1 //===- InstCombineMulDivRem.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv, 10 // srem, urem, frem. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/InstrTypes.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/Operator.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/IR/Type.h" 30 #include "llvm/IR/Value.h" 31 #include "llvm/Support/Casting.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/KnownBits.h" 34 #include "llvm/Transforms/InstCombine/InstCombiner.h" 35 #include "llvm/Transforms/Utils/BuildLibCalls.h" 36 #include <cassert> 37 #include <cstddef> 38 #include <cstdint> 39 #include <utility> 40 41 #define DEBUG_TYPE "instcombine" 42 #include "llvm/Transforms/Utils/InstructionWorklist.h" 43 44 using namespace llvm; 45 using namespace PatternMatch; 46 47 /// The specific integer value is used in a context where it is known to be 48 /// non-zero. If this allows us to simplify the computation, do so and return 49 /// the new operand, otherwise return null. 50 static Value *simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC, 51 Instruction &CxtI) { 52 // If V has multiple uses, then we would have to do more analysis to determine 53 // if this is safe. For example, the use could be in dynamically unreached 54 // code. 55 if (!V->hasOneUse()) return nullptr; 56 57 bool MadeChange = false; 58 59 // ((1 << A) >>u B) --> (1 << (A-B)) 60 // Because V cannot be zero, we know that B is less than A. 61 Value *A = nullptr, *B = nullptr, *One = nullptr; 62 if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) && 63 match(One, m_One())) { 64 A = IC.Builder.CreateSub(A, B); 65 return IC.Builder.CreateShl(One, A); 66 } 67 68 // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it 69 // inexact. Similarly for <<. 70 BinaryOperator *I = dyn_cast<BinaryOperator>(V); 71 if (I && I->isLogicalShift() && 72 IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) { 73 // We know that this is an exact/nuw shift and that the input is a 74 // non-zero context as well. 75 if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) { 76 IC.replaceOperand(*I, 0, V2); 77 MadeChange = true; 78 } 79 80 if (I->getOpcode() == Instruction::LShr && !I->isExact()) { 81 I->setIsExact(); 82 MadeChange = true; 83 } 84 85 if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) { 86 I->setHasNoUnsignedWrap(); 87 MadeChange = true; 88 } 89 } 90 91 // TODO: Lots more we could do here: 92 // If V is a phi node, we can call this on each of its operands. 93 // "select cond, X, 0" can simplify to "X". 94 95 return MadeChange ? V : nullptr; 96 } 97 98 // TODO: This is a specific form of a much more general pattern. 99 // We could detect a select with any binop identity constant, or we 100 // could use SimplifyBinOp to see if either arm of the select reduces. 101 // But that needs to be done carefully and/or while removing potential 102 // reverse canonicalizations as in InstCombiner::foldSelectIntoOp(). 103 static Value *foldMulSelectToNegate(BinaryOperator &I, 104 InstCombiner::BuilderTy &Builder) { 105 Value *Cond, *OtherOp; 106 107 // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp 108 // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp 109 if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())), 110 m_Value(OtherOp)))) { 111 bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap(); 112 Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap); 113 return Builder.CreateSelect(Cond, OtherOp, Neg); 114 } 115 // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp 116 // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp 117 if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())), 118 m_Value(OtherOp)))) { 119 bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap(); 120 Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap); 121 return Builder.CreateSelect(Cond, Neg, OtherOp); 122 } 123 124 // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp 125 // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp 126 if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0), 127 m_SpecificFP(-1.0))), 128 m_Value(OtherOp)))) { 129 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 130 Builder.setFastMathFlags(I.getFastMathFlags()); 131 return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp)); 132 } 133 134 // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp 135 // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp 136 if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0), 137 m_SpecificFP(1.0))), 138 m_Value(OtherOp)))) { 139 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 140 Builder.setFastMathFlags(I.getFastMathFlags()); 141 return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp); 142 } 143 144 return nullptr; 145 } 146 147 Instruction *InstCombinerImpl::visitMul(BinaryOperator &I) { 148 if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1), 149 SQ.getWithInstruction(&I))) 150 return replaceInstUsesWith(I, V); 151 152 if (SimplifyAssociativeOrCommutative(I)) 153 return &I; 154 155 if (Instruction *X = foldVectorBinop(I)) 156 return X; 157 158 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 159 return Phi; 160 161 if (Value *V = SimplifyUsingDistributiveLaws(I)) 162 return replaceInstUsesWith(I, V); 163 164 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 165 unsigned BitWidth = I.getType()->getScalarSizeInBits(); 166 167 // X * -1 == 0 - X 168 if (match(Op1, m_AllOnes())) { 169 BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName()); 170 if (I.hasNoSignedWrap()) 171 BO->setHasNoSignedWrap(); 172 return BO; 173 } 174 175 // Also allow combining multiply instructions on vectors. 176 { 177 Value *NewOp; 178 Constant *C1, *C2; 179 const APInt *IVal; 180 if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)), 181 m_Constant(C1))) && 182 match(C1, m_APInt(IVal))) { 183 // ((X << C2)*C1) == (X * (C1 << C2)) 184 Constant *Shl = ConstantExpr::getShl(C1, C2); 185 BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0)); 186 BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl); 187 if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap()) 188 BO->setHasNoUnsignedWrap(); 189 if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() && 190 Shl->isNotMinSignedValue()) 191 BO->setHasNoSignedWrap(); 192 return BO; 193 } 194 195 if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) { 196 // Replace X*(2^C) with X << C, where C is either a scalar or a vector. 197 if (Constant *NewCst = ConstantExpr::getExactLogBase2(C1)) { 198 BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst); 199 200 if (I.hasNoUnsignedWrap()) 201 Shl->setHasNoUnsignedWrap(); 202 if (I.hasNoSignedWrap()) { 203 const APInt *V; 204 if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1) 205 Shl->setHasNoSignedWrap(); 206 } 207 208 return Shl; 209 } 210 } 211 } 212 213 if (Op0->hasOneUse() && match(Op1, m_NegatedPower2())) { 214 // Interpret X * (-1<<C) as (-X) * (1<<C) and try to sink the negation. 215 // The "* (1<<C)" thus becomes a potential shifting opportunity. 216 if (Value *NegOp0 = Negator::Negate(/*IsNegation*/ true, Op0, *this)) 217 return BinaryOperator::CreateMul( 218 NegOp0, ConstantExpr::getNeg(cast<Constant>(Op1)), I.getName()); 219 } 220 221 if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I)) 222 return FoldedMul; 223 224 if (Value *FoldedMul = foldMulSelectToNegate(I, Builder)) 225 return replaceInstUsesWith(I, FoldedMul); 226 227 // Simplify mul instructions with a constant RHS. 228 if (isa<Constant>(Op1)) { 229 // Canonicalize (X+C1)*CI -> X*CI+C1*CI. 230 Value *X; 231 Constant *C1; 232 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) { 233 Value *Mul = Builder.CreateMul(C1, Op1); 234 // Only go forward with the transform if C1*CI simplifies to a tidier 235 // constant. 