1 //===- InstCombineMulDivRem.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv, 10 // srem, urem, frem. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/IR/BasicBlock.h" 19 #include "llvm/IR/Constant.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/InstrTypes.h" 22 #include "llvm/IR/Instruction.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/Intrinsics.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/IR/Type.h" 29 #include "llvm/IR/Value.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Transforms/InstCombine/InstCombiner.h" 33 #include "llvm/Transforms/Utils/BuildLibCalls.h" 34 #include <cassert> 35 36 #define DEBUG_TYPE "instcombine" 37 #include "llvm/Transforms/Utils/InstructionWorklist.h" 38 39 using namespace llvm; 40 using namespace PatternMatch; 41 42 /// The specific integer value is used in a context where it is known to be 43 /// non-zero. If this allows us to simplify the computation, do so and return 44 /// the new operand, otherwise return null. 45 static Value *simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC, 46 Instruction &CxtI) { 47 // If V has multiple uses, then we would have to do more analysis to determine 48 // if this is safe. For example, the use could be in dynamically unreached 49 // code. 50 if (!V->hasOneUse()) return nullptr; 51 52 bool MadeChange = false; 53 54 // ((1 << A) >>u B) --> (1 << (A-B)) 55 // Because V cannot be zero, we know that B is less than A. 56 Value *A = nullptr, *B = nullptr, *One = nullptr; 57 if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) && 58 match(One, m_One())) { 59 A = IC.Builder.CreateSub(A, B); 60 return IC.Builder.CreateShl(One, A); 61 } 62 63 // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it 64 // inexact. Similarly for <<. 65 BinaryOperator *I = dyn_cast<BinaryOperator>(V); 66 if (I && I->isLogicalShift() && 67 IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) { 68 // We know that this is an exact/nuw shift and that the input is a 69 // non-zero context as well. 70 if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) { 71 IC.replaceOperand(*I, 0, V2); 72 MadeChange = true; 73 } 74 75 if (I->getOpcode() == Instruction::LShr && !I->isExact()) { 76 I->setIsExact(); 77 MadeChange = true; 78 } 79 80 if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) { 81 I->setHasNoUnsignedWrap(); 82 MadeChange = true; 83 } 84 } 85 86 // TODO: Lots more we could do here: 87 // If V is a phi node, we can call this on each of its operands. 88 // "select cond, X, 0" can simplify to "X". 89 90 return MadeChange ? V : nullptr; 91 } 92 93 // TODO: This is a specific form of a much more general pattern. 94 // We could detect a select with any binop identity constant, or we 95 // could use SimplifyBinOp to see if either arm of the select reduces. 96 // But that needs to be done carefully and/or while removing potential 97 // reverse canonicalizations as in InstCombiner::foldSelectIntoOp(). 98 static Value *foldMulSelectToNegate(BinaryOperator &I, 99 InstCombiner::BuilderTy &Builder) { 100 Value *Cond, *OtherOp; 101 102 // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp 103 // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp 104 if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())), 105 m_Value(OtherOp)))) { 106 bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap(); 107 Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap); 108 return Builder.CreateSelect(Cond, OtherOp, Neg); 109 } 110 // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp 111 // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp 112 if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())), 113 m_Value(OtherOp)))) { 114 bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap(); 115 Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap); 116 return Builder.CreateSelect(Cond, Neg, OtherOp); 117 } 118 119 // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp 120 // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp 121 if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0), 122 m_SpecificFP(-1.0))), 123 m_Value(OtherOp)))) { 124 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 125 Builder.setFastMathFlags(I.getFastMathFlags()); 126 return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp)); 127 } 128 129 // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp 130 // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp 131 if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0), 132 m_SpecificFP(1.0))), 133 m_Value(OtherOp)))) { 134 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 135 Builder.setFastMathFlags(I.getFastMathFlags()); 136 return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp); 137 } 138 139 return nullptr; 140 } 141 142 Instruction *InstCombinerImpl::visitMul(BinaryOperator &I) { 143 if (Value *V = simplifyMulInst(I.getOperand(0), I.getOperand(1), 144 SQ.getWithInstruction(&I))) 145 return replaceInstUsesWith(I, V); 146 147 if (SimplifyAssociativeOrCommutative(I)) 148 return &I; 149 150 if (Instruction *X = foldVectorBinop(I)) 151 return X; 152 153 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 154 return Phi; 155 156 if (Value *V = SimplifyUsingDistributiveLaws(I)) 157 return replaceInstUsesWith(I, V); 158 159 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 160 unsigned BitWidth = I.getType()->getScalarSizeInBits(); 161 162 // X * -1 == 0 - X 163 if (match(Op1, m_AllOnes())) { 164 BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName()); 165 if (I.hasNoSignedWrap()) 166 BO->setHasNoSignedWrap(); 167 return BO; 168 } 169 170 // Also allow combining multiply instructions on vectors. 171 { 172 Value *NewOp; 173 Constant *C1, *C2; 174 const APInt *IVal; 175 if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)), 176 m_Constant(C1))) && 177 match(C1, m_APInt(IVal))) { 178 // ((X << C2)*C1) == (X * (C1 << C2)) 179 Constant *Shl = ConstantExpr::getShl(C1, C2); 180 BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0)); 181 BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl); 182 if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap()) 183 BO->setHasNoUnsignedWrap(); 184 if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() && 185 Shl->isNotMinSignedValue()) 186 BO->setHasNoSignedWrap(); 187 return BO; 188 } 189 190 if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) { 191 // Replace X*(2^C) with X << C, where C is either a scalar or a vector. 192 if (Constant *NewCst = ConstantExpr::getExactLogBase2(C1)) { 193 BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst); 194 195 if (I.hasNoUnsignedWrap()) 196 Shl->setHasNoUnsignedWrap(); 197 if (I.hasNoSignedWrap()) { 198 const APInt *V; 199 if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1) 200 Shl->setHasNoSignedWrap(); 201 } 202 203 return Shl; 204 } 205 } 206 } 207 208 if (Op0->hasOneUse() && match(Op1, m_NegatedPower2())) { 209 // Interpret X * (-1<<C) as (-X) * (1<<C) and try to sink the negation. 210 // The "* (1<<C)" thus becomes a potential shifting opportunity. 211 if (Value *NegOp0 = Negator::Negate(/*IsNegation*/ true, Op0, *this)) 212 return BinaryOperator::CreateMul( 213 NegOp0, ConstantExpr::getNeg(cast<Constant>(Op1)), I.getName()); 214 } 215 216 if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I)) 217 return FoldedMul; 218 219 if (Value *FoldedMul = foldMulSelectToNegate(I, Builder)) 220 return replaceInstUsesWith(I, FoldedMul); 221 222 // Simplify mul instructions with a constant RHS. 223 if (isa<Constant>(Op1)) { 224 // Canonicalize (X+C1)*CI -> X*CI+C1*CI. 225 Value *X; 226 Constant *C1; 227 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) { 228 Value *Mul = Builder.CreateMul(C1, Op1); 229 // Only go forward with the transform if C1*CI simplifies to a tidier 230 // constant. 