldVectorBinop(I)) 758 return X; 759 760 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 761 return Phi; 762 763 if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I)) 764 return FoldedMul; 765 766 if (Value *FoldedMul = foldMulSelectToNegate(I, Builder)) 767 return replaceInstUsesWith(I, FoldedMul); 768 769 if (Instruction *R = foldFPSignBitOps(I)) 770 return R; 771 772 // X * -1.0 --> -X 773 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 774 if (match(Op1, m_SpecificFP(-1.0))) 775 return UnaryOperator::CreateFNegFMF(Op0, &I); 776 777 // With no-nans: X * 0.0 --> copysign(0.0, X) 778 if (I.hasNoNaNs() && match(Op1, m_PosZeroFP())) { 779 CallInst *CopySign = Builder.CreateIntrinsic(Intrinsic::copysign, 780 {I.getType()}, {Op1, Op0}, &I); 781 return replaceInstUsesWith(I, CopySign); 782 } 783 784 // -X * C --> X * -C 785 Value *X, *Y; 786 Constant *C; 787 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C))) 788 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 789 return BinaryOperator::CreateFMulFMF(X, NegC, &I); 790 791 // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E) 792 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) 793 return replaceInstUsesWith(I, V); 794 795 if (I.hasAllowReassoc()) 796 if (Instruction *FoldedMul = foldFMulReassoc(I)) 797 return FoldedMul; 798 799 // log2(X * 0.5) * Y = log2(X) * Y - Y 800 if (I.isFast()) { 801 IntrinsicInst *Log2 = nullptr; 802 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>( 803 m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) { 804 Log2 = cast<IntrinsicInst>(Op0); 805 Y = Op1; 806 } 807 if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>( 808 m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) { 809 Log2 = cast<IntrinsicInst>(Op1); 810 Y = Op0; 811 } 812 if (Log2) { 813 Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I); 814 Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I); 815 return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I); 816 } 817 } 818 819 // Simplify FMUL recurrences starting with 0.0 to 0.0 if nnan and nsz are set. 820 // Given a phi node with entry value as 0 and it used in fmul operation, 821 // we can replace fmul with 0 safely and eleminate loop operation. 822 PHINode *PN = nullptr; 823 Value *Start = nullptr, *Step = nullptr; 824 if (matchSimpleRecurrence(&I, PN, Start, Step) && I.hasNoNaNs() && 825 I.hasNoSignedZeros() && match(Start, m_Zero())) 826 return replaceInstUsesWith(I, Start); 827 828 // minimum(X, Y) * maximum(X, Y) => X * Y. 829 if (match(&I, 830 m_c_FMul(m_Intrinsic<Intrinsic::maximum>(m_Value(X), m_Value(Y)), 831 m_c_Intrinsic<Intrinsic::minimum>(m_Deferred(X), 832 m_Deferred(Y))))) { 833 BinaryOperator *Result = BinaryOperator::CreateFMulFMF(X, Y, &I); 834 // We cannot preserve ninf if nnan flag is not set. 835 // If X is NaN and Y is Inf then in original program we had NaN * NaN, 836 // while in optimized version NaN * Inf and this is a poison with ninf flag. 837 if (!Result->hasNoNaNs()) 838 Result->setHasNoInfs(false); 839 return Result; 840 } 841 842 return nullptr; 843 } 844 845 /// Fold a divide or remainder with a select instruction divisor when one of the 846 /// select operands is zero. In that case, we can use the other select operand 847 /// because div/rem by zero is undefined. 848 bool InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) { 849 SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1)); 850 if (!SI) 851 return false; 852 853 int NonNullOperand; 854 if (match(SI->getTrueValue(), m_Zero())) 855 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y 856 NonNullOperand = 2; 857 else if (match(SI->getFalseValue(), m_Zero())) 858 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y 859 NonNullOperand = 1; 860 else 861 return false; 862 863 // Change the div/rem to use 'Y' instead of the select. 864 replaceOperand(I, 1, SI->getOperand(NonNullOperand)); 865 866 // Okay, we know we replace the operand of the div/rem with 'Y' with no 867 // problem. However, the select, or the condition of the select may have 868 // multiple uses. Based on our knowledge that the operand must be non-zero, 869 // propagate the known value for the select into other uses of it, and 870 // propagate a known value of the condition into its other users. 871 872 // If the select and condition only have a single use, don't bother with this, 873 // early exit. 874 Value *SelectCond = SI->getCondition(); 875 if (SI->use_empty() && SelectCond->hasOneUse()) 876 return true; 877 878 // Scan the current block backward, looking for other uses of SI. 879 BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin(); 880 Type *CondTy = SelectCond->getType(); 881 while (BBI != BBFront) { 882 --BBI; 883 // If we found an instruction that we can't assume will return, so 884 // information from below it cannot be propagated above it. 885 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI)) 886 break; 887 888 // Replace uses of the select or its condition with the known values. 889 for (Use &Op : BBI->operands()) { 890 if (Op == SI) { 891 replaceUse(Op, SI->getOperand(NonNullOperand)); 892 Worklist.push(&*BBI); 893 } else if (Op == SelectCond) { 894 replaceUse(Op, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy) 895 : ConstantInt::getFalse(CondTy)); 896 Worklist.push(&*BBI); 897 } 898 } 899 900 // If we past the instruction, quit looking for it. 901 if (&*BBI == SI) 902 SI = nullptr; 903 if (&*BBI == SelectCond) 904 SelectCond = nullptr; 905 906 // If we ran out of things to eliminate, break out of the loop. 907 if (!SelectCond && !SI) 908 break; 909 910 } 911 return true; 912 } 913 914 /// True if the multiply can not be expressed in an int this size. 915 static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product, 916 bool IsSigned) { 917 bool Overflow; 918 Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow); 919 return Overflow; 920 } 921 922 /// True if C1 is a multiple of C2. Quotient contains C1/C2. 923 static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient, 924 bool IsSigned) { 925 assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal"); 926 927 // Bail if we will divide by zero. 928 if (C2.isZero()) 929 return false; 930 931 // Bail if we would divide INT_MIN by -1. 932 if (IsSigned && C1.isMinSignedValue() && C2.isAllOnes()) 933 return false; 934 935 APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned); 936 if (IsSigned) 937 APInt::sdivrem(C1, C2, Quotient, Remainder); 938 else 939 APInt::udivrem(C1, C2, Quotient, Remainder); 940 941 return Remainder.isMinValue(); 942 } 943 944 static Value *foldIDivShl(BinaryOperator &I, InstCombiner::BuilderTy &Builder) { 945 assert((I.getOpcode() == Instruction::SDiv || 946 I.getOpcode() == Instruction::UDiv) && 947 "Expected integer divide"); 948 949 bool IsSigned = I.getOpcode() == Instruction::SDiv; 950 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 951 Type *Ty = I.getType(); 952 953 Value *X, *Y, *Z; 954 955 // With appropriate no-wrap constraints, remove a common factor in the 956 // dividend and divisor that is disguised as a left-shifted value. 