236 if (!match(Mul, m_Mul(m_Value(), m_Value()))) 237 return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul); 238 } 239 } 240 241 // abs(X) * abs(X) -> X * X 242 // nabs(X) * nabs(X) -> X * X 243 if (Op0 == Op1) { 244 Value *X, *Y; 245 SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor; 246 if (SPF == SPF_ABS || SPF == SPF_NABS) 247 return BinaryOperator::CreateMul(X, X); 248 249 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) 250 return BinaryOperator::CreateMul(X, X); 251 } 252 253 // -X * C --> X * -C 254 Value *X, *Y; 255 Constant *Op1C; 256 if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C))) 257 return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C)); 258 259 // -X * -Y --> X * Y 260 if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) { 261 auto *NewMul = BinaryOperator::CreateMul(X, Y); 262 if (I.hasNoSignedWrap() && 263 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() && 264 cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap()) 265 NewMul->setHasNoSignedWrap(); 266 return NewMul; 267 } 268 269 // -X * Y --> -(X * Y) 270 // X * -Y --> -(X * Y) 271 if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y)))) 272 return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y)); 273 274 // (X / Y) * Y = X - (X % Y) 275 // (X / Y) * -Y = (X % Y) - X 276 { 277 Value *Y = Op1; 278 BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0); 279 if (!Div || (Div->getOpcode() != Instruction::UDiv && 280 Div->getOpcode() != Instruction::SDiv)) { 281 Y = Op0; 282 Div = dyn_cast<BinaryOperator>(Op1); 283 } 284 Value *Neg = dyn_castNegVal(Y); 285 if (Div && Div->hasOneUse() && 286 (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) && 287 (Div->getOpcode() == Instruction::UDiv || 288 Div->getOpcode() == Instruction::SDiv)) { 289 Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1); 290 291 // If the division is exact, X % Y is zero, so we end up with X or -X. 292 if (Div->isExact()) { 293 if (DivOp1 == Y) 294 return replaceInstUsesWith(I, X); 295 return BinaryOperator::CreateNeg(X); 296 } 297 298 auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem 299 : Instruction::SRem; 300 Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1); 301 if (DivOp1 == Y) 302 return BinaryOperator::CreateSub(X, Rem); 303 return BinaryOperator::CreateSub(Rem, X); 304 } 305 } 306 307 /// i1 mul -> i1 and. 308 if (I.getType()->isIntOrIntVectorTy(1)) 309 return BinaryOperator::CreateAnd(Op0, Op1); 310 311 // X*(1 << Y) --> X << Y 312 // (1 << Y)*X --> X << Y 313 { 314 Value *Y; 315 BinaryOperator *BO = nullptr; 316 bool ShlNSW = false; 317 if (match(Op0, m_Shl(m_One(), m_Value(Y)))) { 318 BO = BinaryOperator::CreateShl(Op1, Y); 319 ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap(); 320 } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) { 321 BO = BinaryOperator::CreateShl(Op0, Y); 322 ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap(); 323 } 324 if (BO) { 325 if (I.hasNoUnsignedWrap()) 326 BO->setHasNoUnsignedWrap(); 327 if (I.hasNoSignedWrap() && ShlNSW) 328 BO->setHasNoSignedWrap(); 329 return BO; 330 } 331 } 332 333 // (zext bool X) * (zext bool Y) --> zext (and X, Y) 334 // (sext bool X) * (sext bool Y) --> zext (and X, Y) 335 // Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same) 336 if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) || 337 (match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) && 338 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() && 339 (Op0->hasOneUse() || Op1->hasOneUse() || X == Y)) { 340 Value *And = Builder.CreateAnd(X, Y, "mulbool"); 341 return CastInst::Create(Instruction::ZExt, And, I.getType()); 342 } 343 // (sext bool X) * (zext bool Y) --> sext (and X, Y) 344 // (zext bool X) * (sext bool Y) --> sext (and X, Y) 345 // Note: -1 * 1 == 1 * -1 == -1 346 if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) || 347 (match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) && 348 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() && 349 (Op0->hasOneUse() || Op1->hasOneUse())) { 350 Value *And = Builder.CreateAnd(X, Y, "mulbool"); 351 return CastInst::Create(Instruction::SExt, And, I.getType()); 352 } 353 354 // (zext bool X) * Y --> X ? Y : 0 355 // Y * (zext bool X) --> X ? Y : 0 356 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 357 return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0)); 358 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 359 return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0)); 360 361 // (sext bool X) * C --> X ? -C : 0 362 Constant *ImmC; 363 if (match(Op0, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1) && 364 match(Op1, m_ImmConstant(ImmC))) { 365 Constant *NegC = ConstantExpr::getNeg(ImmC); 366 return SelectInst::Create(X, NegC, ConstantInt::getNullValue(I.getType())); 367 } 368 369 // (lshr X, 31) * Y --> (ashr X, 31) & Y 370 // Y * (lshr X, 31) --> (ashr X, 31) & Y 371 // TODO: We are not checking one-use because the elimination of the multiply 372 // is better for analysis? 373 // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be 374 // more similar to what we're doing above. 375 const APInt *C; 376 if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1) 377 return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1); 378 if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1) 379 return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0); 380 381 // ((ashr X, 31) | 1) * X --> abs(X) 382 // X * ((ashr X, 31) | 1) --> abs(X) 383 if (match(&I, m_c_BinOp(m_Or(m_AShr(m_Value(X), 384 m_SpecificIntAllowUndef(BitWidth - 1)), 385 m_One()), 386 m_Deferred(X)))) { 387 Value *Abs = Builder.CreateBinaryIntrinsic( 388 Intrinsic::abs, X, 389 ConstantInt::getBool(I.getContext(), I.hasNoSignedWrap())); 390 Abs->takeName(&I); 391 return replaceInstUsesWith(I, Abs); 392 } 393 394 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 395 return Ext; 396 397 bool Changed = false; 398 if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) { 399 Changed = true; 400 I.setHasNoSignedWrap(true); 401 } 402 403 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) { 404 Changed = true; 405 I.setHasNoUnsignedWrap(true); 406 } 407 408 return Changed ? &I : nullptr; 409 } 410 411 Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) { 412 BinaryOperator::BinaryOps Opcode = I.getOpcode(); 413 assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) && 414 "Expected fmul or fdiv"); 415 416 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 417 Value *X, *Y; 418 419 // -X * -Y --> X * Y 420 // -X / -Y --> X / Y 421 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 422 return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I); 423 424 // fabs(X) * fabs(X) -> X * X 425 // fabs(X) / fabs(X) -> X / X 426 if (Op0 == Op1 && match(Op0, m_FAbs(m_Value(X)))) 427 return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I); 428 429 // fabs(X) * fabs(Y) --> fabs(X * Y) 430 // fabs(X) / fabs(Y) --> fabs(X / Y) 431 if (match(Op0, m_FAbs(m_Value(X))) && match(Op1, m_FAbs(m_Value(Y))) && 432 (Op0->hasOneUse() || Op1->hasOneUse())) { 433 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 434 Builder.setFastMathFlags(I.getFastMathFlags()); 435 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 436 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY); 437 Fabs->takeName(&I); 438 return replaceInstUsesWith(I, Fabs); 439 } 440 441 return nullptr; 442 } 443 444 Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) { 445 if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1), 446 I.getFastMathFlags(), 447 SQ.getWithInstruction(&I))) 448 return replaceInstUsesWith(I, V); 449 450 if (SimplifyAssociativeOrCommutative(I)) 451 return &I; 452 453 if (Instruction *X = foldVectorBinop(I)) 454 return X; 455 456 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 457 return Phi; 458 459 if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I)) 460 return FoldedMul; 461 462 if (Value *FoldedMul = foldMulSelectToNegate(I, Builder)) 463 return replaceInstUsesWith(I, FoldedMul); 464 465 if (Instruction *R = foldFPSignBitOps(I)) 466 return R; 467 468 // X * -1.0 --> -X 469 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 470 if (match(Op1, m_SpecificFP(-1.0))) 471 return UnaryOperator::CreateFNegFMF(Op0, &I); 472 473 // -X * C --> X * -C 474 Value *X, *Y; 475 Constant *C; 476 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C))) 477 return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I); 478 479 // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E) 480 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) 481 return replaceInstUsesWith(I, V); 482 483 if (I.hasAllowReassoc()) { 484 // Reassociate constant RHS with another constant to form constant 485 // expression. 