231 if (!match(Mul, m_Mul(m_Value(), m_Value()))) 232 return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul); 233 } 234 } 235 236 // abs(X) * abs(X) -> X * X 237 // nabs(X) * nabs(X) -> X * X 238 if (Op0 == Op1) { 239 Value *X, *Y; 240 SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor; 241 if (SPF == SPF_ABS || SPF == SPF_NABS) 242 return BinaryOperator::CreateMul(X, X); 243 244 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) 245 return BinaryOperator::CreateMul(X, X); 246 } 247 248 // -X * C --> X * -C 249 Value *X, *Y; 250 Constant *Op1C; 251 if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C))) 252 return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C)); 253 254 // -X * -Y --> X * Y 255 if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) { 256 auto *NewMul = BinaryOperator::CreateMul(X, Y); 257 if (I.hasNoSignedWrap() && 258 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() && 259 cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap()) 260 NewMul->setHasNoSignedWrap(); 261 return NewMul; 262 } 263 264 // -X * Y --> -(X * Y) 265 // X * -Y --> -(X * Y) 266 if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y)))) 267 return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y)); 268 269 // (X / Y) * Y = X - (X % Y) 270 // (X / Y) * -Y = (X % Y) - X 271 { 272 Value *Y = Op1; 273 BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0); 274 if (!Div || (Div->getOpcode() != Instruction::UDiv && 275 Div->getOpcode() != Instruction::SDiv)) { 276 Y = Op0; 277 Div = dyn_cast<BinaryOperator>(Op1); 278 } 279 Value *Neg = dyn_castNegVal(Y); 280 if (Div && Div->hasOneUse() && 281 (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) && 282 (Div->getOpcode() == Instruction::UDiv || 283 Div->getOpcode() == Instruction::SDiv)) { 284 Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1); 285 286 // If the division is exact, X % Y is zero, so we end up with X or -X. 287 if (Div->isExact()) { 288 if (DivOp1 == Y) 289 return replaceInstUsesWith(I, X); 290 return BinaryOperator::CreateNeg(X); 291 } 292 293 auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem 294 : Instruction::SRem; 295 // X must be frozen because we are increasing its number of uses. 296 Value *XFreeze = Builder.CreateFreeze(X, X->getName() + ".fr"); 297 Value *Rem = Builder.CreateBinOp(RemOpc, XFreeze, DivOp1); 298 if (DivOp1 == Y) 299 return BinaryOperator::CreateSub(XFreeze, Rem); 300 return BinaryOperator::CreateSub(Rem, XFreeze); 301 } 302 } 303 304 // Fold the following two scenarios: 305 // 1) i1 mul -> i1 and. 306 // 2) X * Y --> X & Y, iff X, Y can be only {0,1}. 307 // Note: We could use known bits to generalize this and related patterns with 308 // shifts/truncs 309 Type *Ty = I.getType(); 310 if (Ty->isIntOrIntVectorTy(1) || 311 (match(Op0, m_And(m_Value(), m_One())) && 312 match(Op1, m_And(m_Value(), m_One())))) 313 return BinaryOperator::CreateAnd(Op0, Op1); 314 315 // X*(1 << Y) --> X << Y 316 // (1 << Y)*X --> X << Y 317 { 318 Value *Y; 319 BinaryOperator *BO = nullptr; 320 bool ShlNSW = false; 321 if (match(Op0, m_Shl(m_One(), m_Value(Y)))) { 322 BO = BinaryOperator::CreateShl(Op1, Y); 323 ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap(); 324 } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) { 325 BO = BinaryOperator::CreateShl(Op0, Y); 326 ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap(); 327 } 328 if (BO) { 329 if (I.hasNoUnsignedWrap()) 330 BO->setHasNoUnsignedWrap(); 331 if (I.hasNoSignedWrap() && ShlNSW) 332 BO->setHasNoSignedWrap(); 333 return BO; 334 } 335 } 336 337 // (zext bool X) * (zext bool Y) --> zext (and X, Y) 338 // (sext bool X) * (sext bool Y) --> zext (and X, Y) 339 // Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same) 340 if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) || 341 (match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) && 342 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() && 343 (Op0->hasOneUse() || Op1->hasOneUse() || X == Y)) { 344 Value *And = Builder.CreateAnd(X, Y, "mulbool"); 345 return CastInst::Create(Instruction::ZExt, And, Ty); 346 } 347 // (sext bool X) * (zext bool Y) --> sext (and X, Y) 348 // (zext bool X) * (sext bool Y) --> sext (and X, Y) 349 // Note: -1 * 1 == 1 * -1 == -1 350 if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) || 351 (match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) && 352 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() && 353 (Op0->hasOneUse() || Op1->hasOneUse())) { 354 Value *And = Builder.CreateAnd(X, Y, "mulbool"); 355 return CastInst::Create(Instruction::SExt, And, Ty); 356 } 357 358 // (zext bool X) * Y --> X ? Y : 0 359 // Y * (zext bool X) --> X ? Y : 0 360 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 361 return SelectInst::Create(X, Op1, ConstantInt::getNullValue(Ty)); 362 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 363 return SelectInst::Create(X, Op0, ConstantInt::getNullValue(Ty)); 364 365 Constant *ImmC; 366 if (match(Op1, m_ImmConstant(ImmC))) { 367 // (sext bool X) * C --> X ? -C : 0 368 if (match(Op0, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 369 Constant *NegC = ConstantExpr::getNeg(ImmC); 370 return SelectInst::Create(X, NegC, ConstantInt::getNullValue(Ty)); 371 } 372 373 // (ashr i32 X, 31) * C --> (X < 0) ? -C : 0 374 const APInt *C; 375 if (match(Op0, m_OneUse(m_AShr(m_Value(X), m_APInt(C)))) && 376 *C == C->getBitWidth() - 1) { 377 Constant *NegC = ConstantExpr::getNeg(ImmC); 378 Value *IsNeg = Builder.CreateIsNeg(X, "isneg"); 379 return SelectInst::Create(IsNeg, NegC, ConstantInt::getNullValue(Ty)); 380 } 381 } 382 383 // (lshr X, 31) * Y --> (X < 0) ? Y : 0 384 // TODO: We are not checking one-use because the elimination of the multiply 385 // is better for analysis? 386 const APInt *C; 387 if (match(&I, m_c_BinOp(m_LShr(m_Value(X), m_APInt(C)), m_Value(Y))) && 388 *C == C->getBitWidth() - 1) { 389 Value *IsNeg = Builder.CreateIsNeg(X, "isneg"); 390 return SelectInst::Create(IsNeg, Y, ConstantInt::getNullValue(Ty)); 391 } 392 393 // (and X, 1) * Y --> (trunc X) ? Y : 0 394 if (match(&I, m_c_BinOp(m_OneUse(m_And(m_Value(X), m_One())), m_Value(Y)))) { 395 Value *Tr = Builder.CreateTrunc(X, CmpInst::makeCmpResultType(Ty)); 396 return SelectInst::Create(Tr, Y, ConstantInt::getNullValue(Ty)); 397 } 398 399 // ((ashr X, 31) | 1) * X --> abs(X) 400 // X * ((ashr X, 31) | 1) --> abs(X) 401 if (match(&I, m_c_BinOp(m_Or(m_AShr(m_Value(X), 402 m_SpecificIntAllowUndef(BitWidth - 1)), 403 m_One()), 404 m_Deferred(X)))) { 405 Value *Abs = Builder.CreateBinaryIntrinsic( 406 Intrinsic::abs, X, 407 ConstantInt::getBool(I.getContext(), I.hasNoSignedWrap())); 408 Abs->takeName(&I); 409 return replaceInstUsesWith(I, Abs); 410 } 411 412 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 413 return Ext; 414 415 bool Changed = false; 416 if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) { 417 Changed = true; 418 I.setHasNoSignedWrap(true); 419 } 420 421 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) { 422 Changed = true; 423 I.setHasNoUnsignedWrap(true); 424 } 425 426 return Changed ? &I : nullptr; 427 } 428 429 Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) { 430 BinaryOperator::BinaryOps Opcode = I.getOpcode(); 431 assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) && 432 "Expected fmul or fdiv"); 433 434 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 435 Value *X, *Y; 