957 if (match(Op1, m_Shl(m_Value(X), m_Value(Z))) && 958 match(Op0, m_c_Mul(m_Specific(X), m_Value(Y)))) { 959 // Both operands must have the matching no-wrap for this kind of division. 960 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 961 auto *Shl = cast<OverflowingBinaryOperator>(Op1); 962 bool HasNUW = Mul->hasNoUnsignedWrap() && Shl->hasNoUnsignedWrap(); 963 bool HasNSW = Mul->hasNoSignedWrap() && Shl->hasNoSignedWrap(); 964 965 // (X * Y) u/ (X << Z) --> Y u>> Z 966 if (!IsSigned && HasNUW) 967 return Builder.CreateLShr(Y, Z, "", I.isExact()); 968 969 // (X * Y) s/ (X << Z) --> Y s/ (1 << Z) 970 if (IsSigned && HasNSW && (Op0->hasOneUse() || Op1->hasOneUse())) { 971 Value *Shl = Builder.CreateShl(ConstantInt::get(Ty, 1), Z); 972 return Builder.CreateSDiv(Y, Shl, "", I.isExact()); 973 } 974 } 975 976 // With appropriate no-wrap constraints, remove a common factor in the 977 // dividend and divisor that is disguised as a left-shift amount. 978 if (match(Op0, m_Shl(m_Value(X), m_Value(Z))) && 979 match(Op1, m_Shl(m_Value(Y), m_Specific(Z)))) { 980 auto *Shl0 = cast<OverflowingBinaryOperator>(Op0); 981 auto *Shl1 = cast<OverflowingBinaryOperator>(Op1); 982 983 // For unsigned div, we need 'nuw' on both shifts or 984 // 'nsw' on both shifts + 'nuw' on the dividend. 985 // (X << Z) / (Y << Z) --> X / Y 986 if (!IsSigned && 987 ((Shl0->hasNoUnsignedWrap() && Shl1->hasNoUnsignedWrap()) || 988 (Shl0->hasNoUnsignedWrap() && Shl0->hasNoSignedWrap() && 989 Shl1->hasNoSignedWrap()))) 990 return Builder.CreateUDiv(X, Y, "", I.isExact()); 991 992 // For signed div, we need 'nsw' on both shifts + 'nuw' on the divisor. 993 // (X << Z) / (Y << Z) --> X / Y 994 if (IsSigned && Shl0->hasNoSignedWrap() && Shl1->hasNoSignedWrap() && 995 Shl1->hasNoUnsignedWrap()) 996 return Builder.CreateSDiv(X, Y, "", I.isExact()); 997 } 998 999 // If X << Y and X << Z does not overflow, then: 1000 // (X << Y) / (X << Z) -> (1 << Y) / (1 << Z) -> 1 << Y >> Z 1001 if (match(Op0, m_Shl(m_Value(X), m_Value(Y))) && 1002 match(Op1, m_Shl(m_Specific(X), m_Value(Z)))) { 1003 auto *Shl0 = cast<OverflowingBinaryOperator>(Op0); 1004 auto *Shl1 = cast<OverflowingBinaryOperator>(Op1); 1005 1006 if (IsSigned ? (Shl0->hasNoSignedWrap() && Shl1->hasNoSignedWrap()) 1007 : (Shl0->hasNoUnsignedWrap() && Shl1->hasNoUnsignedWrap())) { 1008 Constant *One = ConstantInt::get(X->getType(), 1); 1009 // Only preserve the nsw flag if dividend has nsw 1010 // or divisor has nsw and operator is sdiv. 1011 Value *Dividend = Builder.CreateShl( 1012 One, Y, "shl.dividend", 1013 /*HasNUW*/ true, 1014 /*HasNSW*/ 1015 IsSigned ? (Shl0->hasNoUnsignedWrap() || Shl1->hasNoUnsignedWrap()) 1016 : Shl0->hasNoSignedWrap()); 1017 return Builder.CreateLShr(Dividend, Z, "", I.isExact()); 1018 } 1019 } 1020 1021 return nullptr; 1022 } 1023 1024 /// This function implements the transforms common to both integer division 1025 /// instructions (udiv and sdiv). It is called by the visitors to those integer 1026 /// division instructions. 1027 /// Common integer divide transforms 1028 Instruction *InstCombinerImpl::commonIDivTransforms(BinaryOperator &I) { 1029 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1030 return Phi; 1031 1032 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1033 bool IsSigned = I.getOpcode() == Instruction::SDiv; 1034 Type *Ty = I.getType(); 1035 1036 // The RHS is known non-zero. 1037 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) 1038 return replaceOperand(I, 1, V); 1039 1040 // Handle cases involving: [su]div X, (select Cond, Y, Z) 1041 // This does not apply for fdiv. 1042 if (simplifyDivRemOfSelectWithZeroOp(I)) 1043 return &I; 1044 1045 // If the divisor is a select-of-constants, try to constant fold all div ops: 1046 // C / (select Cond, TrueC, FalseC) --> select Cond, (C / TrueC), (C / FalseC) 1047 // TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds. 1048 if (match(Op0, m_ImmConstant()) && 1049 match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) { 1050 if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1), 1051 /*FoldWithMultiUse*/ true)) 1052 return R; 1053 } 1054 1055 const APInt *C2; 1056 if (match(Op1, m_APInt(C2))) { 1057 Value *X; 1058 const APInt *C1; 1059 1060 // (X / C1) / C2 -> X / (C1*C2) 1061 if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) || 1062 (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) { 1063 APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned); 1064 if (!multiplyOverflows(*C1, *C2, Product, IsSigned)) 1065 return BinaryOperator::Create(I.getOpcode(), X, 1066 ConstantInt::get(Ty, Product)); 1067 } 1068 1069 APInt Quotient(C2->getBitWidth(), /*val=*/0ULL, IsSigned); 1070 if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) || 1071 (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) { 1072 1073 // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1. 1074 if (isMultiple(*C2, *C1, Quotient, IsSigned)) { 1075 auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X, 1076 ConstantInt::get(Ty, Quotient)); 1077 NewDiv->setIsExact(I.isExact()); 1078 return NewDiv; 1079 } 1080 1081 // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2. 1082 if (isMultiple(*C1, *C2, Quotient, IsSigned)) { 1083 auto *Mul = BinaryOperator::Create(Instruction::Mul, X, 1084 ConstantInt::get(Ty, Quotient)); 1085 auto *OBO = cast<OverflowingBinaryOperator>(Op0); 1086 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap()); 1087 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap()); 1088 return Mul; 1089 } 1090 } 1091 1092 if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) && 1093 C1->ult(C1->getBitWidth() - 1)) || 1094 (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))) && 1095 C1->ult(C1->getBitWidth()))) { 1096 APInt C1Shifted = APInt::getOneBitSet( 1097 C1->getBitWidth(), static_cast<unsigned>(C1->getZExtValue())); 1098 1099 // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1. 1100 if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) { 1101 auto *BO = BinaryOperator::Create(I.getOpcode(), X, 1102 ConstantInt::get(Ty, Quotient)); 1103 BO->setIsExact(I.isExact()); 1104 return BO; 1105 } 1106 1107 // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2. 