486 if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) { 487 Constant *C1; 488 if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) { 489 // (C1 / X) * C --> (C * C1) / X 490 Constant *CC1 = ConstantExpr::getFMul(C, C1); 491 if (CC1->isNormalFP()) 492 return BinaryOperator::CreateFDivFMF(CC1, X, &I); 493 } 494 if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) { 495 // (X / C1) * C --> X * (C / C1) 496 Constant *CDivC1 = ConstantExpr::getFDiv(C, C1); 497 if (CDivC1->isNormalFP()) 498 return BinaryOperator::CreateFMulFMF(X, CDivC1, &I); 499 500 // If the constant was a denormal, try reassociating differently. 501 // (X / C1) * C --> X / (C1 / C) 502 Constant *C1DivC = ConstantExpr::getFDiv(C1, C); 503 if (Op0->hasOneUse() && C1DivC->isNormalFP()) 504 return BinaryOperator::CreateFDivFMF(X, C1DivC, &I); 505 } 506 507 // We do not need to match 'fadd C, X' and 'fsub X, C' because they are 508 // canonicalized to 'fadd X, C'. Distributing the multiply may allow 509 // further folds and (X * C) + C2 is 'fma'. 510 if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) { 511 // (X + C1) * C --> (X * C) + (C * C1) 512 Constant *CC1 = ConstantExpr::getFMul(C, C1); 513 Value *XC = Builder.CreateFMulFMF(X, C, &I); 514 return BinaryOperator::CreateFAddFMF(XC, CC1, &I); 515 } 516 if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) { 517 // (C1 - X) * C --> (C * C1) - (X * C) 518 Constant *CC1 = ConstantExpr::getFMul(C, C1); 519 Value *XC = Builder.CreateFMulFMF(X, C, &I); 520 return BinaryOperator::CreateFSubFMF(CC1, XC, &I); 521 } 522 } 523 524 Value *Z; 525 if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))), 526 m_Value(Z)))) { 527 // Sink division: (X / Y) * Z --> (X * Z) / Y 528 Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I); 529 return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I); 530 } 531 532 // sqrt(X) * sqrt(Y) -> sqrt(X * Y) 533 // nnan disallows the possibility of returning a number if both operands are 534 // negative (in that case, we should return NaN). 535 if (I.hasNoNaNs() && 536 match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) && 537 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) { 538 Value *XY = Builder.CreateFMulFMF(X, Y, &I); 539 Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I); 540 return replaceInstUsesWith(I, Sqrt); 541 } 542 543 // The following transforms are done irrespective of the number of uses 544 // for the expression "1.0/sqrt(X)". 545 // 1) 1.0/sqrt(X) * X -> X/sqrt(X) 546 // 2) X * 1.0/sqrt(X) -> X/sqrt(X) 547 // We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it 548 // has the necessary (reassoc) fast-math-flags. 549 if (I.hasNoSignedZeros() && 550 match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) && 551 match(Y, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && Op1 == X) 552 return BinaryOperator::CreateFDivFMF(X, Y, &I); 553 if (I.hasNoSignedZeros() && 554 match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) && 555 match(Y, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && Op0 == X) 556 return BinaryOperator::CreateFDivFMF(X, Y, &I); 557 558 // Like the similar transform in instsimplify, this requires 'nsz' because 559 // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0. 560 if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 && 561 Op0->hasNUses(2)) { 562 // Peek through fdiv to find squaring of square root: 563 // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y 564 if (match(Op0, m_FDiv(m_Value(X), 565 m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) { 566 Value *XX = Builder.CreateFMulFMF(X, X, &I); 567 return BinaryOperator::CreateFDivFMF(XX, Y, &I); 568 } 569 // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X) 570 if (match(Op0, m_FDiv(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y)), 571 m_Value(X)))) { 572 Value *XX = Builder.CreateFMulFMF(X, X, &I); 573 return BinaryOperator::CreateFDivFMF(Y, XX, &I); 574 } 575 } 576 577 if (I.isOnlyUserOfAnyOperand()) { 578 // pow(x, y) * pow(x, z) -> pow(x, y + z) 579 if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) && 580 match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) { 581 auto *YZ = Builder.CreateFAddFMF(Y, Z, &I); 582 auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I); 583 return replaceInstUsesWith(I, NewPow); 584 } 585 586 // powi(x, y) * powi(x, z) -> powi(x, y + z) 587 if (match(Op0, m_Intrinsic<Intrinsic::powi>(m_Value(X), m_Value(Y))) && 588 match(Op1, m_Intrinsic<Intrinsic::powi>(m_Specific(X), m_Value(Z))) && 589 Y->getType() == Z->getType()) { 590 auto *YZ = Builder.CreateAdd(Y, Z); 591 auto *NewPow = Builder.CreateIntrinsic( 592 Intrinsic::powi, {X->getType(), YZ->getType()}, {X, YZ}, &I); 593 return replaceInstUsesWith(I, NewPow); 594 } 595 596 // exp(X) * exp(Y) -> exp(X + Y) 597 if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) && 598 match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) { 599 Value *XY = Builder.CreateFAddFMF(X, Y, &I); 600 Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I); 601 return replaceInstUsesWith(I, Exp); 602 } 603 604 // exp2(X) * exp2(Y) -> exp2(X + Y) 605 if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) && 606 match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) { 607 Value *XY = Builder.CreateFAddFMF(X, Y, &I); 608 Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I); 609 return replaceInstUsesWith(I, Exp2); 610 } 611 } 612 613 // (X*Y) * X => (X*X) * Y where Y != X 614 // The purpose is two-fold: 615 // 1) to form a power expression (of X). 616 // 2) potentially shorten the critical path: After transformation, the 617 // latency of the instruction Y is amortized by the expression of X*X, 618 // and therefore Y is in a "less critical" position compared to what it 619 // was before the transformation. 620 if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) && 621 Op1 != Y) { 622 Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I); 623 return BinaryOperator::CreateFMulFMF(XX, Y, &I); 624 } 625 if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) && 626 Op0 != Y) { 627 Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I); 628 return BinaryOperator::CreateFMulFMF(XX, Y, &I); 629 } 630 } 631 632 // log2(X * 0.5) * Y = log2(X) * Y - Y 633 if (I.isFast()) { 634 IntrinsicInst *Log2 = nullptr; 635 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>( 636 m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) { 637 Log2 = cast<IntrinsicInst>(Op0); 638 Y = Op1; 639 } 640 if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>( 641 m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) { 642 Log2 = cast<IntrinsicInst>(Op1); 643 Y = Op0; 644 } 645 if (Log2) { 646 Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I); 647 Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I); 648 return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I); 649 } 650 } 651 652 return nullptr; 653 } 654 655 /// Fold a divide or remainder with a select instruction divisor when one of the 656 /// select operands is zero. In that case, we can use the other select operand 657 /// because div/rem by zero is undefined. 