xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
10 // srem, urem, frem.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/KnownBits.h"
34 #include "llvm/Transforms/InstCombine/InstCombiner.h"
35 #include "llvm/Transforms/Utils/BuildLibCalls.h"
36 #include <cassert>
37 #include <cstddef>
38 #include <cstdint>
39 #include <utility>
40 
41 #define DEBUG_TYPE "instcombine"
42 #include "llvm/Transforms/Utils/InstructionWorklist.h"
43 
44 using namespace llvm;
45 using namespace PatternMatch;
46 
47 /// The specific integer value is used in a context where it is known to be
48 /// non-zero.  If this allows us to simplify the computation, do so and return
49 /// the new operand, otherwise return null.
50 static Value *simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC,
51                                         Instruction &CxtI) {
52   // If V has multiple uses, then we would have to do more analysis to determine
53   // if this is safe.  For example, the use could be in dynamically unreached
54   // code.
55   if (!V->hasOneUse()) return nullptr;
56 
57   bool MadeChange = false;
58 
59   // ((1 << A) >>u B) --> (1 << (A-B))
60   // Because V cannot be zero, we know that B is less than A.
61   Value *A = nullptr, *B = nullptr, *One = nullptr;
62   if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
63       match(One, m_One())) {
64     A = IC.Builder.CreateSub(A, B);
65     return IC.Builder.CreateShl(One, A);
66   }
67 
68   // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
69   // inexact.  Similarly for <<.
70   BinaryOperator *I = dyn_cast<BinaryOperator>(V);
71   if (I && I->isLogicalShift() &&
72       IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
73     // We know that this is an exact/nuw shift and that the input is a
74     // non-zero context as well.
75     if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
76       IC.replaceOperand(*I, 0, V2);
77       MadeChange = true;
78     }
79 
80     if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
81       I->setIsExact();
82       MadeChange = true;
83     }
84 
85     if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
86       I->setHasNoUnsignedWrap();
87       MadeChange = true;
88     }
89   }
90 
91   // TODO: Lots more we could do here:
92   //    If V is a phi node, we can call this on each of its operands.
93   //    "select cond, X, 0" can simplify to "X".
94 
95   return MadeChange ? V : nullptr;
96 }
97 
98 // TODO: This is a specific form of a much more general pattern.
99 //       We could detect a select with any binop identity constant, or we
100 //       could use SimplifyBinOp to see if either arm of the select reduces.
101 //       But that needs to be done carefully and/or while removing potential
102 //       reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
103 static Value *foldMulSelectToNegate(BinaryOperator &I,
104                                     InstCombiner::BuilderTy &Builder) {
105   Value *Cond, *OtherOp;
106 
107   // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
108   // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
109   if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())),
110                         m_Value(OtherOp)))) {
111     bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
112     Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap);
113     return Builder.CreateSelect(Cond, OtherOp, Neg);
114   }
115   // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
116   // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
117   if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())),
118                         m_Value(OtherOp)))) {
119     bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
120     Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap);
121     return Builder.CreateSelect(Cond, Neg, OtherOp);
122   }
123 
124   // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
125   // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
126   if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0),
127                                            m_SpecificFP(-1.0))),
128                          m_Value(OtherOp)))) {
129     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
130     Builder.setFastMathFlags(I.getFastMathFlags());
131     return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp));
132   }
133 
134   // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
135   // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
136   if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0),
137                                            m_SpecificFP(1.0))),
138                          m_Value(OtherOp)))) {
139     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
140     Builder.setFastMathFlags(I.getFastMathFlags());
141     return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp);
142   }
143 
144   return nullptr;
145 }
146 
147 Instruction *InstCombinerImpl::visitMul(BinaryOperator &I) {
148   if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1),
149                                  SQ.getWithInstruction(&I)))
150     return replaceInstUsesWith(I, V);
151 
152   if (SimplifyAssociativeOrCommutative(I))
153     return &I;
154 
155   if (Instruction *X = foldVectorBinop(I))
156     return X;
157 
158   if (Value *V = SimplifyUsingDistributiveLaws(I))
159     return replaceInstUsesWith(I, V);
160 
161   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
162   unsigned BitWidth = I.getType()->getScalarSizeInBits();
163 
164   // X * -1 == 0 - X
165   if (match(Op1, m_AllOnes())) {
166     BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
167     if (I.hasNoSignedWrap())
168       BO->setHasNoSignedWrap();
169     return BO;
170   }
171 
172   // Also allow combining multiply instructions on vectors.