1108 if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) { 1109 auto *Mul = BinaryOperator::Create(Instruction::Mul, X, 1110 ConstantInt::get(Ty, Quotient)); 1111 auto *OBO = cast<OverflowingBinaryOperator>(Op0); 1112 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap()); 1113 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap()); 1114 return Mul; 1115 } 1116 } 1117 1118 // Distribute div over add to eliminate a matching div/mul pair: 1119 // ((X * C2) + C1) / C2 --> X + C1/C2 1120 // We need a multiple of the divisor for a signed add constant, but 1121 // unsigned is fine with any constant pair. 1122 if (IsSigned && 1123 match(Op0, m_NSWAdd(m_NSWMul(m_Value(X), m_SpecificInt(*C2)), 1124 m_APInt(C1))) && 1125 isMultiple(*C1, *C2, Quotient, IsSigned)) { 1126 return BinaryOperator::CreateNSWAdd(X, ConstantInt::get(Ty, Quotient)); 1127 } 1128 if (!IsSigned && 1129 match(Op0, m_NUWAdd(m_NUWMul(m_Value(X), m_SpecificInt(*C2)), 1130 m_APInt(C1)))) { 1131 return BinaryOperator::CreateNUWAdd(X, 1132 ConstantInt::get(Ty, C1->udiv(*C2))); 1133 } 1134 1135 if (!C2->isZero()) // avoid X udiv 0 1136 if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I)) 1137 return FoldedDiv; 1138 } 1139 1140 if (match(Op0, m_One())) { 1141 assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?"); 1142 if (IsSigned) { 1143 // 1 / 0 --> undef ; 1 / 1 --> 1 ; 1 / -1 --> -1 ; 1 / anything else --> 0 1144 // (Op1 + 1) u< 3 ? Op1 : 0 1145 // Op1 must be frozen because we are increasing its number of uses. 1146 Value *F1 = Builder.CreateFreeze(Op1, Op1->getName() + ".fr"); 1147 Value *Inc = Builder.CreateAdd(F1, Op0); 1148 Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3)); 1149 return SelectInst::Create(Cmp, F1, ConstantInt::get(Ty, 0)); 1150 } else { 1151 // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the 1152 // result is one, otherwise it's zero. 1153 return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty); 1154 } 1155 } 1156 1157 // See if we can fold away this div instruction. 1158 if (SimplifyDemandedInstructionBits(I)) 1159 return &I; 1160 1161 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y 1162 Value *X, *Z; 1163 if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1 1164 if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) || 1165 (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1))))) 1166 return BinaryOperator::Create(I.getOpcode(), X, Op1); 1167 1168 // (X << Y) / X -> 1 << Y 1169 Value *Y; 1170 if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y)))) 1171 return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y); 1172 if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y)))) 1173 return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y); 1174 1175 // X / (X * Y) -> 1 / Y if the multiplication does not overflow. 1176 if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) { 1177 bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap(); 1178 bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap(); 1179 if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) { 1180 replaceOperand(I, 0, ConstantInt::get(Ty, 1)); 1181 replaceOperand(I, 1, Y); 1182 return &I; 1183 } 1184 } 1185 1186 // (X << Z) / (X * Y) -> (1 << Z) / Y 1187 // TODO: Handle sdiv. 1188 if (!IsSigned && Op1->hasOneUse() && 1189 match(Op0, m_NUWShl(m_Value(X), m_Value(Z))) && 1190 match(Op1, m_c_Mul(m_Specific(X), m_Value(Y)))) 1191 if (cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap()) { 1192 Instruction *NewDiv = BinaryOperator::CreateUDiv( 1193 Builder.CreateShl(ConstantInt::get(Ty, 1), Z, "", /*NUW*/ true), Y); 1194 NewDiv->setIsExact(I.isExact()); 1195 return NewDiv; 1196 } 1197 1198 if (Value *R = foldIDivShl(I, Builder)) 1199 return replaceInstUsesWith(I, R); 1200 1201 // With the appropriate no-wrap constraint, remove a multiply by the divisor 1202 // after peeking through another divide: 1203 // ((Op1 * X) / Y) / Op1 --> X / Y 1204 if (match(Op0, m_BinOp(I.getOpcode(), m_c_Mul(m_Specific(Op1), m_Value(X)), 1205 m_Value(Y)))) { 1206 auto *InnerDiv = cast<PossiblyExactOperator>(Op0); 1207 auto *Mul = cast<OverflowingBinaryOperator>(InnerDiv->getOperand(0)); 1208 Instruction *NewDiv = nullptr; 1209 if (!IsSigned && Mul->hasNoUnsignedWrap()) 1210 NewDiv = BinaryOperator::CreateUDiv(X, Y); 1211 else if (IsSigned && Mul->hasNoSignedWrap()) 1212 NewDiv = BinaryOperator::CreateSDiv(X, Y); 1213 1214 // Exact propagates only if both of the original divides are exact. 1215 if (NewDiv) { 1216 NewDiv->setIsExact(I.isExact() && InnerDiv->isExact()); 1217 return NewDiv; 1218 } 1219 } 1220 1221 // (X * Y) / (X * Z) --> Y / Z (and commuted variants) 1222 if (match(Op0, m_Mul(m_Value(X), m_Value(Y)))) { 1223 auto OB0HasNSW = cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap(); 1224 auto OB0HasNUW = cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap(); 1225 1226 auto CreateDivOrNull = [&](Value *A, Value *B) -> Instruction * { 1227 auto OB1HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap(); 1228 auto OB1HasNUW = 1229 cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap(); 1230 const APInt *C1, *C2; 1231 if (IsSigned && OB0HasNSW) { 1232 if (OB1HasNSW && match(B, m_APInt(C1)) && !C1->isAllOnes()) 1233 return BinaryOperator::CreateSDiv(A, B); 1234 } 1235 if (!IsSigned && OB0HasNUW) { 1236 if (OB1HasNUW) 1237 return BinaryOperator::CreateUDiv(A, B); 1238 if (match(A, m_APInt(C1)) && match(B, m_APInt(C2)) && C2->ule(*C1)) 1239 return BinaryOperator::CreateUDiv(A, B); 1240 } 1241 return nullptr; 1242 }; 1243 1244 if (match(Op1, m_c_Mul(m_Specific(X), m_Value(Z)))) { 1245 if (auto *Val = CreateDivOrNull(Y, Z)) 1246 return Val; 1247 } 1248 if (match(Op1, m_c_Mul(m_Specific(Y), m_Value(Z)))) { 1249 if (auto *Val = CreateDivOrNull(X, Z)) 1250 return Val; 1251 } 1252 } 1253 return nullptr; 1254 } 1255 1256 static const unsigned MaxDepth = 6; 1257 1258 // Take the exact integer log2 of the value. If DoFold is true, create the 1259 // actual instructions, otherwise return a non-null dummy value. Return nullptr 1260 // on failure. 1261 static Value *takeLog2(IRBuilderBase &Builder, Value *Op, unsigned Depth, 1262 bool AssumeNonZero, bool DoFold) { 1263 auto IfFold = [DoFold](function_ref<Value *()> Fn) { 1264 if (!DoFold) 1265 return reinterpret_cast<Value *>(-1); 1266 return Fn(); 1267 }; 1268 1269 // FIXME: assert that Op1 isn't/doesn't contain undef. 1270 1271 // log2(2^C) -> C 1272 if (match(Op, m_Power2())) 1273 return IfFold([&]() { 1274 Constant *C = ConstantExpr::getExactLogBase2(cast<Constant>(Op)); 1275 if (!C) 1276 llvm_unreachable("Failed to constant fold udiv -> logbase2"); 1277 return C; 1278 }); 1279 1280 // The remaining tests are all recursive, so bail out if we hit the limit. 