658 bool InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) { 659 SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1)); 660 if (!SI) 661 return false; 662 663 int NonNullOperand; 664 if (match(SI->getTrueValue(), m_Zero())) 665 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y 666 NonNullOperand = 2; 667 else if (match(SI->getFalseValue(), m_Zero())) 668 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y 669 NonNullOperand = 1; 670 else 671 return false; 672 673 // Change the div/rem to use 'Y' instead of the select. 674 replaceOperand(I, 1, SI->getOperand(NonNullOperand)); 675 676 // Okay, we know we replace the operand of the div/rem with 'Y' with no 677 // problem. However, the select, or the condition of the select may have 678 // multiple uses. Based on our knowledge that the operand must be non-zero, 679 // propagate the known value for the select into other uses of it, and 680 // propagate a known value of the condition into its other users. 681 682 // If the select and condition only have a single use, don't bother with this, 683 // early exit. 684 Value *SelectCond = SI->getCondition(); 685 if (SI->use_empty() && SelectCond->hasOneUse()) 686 return true; 687 688 // Scan the current block backward, looking for other uses of SI. 689 BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin(); 690 Type *CondTy = SelectCond->getType(); 691 while (BBI != BBFront) { 692 --BBI; 693 // If we found an instruction that we can't assume will return, so 694 // information from below it cannot be propagated above it. 695 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI)) 696 break; 697 698 // Replace uses of the select or its condition with the known values. 699 for (Use &Op : BBI->operands()) { 700 if (Op == SI) { 701 replaceUse(Op, SI->getOperand(NonNullOperand)); 702 Worklist.push(&*BBI); 703 } else if (Op == SelectCond) { 704 replaceUse(Op, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy) 705 : ConstantInt::getFalse(CondTy)); 706 Worklist.push(&*BBI); 707 } 708 } 709 710 // If we past the instruction, quit looking for it. 711 if (&*BBI == SI) 712 SI = nullptr; 713 if (&*BBI == SelectCond) 714 SelectCond = nullptr; 715 716 // If we ran out of things to eliminate, break out of the loop. 717 if (!SelectCond && !SI) 718 break; 719 720 } 721 return true; 722 } 723 724 /// True if the multiply can not be expressed in an int this size. 725 static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product, 726 bool IsSigned) { 727 bool Overflow; 728 Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow); 729 return Overflow; 730 } 731 732 /// True if C1 is a multiple of C2. Quotient contains C1/C2. 733 static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient, 734 bool IsSigned) { 735 assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal"); 736 737 // Bail if we will divide by zero. 738 if (C2.isZero()) 739 return false; 740 741 // Bail if we would divide INT_MIN by -1. 742 if (IsSigned && C1.isMinSignedValue() && C2.isAllOnes()) 743 return false; 744 745 APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned); 746 if (IsSigned) 747 APInt::sdivrem(C1, C2, Quotient, Remainder); 748 else 749 APInt::udivrem(C1, C2, Quotient, Remainder); 750 751 return Remainder.isMinValue(); 752 } 753 754 /// This function implements the transforms common to both integer division 755 /// instructions (udiv and sdiv). It is called by the visitors to those integer 756 /// division instructions. 757 /// Common integer divide transforms 758 Instruction *InstCombinerImpl::commonIDivTransforms(BinaryOperator &I) { 759 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 760 return Phi; 761 762 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 763 bool IsSigned = I.getOpcode() == Instruction::SDiv; 764 Type *Ty = I.getType(); 765 766 // The RHS is known non-zero. 767 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) 768 return replaceOperand(I, 1, V); 769 770 // Handle cases involving: [su]div X, (select Cond, Y, Z) 771 // This does not apply for fdiv. 772 if (simplifyDivRemOfSelectWithZeroOp(I)) 773 return &I; 774 775 // If the divisor is a select-of-constants, try to constant fold all div ops: 776 // C / (select Cond, TrueC, FalseC) --> select Cond, (C / TrueC), (C / FalseC) 777 // TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds. 778 if (match(Op0, m_ImmConstant()) && 779 match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) { 780 if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1))) 781 return R; 782 } 783 784 const APInt *C2; 785 if (match(Op1, m_APInt(C2))) { 786 Value *X; 787 const APInt *C1; 788 789 // (X / C1) / C2 -> X / (C1*C2) 790 if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) || 791 (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) { 792 APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned); 793 if (!multiplyOverflows(*C1, *C2, Product, IsSigned)) 794 return BinaryOperator::Create(I.getOpcode(), X, 795 ConstantInt::get(Ty, Product)); 796 } 797 798 if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) || 799 (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) { 800 APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned); 801 802 // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1. 803 if (isMultiple(*C2, *C1, Quotient, IsSigned)) { 804 auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X, 805 ConstantInt::get(Ty, Quotient)); 806 NewDiv->setIsExact(I.isExact()); 807 return NewDiv; 808 } 809 810 // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2. 811 if (isMultiple(*C1, *C2, Quotient, IsSigned)) { 812 auto *Mul = BinaryOperator::Create(Instruction::Mul, X, 813 ConstantInt::get(Ty, Quotient)); 814 auto *OBO = cast<OverflowingBinaryOperator>(Op0); 815 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap()); 816 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap()); 817 return Mul; 818 } 819 } 820 821 if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) && 822 C1->ult(C1->getBitWidth() - 1)) || 823 (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))) && 824 C1->ult(C1->getBitWidth()))) { 825 APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned); 826 APInt C1Shifted = APInt::getOneBitSet( 827 C1->getBitWidth(), static_cast<unsigned>(C1->getZExtValue())); 828 829 // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1. 830 if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) { 831 auto *BO = BinaryOperator::Create(I.getOpcode(), X, 832 ConstantInt::get(Ty, Quotient)); 833 BO->setIsExact(I.isExact()); 834 return BO; 835 } 836 837 // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2. 