173   {
174     Value *NewOp;
175     Constant *C1, *C2;
176     const APInt *IVal;
177     if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
178                         m_Constant(C1))) &&
179         match(C1, m_APInt(IVal))) {
180       // ((X << C2)*C1) == (X * (C1 << C2))
181       Constant *Shl = ConstantExpr::getShl(C1, C2);
182       BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
183       BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
184       if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
185         BO->setHasNoUnsignedWrap();
186       if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
187           Shl->isNotMinSignedValue())
188         BO->setHasNoSignedWrap();
189       return BO;
190     }
191 
192     if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
193       // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
194       if (Constant *NewCst = ConstantExpr::getExactLogBase2(C1)) {
195         BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
196 
197         if (I.hasNoUnsignedWrap())
198           Shl->setHasNoUnsignedWrap();
199         if (I.hasNoSignedWrap()) {
200           const APInt *V;
201           if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
202             Shl->setHasNoSignedWrap();
203         }
204 
205         return Shl;
206       }
207     }
208   }
209 
210   if (Op0->hasOneUse() && match(Op1, m_NegatedPower2())) {
211     // Interpret  X * (-1<<C)  as  (-X) * (1<<C)  and try to sink the negation.
212     // The "* (1<<C)" thus becomes a potential shifting opportunity.
213     if (Value *NegOp0 = Negator::Negate(/*IsNegation*/ true, Op0, *this))
214       return BinaryOperator::CreateMul(
215           NegOp0, ConstantExpr::getNeg(cast<Constant>(Op1)), I.getName());
216   }
217 
218   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
219     return FoldedMul;
220 
221   if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
222     return replaceInstUsesWith(I, FoldedMul);
223 
224   // Simplify mul instructions with a constant RHS.
225   if (isa<Constant>(Op1)) {
226     // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
227     Value *X;
228     Constant *C1;
229     if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
230       Value *Mul = Builder.CreateMul(C1, Op1);
231       // Only go forward with the transform if C1*CI simplifies to a tidier
232       // constant.
233       if (!match(Mul, m_Mul(m_Value(), m_Value())))
234         return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul);
235     }
236   }
237 
238   // abs(X) * abs(X) -> X * X
239   // nabs(X) * nabs(X) -> X * X
240   if (Op0 == Op1) {
241     Value *X, *Y;
242     SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
243     if (SPF == SPF_ABS || SPF == SPF_NABS)
244       return BinaryOperator::CreateMul(X, X);
245 
246     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
247       return BinaryOperator::CreateMul(X, X);
248   }
249 
250   // -X * C --> X * -C
251   Value *X, *Y;
252   Constant *Op1C;
253   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
254     return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
255 
256   // -X * -Y --> X * Y
257   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
258     auto *NewMul = BinaryOperator::CreateMul(X, Y);
259     if (I.hasNoSignedWrap() &&
260         cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
261         cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
262       NewMul->setHasNoSignedWrap();
263     return NewMul;
264   }
265 
266   // -X * Y --> -(X * Y)
267   // X * -Y --> -(X * Y)
268   if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
269     return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
270 
271   // (X / Y) *  Y = X - (X % Y)
272   // (X / Y) * -Y = (X % Y) - X
273   {
274     Value *Y = Op1;
275     BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
276     if (!Div || (Div->getOpcode() != Instruction::UDiv &&
277                  Div->getOpcode() != Instruction::SDiv)) {
278       Y = Op0;
279       Div = dyn_cast<BinaryOperator>(Op1);
280     }
281     Value *Neg = dyn_castNegVal(Y);
282     if (Div && Div->hasOneUse() &&
283         (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
284         (Div->getOpcode() == Instruction::UDiv ||
285          Div->getOpcode() == Instruction::SDiv)) {
286       Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
287 
288       // If the division is exact, X % Y is zero, so we end up with X or -X.
289       if (Div->isExact()) {
290         if (DivOp1 == Y)
291           return replaceInstUsesWith(I, X);
292         return BinaryOperator::CreateNeg(X);
293       }
294 
295       auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
296                                                           : Instruction::SRem;
297       Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1);
298       if (DivOp1 == Y)
299         return BinaryOperator::CreateSub(X, Rem);
300       return BinaryOperator::CreateSub(Rem, X);
301     }
302   }
303 
304   /// i1 mul -> i1 and.