436 437 // -X * -Y --> X * Y 438 // -X / -Y --> X / Y 439 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 440 return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I); 441 442 // fabs(X) * fabs(X) -> X * X 443 // fabs(X) / fabs(X) -> X / X 444 if (Op0 == Op1 && match(Op0, m_FAbs(m_Value(X)))) 445 return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I); 446 447 // fabs(X) * fabs(Y) --> fabs(X * Y) 448 // fabs(X) / fabs(Y) --> fabs(X / Y) 449 if (match(Op0, m_FAbs(m_Value(X))) && match(Op1, m_FAbs(m_Value(Y))) && 450 (Op0->hasOneUse() || Op1->hasOneUse())) { 451 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 452 Builder.setFastMathFlags(I.getFastMathFlags()); 453 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 454 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY); 455 Fabs->takeName(&I); 456 return replaceInstUsesWith(I, Fabs); 457 } 458 459 return nullptr; 460 } 461 462 Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) { 463 if (Value *V = simplifyFMulInst(I.getOperand(0), I.getOperand(1), 464 I.getFastMathFlags(), 465 SQ.getWithInstruction(&I))) 466 return replaceInstUsesWith(I, V); 467 468 if (SimplifyAssociativeOrCommutative(I)) 469 return &I; 470 471 if (Instruction *X = foldVectorBinop(I)) 472 return X; 473 474 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 475 return Phi; 476 477 if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I)) 478 return FoldedMul; 479 480 if (Value *FoldedMul = foldMulSelectToNegate(I, Builder)) 481 return replaceInstUsesWith(I, FoldedMul); 482 483 if (Instruction *R = foldFPSignBitOps(I)) 484 return R; 485 486 // X * -1.0 --> -X 487 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 488 if (match(Op1, m_SpecificFP(-1.0))) 489 return UnaryOperator::CreateFNegFMF(Op0, &I); 490 491 // -X * C --> X * -C 492 Value *X, *Y; 493 Constant *C; 494 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C))) 495 return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I); 496 497 // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E) 498 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) 499 return replaceInstUsesWith(I, V); 500 501 if (I.hasAllowReassoc()) { 502 // Reassociate constant RHS with another constant to form constant 503 // expression. 504 if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) { 505 Constant *C1; 506 if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) { 507 // (C1 / X) * C --> (C * C1) / X 508 Constant *CC1 = 509 ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL); 510 if (CC1 && CC1->isNormalFP()) 511 return BinaryOperator::CreateFDivFMF(CC1, X, &I); 512 } 513 if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) { 514 // (X / C1) * C --> X * (C / C1) 515 Constant *CDivC1 = 516 ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C1, DL); 517 if (CDivC1 && CDivC1->isNormalFP()) 518 return BinaryOperator::CreateFMulFMF(X, CDivC1, &I); 519 520 // If the constant was a denormal, try reassociating differently. 521 // (X / C1) * C --> X / (C1 / C) 522 Constant *C1DivC = 523 ConstantFoldBinaryOpOperands(Instruction::FDiv, C1, C, DL); 524 if (C1DivC && Op0->hasOneUse() && C1DivC->isNormalFP()) 525 return BinaryOperator::CreateFDivFMF(X, C1DivC, &I); 526 } 527 528 // We do not need to match 'fadd C, X' and 'fsub X, C' because they are 529 // canonicalized to 'fadd X, C'. Distributing the multiply may allow 530 // further folds and (X * C) + C2 is 'fma'. 531 if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) { 532 // (X + C1) * C --> (X * C) + (C * C1) 533 if (Constant *CC1 = ConstantFoldBinaryOpOperands( 534 Instruction::FMul, C, C1, DL)) { 535 Value *XC = Builder.CreateFMulFMF(X, C, &I); 536 return BinaryOperator::CreateFAddFMF(XC, CC1, &I); 537 } 538 } 539 if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) { 540 // (C1 - X) * C --> (C * C1) - (X * C) 541 if (Constant *CC1 = ConstantFoldBinaryOpOperands( 542 Instruction::FMul, C, C1, DL)) { 543 Value *XC = Builder.CreateFMulFMF(X, C, &I); 544 return BinaryOperator::CreateFSubFMF(CC1, XC, &I); 545 } 546 } 547 } 548 549 Value *Z; 550 if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))), 551 m_Value(Z)))) { 552 // Sink division: (X / Y) * Z --> (X * Z) / Y 553 Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I); 554 return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I); 555 } 556 557 // sqrt(X) * sqrt(Y) -> sqrt(X * Y) 558 // nnan disallows the possibility of returning a number if both operands are 559 // negative (in that case, we should return NaN). 560 if (I.hasNoNaNs() && match(Op0, m_OneUse(m_Sqrt(m_Value(X)))) && 561 match(Op1, m_OneUse(m_Sqrt(m_Value(Y))))) { 562 Value *XY = Builder.CreateFMulFMF(X, Y, &I); 563 Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I); 564 return replaceInstUsesWith(I, Sqrt); 565 } 566 567 // The following transforms are done irrespective of the number of uses 568 // for the expression "1.0/sqrt(X)". 569 // 1) 1.0/sqrt(X) * X -> X/sqrt(X) 570 // 2) X * 1.0/sqrt(X) -> X/sqrt(X) 571 // We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it 572 // has the necessary (reassoc) fast-math-flags. 573 if (I.hasNoSignedZeros() && 574 match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) && 575 match(Y, m_Sqrt(m_Value(X))) && Op1 == X) 576 return BinaryOperator::CreateFDivFMF(X, Y, &I); 577 if (I.hasNoSignedZeros() && 578 match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) && 579 match(Y, m_Sqrt(m_Value(X))) && Op0 == X) 580 return BinaryOperator::CreateFDivFMF(X, Y, &I); 581 582 // Like the similar transform in instsimplify, this requires 'nsz' because 583 // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0. 584 if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 && 585 Op0->hasNUses(2)) { 586 // Peek through fdiv to find squaring of square root: 587 // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y 588 if (match(Op0, m_FDiv(m_Value(X), m_Sqrt(m_Value(Y))))) { 589 Value *XX = Builder.CreateFMulFMF(X, X, &I); 590 return BinaryOperator::CreateFDivFMF(XX, Y, &I); 591 } 592 // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X) 593 if (match(Op0, m_FDiv(m_Sqrt(m_Value(Y)), m_Value(X)))) { 594 Value *XX = Builder.CreateFMulFMF(X, X, &I); 595 return BinaryOperator::CreateFDivFMF(Y, XX, &I); 596 } 597 } 598 599 if (I.isOnlyUserOfAnyOperand()) { 600 // pow(x, y) * pow(x, z) -> pow(x, y + z) 601 if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) && 602 match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) { 603 auto *YZ = Builder.CreateFAddFMF(Y, Z, &I); 604 auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I); 605 return replaceInstUsesWith(I, NewPow); 606 } 607 608 // powi(x, y) * powi(x, z) -> powi(x, y + z) 609 if (match(Op0, m_Intrinsic<Intrinsic::powi>(m_Value(X), m_Value(Y))) && 610 match(Op1, m_Intrinsic<Intrinsic::powi>(m_Specific(X), m_Value(Z))) && 611 Y->getType() == Z->getType()) { 612 auto *YZ = Builder.CreateAdd(Y, Z); 613 auto *NewPow = Builder.CreateIntrinsic( 614 Intrinsic::powi, {X->getType(), YZ->getType()}, {X, YZ}, &I); 615 return replaceInstUsesWith(I, NewPow); 616 } 617 618 // exp(X) * exp(Y) -> exp(X + Y) 619 if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) && 620 match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) { 621 Value *XY = Builder.CreateFAddFMF(X, Y, &I); 622 Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I); 623 return replaceInstUsesWith(I, Exp); 624 } 625 626 // exp2(X) * exp2(Y) -> exp2(X + Y) 627 if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) && 628 match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) { 629 Value *XY = Builder.CreateFAddFMF(X, Y, &I); 630 Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I); 631 return replaceInstUsesWith(I, Exp2); 632 } 633 } 634 635 // (X*Y) * X => (X*X) * Y where Y != X 636 // The purpose is two-fold: 637 // 1) to form a power expression (of X). 