1281 if (Depth++ == MaxDepth) 1282 return nullptr; 1283 1284 // log2(zext X) -> zext log2(X) 1285 // FIXME: Require one use? 1286 Value *X, *Y; 1287 if (match(Op, m_ZExt(m_Value(X)))) 1288 if (Value *LogX = takeLog2(Builder, X, Depth, AssumeNonZero, DoFold)) 1289 return IfFold([&]() { return Builder.CreateZExt(LogX, Op->getType()); }); 1290 1291 // log2(X << Y) -> log2(X) + Y 1292 // FIXME: Require one use unless X is 1? 1293 if (match(Op, m_Shl(m_Value(X), m_Value(Y)))) { 1294 auto *BO = cast<OverflowingBinaryOperator>(Op); 1295 // nuw will be set if the `shl` is trivially non-zero. 1296 if (AssumeNonZero || BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) 1297 if (Value *LogX = takeLog2(Builder, X, Depth, AssumeNonZero, DoFold)) 1298 return IfFold([&]() { return Builder.CreateAdd(LogX, Y); }); 1299 } 1300 1301 // log2(Cond ? X : Y) -> Cond ? log2(X) : log2(Y) 1302 // FIXME: missed optimization: if one of the hands of select is/contains 1303 // undef, just directly pick the other one. 1304 // FIXME: can both hands contain undef? 1305 // FIXME: Require one use? 1306 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) 1307 if (Value *LogX = takeLog2(Builder, SI->getOperand(1), Depth, 1308 AssumeNonZero, DoFold)) 1309 if (Value *LogY = takeLog2(Builder, SI->getOperand(2), Depth, 1310 AssumeNonZero, DoFold)) 1311 return IfFold([&]() { 1312 return Builder.CreateSelect(SI->getOperand(0), LogX, LogY); 1313 }); 1314 1315 // log2(umin(X, Y)) -> umin(log2(X), log2(Y)) 1316 // log2(umax(X, Y)) -> umax(log2(X), log2(Y)) 1317 auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op); 1318 if (MinMax && MinMax->hasOneUse() && !MinMax->isSigned()) { 1319 // Use AssumeNonZero as false here. Otherwise we can hit case where 1320 // log2(umax(X, Y)) != umax(log2(X), log2(Y)) (because overflow). 1321 if (Value *LogX = takeLog2(Builder, MinMax->getLHS(), Depth, 1322 /*AssumeNonZero*/ false, DoFold)) 1323 if (Value *LogY = takeLog2(Builder, MinMax->getRHS(), Depth, 1324 /*AssumeNonZero*/ false, DoFold)) 1325 return IfFold([&]() { 1326 return Builder.CreateBinaryIntrinsic(MinMax->getIntrinsicID(), LogX, 1327 LogY); 1328 }); 1329 } 1330 1331 return nullptr; 1332 } 1333 1334 /// If we have zero-extended operands of an unsigned div or rem, we may be able 1335 /// to narrow the operation (sink the zext below the math). 1336 static Instruction *narrowUDivURem(BinaryOperator &I, 1337 InstCombinerImpl &IC) { 1338 Instruction::BinaryOps Opcode = I.getOpcode(); 1339 Value *N = I.getOperand(0); 1340 Value *D = I.getOperand(1); 1341 Type *Ty = I.getType(); 1342 Value *X, *Y; 1343 if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) && 1344 X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) { 1345 // udiv (zext X), (zext Y) --> zext (udiv X, Y) 1346 // urem (zext X), (zext Y) --> zext (urem X, Y) 1347 Value *NarrowOp = IC.Builder.CreateBinOp(Opcode, X, Y); 1348 return new ZExtInst(NarrowOp, Ty); 1349 } 1350 1351 Constant *C; 1352 if (isa<Instruction>(N) && match(N, m_OneUse(m_ZExt(m_Value(X)))) && 1353 match(D, m_Constant(C))) { 1354 // If the constant is the same in the smaller type, use the narrow version. 1355 Constant *TruncC = IC.getLosslessUnsignedTrunc(C, X->getType()); 1356 if (!TruncC) 1357 return nullptr; 1358 1359 // udiv (zext X), C --> zext (udiv X, C') 1360 // urem (zext X), C --> zext (urem X, C') 1361 return new ZExtInst(IC.Builder.CreateBinOp(Opcode, X, TruncC), Ty); 1362 } 1363 if (isa<Instruction>(D) && match(D, m_OneUse(m_ZExt(m_Value(X)))) && 1364 match(N, m_Constant(C))) { 1365 // If the constant is the same in the smaller type, use the narrow version. 1366 Constant *TruncC = IC.getLosslessUnsignedTrunc(C, X->getType()); 1367 if (!TruncC) 1368 return nullptr; 1369 1370 // udiv C, (zext X) --> zext (udiv C', X) 1371 // urem C, (zext X) --> zext (urem C', X) 1372 return new ZExtInst(IC.Builder.CreateBinOp(Opcode, TruncC, X), Ty); 1373 } 1374 1375 return nullptr; 1376 } 1377 1378 Instruction *InstCombinerImpl::visitUDiv(BinaryOperator &I) { 1379 if (Value *V = simplifyUDivInst(I.getOperand(0), I.getOperand(1), I.isExact(), 1380 SQ.getWithInstruction(&I))) 1381 return replaceInstUsesWith(I, V); 1382 1383 if (Instruction *X = foldVectorBinop(I)) 1384 return X; 1385 1386 // Handle the integer div common cases 1387 if (Instruction *Common = commonIDivTransforms(I)) 1388 return Common; 1389 1390 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1391 Value *X; 1392 const APInt *C1, *C2; 1393 if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) { 1394 // (X lshr C1) udiv C2 --> X udiv (C2 << C1) 1395 bool Overflow; 1396 APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow); 1397 if (!Overflow) { 1398 bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value())); 1399 BinaryOperator *BO = BinaryOperator::CreateUDiv( 1400 X, ConstantInt::get(X->getType(), C2ShlC1)); 1401 if (IsExact) 1402 BO->setIsExact(); 1403 return BO; 1404 } 1405 } 1406 1407 // Op0 / C where C is large (negative) --> zext (Op0 >= C) 1408 // TODO: Could use isKnownNegative() to handle non-constant values. 1409 Type *Ty = I.getType(); 1410 if (match(Op1, m_Negative())) { 1411 Value *Cmp = Builder.CreateICmpUGE(Op0, Op1); 1412 return CastInst::CreateZExtOrBitCast(Cmp, Ty); 1413 } 1414 // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined) 1415 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 1416 Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty)); 1417 return CastInst::CreateZExtOrBitCast(Cmp, Ty); 1418 } 1419 1420 if (Instruction *NarrowDiv = narrowUDivURem(I, *this)) 1421 return NarrowDiv; 1422 1423 Value *A, *B; 1424 1425 // Look through a right-shift to find the common factor: 1426 // ((Op1 *nuw A) >> B) / Op1 --> A >> B 1427 if (match(Op0, m_LShr(m_NUWMul(m_Specific(Op1), m_Value(A)), m_Value(B))) || 1428 match(Op0, m_LShr(m_NUWMul(m_Value(A), m_Specific(Op1)), m_Value(B)))) { 1429 Instruction *Lshr = BinaryOperator::CreateLShr(A, B); 1430 if (I.isExact() && cast<PossiblyExactOperator>(Op0)->isExact()) 1431 Lshr->setIsExact(); 1432 return Lshr; 1433 } 1434 1435 // Op1 udiv Op2 -> Op1 lshr log2(Op2), if log2() folds away. 1436 if (takeLog2(Builder, Op1, /*Depth*/ 0, /*AssumeNonZero*/ true, 1437 /*DoFold*/ false)) { 1438 Value *Res = takeLog2(Builder, Op1, /*Depth*/ 0, 1439 /*AssumeNonZero*/ true, /*DoFold*/ true); 1440 return replaceInstUsesWith( 1441 I, Builder.CreateLShr(Op0, Res, I.getName(), I.isExact())); 1442 } 1443 1444 return nullptr; 1445 } 1446 1447 Instruction *InstCombinerImpl::visitSDiv(BinaryOperator &I) { 1448 if (Value *V = simplifySDivInst(I.getOperand(0), I.getOperand(1), I.isExact(), 1449 SQ.getWithInstruction(&I))) 1450 return replaceInstUsesWith(I, V); 1451 1452 if (Instruction *X = foldVectorBinop(I)) 1453 return X; 1454 1455 // Handle the integer