838 if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) { 839 auto *Mul = BinaryOperator::Create(Instruction::Mul, X, 840 ConstantInt::get(Ty, Quotient)); 841 auto *OBO = cast<OverflowingBinaryOperator>(Op0); 842 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap()); 843 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap()); 844 return Mul; 845 } 846 } 847 848 if (!C2->isZero()) // avoid X udiv 0 849 if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I)) 850 return FoldedDiv; 851 } 852 853 if (match(Op0, m_One())) { 854 assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?"); 855 if (IsSigned) { 856 // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the 857 // result is one, if Op1 is -1 then the result is minus one, otherwise 858 // it's zero. 859 Value *Inc = Builder.CreateAdd(Op1, Op0); 860 Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3)); 861 return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0)); 862 } else { 863 // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the 864 // result is one, otherwise it's zero. 865 return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty); 866 } 867 } 868 869 // See if we can fold away this div instruction. 870 if (SimplifyDemandedInstructionBits(I)) 871 return &I; 872 873 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y 874 Value *X, *Z; 875 if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1 876 if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) || 877 (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1))))) 878 return BinaryOperator::Create(I.getOpcode(), X, Op1); 879 880 // (X << Y) / X -> 1 << Y 881 Value *Y; 882 if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y)))) 883 return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y); 884 if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y)))) 885 return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y); 886 887 // X / (X * Y) -> 1 / Y if the multiplication does not overflow. 888 if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) { 889 bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap(); 890 bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap(); 891 if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) { 892 replaceOperand(I, 0, ConstantInt::get(Ty, 1)); 893 replaceOperand(I, 1, Y); 894 return &I; 895 } 896 } 897 898 return nullptr; 899 } 900 901 static const unsigned MaxDepth = 6; 902 903 namespace { 904 905 using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1, 906 const BinaryOperator &I, 907 InstCombinerImpl &IC); 908 909 /// Used to maintain state for visitUDivOperand(). 910 struct UDivFoldAction { 911 /// Informs visitUDiv() how to fold this operand. This can be zero if this 912 /// action joins two actions together. 913 FoldUDivOperandCb FoldAction; 914 915 /// Which operand to fold. 916 Value *OperandToFold; 917 918 union { 919 /// The instruction returned when FoldAction is invoked. 920 Instruction *FoldResult; 921 922 /// Stores the LHS action index if this action joins two actions together. 923 size_t SelectLHSIdx; 924 }; 925 926 UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand) 927 : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {} 928 UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS) 929 : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {} 930 }; 931 932 } // end anonymous namespace 933 934 // X udiv 2^C -> X >> C 935 static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1, 936 const BinaryOperator &I, 937 InstCombinerImpl &IC) { 938 Constant *C1 = ConstantExpr::getExactLogBase2(cast<Constant>(Op1)); 939 if (!C1) 940 llvm_unreachable("Failed to constant fold udiv -> logbase2"); 941 BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1); 942 if (I.isExact()) 943 LShr->setIsExact(); 944 return LShr; 945 } 946 947 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2) 948 // X udiv (zext (C1 << N)), where C1 is "1<<C2" --> X >> (N+C2) 949 static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I, 950 InstCombinerImpl &IC) { 951 Value *ShiftLeft; 952 if (!match(Op1, m_ZExt(m_Value(ShiftLeft)))) 953 ShiftLeft = Op1; 954 955 Constant *CI; 956 Value *N; 957 if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N)))) 958 llvm_unreachable("match should never fail here!"); 959 Constant *Log2Base = ConstantExpr::getExactLogBase2(CI); 960 if (!Log2Base) 961 llvm_unreachable("getLogBase2 should never fail here!"); 962 N = IC.Builder.CreateAdd(N, Log2Base); 963 if (Op1 != ShiftLeft) 964 N = IC.Builder.CreateZExt(N, Op1->getType()); 965 BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N); 966 if (I.isExact()) 967 LShr->setIsExact(); 968 return LShr; 969 } 970 971 // Recursively visits the possible right hand operands of a udiv 972 // instruction, seeing through select instructions, to determine if we can 973 // replace the udiv with something simpler. If we find that an operand is not 974 // able to simplify the udiv, we abort the entire transformation. 975 static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I, 976 SmallVectorImpl<UDivFoldAction> &Actions, 977 unsigned Depth = 0) { 978 // FIXME: assert that Op1 isn't/doesn't contain undef. 979 980 // Check to see if this is an unsigned division with an exact power of 2, 981 // if so, convert to a right shift. 982 if (match(Op1, m_Power2())) { 983 Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1)); 984 return Actions.size(); 985 } 986 987 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2) 988 if (match(Op1, m_Shl(m_Power2(), m_Value())) || 989 match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) { 990 Actions.push_back(UDivFoldAction(foldUDivShl, Op1)); 991 return Actions.size(); 992 } 993 994 // The remaining tests are all recursive, so bail out if we hit the limit. 995 if (Depth++ == MaxDepth) 996 return 0; 997 998 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 999 // FIXME: missed optimization: if one of the hands of select is/contains 1000 // undef, just directly pick the other one. 1001 // FIXME: can both hands contain undef? 1002 if (size_t LHSIdx = 1003 visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth)) 1004 if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) { 1005 Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1)); 1006 return Actions.size(); 1007 } 1008 1009 return 0; 1010 } 1011 1012 /// If we have zero-extended operands of an unsigned div or rem, we may be able 1013 /// to narrow the operation (sink the zext below the math). 1014 static Instruction *narrowUDivURem(BinaryOperator &I, 1015 InstCombiner::BuilderTy &Builder) { 1016 Instruction::BinaryOps Opcode = I.getOpcode(); 1017 Value *N = I.getOperand(0); 1018 Value *D = I.getOperand(1); 1019 Type *Ty = I.getType(); 1020 Value *X, *Y; 1021 if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) && 1022 X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) { 1023 // udiv (zext X), (zext Y) --> zext (udiv X, Y) 1024 // urem (zext X), (zext Y) --> zext (urem X, Y) 1025 Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y); 1026 return new ZExtInst(NarrowOp, Ty); 1027 } 1028 1029 Constant *C; 1030 if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) || 1031 (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) { 1032 // If the constant is the same in the smaller type, use the narrow version. 1033 Constant *TruncC = ConstantExpr::getTrunc(C, X->getType()); 1034 if (ConstantExpr::getZExt(TruncC, Ty) != C) 1035 return nullptr; 1036 1037 // udiv (zext X), C --> zext (udiv X, C') 1038 // urem (zext X), C --> zext (urem X, C') 1039 // udiv C, (zext X) --> zext (udiv C', X) 1040 // urem C, (zext X) --> zext (urem C', X) 1041 Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC) 1042 : Builder.CreateBinOp(Opcode, TruncC, X); 1043 return new ZExtInst(NarrowOp, Ty); 1044 } 1045 1046 return nullptr; 1047 } 1048 1049 Instruction *InstCombinerImpl::visitUDiv(BinaryOperator &I) { 1050 if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1), 1051 SQ.getWithInstruction(&I))) 1052 return replaceInstUsesWith(I, V); 1053 1054 if (Instruction *X = foldVectorBinop(I)) 1055 return X; 1056 1057 // Handle the integer div common cases 1058 if (Instruction *Common = commonIDivTransforms(I)) 1059 return Common; 1060 1061 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1062 Value *X; 1063 const APInt *C1, *C2; 1064 if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) { 1065 // (X lshr C1) udiv C2 --> X udiv (C2 << C1) 1066 bool Overflow; 1067 APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow); 1068 if (!Overflow) { 1069 bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value())); 1070 BinaryOperator *BO = BinaryOperator::CreateUDiv( 1071 X, ConstantInt::get(X->getType(), C2ShlC1)); 1072 if (IsExact) 1073 BO->setIsExact(); 1074 return BO; 1075 } 1076 } 1077 1078 // Op0 / C where C is large (negative) --> zext (Op0 >= C) 1079 // TODO: Could use isKnownNegative() to handle non-constant values. 