638 // 2) potentially shorten the critical path: After transformation, the 639 // latency of the instruction Y is amortized by the expression of X*X, 640 // and therefore Y is in a "less critical" position compared to what it 641 // was before the transformation. 642 if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) && 643 Op1 != Y) { 644 Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I); 645 return BinaryOperator::CreateFMulFMF(XX, Y, &I); 646 } 647 if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) && 648 Op0 != Y) { 649 Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I); 650 return BinaryOperator::CreateFMulFMF(XX, Y, &I); 651 } 652 } 653 654 // log2(X * 0.5) * Y = log2(X) * Y - Y 655 if (I.isFast()) { 656 IntrinsicInst *Log2 = nullptr; 657 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>( 658 m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) { 659 Log2 = cast<IntrinsicInst>(Op0); 660 Y = Op1; 661 } 662 if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>( 663 m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) { 664 Log2 = cast<IntrinsicInst>(Op1); 665 Y = Op0; 666 } 667 if (Log2) { 668 Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I); 669 Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I); 670 return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I); 671 } 672 } 673 674 return nullptr; 675 } 676 677 /// Fold a divide or remainder with a select instruction divisor when one of the 678 /// select operands is zero. In that case, we can use the other select operand 679 /// because div/rem by zero is undefined. 680 bool InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) { 681 SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1)); 682 if (!SI) 683 return false; 684 685 int NonNullOperand; 686 if (match(SI->getTrueValue(), m_Zero())) 687 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y 688 NonNullOperand = 2; 689 else if (match(SI->getFalseValue(), m_Zero())) 690 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y 691 NonNullOperand = 1; 692 else 693 return false; 694 695 // Change the div/rem to use 'Y' instead of the select. 696 replaceOperand(I, 1, SI->getOperand(NonNullOperand)); 697 698 // Okay, we know we replace the operand of the div/rem with 'Y' with no 699 // problem. However, the select, or the condition of the select may have 700 // multiple uses. Based on our knowledge that the operand must be non-zero, 701 // propagate the known value for the select into other uses of it, and 702 // propagate a known value of the condition into its other users. 703 704 // If the select and condition only have a single use, don't bother with this, 705 // early exit. 706 Value *SelectCond = SI->getCondition(); 707 if (SI->use_empty() && SelectCond->hasOneUse()) 708 return true; 709 710 // Scan the current block backward, looking for other uses of SI. 711 BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin(); 712 Type *CondTy = SelectCond->getType(); 713 while (BBI != BBFront) { 714 --BBI; 715 // If we found an instruction that we can't assume will return, so 716 // information from below it cannot be propagated above it. 717 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI)) 718 break; 719 720 // Replace uses of the select or its condition with the known values. 721 for (Use &Op : BBI->operands()) { 722 if (Op == SI) { 723 replaceUse(Op, SI->getOperand(NonNullOperand)); 724 Worklist.push(&*BBI); 725 } else if (Op == SelectCond) { 726 replaceUse(Op, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy) 727 : ConstantInt::getFalse(CondTy)); 728 Worklist.push(&*BBI); 729 } 730 } 731 732 // If we past the instruction, quit looking for it. 733 if (&*BBI == SI) 734 SI = nullptr; 735 if (&*BBI == SelectCond) 736 SelectCond = nullptr; 737 738 // If we ran out of things to eliminate, break out of the loop. 739 if (!SelectCond && !SI) 740 break; 741 742 } 743 return true; 744 } 745 746 /// True if the multiply can not be expressed in an int this size. 747 static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product, 748 bool IsSigned) { 749 bool Overflow; 750 Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow); 751 return Overflow; 752 } 753 754 /// True if C1 is a multiple of C2. Quotient contains C1/C2. 755 static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient, 756 bool IsSigned) { 757 assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal"); 758 759 // Bail if we will divide by zero. 760 if (C2.isZero()) 761 return false; 762 763 // Bail if we would divide INT_MIN by -1. 764 if (IsSigned && C1.isMinSignedValue() && C2.isAllOnes()) 765 return false; 766 767 APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned); 768 if (IsSigned) 769 APInt::sdivrem(C1, C2, Quotient, Remainder); 770 else 771 APInt::udivrem(C1, C2, Quotient, Remainder); 772 773 return Remainder.isMinValue(); 774 } 775 776 /// This function implements the transforms common to both integer division 777 /// instructions (udiv and sdiv). It is called by the visitors to those integer 778 /// division instructions. 779 /// Common integer divide transforms 780 Instruction *InstCombinerImpl::commonIDivTransforms(BinaryOperator &I) { 781 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 782 return Phi; 783 784 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 785 bool IsSigned = I.getOpcode() == Instruction::SDiv; 786 Type *Ty = I.getType(); 787 788 // The RHS is known non-zero. 789 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) 790 return replaceOperand(I, 1, V); 791 792 // Handle cases involving: [su]div X, (select Cond, Y, Z) 793 // This does not apply for fdiv. 794 if (simplifyDivRemOfSelectWithZeroOp(I)) 795 return &I; 796 797 // If the divisor is a select-of-constants, try to constant fold all div ops: 798 // C / (select Cond, TrueC, FalseC) --> select Cond, (C / TrueC), (C / FalseC) 799 // TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds. 800 if (match(Op0, m_ImmConstant()) && 801 match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) { 802 if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1), 803 /*FoldWithMultiUse*/ true)) 804 return R; 805 } 806 807 const APInt *C2; 808 if (match(Op1, m_APInt(C2))) { 809 Value *X; 810 const APInt *C1; 811 812 // (X / C1) / C2 -> X / (C1*C2) 813 if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) || 814 (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) { 815 APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned); 816 if (!multiplyOverflows(*C1, *C2, Product, IsSigned)) 817 return BinaryOperator::Create(I.getOpcode(), X, 818 ConstantInt::get(Ty, Product)); 819 } 820 821 if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) || 822 (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) { 823 APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned); 824 825 // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1. 826 if (isMultiple(*C2, *C1, Quotient, IsSigned)) { 827 auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X, 828 ConstantInt::get(Ty, Quotient)); 829 NewDiv->setIsExact(I.isExact()); 830 return NewDiv; 831 } 832 833 // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2. 