div common cases 1456 if (Instruction *Common = commonIDivTransforms(I)) 1457 return Common; 1458 1459 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1460 Type *Ty = I.getType(); 1461 Value *X; 1462 // sdiv Op0, -1 --> -Op0 1463 // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined) 1464 if (match(Op1, m_AllOnes()) || 1465 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1466 return BinaryOperator::CreateNSWNeg(Op0); 1467 1468 // X / INT_MIN --> X == INT_MIN 1469 if (match(Op1, m_SignMask())) 1470 return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), Ty); 1471 1472 if (I.isExact()) { 1473 // sdiv exact X, 1<<C --> ashr exact X, C iff 1<<C is non-negative 1474 if (match(Op1, m_Power2()) && match(Op1, m_NonNegative())) { 1475 Constant *C = ConstantExpr::getExactLogBase2(cast<Constant>(Op1)); 1476 return BinaryOperator::CreateExactAShr(Op0, C); 1477 } 1478 1479 // sdiv exact X, (1<<ShAmt) --> ashr exact X, ShAmt (if shl is non-negative) 1480 Value *ShAmt; 1481 if (match(Op1, m_NSWShl(m_One(), m_Value(ShAmt)))) 1482 return BinaryOperator::CreateExactAShr(Op0, ShAmt); 1483 1484 // sdiv exact X, -1<<C --> -(ashr exact X, C) 1485 if (match(Op1, m_NegatedPower2())) { 1486 Constant *NegPow2C = ConstantExpr::getNeg(cast<Constant>(Op1)); 1487 Constant *C = ConstantExpr::getExactLogBase2(NegPow2C); 1488 Value *Ashr = Builder.CreateAShr(Op0, C, I.getName() + ".neg", true); 1489 return BinaryOperator::CreateNSWNeg(Ashr); 1490 } 1491 } 1492 1493 const APInt *Op1C; 1494 if (match(Op1, m_APInt(Op1C))) { 1495 // If the dividend is sign-extended and the constant divisor is small enough 1496 // to fit in the source type, shrink the division to the narrower type: 1497 // (sext X) sdiv C --> sext (X sdiv C) 1498 Value *Op0Src; 1499 if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) && 1500 Op0Src->getType()->getScalarSizeInBits() >= 1501 Op1C->getSignificantBits()) { 1502 1503 // In the general case, we need to make sure that the dividend is not the 1504 // minimum signed value because dividing that by -1 is UB. But here, we 1505 // know that the -1 divisor case is already handled above. 1506 1507 Constant *NarrowDivisor = 1508 ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType()); 1509 Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor); 1510 return new SExtInst(NarrowOp, Ty); 1511 } 1512 1513 // -X / C --> X / -C (if the negation doesn't overflow). 1514 // TODO: This could be enhanced to handle arbitrary vector constants by 1515 // checking if all elements are not the min-signed-val. 1516 if (!Op1C->isMinSignedValue() && 1517 match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) { 1518 Constant *NegC = ConstantInt::get(Ty, -(*Op1C)); 1519 Instruction *BO = BinaryOperator::CreateSDiv(X, NegC); 1520 BO->setIsExact(I.isExact()); 1521 return BO; 1522 } 1523 } 1524 1525 // -X / Y --> -(X / Y) 1526 Value *Y; 1527 if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y)))) 1528 return BinaryOperator::CreateNSWNeg( 1529 Builder.CreateSDiv(X, Y, I.getName(), I.isExact())); 1530 1531 // abs(X) / X --> X > -1 ? 1 : -1 1532 // X / abs(X) --> X > -1 ? 1 : -1 1533 if (match(&I, m_c_BinOp( 1534 m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One())), 1535 m_Deferred(X)))) { 1536 Value *Cond = Builder.CreateIsNotNeg(X); 1537 return SelectInst::Create(Cond, ConstantInt::get(Ty, 1), 1538 ConstantInt::getAllOnesValue(Ty)); 1539 } 1540 1541 KnownBits KnownDividend = computeKnownBits(Op0, 0, &I); 1542 if (!I.isExact() && 1543 (match(Op1, m_Power2(Op1C)) || match(Op1, m_NegatedPower2(Op1C))) && 1544 KnownDividend.countMinTrailingZeros() >= Op1C->countr_zero()) { 1545 I.setIsExact(); 1546 return &I; 1547 } 1548 1549 if (KnownDividend.isNonNegative()) { 1550 // If both operands are unsigned, turn this into a udiv. 1551 if (isKnownNonNegative(Op1, SQ.getWithInstruction(&I))) { 1552 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); 1553 BO->setIsExact(I.isExact()); 1554 return BO; 1555 } 1556 1557 if (match(Op1, m_NegatedPower2())) { 1558 // X sdiv (-(1 << C)) -> -(X sdiv (1 << C)) -> 1559 // -> -(X udiv (1 << C)) -> -(X u>> C) 1560 Constant *CNegLog2 = ConstantExpr::getExactLogBase2( 1561 ConstantExpr::getNeg(cast<Constant>(Op1))); 1562 Value *Shr = Builder.CreateLShr(Op0, CNegLog2, I.getName(), I.isExact()); 1563 return BinaryOperator::CreateNeg(Shr); 1564 } 1565 1566 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) { 1567 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y) 1568 // Safe because the only negative value (1 << Y) can take on is 1569 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have 1570 // the sign bit set. 1571 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); 1572 BO->setIsExact(I.isExact()); 1573 return BO; 1574 } 1575 } 1576 1577 // -X / X --> X == INT_MIN ? 1 : -1 1578 if (isKnownNegation(Op0, Op1)) { 1579 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 1580 Value *Cond = Builder.CreateICmpEQ(Op0, ConstantInt::get(Ty, MinVal)); 1581 return SelectInst::Create(Cond, ConstantInt::get(Ty, 1), 1582 ConstantInt::getAllOnesValue(Ty)); 1583 } 1584 return nullptr; 1585 } 1586 1587 /// Remove negation and try to convert division into multiplication. 1588 Instruction *InstCombinerImpl::foldFDivConstantDivisor(BinaryOperator &I) { 1589 Constant *C; 1590 if (!match(I.getOperand(1), m_Constant(C))) 1591 return nullptr; 1592 1593 // -X / C --> X / -C 1594 Value *X; 1595 const DataLayout &DL = I.getModule()->getDataLayout(); 1596 if (match(I.getOperand(0), m_FNeg(m_Value(X)))) 1597 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 1598 return BinaryOperator::CreateFDivFMF(X, NegC, &I); 1599 1600 // nnan X / +0.0 -> copysign(inf, X) 1601 if (I.hasNoNaNs() && match(I.getOperand(1), m_Zero())) { 1602 IRBuilder<> B(&I); 1603 // TODO: nnan nsz X / -0.0 -> copysign(inf, X) 1604 CallInst *CopySign = B.CreateIntrinsic( 1605 Intrinsic::copysign, {C->getType()}, 1606 {ConstantFP::getInfinity(I.getType()), I.getOperand(0)}, &I); 1607 CopySign->takeName(&I); 1608 return replaceInstUsesWith(I, CopySign); 1609 } 1610 1611 // If the constant divisor has an exact inverse, this is always safe. If not, 1612 // then we can still create a reciprocal if fast-math-flags allow it and the 1613 // constant is a regular number (not zero, infinite, or denormal). 1614 if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP()))) 1615 return nullptr; 1616 1617 // Disallow denormal constants because we don't know what would happen 1618 // on all targets. 1619 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that 1620 // denorms are flushed? 