305   if (I.getType()->isIntOrIntVectorTy(1))
306     return BinaryOperator::CreateAnd(Op0, Op1);
307 
308   // X*(1 << Y) --> X << Y
309   // (1 << Y)*X --> X << Y
310   {
311     Value *Y;
312     BinaryOperator *BO = nullptr;
313     bool ShlNSW = false;
314     if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
315       BO = BinaryOperator::CreateShl(Op1, Y);
316       ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
317     } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
318       BO = BinaryOperator::CreateShl(Op0, Y);
319       ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
320     }
321     if (BO) {
322       if (I.hasNoUnsignedWrap())
323         BO->setHasNoUnsignedWrap();
324       if (I.hasNoSignedWrap() && ShlNSW)
325         BO->setHasNoSignedWrap();
326       return BO;
327     }
328   }
329 
330   // (zext bool X) * (zext bool Y) --> zext (and X, Y)
331   // (sext bool X) * (sext bool Y) --> zext (and X, Y)
332   // Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same)
333   if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
334        (match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
335       X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
336       (Op0->hasOneUse() || Op1->hasOneUse() || X == Y)) {
337     Value *And = Builder.CreateAnd(X, Y, "mulbool");
338     return CastInst::Create(Instruction::ZExt, And, I.getType());
339   }
340   // (sext bool X) * (zext bool Y) --> sext (and X, Y)
341   // (zext bool X) * (sext bool Y) --> sext (and X, Y)
342   // Note: -1 * 1 == 1 * -1  == -1
343   if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
344        (match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
345       X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
346       (Op0->hasOneUse() || Op1->hasOneUse())) {
347     Value *And = Builder.CreateAnd(X, Y, "mulbool");
348     return CastInst::Create(Instruction::SExt, And, I.getType());
349   }
350 
351   // (bool X) * Y --> X ? Y : 0
352   // Y * (bool X) --> X ? Y : 0
353   if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
354     return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0));
355   if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
356     return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0));
357 
358   // (lshr X, 31) * Y --> (ashr X, 31) & Y
359   // Y * (lshr X, 31) --> (ashr X, 31) & Y
360   // TODO: We are not checking one-use because the elimination of the multiply
361   //       is better for analysis?
362   // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be
363   //       more similar to what we're doing above.
364   const APInt *C;
365   if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
366     return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1);
367   if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
368     return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0);
369 
370   // ((ashr X, 31) | 1) * X --> abs(X)
371   // X * ((ashr X, 31) | 1) --> abs(X)
372   if (match(&I, m_c_BinOp(m_Or(m_AShr(m_Value(X),
373                                     m_SpecificIntAllowUndef(BitWidth - 1)),
374                              m_One()),
375                         m_Deferred(X)))) {
376     Value *Abs = Builder.CreateBinaryIntrinsic(
377         Intrinsic::abs, X,
378         ConstantInt::getBool(I.getContext(), I.hasNoSignedWrap()));
379     Abs->takeName(&I);
380     return replaceInstUsesWith(I, Abs);
381   }
382 
383   if (Instruction *Ext = narrowMathIfNoOverflow(I))
384     return Ext;
385 
386   bool Changed = false;
387   if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) {
388     Changed = true;
389     I.setHasNoSignedWrap(true);
390   }
391 
392   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) {
393     Changed = true;
394     I.setHasNoUnsignedWrap(true);
395   }
396 
397   return Changed ? &I : nullptr;
398 }
399 
400 Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) {
401   BinaryOperator::BinaryOps Opcode = I.getOpcode();
402   assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
403          "Expected fmul or fdiv");
404 
405   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
406   Value *X, *Y;
407 
408   // -X * -Y --> X * Y
409   // -X / -Y --> X / Y
410   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
411     return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I);
412 
413   // fabs(X) * fabs(X) -> X * X
414   // fabs(X) / fabs(X) -> X / X
415   if (Op0 == Op1 && match(Op0, m_FAbs(m_Value(X))))
416     return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I);
417 
418   // fabs(X) * fabs(Y) --> fabs(X * Y)
419   // fabs(X) / fabs(Y) --> fabs(X / Y)
420   if (match(Op0, m_FAbs(m_Value(X))) && match(Op1, m_FAbs(m_Value(Y))) &&
421       (Op0->hasOneUse() || Op1->hasOneUse())) {
422     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
423     Builder.setFastMathFlags(I.getFastMathFlags());
424     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
425     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY);
426     Fabs->takeName(&I);
427     return replaceInstUsesWith(I, Fabs);
428   }
429 
430   return nullptr;
431 }
432 
433 Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) {
434   if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1),
435                                   I.getFastMathFlags(),
436                                   SQ.getWithInstruction(&I)))
437     return replaceInstUsesWith(I, V);
438 
439   if (SimplifyAssociativeOrCommutative(I))
440     return &I;
441 
442   if (Instruction *X = foldVectorBinop(I))
443     return X;
444 
445   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
446     return FoldedMul;
447 
448   if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
449     return replaceInstUsesWith(I, FoldedMul);
450 
451   if (Instruction *R = foldFPSignBitOps(I))
452     return R;
453 
454   // X * -1.0 --> -X
455   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
456   if (match(Op1, m_SpecificFP(-1.0)))
457     return UnaryOperator::CreateFNegFMF(Op0, &I);
458 
459   // -X * C --> X * -C
460   Value *X, *Y;
461   Constant *C;
462   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
463     return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
464 
465   // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
466   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
467     return replaceInstUsesWith(I, V);
468 
469   if (I.hasAllowReassoc()) {
470     // Reassociate constant RHS with another constant to form constant
471     // expression.