834 if (isMultiple(*C1, *C2, Quotient, IsSigned)) { 835 auto *Mul = BinaryOperator::Create(Instruction::Mul, X, 836 ConstantInt::get(Ty, Quotient)); 837 auto *OBO = cast<OverflowingBinaryOperator>(Op0); 838 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap()); 839 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap()); 840 return Mul; 841 } 842 } 843 844 if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) && 845 C1->ult(C1->getBitWidth() - 1)) || 846 (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))) && 847 C1->ult(C1->getBitWidth()))) { 848 APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned); 849 APInt C1Shifted = APInt::getOneBitSet( 850 C1->getBitWidth(), static_cast<unsigned>(C1->getZExtValue())); 851 852 // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1. 853 if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) { 854 auto *BO = BinaryOperator::Create(I.getOpcode(), X, 855 ConstantInt::get(Ty, Quotient)); 856 BO->setIsExact(I.isExact()); 857 return BO; 858 } 859 860 // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2. 861 if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) { 862 auto *Mul = BinaryOperator::Create(Instruction::Mul, X, 863 ConstantInt::get(Ty, Quotient)); 864 auto *OBO = cast<OverflowingBinaryOperator>(Op0); 865 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap()); 866 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap()); 867 return Mul; 868 } 869 } 870 871 if (!C2->isZero()) // avoid X udiv 0 872 if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I)) 873 return FoldedDiv; 874 } 875 876 if (match(Op0, m_One())) { 877 assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?"); 878 if (IsSigned) { 879 // 1 / 0 --> undef ; 1 / 1 --> 1 ; 1 / -1 --> -1 ; 1 / anything else --> 0 880 // (Op1 + 1) u< 3 ? Op1 : 0 881 // Op1 must be frozen because we are increasing its number of uses. 882 Value *F1 = Builder.CreateFreeze(Op1, Op1->getName() + ".fr"); 883 Value *Inc = Builder.CreateAdd(F1, Op0); 884 Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3)); 885 return SelectInst::Create(Cmp, F1, ConstantInt::get(Ty, 0)); 886 } else { 887 // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the 888 // result is one, otherwise it's zero. 889 return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty); 890 } 891 } 892 893 // See if we can fold away this div instruction. 894 if (SimplifyDemandedInstructionBits(I)) 895 return &I; 896 897 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y 898 Value *X, *Z; 899 if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1 900 if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) || 901 (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1))))) 902 return BinaryOperator::Create(I.getOpcode(), X, Op1); 903 904 // (X << Y) / X -> 1 << Y 905 Value *Y; 906 if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y)))) 907 return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y); 908 if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y)))) 909 return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y); 910 911 // X / (X * Y) -> 1 / Y if the multiplication does not overflow. 912 if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) { 913 bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap(); 914 bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap(); 915 if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) { 916 replaceOperand(I, 0, ConstantInt::get(Ty, 1)); 917 replaceOperand(I, 1, Y); 918 return &I; 919 } 920 } 921 922 return nullptr; 923 } 924 925 static const unsigned MaxDepth = 6; 926 927 // Take the exact integer log2 of the value. If DoFold is true, create the 928 // actual instructions, otherwise return a non-null dummy value. Return nullptr 929 // on failure. 930 static Value *takeLog2(IRBuilderBase &Builder, Value *Op, unsigned Depth, 931 bool DoFold) { 932 auto IfFold = [DoFold](function_ref<Value *()> Fn) { 933 if (!DoFold) 934 return reinterpret_cast<Value *>(-1); 935 return Fn(); 936 }; 937 938 // FIXME: assert that Op1 isn't/doesn't contain undef. 939 940 // log2(2^C) -> C 941 if (match(Op, m_Power2())) 942 return IfFold([&]() { 943 Constant *C = ConstantExpr::getExactLogBase2(cast<Constant>(Op)); 944 if (!C) 945 llvm_unreachable("Failed to constant fold udiv -> logbase2"); 946 return C; 947 }); 948 949 // The remaining tests are all recursive, so bail out if we hit the limit. 950 if (Depth++ == MaxDepth) 951 return nullptr; 952 953 // log2(zext X) -> zext log2(X) 954 // FIXME: Require one use? 955 Value *X, *Y; 956 if (match(Op, m_ZExt(m_Value(X)))) 957 if (Value *LogX = takeLog2(Builder, X, Depth, DoFold)) 958 return IfFold([&]() { return Builder.CreateZExt(LogX, Op->getType()); }); 959 960 // log2(X << Y) -> log2(X) + Y 961 // FIXME: Require one use unless X is 1? 962 if (match(Op, m_Shl(m_Value(X), m_Value(Y)))) 963 if (Value *LogX = takeLog2(Builder, X, Depth, DoFold)) 964 return IfFold([&]() { return Builder.CreateAdd(LogX, Y); }); 965 966 // log2(Cond ? X : Y) -> Cond ? log2(X) : log2(Y) 967 // FIXME: missed optimization: if one of the hands of select is/contains 968 // undef, just directly pick the other one. 969 // FIXME: can both hands contain undef? 970 // FIXME: Require one use? 971 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) 972 if (Value *LogX = takeLog2(Builder, SI->getOperand(1), Depth, DoFold)) 973 if (Value *LogY = takeLog2(Builder, SI->getOperand(2), Depth, DoFold)) 974 return IfFold([&]() { 975 return Builder.CreateSelect(SI->getOperand(0), LogX, LogY); 976 }); 977 978 // log2(umin(X, Y)) -> umin(log2(X), log2(Y)) 979 // log2(umax(X, Y)) -> umax(log2(X), log2(Y)) 980 auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op); 981 if (MinMax && MinMax->hasOneUse() && !MinMax->isSigned()) 982 if (Value *LogX = takeLog2(Builder, MinMax->getLHS(), Depth, DoFold)) 983 if (Value *LogY = takeLog2(Builder, MinMax->getRHS(), Depth, DoFold)) 984 return IfFold([&]() { 985 return Builder.CreateBinaryIntrinsic( 986 MinMax->getIntrinsicID(), LogX, LogY); 987 }); 988 989 return nullptr; 990 } 991 992 /// If we have zero-extended operands of an unsigned div or rem, we may be able 993 /// to narrow the operation (sink the zext below the math). 994 static Instruction *narrowUDivURem(BinaryOperator &I, 995 InstCombiner::BuilderTy &Builder) { 996 Instruction::BinaryOps Opcode = I.getOpcode(); 997 Value *N = I.getOperand(0); 998 Value *D = I.getOperand(1); 999 Type *Ty = I.getType(); 1000 Value *X, *Y; 1001 if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) && 1002 X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) { 1003 // udiv (zext X), (zext Y) --> zext (udiv X, Y) 1004 // urem (zext X), (zext Y) --> zext (urem X, Y) 1005 Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y); 1006 return new ZExtInst(NarrowOp, Ty); 1007 } 1008 1009 Constant *C; 1010 if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) || 1011 (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) { 1012 // If the constant is the same in the smaller type, use the narrow version. 