1080 Type *Ty = I.getType(); 1081 if (match(Op1, m_Negative())) { 1082 Value *Cmp = Builder.CreateICmpUGE(Op0, Op1); 1083 return CastInst::CreateZExtOrBitCast(Cmp, Ty); 1084 } 1085 // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined) 1086 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 1087 Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty)); 1088 return CastInst::CreateZExtOrBitCast(Cmp, Ty); 1089 } 1090 1091 if (Instruction *NarrowDiv = narrowUDivURem(I, Builder)) 1092 return NarrowDiv; 1093 1094 // If the udiv operands are non-overflowing multiplies with a common operand, 1095 // then eliminate the common factor: 1096 // (A * B) / (A * X) --> B / X (and commuted variants) 1097 // TODO: The code would be reduced if we had m_c_NUWMul pattern matching. 1098 // TODO: If -reassociation handled this generally, we could remove this. 1099 Value *A, *B; 1100 if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) { 1101 if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) || 1102 match(Op1, m_NUWMul(m_Value(X), m_Specific(A)))) 1103 return BinaryOperator::CreateUDiv(B, X); 1104 if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) || 1105 match(Op1, m_NUWMul(m_Value(X), m_Specific(B)))) 1106 return BinaryOperator::CreateUDiv(A, X); 1107 } 1108 1109 // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...)))) 1110 SmallVector<UDivFoldAction, 6> UDivActions; 1111 if (visitUDivOperand(Op0, Op1, I, UDivActions)) 1112 for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) { 1113 FoldUDivOperandCb Action = UDivActions[i].FoldAction; 1114 Value *ActionOp1 = UDivActions[i].OperandToFold; 1115 Instruction *Inst; 1116 if (Action) 1117 Inst = Action(Op0, ActionOp1, I, *this); 1118 else { 1119 // This action joins two actions together. The RHS of this action is 1120 // simply the last action we processed, we saved the LHS action index in 1121 // the joining action. 1122 size_t SelectRHSIdx = i - 1; 1123 Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult; 1124 size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx; 1125 Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult; 1126 Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(), 1127 SelectLHS, SelectRHS); 1128 } 1129 1130 // If this is the last action to process, return it to the InstCombiner. 1131 // Otherwise, we insert it before the UDiv and record it so that we may 1132 // use it as part of a joining action (i.e., a SelectInst). 1133 if (e - i != 1) { 1134 Inst->insertBefore(&I); 1135 UDivActions[i].FoldResult = Inst; 1136 } else 1137 return Inst; 1138 } 1139 1140 return nullptr; 1141 } 1142 1143 Instruction *InstCombinerImpl::visitSDiv(BinaryOperator &I) { 1144 if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1), 1145 SQ.getWithInstruction(&I))) 1146 return replaceInstUsesWith(I, V); 1147 1148 if (Instruction *X = foldVectorBinop(I)) 1149 return X; 1150 1151 // Handle the integer div common cases 1152 if (Instruction *Common = commonIDivTransforms(I)) 1153 return Common; 1154 1155 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1156 Type *Ty = I.getType(); 1157 Value *X; 1158 // sdiv Op0, -1 --> -Op0 1159 // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined) 1160 if (match(Op1, m_AllOnes()) || 1161 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1162 return BinaryOperator::CreateNeg(Op0); 1163 1164 // X / INT_MIN --> X == INT_MIN 1165 if (match(Op1, m_SignMask())) 1166 return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), Ty); 1167 1168 // sdiv exact X, 1<<C --> ashr exact X, C iff 1<<C is non-negative 1169 // sdiv exact X, -1<<C --> -(ashr exact X, C) 1170 if (I.isExact() && ((match(Op1, m_Power2()) && match(Op1, m_NonNegative())) || 1171 match(Op1, m_NegatedPower2()))) { 1172 bool DivisorWasNegative = match(Op1, m_NegatedPower2()); 1173 if (DivisorWasNegative) 1174 Op1 = ConstantExpr::getNeg(cast<Constant>(Op1)); 1175 auto *AShr = BinaryOperator::CreateExactAShr( 1176 Op0, ConstantExpr::getExactLogBase2(cast<Constant>(Op1)), I.getName()); 1177 if (!DivisorWasNegative) 1178 return AShr; 1179 Builder.Insert(AShr); 1180 AShr->setName(I.getName() + ".neg"); 1181 return BinaryOperator::CreateNeg(AShr, I.getName()); 1182 } 1183 1184 const APInt *Op1C; 1185 if (match(Op1, m_APInt(Op1C))) { 1186 // If the dividend is sign-extended and the constant divisor is small enough 1187 // to fit in the source type, shrink the division to the narrower type: 1188 // (sext X) sdiv C --> sext (X sdiv C) 1189 Value *Op0Src; 1190 if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) && 1191 Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) { 1192 1193 // In the general case, we need to make sure that the dividend is not the 1194 // minimum signed value because dividing that by -1 is UB. But here, we 1195 // know that the -1 divisor case is already handled above. 1196 1197 Constant *NarrowDivisor = 1198 ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType()); 1199 Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor); 1200 return new SExtInst(NarrowOp, Ty); 1201 } 1202 1203 // -X / C --> X / -C (if the negation doesn't overflow). 1204 // TODO: This could be enhanced to handle arbitrary vector constants by 1205 // checking if all elements are not the min-signed-val. 1206 if (!Op1C->isMinSignedValue() && 1207 match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) { 1208 Constant *NegC = ConstantInt::get(Ty, -(*Op1C)); 1209 Instruction *BO = BinaryOperator::CreateSDiv(X, NegC); 1210 BO->setIsExact(I.isExact()); 1211 return BO; 1212 } 1213 } 1214 1215 // -X / Y --> -(X / Y) 1216 Value *Y; 1217 if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y)))) 1218 return BinaryOperator::CreateNSWNeg( 1219 Builder.CreateSDiv(X, Y, I.getName(), I.isExact())); 1220 1221 // abs(X) / X --> X > -1 ? 1 : -1 1222 // X / abs(X) --> X > -1 ? 1 : -1 1223 if (match(&I, m_c_BinOp( 1224 m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One())), 1225 m_Deferred(X)))) { 1226 Constant *NegOne = ConstantInt::getAllOnesValue(Ty); 1227 Value *Cond = Builder.CreateICmpSGT(X, NegOne); 1228 return SelectInst::Create(Cond, ConstantInt::get(Ty, 1), NegOne); 1229 } 1230 1231 // If the sign bits of both operands are zero (i.e. we can prove they are 1232 // unsigned inputs), turn this into a udiv. 1233 APInt Mask(APInt::getSignMask(Ty->getScalarSizeInBits())); 1234 if (MaskedValueIsZero(Op0, Mask, 0, &I)) { 1235 if (MaskedValueIsZero(Op1, Mask, 0, &I)) { 1236 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set 1237 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); 1238 BO->setIsExact(I.isExact()); 1239 return BO; 1240 } 1241 1242 if (match(Op1, m_NegatedPower2())) { 1243 // X sdiv (-(1 << C)) -> -(X sdiv (1 << C)) -> 1244 // -> -(X udiv (1 << C)) -> -(X u>> C) 1245 return BinaryOperator::CreateNeg(Builder.Insert(foldUDivPow2Cst( 1246 Op0, ConstantExpr::getNeg(cast<Constant>(Op1)), I, *this))); 1247 } 1248 1249 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) { 1250 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y) 1251 // Safe because the only negative value (1 << Y) can take on is 1252 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have 1253 // the sign bit set. 1254 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); 1255 BO->setIsExact(I.isExact()); 1256 return BO; 1257 } 1258 } 1259 1260 return nullptr; 1261 } 1262 1263 /// Remove negation and try to convert division into multiplication. 