472     if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
473       Constant *C1;
474       if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
475         // (C1 / X) * C --> (C * C1) / X
476         Constant *CC1 = ConstantExpr::getFMul(C, C1);
477         if (CC1->isNormalFP())
478           return BinaryOperator::CreateFDivFMF(CC1, X, &I);
479       }
480       if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
481         // (X / C1) * C --> X * (C / C1)
482         Constant *CDivC1 = ConstantExpr::getFDiv(C, C1);
483         if (CDivC1->isNormalFP())
484           return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
485 
486         // If the constant was a denormal, try reassociating differently.
487         // (X / C1) * C --> X / (C1 / C)
488         Constant *C1DivC = ConstantExpr::getFDiv(C1, C);
489         if (Op0->hasOneUse() && C1DivC->isNormalFP())
490           return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
491       }
492 
493       // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
494       // canonicalized to 'fadd X, C'. Distributing the multiply may allow
495       // further folds and (X * C) + C2 is 'fma'.
496       if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
497         // (X + C1) * C --> (X * C) + (C * C1)
498         Constant *CC1 = ConstantExpr::getFMul(C, C1);
499         Value *XC = Builder.CreateFMulFMF(X, C, &I);
500         return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
501       }
502       if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
503         // (C1 - X) * C --> (C * C1) - (X * C)
504         Constant *CC1 = ConstantExpr::getFMul(C, C1);
505         Value *XC = Builder.CreateFMulFMF(X, C, &I);
506         return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
507       }
508     }
509 
510     Value *Z;
511     if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))),
512                            m_Value(Z)))) {
513       // Sink division: (X / Y) * Z --> (X * Z) / Y
514       Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
515       return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
516     }
517 
518     // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
519     // nnan disallows the possibility of returning a number if both operands are
520     // negative (in that case, we should return NaN).
521     if (I.hasNoNaNs() &&
522         match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) &&
523         match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
524       Value *XY = Builder.CreateFMulFMF(X, Y, &I);
525       Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
526       return replaceInstUsesWith(I, Sqrt);
527     }
528 
529     // The following transforms are done irrespective of the number of uses
530     // for the expression "1.0/sqrt(X)".
531     //  1) 1.0/sqrt(X) * X -> X/sqrt(X)
532     //  2) X * 1.0/sqrt(X) -> X/sqrt(X)
533     // We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
534     // has the necessary (reassoc) fast-math-flags.
535     if (I.hasNoSignedZeros() &&
536         match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
537         match(Y, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && Op1 == X)
538       return BinaryOperator::CreateFDivFMF(X, Y, &I);
539     if (I.hasNoSignedZeros() &&
540         match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
541         match(Y, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && Op0 == X)
542       return BinaryOperator::CreateFDivFMF(X, Y, &I);
543 
544     // Like the similar transform in instsimplify, this requires 'nsz' because
545     // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
546     if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 &&
547         Op0->hasNUses(2)) {
548       // Peek through fdiv to find squaring of square root:
549       // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
550       if (match(Op0, m_FDiv(m_Value(X),
551                             m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
552         Value *XX = Builder.CreateFMulFMF(X, X, &I);
553         return BinaryOperator::CreateFDivFMF(XX, Y, &I);
554       }
555       // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
556       if (match(Op0, m_FDiv(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y)),
557                             m_Value(X)))) {
558         Value *XX = Builder.CreateFMulFMF(X, X, &I);
559         return BinaryOperator::CreateFDivFMF(Y, XX, &I);
560       }
561     }
562 
563     if (I.isOnlyUserOfAnyOperand()) {
564       // pow(x, y) * pow(x, z) -> pow(x, y + z)
565       if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
566           match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) {
567         auto *YZ = Builder.CreateFAddFMF(Y, Z, &I);
568         auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I);
569         return replaceInstUsesWith(I, NewPow);
570       }
571 
572       // powi(x, y) * powi(x, z) -> powi(x, y + z)
573       if (match(Op0, m_Intrinsic<Intrinsic::powi>(m_Value(X), m_Value(Y))) &&
574           match(Op1, m_Intrinsic<Intrinsic::powi>(m_Specific(X), m_Value(Z))) &&