1621 auto *RecipC = ConstantFoldBinaryOpOperands( 1622 Instruction::FDiv, ConstantFP::get(I.getType(), 1.0), C, DL); 1623 if (!RecipC || !RecipC->isNormalFP()) 1624 return nullptr; 1625 1626 // X / C --> X * (1 / C) 1627 return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I); 1628 } 1629 1630 /// Remove negation and try to reassociate constant math. 1631 static Instruction *foldFDivConstantDividend(BinaryOperator &I) { 1632 Constant *C; 1633 if (!match(I.getOperand(0), m_Constant(C))) 1634 return nullptr; 1635 1636 // C / -X --> -C / X 1637 Value *X; 1638 const DataLayout &DL = I.getModule()->getDataLayout(); 1639 if (match(I.getOperand(1), m_FNeg(m_Value(X)))) 1640 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 1641 return BinaryOperator::CreateFDivFMF(NegC, X, &I); 1642 1643 if (!I.hasAllowReassoc() || !I.hasAllowReciprocal()) 1644 return nullptr; 1645 1646 // Try to reassociate C / X expressions where X includes another constant. 1647 Constant *C2, *NewC = nullptr; 1648 if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) { 1649 // C / (X * C2) --> (C / C2) / X 1650 NewC = ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C2, DL); 1651 } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) { 1652 // C / (X / C2) --> (C * C2) / X 1653 NewC = ConstantFoldBinaryOpOperands(Instruction::FMul, C, C2, DL); 1654 } 1655 // Disallow denormal constants because we don't know what would happen 1656 // on all targets. 1657 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that 1658 // denorms are flushed? 1659 if (!NewC || !NewC->isNormalFP()) 1660 return nullptr; 1661 1662 return BinaryOperator::CreateFDivFMF(NewC, X, &I); 1663 } 1664 1665 /// Negate the exponent of pow/exp to fold division-by-pow() into multiply. 1666 static Instruction *foldFDivPowDivisor(BinaryOperator &I, 1667 InstCombiner::BuilderTy &Builder) { 1668 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1669 auto *II = dyn_cast<IntrinsicInst>(Op1); 1670 if (!II || !II->hasOneUse() || !I.hasAllowReassoc() || 1671 !I.hasAllowReciprocal()) 1672 return nullptr; 1673 1674 // Z / pow(X, Y) --> Z * pow(X, -Y) 1675 // Z / exp{2}(Y) --> Z * exp{2}(-Y) 1676 // In the general case, this creates an extra instruction, but fmul allows 1677 // for better canonicalization and optimization than fdiv. 1678 Intrinsic::ID IID = II->getIntrinsicID(); 1679 SmallVector<Value *> Args; 1680 switch (IID) { 1681 case Intrinsic::pow: 1682 Args.push_back(II->getArgOperand(0)); 1683 Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(1), &I)); 1684 break; 1685 case Intrinsic::powi: { 1686 // Require 'ninf' assuming that makes powi(X, -INT_MIN) acceptable. 1687 // That is, X ** (huge negative number) is 0.0, ~1.0, or INF and so 1688 // dividing by that is INF, ~1.0, or 0.0. Code that uses powi allows 1689 // non-standard results, so this corner case should be acceptable if the 1690 // code rules out INF values. 1691 if (!I.hasNoInfs()) 1692 return nullptr; 1693 Args.push_back(II->getArgOperand(0)); 1694 Args.push_back(Builder.CreateNeg(II->getArgOperand(1))); 1695 Type *Tys[] = {I.getType(), II->getArgOperand(1)->getType()}; 1696 Value *Pow = Builder.CreateIntrinsic(IID, Tys, Args, &I); 1697 return BinaryOperator::CreateFMulFMF(Op0, Pow, &I); 1698 } 1699 case Intrinsic::exp: 1700 case Intrinsic::exp2: 1701 Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(0), &I)); 1702 break; 1703 default: 1704 return nullptr; 1705 } 1706 Value *Pow = Builder.CreateIntrinsic(IID, I.getType(), Args, &I); 1707 return BinaryOperator::CreateFMulFMF(Op0, Pow, &I); 1708 } 1709 1710 Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) { 1711 Module *M = I.getModule(); 1712 1713 if (Value *V = simplifyFDivInst(I.getOperand(0), I.getOperand(1), 1714 I.getFastMathFlags(), 1715 SQ.getWithInstruction(&I))) 1716 return replaceInstUsesWith(I, V); 1717 1718 if (Instruction *X = foldVectorBinop(I)) 1719 return X; 1720 1721 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1722 return Phi; 1723 1724 if (Instruction *R = foldFDivConstantDivisor(I)) 1725 return R; 1726 1727 if (Instruction *R = foldFDivConstantDividend(I)) 1728 return R; 1729 1730 if (Instruction *R = foldFPSignBitOps(I)) 1731 return R; 1732 1733 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1734 if (isa<Constant>(Op0)) 1735 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1736 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1737 return R; 1738 1739 if (isa<Constant>(Op1)) 1740 if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) 1741 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1742 return R; 1743 1744 if (I.hasAllowReassoc() && I.hasAllowReciprocal()) { 1745 Value *X, *Y; 1746 if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) && 1747 (!isa<Constant>(Y) || !isa<Constant>(Op1))) { 1748 // (X / Y) / Z => X / (Y * Z) 1749 Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I); 1750 return BinaryOperator::CreateFDivFMF(X, YZ, &I); 1751 } 1752 if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) && 1753 (!isa<Constant>(Y) || !isa<Constant>(Op0))) { 1754 // Z / (X / Y) => (Y * Z) / X 1755 Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I); 1756 return BinaryOperator::CreateFDivFMF(YZ, X, &I); 1757 } 1758 // Z / (1.0 / Y) => (Y * Z) 1759 // 1760 // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The 1761 // m_OneUse check is avoided because even in the case of the multiple uses 1762 // for 1.0/Y, the number of instructions remain the same and a division is 1763 // replaced by a multiplication. 1764 if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) 1765 return BinaryOperator::CreateFMulFMF(Y, Op0, &I); 1766 } 1767 1768 if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) { 1769 // sin(X) / cos(X) -> tan(X) 1770 // cos(X) / sin(X) -> 1/tan(X) (cotangent) 1771 Value *X; 1772 bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) && 1773 match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X))); 1774 bool IsCot = 1775 !