1013 Constant *TruncC = ConstantExpr::getTrunc(C, X->getType()); 1014 if (ConstantExpr::getZExt(TruncC, Ty) != C) 1015 return nullptr; 1016 1017 // udiv (zext X), C --> zext (udiv X, C') 1018 // urem (zext X), C --> zext (urem X, C') 1019 // udiv C, (zext X) --> zext (udiv C', X) 1020 // urem C, (zext X) --> zext (urem C', X) 1021 Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC) 1022 : Builder.CreateBinOp(Opcode, TruncC, X); 1023 return new ZExtInst(NarrowOp, Ty); 1024 } 1025 1026 return nullptr; 1027 } 1028 1029 Instruction *InstCombinerImpl::visitUDiv(BinaryOperator &I) { 1030 if (Value *V = simplifyUDivInst(I.getOperand(0), I.getOperand(1), 1031 SQ.getWithInstruction(&I))) 1032 return replaceInstUsesWith(I, V); 1033 1034 if (Instruction *X = foldVectorBinop(I)) 1035 return X; 1036 1037 // Handle the integer div common cases 1038 if (Instruction *Common = commonIDivTransforms(I)) 1039 return Common; 1040 1041 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1042 Value *X; 1043 const APInt *C1, *C2; 1044 if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) { 1045 // (X lshr C1) udiv C2 --> X udiv (C2 << C1) 1046 bool Overflow; 1047 APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow); 1048 if (!Overflow) { 1049 bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value())); 1050 BinaryOperator *BO = BinaryOperator::CreateUDiv( 1051 X, ConstantInt::get(X->getType(), C2ShlC1)); 1052 if (IsExact) 1053 BO->setIsExact(); 1054 return BO; 1055 } 1056 } 1057 1058 // Op0 / C where C is large (negative) --> zext (Op0 >= C) 1059 // TODO: Could use isKnownNegative() to handle non-constant values. 1060 Type *Ty = I.getType(); 1061 if (match(Op1, m_Negative())) { 1062 Value *Cmp = Builder.CreateICmpUGE(Op0, Op1); 1063 return CastInst::CreateZExtOrBitCast(Cmp, Ty); 1064 } 1065 // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined) 1066 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 1067 Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty)); 1068 return CastInst::CreateZExtOrBitCast(Cmp, Ty); 1069 } 1070 1071 if (Instruction *NarrowDiv = narrowUDivURem(I, Builder)) 1072 return NarrowDiv; 1073 1074 // If the udiv operands are non-overflowing multiplies with a common operand, 1075 // then eliminate the common factor: 1076 // (A * B) / (A * X) --> B / X (and commuted variants) 1077 // TODO: The code would be reduced if we had m_c_NUWMul pattern matching. 1078 // TODO: If -reassociation handled this generally, we could remove this. 1079 Value *A, *B; 1080 if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) { 1081 if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) || 1082 match(Op1, m_NUWMul(m_Value(X), m_Specific(A)))) 1083 return BinaryOperator::CreateUDiv(B, X); 1084 if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) || 1085 match(Op1, m_NUWMul(m_Value(X), m_Specific(B)))) 1086 return BinaryOperator::CreateUDiv(A, X); 1087 } 1088 1089 // Op1 udiv Op2 -> Op1 lshr log2(Op2), if log2() folds away. 1090 if (takeLog2(Builder, Op1, /*Depth*/0, /*DoFold*/false)) { 1091 Value *Res = takeLog2(Builder, Op1, /*Depth*/0, /*DoFold*/true); 1092 return replaceInstUsesWith( 1093 I, Builder.CreateLShr(Op0, Res, I.getName(), I.isExact())); 1094 } 1095 1096 return nullptr; 1097 } 1098 1099 Instruction *InstCombinerImpl::visitSDiv(BinaryOperator &I) { 1100 if (Value *V = simplifySDivInst(I.getOperand(0), I.getOperand(1), 1101 SQ.getWithInstruction(&I))) 1102 return replaceInstUsesWith(I, V); 1103 1104 if (Instruction *X = foldVectorBinop(I)) 1105 return X; 1106 1107 // Handle the integer div common cases 1108 if (Instruction *Common = commonIDivTransforms(I)) 1109 return Common; 1110 1111 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1112 Type *Ty = I.getType(); 1113 Value *X; 1114 // sdiv Op0, -1 --> -Op0 1115 // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined) 1116 if (match(Op1, m_AllOnes()) || 1117 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1118 return BinaryOperator::CreateNeg(Op0); 1119 1120 // X / INT_MIN --> X == INT_MIN 1121 if (match(Op1, m_SignMask())) 1122 return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), Ty); 1123 1124 // sdiv exact X, 1<<C --> ashr exact X, C iff 1<<C is non-negative 1125 // sdiv exact X, -1<<C --> -(ashr exact X, C) 1126 if (I.isExact() && ((match(Op1, m_Power2()) && match(Op1, m_NonNegative())) || 1127 match(Op1, m_NegatedPower2()))) { 1128 bool DivisorWasNegative = match(Op1, m_NegatedPower2()); 1129 if (DivisorWasNegative) 1130 Op1 = ConstantExpr::getNeg(cast<Constant>(Op1)); 1131 auto *AShr = BinaryOperator::CreateExactAShr( 1132 Op0, ConstantExpr::getExactLogBase2(cast<Constant>(Op1)), I.getName()); 1133 if (!DivisorWasNegative) 1134 return AShr; 1135 Builder.Insert(AShr); 1136 AShr->setName(I.getName() + ".neg"); 1137 return BinaryOperator::CreateNeg(AShr, I.getName()); 1138 } 1139 1140 const APInt *Op1C; 1141 if (match(Op1, m_APInt(Op1C))) { 1142 // If the dividend is sign-extended and the constant divisor is small enough 1143 // to fit in the source type, shrink the division to the narrower type: 1144 // (sext X) sdiv C --> sext (X sdiv C) 1145 Value *Op0Src; 1146 if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) && 1147 Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) { 1148 1149 // In the general case, we need to make sure that the dividend is not the 1150 // minimum signed value because dividing that by -1 is UB. But here, we 1151 // know that the -1 divisor case is already handled above. 1152 1153 Constant *NarrowDivisor = 1154 ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType()); 1155 Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor); 1156 return new SExtInst(NarrowOp, Ty); 1157 } 1158 1159 // -X / C --> X / -C (if the negation doesn't overflow). 1160 // TODO: This could be enhanced to handle arbitrary vector constants by 1161 // checking if all elements are not the min-signed-val. 1162 if (!Op1C->isMinSignedValue() && 1163 match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) { 1164 Constant *NegC = ConstantInt::get(Ty, -(*Op1C)); 1165 Instruction *BO = BinaryOperator::CreateSDiv(X, NegC); 1166 BO->setIsExact(I.isExact()); 1167 return BO; 1168 } 1169 } 1170 1171 // -X / Y --> -(X / Y) 1172 Value *Y; 1173 if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y)))) 1174 return BinaryOperator::CreateNSWNeg( 1175 Builder.CreateSDiv(X, Y, I.getName(), I.isExact())); 1176 1177 // abs(X) / X --> X > -1 ? 1 : -1 1178 // X / abs(X) --> X > -1 ? 1 : -1 1179 if (match(&I, m_c_BinOp( 1180 m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One())), 1181 m_Deferred(X)))) { 1182 Value *Cond = Builder.CreateIsNotNeg(X); 1183 return SelectInst::Create(Cond, ConstantInt::get(Ty, 1), 1184 ConstantInt::getAllOnesValue(Ty)); 1185 } 1186 1187 // If the sign bits of both operands are zero (i.e. we can prove they are 1188 // unsigned inputs), turn this into a udiv. 1189 APInt Mask(APInt::getSignMask(Ty->getScalarSizeInBits())); 1190 if (MaskedValueIsZero(Op0, Mask, 0, &I)) { 1191 if (MaskedValueIsZero(Op1, Mask, 0, &I)) { 1192 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set 1193 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); 1194 BO->setIsExact(I.isExact()); 1195 return BO; 1196 } 1197 1198 if (match(Op1, m_NegatedPower2())) { 1199 // X sdiv (-(1 << C)) -> -(X sdiv (1 << C)) -> 1200 // -> -(X udiv (1 << C)) -> -(X u>> C) 1201 Constant *CNegLog2 = ConstantExpr::getExactLogBase2( 1202 ConstantExpr::getNeg(cast<Constant>(Op1))); 1203 Value *Shr = Builder.CreateLShr(Op0, CNegLog2, I.getName(), I.isExact()); 1204 return BinaryOperator::CreateNeg(Shr); 1205 } 1206 1207 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) { 1208 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y) 1209 // Safe because the only negative value (1 << Y) can take on is 1210 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have 1211 // the sign bit set. 1212 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); 1213 BO->setIsExact(I.isExact()); 1214 return BO; 1215 } 1216 } 1217 1218 return nullptr; 1219 } 1220 1221 /// Remove negation and try to convert division into multiplication. 