575           Y->getType() == Z->getType()) {
576         auto *YZ = Builder.CreateAdd(Y, Z);
577         auto *NewPow = Builder.CreateIntrinsic(
578             Intrinsic::powi, {X->getType(), YZ->getType()}, {X, YZ}, &I);
579         return replaceInstUsesWith(I, NewPow);
580       }
581 
582       // exp(X) * exp(Y) -> exp(X + Y)
583       if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
584           match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) {
585         Value *XY = Builder.CreateFAddFMF(X, Y, &I);
586         Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
587         return replaceInstUsesWith(I, Exp);
588       }
589 
590       // exp2(X) * exp2(Y) -> exp2(X + Y)
591       if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
592           match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) {
593         Value *XY = Builder.CreateFAddFMF(X, Y, &I);
594         Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
595         return replaceInstUsesWith(I, Exp2);
596       }
597     }
598 
599     // (X*Y) * X => (X*X) * Y where Y != X
600     //  The purpose is two-fold:
601     //   1) to form a power expression (of X).
602     //   2) potentially shorten the critical path: After transformation, the
603     //  latency of the instruction Y is amortized by the expression of X*X,
604     //  and therefore Y is in a "less critical" position compared to what it
605     //  was before the transformation.
606     if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
607         Op1 != Y) {
608       Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
609       return BinaryOperator::CreateFMulFMF(XX, Y, &I);
610     }
611     if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
612         Op0 != Y) {
613       Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
614       return BinaryOperator::CreateFMulFMF(XX, Y, &I);
615     }
616   }
617 
618   // log2(X * 0.5) * Y = log2(X) * Y - Y
619   if (I.isFast()) {
620     IntrinsicInst *Log2 = nullptr;
621     if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
622             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
623       Log2 = cast<IntrinsicInst>(Op0);
624       Y = Op1;
625     }
626     if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
627             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
628       Log2 = cast<IntrinsicInst>(Op1);
629       Y = Op0;
630     }
631     if (Log2) {
632       Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I);
633       Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
634       return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
635     }
636   }
637 
638   return nullptr;
639 }
640 
641 /// Fold a divide or remainder with a select instruction divisor when one of the
642 /// select operands is zero. In that case, we can use the other select operand
643 /// because div/rem by zero is undefined.
644 bool InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
645   SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
646   if (!SI)
647     return false;
648 
649   int NonNullOperand;
650   if (match(SI->getTrueValue(), m_Zero()))
651     // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
652     NonNullOperand = 2;
653   else if (match(SI->getFalseValue(), m_Zero()))
654     // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
655     NonNullOperand = 1;
656   else
657     return false;
658 
659   // Change the div/rem to use 'Y' instead of the select.
660   replaceOperand(I, 1, SI->getOperand(NonNullOperand));
661 
662   // Okay, we know we replace the operand of the div/rem with 'Y' with no
663   // problem.  However, the select, or the condition of the select may have
664   // multiple uses.  Based on our knowledge that the operand must be non-zero,
665   // propagate the known value for the select into other uses of it, and
666   // propagate a known value of the condition into its other users.
667 
668   // If the select and condition only have a single use, don't bother with this,
669   // early exit.
670   Value *SelectCond = SI->getCondition();
671   if (SI->use_empty() && SelectCond->hasOneUse())
672     return true;
673 
674   // Scan the current block backward, looking for other uses of SI.
675   BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
676   Type *CondTy = SelectCond->getType();
677   while (BBI != BBFront) {
678     --BBI;
679     // If we found an instruction that we can't assume will return, so
680     // information from below it cannot be propagated above it.
681     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
682       break;
683 
684     // Replace uses of the select or its condition with the known values.
685     for (Use &Op : BBI->operands()) {
686       if (Op == SI) {
687         replaceUse(Op, SI->getOperand(NonNullOperand));
688         Worklist.push(&*BBI);
689       } else if (Op == SelectCond) {
690         replaceUse(Op, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
691                                            : ConstantInt::getFalse(CondTy));
692         Worklist.push(&*BBI);
693       }
694     }
695 
696     // If we past the instruction, quit looking for it.