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) && 1776 match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X))); 1777 1778 if ((IsTan || IsCot) && hasFloatFn(M, &TLI, I.getType(), LibFunc_tan, 1779 LibFunc_tanf, LibFunc_tanl)) { 1780 IRBuilder<> B(&I); 1781 IRBuilder<>::FastMathFlagGuard FMFGuard(B); 1782 B.setFastMathFlags(I.getFastMathFlags()); 1783 AttributeList Attrs = 1784 cast<CallBase>(Op0)->getCalledFunction()->getAttributes(); 1785 Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf, 1786 LibFunc_tanl, B, Attrs); 1787 if (IsCot) 1788 Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res); 1789 return replaceInstUsesWith(I, Res); 1790 } 1791 } 1792 1793 // X / (X * Y) --> 1.0 / Y 1794 // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed. 1795 // We can ignore the possibility that X is infinity because INF/INF is NaN. 1796 Value *X, *Y; 1797 if (I.hasNoNaNs() && I.hasAllowReassoc() && 1798 match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) { 1799 replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0)); 1800 replaceOperand(I, 1, Y); 1801 return &I; 1802 } 1803 1804 // X / fabs(X) -> copysign(1.0, X) 1805 // fabs(X) / X -> copysign(1.0, X) 1806 if (I.hasNoNaNs() && I.hasNoInfs() && 1807 (match(&I, m_FDiv(m_Value(X), m_FAbs(m_Deferred(X)))) || 1808 match(&I, m_FDiv(m_FAbs(m_Value(X)), m_Deferred(X))))) { 1809 Value *V = Builder.CreateBinaryIntrinsic( 1810 Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I); 1811 return replaceInstUsesWith(I, V); 1812 } 1813 1814 if (Instruction *Mul = foldFDivPowDivisor(I, Builder)) 1815 return Mul; 1816 1817 // pow(X, Y) / X --> pow(X, Y-1) 1818 if (I.hasAllowReassoc() && 1819 match(Op0, m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Specific(Op1), 1820 m_Value(Y))))) { 1821 Value *Y1 = 1822 Builder.CreateFAddFMF(Y, ConstantFP::get(I.getType(), -1.0), &I); 1823 Value *Pow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, Op1, Y1, &I); 1824 return replaceInstUsesWith(I, Pow); 1825 } 1826 1827 // powi(X, Y) / X --> powi(X, Y-1) 1828 // This is legal when (Y - 1) can't wraparound, in which case reassoc and nnan 1829 // are required. 1830 // TODO: Multi-use may be also better off creating Powi(x,y-1) 1831 if (I.hasAllowReassoc() && I.hasNoNaNs() && 1832 match(Op0, m_OneUse(m_Intrinsic<Intrinsic::powi>(m_Specific(Op1), 1833 m_Value(Y)))) && 1834 willNotOverflowSignedSub(Y, ConstantInt::get(Y->getType(), 1), I)) { 1835 Constant *NegOne = ConstantInt::getAllOnesValue(Y->getType()); 1836 Value *Y1 = Builder.CreateAdd(Y, NegOne); 1837 Type *Types[] = {Op1->getType(), Y1->getType()}; 1838 Value *Pow = Builder.CreateIntrinsic(Intrinsic::powi, Types, {Op1, Y1}, &I); 1839 return replaceInstUsesWith(I, Pow); 1840 } 1841 1842 return nullptr; 1843 } 1844 1845 // Variety of transform for: 1846 // (urem/srem (mul X, Y), (mul X, Z)) 1847 // (urem/srem (shl X, Y), (shl X, Z)) 1848 // (urem/srem (shl Y, X), (shl Z, X)) 1849 // NB: The shift cases are really just extensions of the mul case. We treat 1850 // shift as Val * (1 << Amt). 1851 static Instruction *simplifyIRemMulShl(BinaryOperator &I, 1852 InstCombinerImpl &IC) { 1853 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *X = nullptr; 1854 APInt Y, Z; 1855 bool ShiftByX = false; 1856 1857 // If V is not nullptr, it will be matched using m_Specific. 1858 auto MatchShiftOrMulXC = [](Value *Op, Value *&V, APInt &C) -> bool { 1859 const APInt *Tmp = nullptr; 1860 if ((!V && match(Op, m_Mul(m_Value(V), m_APInt(Tmp)))) || 1861 (V && match(Op, m_Mul(m_Specific(V), m_APInt(Tmp))))) 1862 C = *Tmp; 1863 else if ((!V && match(Op, m_Shl(m_Value(V), m_APInt(Tmp)))) || 1864 (V && match(Op, m_Shl(m_Specific(V), m_APInt(Tmp))))) 1865 C = APInt(Tmp->getBitWidth(), 1) << *Tmp; 1866 if (Tmp != nullptr) 1867 return true; 1868 1869 // Reset `V` so we don't start with specific value on next match attempt. 1870 V = nullptr; 1871 return false; 1872 }; 1873 1874 auto MatchShiftCX = [](Value *Op, APInt &C, Value *&V) -> bool { 1875 const APInt *Tmp = nullptr; 1876 if ((!V && match(Op, m_Shl(m_APInt(Tmp), m_Value(V)))) || 1877 (V && match(Op, m_Shl(m_APInt(Tmp), m_Specific(V))))) { 1878 C = *Tmp; 1879 return true; 1880 } 1881 1882 // Reset `V` so we don't start with specific value on next match attempt. 1883 V = nullptr; 1884 return false; 1885 }; 1886 1887 if (MatchShiftOrMulXC(Op0, X, Y) && MatchShiftOrMulXC(Op1, X, Z)) { 1888 // pass 1889 } else if (MatchShiftCX(Op0, Y, X) && MatchShiftCX(Op1, Z, X)) { 1890 ShiftByX = true; 1891 } else { 1892 return nullptr; 1893 } 1894 1895 bool IsSRem = I.getOpcode() == Instruction::SRem; 1896 1897 OverflowingBinaryOperator *BO0 = cast<OverflowingBinaryOperator>(Op0); 1898 // TODO: We may be able to deduce more about nsw/nuw of BO0/BO1 based on Y >= 1899 // Z or Z >= Y. 1900 bool BO0HasNSW = BO0->hasNoSignedWrap(); 1901 bool BO0HasNUW = BO0->hasNoUnsignedWrap(); 1902 bool BO0NoWrap = IsSRem ? BO0HasNSW : BO0HasNUW; 1903 1904 APInt RemYZ = IsSRem ? Y.srem(Z) : Y.urem(Z); 1905 // (rem (mul nuw/nsw X, Y), (mul X, Z)) 1906 // if (rem Y, Z) == 0 1907 // -> 0 1908 if (RemYZ.isZero() && BO0NoWrap) 1909 return IC.replaceInstUsesWith(I, ConstantInt::getNullValue(I.getType())); 1910 1911 // Helper function to emit either (RemSimplificationC << X) or 1912 // (RemSimplificationC * X) depending on whether we matched Op0/Op1 as 1913 // (shl V, X) or (mul V, X) respectively. 1914 auto CreateMulOrShift = 1915 [&](const APInt &RemSimplificationC) -> BinaryOperator * { 1916 Value *RemSimplification = 1917 ConstantInt::get(I.getType(), RemSimplificationC); 1918 return ShiftByX ? BinaryOperator::CreateShl(RemSimplification, X) 1919 : BinaryOperator::CreateMul(X, RemSimplification); 1920 }; 1921 1922 OverflowingBinaryOperator *BO1 = cast<OverflowingBinaryOperator>(Op1); 1923 bool BO1HasNSW = BO1->hasNoSignedWrap(); 1924 bool BO1HasNUW = BO1->hasNoUnsignedWrap(); 1925 bool BO1NoWrap = IsSRem ? BO1HasNSW : BO1HasNUW; 1926 // (rem (mul X, Y), (mul nuw/nsw X, Z)) 1927 // if (rem Y, Z) == Y 1928 // -> (mul nuw/nsw X, Y) 1929 if (RemYZ == Y && BO1NoWrap) { 1930 BinaryOperator *BO = CreateMulOrShift(Y); 1931 // Copy any overflow flags from Op0. 1932 BO->setHasNoSignedWrap(IsSRem || BO0HasNSW); 1933 BO->setHasNoUnsignedWrap(!IsSRem || BO0HasNUW); 1934 return BO; 1935 } 1936 1937 // (rem (mul nuw/nsw X, Y), (mul {nsw} X, Z)) 1938 // if Y >= Z 1939 // -> (mul {nuw} nsw X, (rem Y, Z)) 1940 if (Y.uge(Z) && (IsSRem ? (BO0HasNSW && BO1HasNSW) : BO0HasNUW)) { 1941 BinaryOperator *BO = CreateMulOrShift(RemYZ); 1942 BO->setHasNoSignedWrap(); 1943 BO->setHasNoUnsignedWrap(BO0HasNUW); 1944 return BO; 1945 } 1946 1947 return nullptr; 1948 } 1949 1950 /// This function implements the transforms common to both integer remainder 1951 /// instructions (urem and srem). It is called by the visitors to those integer 1952 /// remainder instructions. 