1222 static Instruction *foldFDivConstantDivisor(BinaryOperator &I) { 1223 Constant *C; 1224 if (!match(I.getOperand(1), m_Constant(C))) 1225 return nullptr; 1226 1227 // -X / C --> X / -C 1228 Value *X; 1229 if (match(I.getOperand(0), m_FNeg(m_Value(X)))) 1230 return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I); 1231 1232 // If the constant divisor has an exact inverse, this is always safe. If not, 1233 // then we can still create a reciprocal if fast-math-flags allow it and the 1234 // constant is a regular number (not zero, infinite, or denormal). 1235 if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP()))) 1236 return nullptr; 1237 1238 // Disallow denormal constants because we don't know what would happen 1239 // on all targets. 1240 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that 1241 // denorms are flushed? 1242 const DataLayout &DL = I.getModule()->getDataLayout(); 1243 auto *RecipC = ConstantFoldBinaryOpOperands( 1244 Instruction::FDiv, ConstantFP::get(I.getType(), 1.0), C, DL); 1245 if (!RecipC || !RecipC->isNormalFP()) 1246 return nullptr; 1247 1248 // X / C --> X * (1 / C) 1249 return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I); 1250 } 1251 1252 /// Remove negation and try to reassociate constant math. 1253 static Instruction *foldFDivConstantDividend(BinaryOperator &I) { 1254 Constant *C; 1255 if (!match(I.getOperand(0), m_Constant(C))) 1256 return nullptr; 1257 1258 // C / -X --> -C / X 1259 Value *X; 1260 if (match(I.getOperand(1), m_FNeg(m_Value(X)))) 1261 return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I); 1262 1263 if (!I.hasAllowReassoc() || !I.hasAllowReciprocal()) 1264 return nullptr; 1265 1266 // Try to reassociate C / X expressions where X includes another constant. 1267 Constant *C2, *NewC = nullptr; 1268 const DataLayout &DL = I.getModule()->getDataLayout(); 1269 if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) { 1270 // C / (X * C2) --> (C / C2) / X 1271 NewC = ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C2, DL); 1272 } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) { 1273 // C / (X / C2) --> (C * C2) / X 1274 NewC = ConstantFoldBinaryOpOperands(Instruction::FMul, C, C2, DL); 1275 } 1276 // Disallow denormal constants because we don't know what would happen 1277 // on all targets. 1278 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that 1279 // denorms are flushed? 1280 if (!NewC || !NewC->isNormalFP()) 1281 return nullptr; 1282 1283 return BinaryOperator::CreateFDivFMF(NewC, X, &I); 1284 } 1285 1286 /// Negate the exponent of pow/exp to fold division-by-pow() into multiply. 1287 static Instruction *foldFDivPowDivisor(BinaryOperator &I, 1288 InstCombiner::BuilderTy &Builder) { 1289 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1290 auto *II = dyn_cast<IntrinsicInst>(Op1); 1291 if (!II || !II->hasOneUse() || !I.hasAllowReassoc() || 1292 !I.hasAllowReciprocal()) 1293 return nullptr; 1294 1295 // Z / pow(X, Y) --> Z * pow(X, -Y) 1296 // Z / exp{2}(Y) --> Z * exp{2}(-Y) 1297 // In the general case, this creates an extra instruction, but fmul allows 1298 // for better canonicalization and optimization than fdiv. 1299 Intrinsic::ID IID = II->getIntrinsicID(); 1300 SmallVector<Value *> Args; 1301 switch (IID) { 1302 case Intrinsic::pow: 1303 Args.push_back(II->getArgOperand(0)); 1304 Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(1), &I)); 1305 break; 1306 case Intrinsic::powi: { 1307 // Require 'ninf' assuming that makes powi(X, -INT_MIN) acceptable. 1308 // That is, X ** (huge negative number) is 0.0, ~1.0, or INF and so 1309 // dividing by that is INF, ~1.0, or 0.0. Code that uses powi allows 1310 // non-standard results, so this corner case should be acceptable if the 1311 // code rules out INF values. 1312 if (!I.hasNoInfs()) 1313 return nullptr; 1314 Args.push_back(II->getArgOperand(0)); 1315 Args.push_back(Builder.CreateNeg(II->getArgOperand(1))); 1316 Type *Tys[] = {I.getType(), II->getArgOperand(1)->getType()}; 1317 Value *Pow = Builder.CreateIntrinsic(IID, Tys, Args, &I); 1318 return BinaryOperator::CreateFMulFMF(Op0, Pow, &I); 1319 } 1320 case Intrinsic::exp: 1321 case Intrinsic::exp2: 1322 Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(0), &I)); 1323 break; 1324 default: 1325 return nullptr; 1326 } 1327 Value *Pow = Builder.CreateIntrinsic(IID, I.getType(), Args, &I); 1328 return BinaryOperator::CreateFMulFMF(Op0, Pow, &I); 1329 } 1330 1331 Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) { 1332 Module *M = I.getModule(); 1333 1334 if (Value *V = simplifyFDivInst(I.getOperand(0), I.getOperand(1), 1335 I.getFastMathFlags(), 1336 SQ.getWithInstruction(&I))) 1337 return replaceInstUsesWith(I, V); 1338 1339 if (Instruction *X = foldVectorBinop(I)) 1340 return X; 1341 1342 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1343 return Phi; 1344 1345 if (Instruction *R = foldFDivConstantDivisor(I)) 1346 return R; 1347 1348 if (Instruction *R = foldFDivConstantDividend(I)) 1349 return R; 1350 1351 if (Instruction *R = foldFPSignBitOps(I)) 1352 return R; 1353 1354 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1355 if (isa<Constant>(Op0)) 1356 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1357 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1358 return R; 1359 1360 if (isa<Constant>(Op1)) 1361 if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) 1362 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1363 return R; 1364 1365 if (I.hasAllowReassoc() && I.hasAllowReciprocal()) { 1366 Value *X, *Y; 1367 if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) && 1368 (!isa<Constant>(Y) || !isa<Constant>(Op1))) { 1369 // (X / Y) / Z => X / (Y * Z) 1370 Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I); 1371 return BinaryOperator::CreateFDivFMF(X, YZ, &I); 1372 } 1373 if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) && 1374 (!isa<Constant>(Y) || !isa<Constant>(Op0))) { 1375 // Z / (X / Y) => (Y * Z) / X 1376 Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I); 1377 return BinaryOperator::CreateFDivFMF(YZ, X, &I); 1378 } 1379 // Z / (1.0 / Y) => (Y * Z) 1380 // 1381 // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The 1382 // m_OneUse check is avoided because even in the case of the multiple uses 1383 // for 1.0/Y, the number of instructions remain the same and a division is 1384 // replaced by a multiplication. 1385 if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) 1386 return BinaryOperator::CreateFMulFMF(Y, Op0, &I); 1387 } 1388 1389 if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) { 1390 // sin(X) / cos(X) -> tan(X) 1391 // cos(X) / sin(X) -> 1/tan(X) (cotangent) 1392 Value *X; 1393 bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) && 1394 match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X))); 1395 bool IsCot = 1396 !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) && 1397 match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X))); 1398 1399 if ((IsTan || IsCot) && hasFloatFn(M, &TLI, I.getType(), LibFunc_tan, 1400 LibFunc_tanf, LibFunc_tanl)) { 1401 IRBuilder<> B(&I); 1402 IRBuilder<>::FastMathFlagGuard FMFGuard(B); 1403 B.setFastMathFlags(I.getFastMathFlags()); 1404 AttributeList Attrs = 1405 cast<CallBase>(Op0)->getCalledFunction()->getAttributes(); 1406 Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf, 1407 LibFunc_tanl, B, Attrs); 1408 if (IsCot) 1409 Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res); 1410 return replaceInstUsesWith(I, Res); 1411 } 1412 } 1413 1414 // X / (X * Y) --> 1.0 / Y 1415 // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed. 1416 // We can ignore the possibility that X is infinity because INF/INF is NaN. 1417 Value *X, *Y; 1418 if (I.hasNoNaNs() && I.hasAllowReassoc() && 1419 match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) { 1420 replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0)); 1421 replaceOperand(I, 1, Y); 1422 return &I; 1423 } 1424 1425 // X / fabs(X) -> copysign(1.0, X) 1426 // fabs(X) / X -> copysign(1.0, X) 1427 if (I.hasNoNaNs() && I.hasNoInfs() && 1428 (match(&I, m_FDiv(m_Value(X), m_FAbs(m_Deferred(X)))) || 1429 match(&I, m_FDiv(m_FAbs(m_Value(X)), m_Deferred(X))))) { 1430 Value *V = Builder.CreateBinaryIntrinsic( 1431 Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I); 1432 return replaceInstUsesWith(I, V); 1433 } 1434 1435 if (Instruction *Mul = foldFDivPowDivisor(I, Builder)) 1436 return Mul; 1437 1438 return nullptr; 1439 } 1440 1441 /// This function implements the transforms common to both integer remainder 1442 /// instructions (urem and srem). It is called by the visitors to those integer 1443 /// remainder instructions. 