1264 static Instruction *foldFDivConstantDivisor(BinaryOperator &I) { 1265 Constant *C; 1266 if (!match(I.getOperand(1), m_Constant(C))) 1267 return nullptr; 1268 1269 // -X / C --> X / -C 1270 Value *X; 1271 if (match(I.getOperand(0), m_FNeg(m_Value(X)))) 1272 return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I); 1273 1274 // If the constant divisor has an exact inverse, this is always safe. If not, 1275 // then we can still create a reciprocal if fast-math-flags allow it and the 1276 // constant is a regular number (not zero, infinite, or denormal). 1277 if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP()))) 1278 return nullptr; 1279 1280 // Disallow denormal constants because we don't know what would happen 1281 // on all targets. 1282 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that 1283 // denorms are flushed? 1284 auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C); 1285 if (!RecipC->isNormalFP()) 1286 return nullptr; 1287 1288 // X / C --> X * (1 / C) 1289 return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I); 1290 } 1291 1292 /// Remove negation and try to reassociate constant math. 1293 static Instruction *foldFDivConstantDividend(BinaryOperator &I) { 1294 Constant *C; 1295 if (!match(I.getOperand(0), m_Constant(C))) 1296 return nullptr; 1297 1298 // C / -X --> -C / X 1299 Value *X; 1300 if (match(I.getOperand(1), m_FNeg(m_Value(X)))) 1301 return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I); 1302 1303 if (!I.hasAllowReassoc() || !I.hasAllowReciprocal()) 1304 return nullptr; 1305 1306 // Try to reassociate C / X expressions where X includes another constant. 1307 Constant *C2, *NewC = nullptr; 1308 if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) { 1309 // C / (X * C2) --> (C / C2) / X 1310 NewC = ConstantExpr::getFDiv(C, C2); 1311 } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) { 1312 // C / (X / C2) --> (C * C2) / X 1313 NewC = ConstantExpr::getFMul(C, C2); 1314 } 1315 // Disallow denormal constants because we don't know what would happen 1316 // on all targets. 1317 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that 1318 // denorms are flushed? 1319 if (!NewC || !NewC->isNormalFP()) 1320 return nullptr; 1321 1322 return BinaryOperator::CreateFDivFMF(NewC, X, &I); 1323 } 1324 1325 /// Negate the exponent of pow/exp to fold division-by-pow() into multiply. 1326 static Instruction *foldFDivPowDivisor(BinaryOperator &I, 1327 InstCombiner::BuilderTy &Builder) { 1328 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1329 auto *II = dyn_cast<IntrinsicInst>(Op1); 1330 if (!II || !II->hasOneUse() || !I.hasAllowReassoc() || 1331 !I.hasAllowReciprocal()) 1332 return nullptr; 1333 1334 // Z / pow(X, Y) --> Z * pow(X, -Y) 1335 // Z / exp{2}(Y) --> Z * exp{2}(-Y) 1336 // In the general case, this creates an extra instruction, but fmul allows 1337 // for better canonicalization and optimization than fdiv. 1338 Intrinsic::ID IID = II->getIntrinsicID(); 1339 SmallVector<Value *> Args; 1340 switch (IID) { 1341 case Intrinsic::pow: 1342 Args.push_back(II->getArgOperand(0)); 1343 Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(1), &I)); 1344 break; 1345 case Intrinsic::powi: { 1346 // Require 'ninf' assuming that makes powi(X, -INT_MIN) acceptable. 1347 // That is, X ** (huge negative number) is 0.0, ~1.0, or INF and so 1348 // dividing by that is INF, ~1.0, or 0.0. Code that uses powi allows 1349 // non-standard results, so this corner case should be acceptable if the 1350 // code rules out INF values. 1351 if (!I.hasNoInfs()) 1352 return nullptr; 1353 Args.push_back(II->getArgOperand(0)); 1354 Args.push_back(Builder.CreateNeg(II->getArgOperand(1))); 1355 Type *Tys[] = {I.getType(), II->getArgOperand(1)->getType()}; 1356 Value *Pow = Builder.CreateIntrinsic(IID, Tys, Args, &I); 1357 return BinaryOperator::CreateFMulFMF(Op0, Pow, &I); 1358 } 1359 case Intrinsic::exp: 1360 case Intrinsic::exp2: 1361 Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(0), &I)); 1362 break; 1363 default: 1364 return nullptr; 1365 } 1366 Value *Pow = Builder.CreateIntrinsic(IID, I.getType(), Args, &I); 1367 return BinaryOperator::CreateFMulFMF(Op0, Pow, &I); 1368 } 1369 1370 Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) { 1371 if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1), 1372 I.getFastMathFlags(), 1373 SQ.getWithInstruction(&I))) 1374 return replaceInstUsesWith(I, V); 1375 1376 if (Instruction *X = foldVectorBinop(I)) 1377 return X; 1378 1379 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1380 return Phi; 1381 1382 if (Instruction *R = foldFDivConstantDivisor(I)) 1383 return R; 1384 1385 if (Instruction *R = foldFDivConstantDividend(I)) 1386 return R; 1387 1388 if (Instruction *R = foldFPSignBitOps(I)) 1389 return R; 1390 1391 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1392 if (isa<Constant>(Op0)) 1393 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1394 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1395 return R; 1396 1397 if (isa<Constant>(Op1)) 1398 if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) 1399 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1400 return R; 1401 1402 if (I.hasAllowReassoc() && I.hasAllowReciprocal()) { 1403 Value *X, *Y; 1404 if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) && 1405 (!isa<Constant>(Y) || !isa<Constant>(Op1))) { 1406 // (X / Y) / Z => X / (Y * Z) 1407 Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I); 1408 return BinaryOperator::CreateFDivFMF(X, YZ, &I); 1409 } 1410 if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) && 1411 (!isa<Constant>(Y) || !isa<Constant>(Op0))) { 1412 // Z / (X / Y) => (Y * Z) / X 1413 Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I); 1414 return BinaryOperator::CreateFDivFMF(YZ, X, &I); 1415 } 1416 // Z / (1.0 / Y) => (Y * Z) 1417 // 1418 // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The 1419 // m_OneUse check is avoided because even in the case of the multiple uses 1420 // for 1.0/Y, the number of instructions remain the same and a division is 1421 // replaced by a multiplication. 1422 if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) 1423 return BinaryOperator::CreateFMulFMF(Y, Op0, &I); 1424 } 1425 1426 if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) { 1427 // sin(X) / cos(X) -> tan(X) 1428 // cos(X) / sin(X) -> 1/tan(X) (cotangent) 1429 Value *X; 1430 bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) && 1431 match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X))); 1432 bool IsCot = 1433 !