697     if (&*BBI == SI)
698       SI = nullptr;
699     if (&*BBI == SelectCond)
700       SelectCond = nullptr;
701 
702     // If we ran out of things to eliminate, break out of the loop.
703     if (!SelectCond && !SI)
704       break;
705 
706   }
707   return true;
708 }
709 
710 /// True if the multiply can not be expressed in an int this size.
711 static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
712                               bool IsSigned) {
713   bool Overflow;
714   Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
715   return Overflow;
716 }
717 
718 /// True if C1 is a multiple of C2. Quotient contains C1/C2.
719 static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
720                        bool IsSigned) {
721   assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
722 
723   // Bail if we will divide by zero.
724   if (C2.isZero())
725     return false;
726 
727   // Bail if we would divide INT_MIN by -1.
728   if (IsSigned && C1.isMinSignedValue() && C2.isAllOnes())
729     return false;
730 
731   APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned);
732   if (IsSigned)
733     APInt::sdivrem(C1, C2, Quotient, Remainder);
734   else
735     APInt::udivrem(C1, C2, Quotient, Remainder);
736 
737   return Remainder.isMinValue();
738 }
739 
740 /// This function implements the transforms common to both integer division
741 /// instructions (udiv and sdiv). It is called by the visitors to those integer
742 /// division instructions.
743 /// Common integer divide transforms
744 Instruction *InstCombinerImpl::commonIDivTransforms(BinaryOperator &I) {
745   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
746   bool IsSigned = I.getOpcode() == Instruction::SDiv;
747   Type *Ty = I.getType();
748 
749   // The RHS is known non-zero.
750   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
751     return replaceOperand(I, 1, V);
752 
753   // Handle cases involving: [su]div X, (select Cond, Y, Z)
754   // This does not apply for fdiv.
755   if (simplifyDivRemOfSelectWithZeroOp(I))
756     return &I;
757 
758   const APInt *C2;
759   if (match(Op1, m_APInt(C2))) {
760     Value *X;
761     const APInt *C1;
762 
763     // (X / C1) / C2  -> X / (C1*C2)
764     if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
765         (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
766       APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
767       if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
768         return BinaryOperator::Create(I.getOpcode(), X,
769                                       ConstantInt::get(Ty, Product));
770     }
771 
772     if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
773         (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
774       APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
775 
776       // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
777       if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
778         auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
779                                               ConstantInt::get(Ty, Quotient));
780         NewDiv->setIsExact(I.isExact());
781         return NewDiv;
782       }
783 
784       // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
785       if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
786         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
787                                            ConstantInt::get(Ty, Quotient));
788         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
789         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
790         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
791         return Mul;
792       }
793     }
794 
795     if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
796          C1->ult(C1->getBitWidth() - 1)) ||
797         (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))) &&
798          C1->ult(C1->getBitWidth()))) {
799       APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
800       APInt C1Shifted = APInt::getOneBitSet(
801           C1->getBitWidth(), static_cast<unsigned>(C1->getZExtValue()));
802 
803       // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
804       if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
805         auto *BO = BinaryOperator::Create(I.getOpcode(), X,
806                                           ConstantInt::get(Ty, Quotient));
807         BO->setIsExact(I.isExact());
808         return BO;
809       }
810 
811       // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
812       if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
813         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
814                                            ConstantInt::get(Ty, Quotient));
815         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
816         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
817         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
818         return Mul;
819       }
820     }
821 
822     if (!C2->isZero()) // avoid X udiv 0
823       if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
824         return FoldedDiv;
825   }
826 
827   if (match(Op0, m_One())) {
828     assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
829     if (IsSigned) {
830       // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
831       // result is one, if Op1 is -1 then the result is minus one, otherwise
832       // it's zero.
833       Value *Inc = Builder.CreateAdd(Op1, Op0);
834       Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
835       return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0));
836     } else {
837       // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
838       // result is one, otherwise it's zero.
839       return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
840     }
841   }
842 
843   // See if we can fold away this div instruction.
844   if (SimplifyDemandedInstructionBits(I))
845     return &I;
846 
847   // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
848   Value *X, *Z;
849   if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
850     if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
851         (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
852       return BinaryOperator::Create(I.getOpcode(), X, Op1);
853 
854   // (X << Y) / X -> 1 << Y
855   Value *Y;
856   if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
857     return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
858   if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
859     return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
860 
861   // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
862   if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
863     bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
864     bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
865     if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
866       replaceOperand(I, 0, ConstantInt::get(Ty, 1));
867       replaceOperand(I, 1, Y);
868       return &I;
869     }
870   }
871 
872   return nullptr;
873 }
874 
875 static const unsigned MaxDepth = 6;
876 
877 namespace {
878 
879 using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1,
880                                            const BinaryOperator &I,
881                                            InstCombinerImpl &IC);
882 
883 /// Used to maintain state for visitUDivOperand().