1444 /// Common integer remainder transforms 1445 Instruction *InstCombinerImpl::commonIRemTransforms(BinaryOperator &I) { 1446 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1447 return Phi; 1448 1449 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1450 1451 // The RHS is known non-zero. 1452 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) 1453 return replaceOperand(I, 1, V); 1454 1455 // Handle cases involving: rem X, (select Cond, Y, Z) 1456 if (simplifyDivRemOfSelectWithZeroOp(I)) 1457 return &I; 1458 1459 // If the divisor is a select-of-constants, try to constant fold all rem ops: 1460 // C % (select Cond, TrueC, FalseC) --> select Cond, (C % TrueC), (C % FalseC) 1461 // TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds. 1462 if (match(Op0, m_ImmConstant()) && 1463 match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) { 1464 if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1), 1465 /*FoldWithMultiUse*/ true)) 1466 return R; 1467 } 1468 1469 if (isa<Constant>(Op1)) { 1470 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) { 1471 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) { 1472 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1473 return R; 1474 } else if (auto *PN = dyn_cast<PHINode>(Op0I)) { 1475 const APInt *Op1Int; 1476 if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() && 1477 (I.getOpcode() == Instruction::URem || 1478 !Op1Int->isMinSignedValue())) { 1479 // foldOpIntoPhi will speculate instructions to the end of the PHI's 1480 // predecessor blocks, so do this only if we know the srem or urem 1481 // will not fault. 1482 if (Instruction *NV = foldOpIntoPhi(I, PN)) 1483 return NV; 1484 } 1485 } 1486 1487 // See if we can fold away this rem instruction. 1488 if (SimplifyDemandedInstructionBits(I)) 1489 return &I; 1490 } 1491 } 1492 1493 return nullptr; 1494 } 1495 1496 Instruction *InstCombinerImpl::visitURem(BinaryOperator &I) { 1497 if (Value *V = simplifyURemInst(I.getOperand(0), I.getOperand(1), 1498 SQ.getWithInstruction(&I))) 1499 return replaceInstUsesWith(I, V); 1500 1501 if (Instruction *X = foldVectorBinop(I)) 1502 return X; 1503 1504 if (Instruction *common = commonIRemTransforms(I)) 1505 return common; 1506 1507 if (Instruction *NarrowRem = narrowUDivURem(I, Builder)) 1508 return NarrowRem; 1509 1510 // X urem Y -> X and Y-1, where Y is a power of 2, 1511 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1512 Type *Ty = I.getType(); 1513 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) { 1514 // This may increase instruction count, we don't enforce that Y is a 1515 // constant. 1516 Constant *N1 = Constant::getAllOnesValue(Ty); 1517 Value *Add = Builder.CreateAdd(Op1, N1); 1518 return BinaryOperator::CreateAnd(Op0, Add); 1519 } 1520 1521 // 1 urem X -> zext(X != 1) 1522 if (match(Op0, m_One())) { 1523 Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1)); 1524 return CastInst::CreateZExtOrBitCast(Cmp, Ty); 1525 } 1526 1527 // Op0 urem C -> Op0 < C ? Op0 : Op0 - C, where C >= signbit. 1528 // Op0 must be frozen because we are increasing its number of uses. 1529 if (match(Op1, m_Negative())) { 1530 Value *F0 = Builder.CreateFreeze(Op0, Op0->getName() + ".fr"); 1531 Value *Cmp = Builder.CreateICmpULT(F0, Op1); 1532 Value *Sub = Builder.CreateSub(F0, Op1); 1533 return SelectInst::Create(Cmp, F0, Sub); 1534 } 1535 1536 // If the divisor is a sext of a boolean, then the divisor must be max 1537 // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also 1538 // max unsigned value. In that case, the remainder is 0: 1539 // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0 1540 Value *X; 1541 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 1542 Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty)); 1543 return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0); 1544 } 1545 1546 return nullptr; 1547 } 1548 1549 Instruction *InstCombinerImpl::visitSRem(BinaryOperator &I) { 1550 if (Value *V = simplifySRemInst(I.getOperand(0), I.getOperand(1), 1551 SQ.getWithInstruction(&I))) 1552 return replaceInstUsesWith(I, V); 1553 1554 if (Instruction *X = foldVectorBinop(I)) 1555 return X; 1556 1557 // Handle the integer rem common cases 1558 if (Instruction *Common = commonIRemTransforms(I)) 1559 return Common; 1560 1561 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1562 { 1563 const APInt *Y; 1564 // X % -Y -> X % Y 1565 if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue()) 1566 return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y)); 1567 } 1568 1569 // -X srem Y --> -(X srem Y) 1570 Value *X, *Y; 1571 if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y)))) 1572 return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y)); 1573 1574 // If the sign bits of both operands are zero (i.e. we can prove they are 1575 // unsigned inputs), turn this into a urem. 1576 APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits())); 1577 if (MaskedValueIsZero(Op1, Mask, 0, &I) && 1578 MaskedValueIsZero(Op0, Mask, 0, &I)) { 1579 // X srem Y -> X urem Y, iff X and Y don't have sign bit set 1580 return BinaryOperator::CreateURem(Op0, Op1, I.getName()); 1581 } 1582 1583 // If it's a constant vector, flip any negative values positive. 1584 if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) { 1585 Constant *C = cast<Constant>(Op1); 1586 unsigned VWidth = cast<FixedVectorType>(C->getType())->getNumElements(); 1587 1588 bool hasNegative = false; 1589 bool hasMissing = false; 1590 for (unsigned i = 0; i != VWidth; ++i) { 1591 Constant *Elt = C->getAggregateElement(i); 1592 if (!Elt) { 1593 hasMissing = true; 1594 break; 1595 } 1596 1597 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt)) 1598 if (RHS->isNegative()) 1599 hasNegative = true; 1600 } 1601 1602 if (hasNegative && !hasMissing) { 1603 SmallVector<Constant *, 16> Elts(VWidth); 1604 for (unsigned i = 0; i != VWidth; ++i) { 1605 Elts[i] = C->getAggregateElement(i); // Handle undef, etc. 1606 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) { 1607 if (RHS->isNegative()) 1608 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS)); 1609 } 1610 } 1611 1612 Constant *NewRHSV = ConstantVector::get(Elts); 1613 if (NewRHSV != C) // Don't loop on -MININT 1614 return replaceOperand(I, 1, NewRHSV); 1615 } 1616 } 1617 1618 return nullptr; 1619 } 1620 1621 Instruction *InstCombinerImpl::visitFRem(BinaryOperator &I) { 1622 if (Value *V = simplifyFRemInst(I.getOperand(0), I.getOperand(1), 1623 I.getFastMathFlags(), 1624 SQ.getWithInstruction(&I))) 1625 return replaceInstUsesWith(I, V); 1626 1627 if (Instruction *X = foldVectorBinop(I)) 1628 return X; 1629 1630 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1631 return Phi; 1632 1633 return nullptr; 1634 } 1635