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) && 1434 match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X))); 1435 1436 if ((IsTan || IsCot) && 1437 hasFloatFn(&TLI, I.getType(), LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) { 1438 IRBuilder<> B(&I); 1439 IRBuilder<>::FastMathFlagGuard FMFGuard(B); 1440 B.setFastMathFlags(I.getFastMathFlags()); 1441 AttributeList Attrs = 1442 cast<CallBase>(Op0)->getCalledFunction()->getAttributes(); 1443 Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf, 1444 LibFunc_tanl, B, Attrs); 1445 if (IsCot) 1446 Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res); 1447 return replaceInstUsesWith(I, Res); 1448 } 1449 } 1450 1451 // X / (X * Y) --> 1.0 / Y 1452 // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed. 1453 // We can ignore the possibility that X is infinity because INF/INF is NaN. 1454 Value *X, *Y; 1455 if (I.hasNoNaNs() && I.hasAllowReassoc() && 1456 match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) { 1457 replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0)); 1458 replaceOperand(I, 1, Y); 1459 return &I; 1460 } 1461 1462 // X / fabs(X) -> copysign(1.0, X) 1463 // fabs(X) / X -> copysign(1.0, X) 1464 if (I.hasNoNaNs() && I.hasNoInfs() && 1465 (match(&I, m_FDiv(m_Value(X), m_FAbs(m_Deferred(X)))) || 1466 match(&I, m_FDiv(m_FAbs(m_Value(X)), m_Deferred(X))))) { 1467 Value *V = Builder.CreateBinaryIntrinsic( 1468 Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I); 1469 return replaceInstUsesWith(I, V); 1470 } 1471 1472 if (Instruction *Mul = foldFDivPowDivisor(I, Builder)) 1473 return Mul; 1474 1475 return nullptr; 1476 } 1477 1478 /// This function implements the transforms common to both integer remainder 1479 /// instructions (urem and srem). It is called by the visitors to those integer 1480 /// remainder instructions. 1481 /// Common integer remainder transforms 1482 Instruction *InstCombinerImpl::commonIRemTransforms(BinaryOperator &I) { 1483 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1484 return Phi; 1485 1486 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1487 1488 // The RHS is known non-zero. 1489 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) 1490 return replaceOperand(I, 1, V); 1491 1492 // Handle cases involving: rem X, (select Cond, Y, Z) 1493 if (simplifyDivRemOfSelectWithZeroOp(I)) 1494 return &I; 1495 1496 // If the divisor is a select-of-constants, try to constant fold all rem ops: 1497 // C % (select Cond, TrueC, FalseC) --> select Cond, (C % TrueC), (C % FalseC) 1498 // TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds. 1499 if (match(Op0, m_ImmConstant()) && 1500 match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) { 1501 if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1))) 1502 return R; 1503 } 1504 1505 if (isa<Constant>(Op1)) { 1506 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) { 1507 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) { 1508 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1509 return R; 1510 } else if (auto *PN = dyn_cast<PHINode>(Op0I)) { 1511 const APInt *Op1Int; 1512 if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() && 1513 (I.getOpcode() == Instruction::URem || 1514 !Op1Int->isMinSignedValue())) { 1515 // foldOpIntoPhi will speculate instructions to the end of the PHI's 1516 // predecessor blocks, so do this only if we know the srem or urem 1517 // will not fault. 1518 if (Instruction *NV = foldOpIntoPhi(I, PN)) 1519 return NV; 1520 } 1521 } 1522 1523 // See if we can fold away this rem instruction. 1524 if (SimplifyDemandedInstructionBits(I)) 1525 return &I; 1526 } 1527 } 1528 1529 return nullptr; 1530 } 1531 1532 Instruction *InstCombinerImpl::visitURem(BinaryOperator &I) { 1533 if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1), 1534 SQ.getWithInstruction(&I))) 1535 return replaceInstUsesWith(I, V); 1536 1537 if (Instruction *X = foldVectorBinop(I)) 1538 return X; 1539 1540 if (Instruction *common = commonIRemTransforms(I)) 1541 return common; 1542 1543 if (Instruction *NarrowRem = narrowUDivURem(I, Builder)) 1544 return NarrowRem; 1545 1546 // X urem Y -> X and Y-1, where Y is a power of 2, 1547 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1548 Type *Ty = I.getType(); 1549 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) { 1550 // This may increase instruction count, we don't enforce that Y is a 1551 // constant. 1552 Constant *N1 = Constant::getAllOnesValue(Ty); 1553 Value *Add = Builder.CreateAdd(Op1, N1); 1554 return BinaryOperator::CreateAnd(Op0, Add); 1555 } 1556 1557 // 1 urem X -> zext(X != 1) 1558 if (match(Op0, m_One())) { 1559 Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1)); 1560 return CastInst::CreateZExtOrBitCast(Cmp, Ty); 1561 } 1562 1563 // X urem C -> X < C ? X : X - C, where C >= signbit. 1564 if (match(Op1, m_Negative())) { 1565 Value *Cmp = Builder.CreateICmpULT(Op0, Op1); 1566 Value *Sub = Builder.CreateSub(Op0, Op1); 1567 return SelectInst::Create(Cmp, Op0, Sub); 1568 } 1569 1570 // If the divisor is a sext of a boolean, then the divisor must be max 1571 // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also 1572 // max unsigned value. In that case, the remainder is 0: 1573 // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0 1574 Value *X; 1575 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 1576 Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty)); 1577 return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0); 1578 } 1579 1580 return nullptr; 1581 } 1582 1583 Instruction *InstCombinerImpl::visitSRem(BinaryOperator &I) { 1584 if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1), 1585 SQ.getWithInstruction(&I))) 1586 return replaceInstUsesWith(I, V); 1587 1588 if (Instruction *X = foldVectorBinop(I)) 1589 return X; 1590 1591 // Handle the integer rem common cases 1592 if (Instruction *Common = commonIRemTransforms(I)) 1593 return Common; 1594 1595 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1596 { 1597 const APInt *Y; 1598 // X % -Y -> X % Y 1599 if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue()) 1600 return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y)); 1601 } 1602 1603 // -X srem Y --> -(X srem Y) 1604 Value *X, *Y; 1605 if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y)))) 1606 return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y)); 1607 1608 // If the sign bits of both operands are zero (i.e. we can prove they are 1609 // unsigned inputs), turn this into a urem. 1610 APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits())); 1611 if (MaskedValueIsZero(Op1, Mask, 0, &I) && 1612 MaskedValueIsZero(Op0, Mask, 0, &I)) { 1613 // X srem Y -> X urem Y, iff X and Y don't have sign bit set 1614 return BinaryOperator::CreateURem(Op0, Op1, I.getName()); 1615 } 1616 1617 // If it's a constant vector, flip any negative values positive. 1618 if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) { 1619 Constant *C = cast<Constant>(Op1); 1620 unsigned VWidth = cast<FixedVectorType>(C->getType())->getNumElements(); 1621 1622 bool hasNegative = false; 1623 bool hasMissing = false; 1624 for (unsigned i = 0; i != VWidth; ++i) { 1625 Constant *Elt = C->getAggregateElement(i); 1626 if (!Elt) { 1627 hasMissing = true; 1628 break; 1629 } 1630 1631 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt)) 1632 if (RHS->isNegative()) 1633 hasNegative = true; 1634 } 1635 1636 if (hasNegative && !hasMissing) { 1637 SmallVector<Constant *, 16> Elts(VWidth); 1638 for (unsigned i = 0; i != VWidth; ++i) { 1639 Elts[i] = C->getAggregateElement(i); // Handle undef, etc. 1640 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) { 1641 if (RHS->isNegative()) 1642 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS)); 1643 } 1644 } 1645 1646 Constant *NewRHSV = ConstantVector::get(Elts); 1647 if (NewRHSV != C) // Don't loop on -MININT 1648 return replaceOperand(I, 1, NewRHSV); 1649 } 1650 } 1651 1652 return nullptr; 1653 } 1654 1655 Instruction *InstCombinerImpl::visitFRem(BinaryOperator &I) { 1656 if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1), 1657 I.getFastMathFlags(), 1658 SQ.getWithInstruction(&I))) 1659 return replaceInstUsesWith(I, V); 1660 1661 if (Instruction *X = foldVectorBinop(I)) 1662 return X; 1663 1664 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1665 return Phi; 1666 1667 return nullptr; 1668 } 1669