884 struct UDivFoldAction {
885   /// Informs visitUDiv() how to fold this operand.  This can be zero if this
886   /// action joins two actions together.
887   FoldUDivOperandCb FoldAction;
888 
889   /// Which operand to fold.
890   Value *OperandToFold;
891 
892   union {
893     /// The instruction returned when FoldAction is invoked.
894     Instruction *FoldResult;
895 
896     /// Stores the LHS action index if this action joins two actions together.
897     size_t SelectLHSIdx;
898   };
899 
900   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
901       : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
902   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
903       : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
904 };
905 
906 } // end anonymous namespace
907 
908 // X udiv 2^C -> X >> C
909 static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
910                                     const BinaryOperator &I,
911                                     InstCombinerImpl &IC) {
912   Constant *C1 = ConstantExpr::getExactLogBase2(cast<Constant>(Op1));
913   if (!C1)
914     llvm_unreachable("Failed to constant fold udiv -> logbase2");
915   BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1);
916   if (I.isExact())
917     LShr->setIsExact();
918   return LShr;
919 }
920 
921 // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
922 // X udiv (zext (C1 << N)), where C1 is "1<<C2"  -->  X >> (N+C2)
923 static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
924                                 InstCombinerImpl &IC) {
925   Value *ShiftLeft;
926   if (!match(Op1, m_ZExt(m_Value(ShiftLeft))))
927     ShiftLeft = Op1;
928 
929   Constant *CI;
930   Value *N;
931   if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N))))
932     llvm_unreachable("match should never fail here!");
933   Constant *Log2Base = ConstantExpr::getExactLogBase2(CI);
934   if (!Log2Base)
935     llvm_unreachable("getLogBase2 should never fail here!");
936   N = IC.Builder.CreateAdd(N, Log2Base);
937   if (Op1 != ShiftLeft)
938     N = IC.Builder.CreateZExt(N, Op1->getType());
939   BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
940   if (I.isExact())
941     LShr->setIsExact();
942   return LShr;
943 }
944 
945 // Recursively visits the possible right hand operands of a udiv
946 // instruction, seeing through select instructions, to determine if we can
947 // replace the udiv with something simpler.  If we find that an operand is not
948 // able to simplify the udiv, we abort the entire transformation.
949 static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
950                                SmallVectorImpl<UDivFoldAction> &Actions,
951                                unsigned Depth = 0) {
952   // FIXME: assert that Op1 isn't/doesn't contain undef.
953 
954   // Check to see if this is an unsigned division with an exact power of 2,
955   // if so, convert to a right shift.
956   if (match(Op1, m_Power2())) {
957     Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
958     return Actions.size();
959   }
960 
961   // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
962   if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
963       match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
964     Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
965     return Actions.size();
966   }
967 
968   // The remaining tests are all recursive, so bail out if we hit the limit.
969   if (Depth++ == MaxDepth)
970     return 0;
971 
972   if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
973     // FIXME: missed optimization: if one of the hands of select is/contains
974     //        undef, just directly pick the other one.
975     // FIXME: can both hands contain undef?
976     if (size_t LHSIdx =
977             visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
978       if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
979         Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
980         return Actions.size();
981       }
982 
983   return 0;
984 }
985 
986 /// If we have zero-extended operands of an unsigned div or rem, we may be able
987 /// to narrow the operation (sink the zext below the math).
988 static Instruction *narrowUDivURem(BinaryOperator &I,
989                                    InstCombiner::BuilderTy &Builder) {
990   Instruction::BinaryOps Opcode = I.getOpcode();
991   Value *N = I.getOperand(0);
992   Value *D = I.getOperand(1);
993   Type *Ty = I.getType();
994   Value *X, *Y;
995   if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
996       X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
997     // udiv (zext X), (zext Y) --> zext (udiv X, Y)
998     // urem (zext X), (zext Y) --> zext (urem X, Y)
999     Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
1000     return new ZExtInst(NarrowOp, Ty);
1001   }
1002 
1003   Constant *C;
1004   if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) ||
1005       (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) {
1006     // If the constant is the same in the smaller type, use the narrow version.