1953 /// Common integer remainder transforms 1954 Instruction *InstCombinerImpl::commonIRemTransforms(BinaryOperator &I) { 1955 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1956 return Phi; 1957 1958 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1959 1960 // The RHS is known non-zero. 1961 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) 1962 return replaceOperand(I, 1, V); 1963 1964 // Handle cases involving: rem X, (select Cond, Y, Z) 1965 if (simplifyDivRemOfSelectWithZeroOp(I)) 1966 return &I; 1967 1968 // If the divisor is a select-of-constants, try to constant fold all rem ops: 1969 // C % (select Cond, TrueC, FalseC) --> select Cond, (C % TrueC), (C % FalseC) 1970 // TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds. 1971 if (match(Op0, m_ImmConstant()) && 1972 match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) { 1973 if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1), 1974 /*FoldWithMultiUse*/ true)) 1975 return R; 1976 } 1977 1978 if (isa<Constant>(Op1)) { 1979 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) { 1980 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) { 1981 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1982 return R; 1983 } else if (auto *PN = dyn_cast<PHINode>(Op0I)) { 1984 const APInt *Op1Int; 1985 if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() && 1986 (I.getOpcode() == Instruction::URem || 1987 !Op1Int->isMinSignedValue())) { 1988 // foldOpIntoPhi will speculate instructions to the end of the PHI's 1989 // predecessor blocks, so do this only if we know the srem or urem 1990 // will not fault. 1991 if (Instruction *NV = foldOpIntoPhi(I, PN)) 1992 return NV; 1993 } 1994 } 1995 1996 // See if we can fold away this rem instruction. 1997 if (SimplifyDemandedInstructionBits(I)) 1998 return &I; 1999 } 2000 } 2001 2002 if (Instruction *R = simplifyIRemMulShl(I, *this)) 2003 return R; 2004 2005 return nullptr; 2006 } 2007 2008 Instruction *InstCombinerImpl::visitURem(BinaryOperator &I) { 2009 if (Value *V = simplifyURemInst(I.getOperand(0), I.getOperand(1), 2010 SQ.getWithInstruction(&I))) 2011 return replaceInstUsesWith(I, V); 2012 2013 if (Instruction *X = foldVectorBinop(I)) 2014 return X; 2015 2016 if (Instruction *common = commonIRemTransforms(I)) 2017 return common; 2018 2019 if (Instruction *NarrowRem = narrowUDivURem(I, *this)) 2020 return NarrowRem; 2021 2022 // X urem Y -> X and Y-1, where Y is a power of 2, 2023 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2024 Type *Ty = I.getType(); 2025 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) { 2026 // This may increase instruction count, we don't enforce that Y is a 2027 // constant. 2028 Constant *N1 = Constant::getAllOnesValue(Ty); 2029 Value *Add = Builder.CreateAdd(Op1, N1); 2030 return BinaryOperator::CreateAnd(Op0, Add); 2031 } 2032 2033 // 1 urem X -> zext(X != 1) 2034 if (match(Op0, m_One())) { 2035 Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1)); 2036 return CastInst::CreateZExtOrBitCast(Cmp, Ty); 2037 } 2038 2039 // Op0 urem C -> Op0 < C ? Op0 : Op0 - C, where C >= signbit. 2040 // Op0 must be frozen because we are increasing its number of uses. 2041 if (match(Op1, m_Negative())) { 2042 Value *F0 = Builder.CreateFreeze(Op0, Op0->getName() + ".fr"); 2043 Value *Cmp = Builder.CreateICmpULT(F0, Op1); 2044 Value *Sub = Builder.CreateSub(F0, Op1); 2045 return SelectInst::Create(Cmp, F0, Sub); 2046 } 2047 2048 // If the divisor is a sext of a boolean, then the divisor must be max 2049 // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also 2050 // max unsigned value. In that case, the remainder is 0: 2051 // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0 2052 Value *X; 2053 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 2054 Value *FrozenOp0 = Builder.CreateFreeze(Op0, Op0->getName() + ".frozen"); 2055 Value *Cmp = 2056 Builder.CreateICmpEQ(FrozenOp0, ConstantInt::getAllOnesValue(Ty)); 2057 return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), FrozenOp0); 2058 } 2059 2060 // For "(X + 1) % Op1" and if (X u< Op1) => (X + 1) == Op1 ? 0 : X + 1 . 2061 if (match(Op0, m_Add(m_Value(X), m_One()))) { 2062 Value *Val = 2063 simplifyICmpInst(ICmpInst::ICMP_ULT, X, Op1, SQ.getWithInstruction(&I)); 2064 if (Val && match(Val, m_One())) { 2065 Value *FrozenOp0 = Builder.CreateFreeze(Op0, Op0->getName() + ".frozen"); 2066 Value *Cmp = Builder.CreateICmpEQ(FrozenOp0, Op1); 2067 return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), FrozenOp0); 2068 } 2069 } 2070 2071 return nullptr; 2072 } 2073 2074 Instruction *InstCombinerImpl::visitSRem(BinaryOperator &I) { 2075 if (Value *V = simplifySRemInst(I.getOperand(0), I.getOperand(1), 2076 SQ.getWithInstruction(&I))) 2077 return replaceInstUsesWith(I, V); 2078 2079 if (Instruction *X = foldVectorBinop(I)) 2080 return X; 2081 2082 // Handle the integer rem common cases 2083 if (Instruction *Common = commonIRemTransforms(I)) 2084 return Common; 2085 2086 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2087 { 2088 const APInt *Y; 2089 // X % -Y -> X % Y 2090 if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue()) 2091 return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y)); 2092 } 2093 2094 // -X srem Y --> -(X srem Y) 2095 Value *X, *Y; 2096 if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y)))) 2097 return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y)); 2098 2099 // If the sign bits of both operands are zero (i.e. we can prove they are 2100 // unsigned inputs), turn this into a urem. 2101 APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits())); 2102 if (MaskedValueIsZero(Op1, Mask, 0, &I) && 2103 MaskedValueIsZero(Op0, Mask, 0, &I)) { 2104 // X srem Y -> X urem Y, iff X and Y don't have sign bit set 2105 return BinaryOperator::CreateURem(Op0, Op1, I.getName()); 2106 } 2107 2108 // If it's a constant vector, flip any negative values positive. 2109 if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) { 2110 Constant *C = cast<Constant>(Op1); 2111 unsigned VWidth = cast<FixedVectorType>(C->getType())->getNumElements(); 2112 2113 bool hasNegative = false; 2114 bool hasMissing = false; 2115 for (unsigned i = 0; i != VWidth; ++i) { 2116 Constant *Elt = C->getAggregateElement(i); 2117 if (!Elt) { 2118 hasMissing = true; 2119 break; 2120 } 2121 2122 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt)) 2123 if (RHS->isNegative()) 2124 hasNegative = true; 2125 } 2126 2127 if (hasNegative && !hasMissing) { 2128 SmallVector<Constant *, 16> Elts(VWidth); 2129 for (unsigned i = 0; i != VWidth; ++i) { 2130 Elts[i] = C->getAggregateElement(i); // Handle undef, etc. 2131 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) { 2132 if (RHS->isNegative()) 2133 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS)); 2134 } 2135 } 2136 2137 Constant *NewRHSV = ConstantVector::get(Elts); 2138 if (NewRHSV != C) // Don't loop on -MININT 2139 return replaceOperand(I, 1, NewRHSV); 2140 } 2141 } 2142 2143 return nullptr; 2144 } 2145 2146 Instruction *InstCombinerImpl::visitFRem(BinaryOperator &I) { 2147 if (Value *V = simplifyFRemInst(I.getOperand(0), I.getOperand(1), 2148 I.getFastMathFlags(), 2149 SQ.getWithInstruction(&I))) 2150 return replaceInstUsesWith(I, V); 2151 2152 if (Instruction *X = foldVectorBinop(I)) 2153 return X; 2154 2155 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 2156 return Phi; 2157 2158 return nullptr; 2159 } 2160