1007     Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
1008     if (ConstantExpr::getZExt(TruncC, Ty) != C)
1009       return nullptr;
1010 
1011     // udiv (zext X), C --> zext (udiv X, C')
1012     // urem (zext X), C --> zext (urem X, C')
1013     // udiv C, (zext X) --> zext (udiv C', X)
1014     // urem C, (zext X) --> zext (urem C', X)
1015     Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC)
1016                                        : Builder.CreateBinOp(Opcode, TruncC, X);
1017     return new ZExtInst(NarrowOp, Ty);
1018   }
1019 
1020   return nullptr;
1021 }
1022 
1023 Instruction *InstCombinerImpl::visitUDiv(BinaryOperator &I) {
1024   if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1),
1025                                   SQ.getWithInstruction(&I)))
1026     return replaceInstUsesWith(I, V);
1027 
1028   if (Instruction *X = foldVectorBinop(I))
1029     return X;
1030 
1031   // Handle the integer div common cases
1032   if (Instruction *Common = commonIDivTransforms(I))
1033     return Common;
1034 
1035   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1036   Value *X;
1037   const APInt *C1, *C2;
1038   if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
1039     // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
1040     bool Overflow;
1041     APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
1042     if (!Overflow) {
1043       bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
1044       BinaryOperator *BO = BinaryOperator::CreateUDiv(
1045           X, ConstantInt::get(X->getType(), C2ShlC1));
1046       if (IsExact)
1047         BO->setIsExact();
1048       return BO;
1049     }
1050   }
1051 
1052   // Op0 / C where C is large (negative) --> zext (Op0 >= C)
1053   // TODO: Could use isKnownNegative() to handle non-constant values.
1054   Type *Ty = I.getType();
1055   if (match(Op1, m_Negative())) {
1056     Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
1057     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1058   }
1059   // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
1060   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1061     Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1062     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1063   }
1064 
1065   if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
1066     return NarrowDiv;
1067 
1068   // If the udiv operands are non-overflowing multiplies with a common operand,
1069   // then eliminate the common factor:
1070   // (A * B) / (A * X) --> B / X (and commuted variants)
1071   // TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
1072   // TODO: If -reassociation handled this generally, we could remove this.
1073   Value *A, *B;
1074   if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
1075     if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
1076         match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
1077       return BinaryOperator::CreateUDiv(B, X);
1078     if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
1079         match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
1080       return BinaryOperator::CreateUDiv(A, X);
1081   }
1082 
1083   // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
1084   SmallVector<UDivFoldAction, 6> UDivActions;
1085   if (visitUDivOperand(Op0, Op1, I, UDivActions))
1086     for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
1087       FoldUDivOperandCb Action = UDivActions[i].FoldAction;
1088       Value *ActionOp1 = UDivActions[i].OperandToFold;
1089       Instruction *Inst;
1090       if (Action)
1091         Inst = Action(Op0, ActionOp1, I, *this);
1092       else {
1093         // This action joins two actions together.  The RHS of this action is
1094         // simply the last action we processed, we saved the LHS action index in
1095         // the joining action.
1096         size_t SelectRHSIdx = i - 1;
1097         Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
1098         size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
1099         Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
1100         Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
1101                                   SelectLHS, SelectRHS);
1102       }
1103 
1104       // If this is the last action to process, return it to the InstCombiner.
1105       // Otherwise, we insert it before the UDiv and record it so that we may
1106       // use it as part of a joining action (i.e., a SelectInst).
1107       if (e - i != 1) {
1108         Inst->insertBefore(&I);
1109         UDivActions[i].FoldResult = Inst;
1110       } else
1111         return Inst;
1112     }
1113 
1114   return nullptr;
1115 }
1116 
1117 Instruction *InstCombinerImpl::visitSDiv(BinaryOperator &I) {
1118   if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1),
1119                                   SQ.getWithInstruction(&I)))
1120     return replaceInstUsesWith(I, V);
1121 
1122   if (Instruction *X = foldVectorBinop(I))
1123     return X;
1124 
1125   // Handle the integer div common cases
1126   if (Instruction *Common = commonIDivTransforms(I))
1127     return Common;
1128 
1129   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1130   Type *Ty = I.getType();
1131   Value *X;
1132   // sdiv Op0, -1 --> -Op0
1133   // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
1134   if (match(Op1, m_AllOnes()) ||
1135       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1136     return BinaryOperator::CreateNeg(Op0);
1137 
1138   // X / INT_MIN --> X == INT_MIN
1139   if (match(Op1, m_SignMask()))
1140     return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), Ty);
1141 
1142   // sdiv exact X,  1<<C  -->    ashr exact X, C   iff  1<<C  is non-negative
1143   // sdiv exact X, -1<<C  -->  -(ashr exact X, C)
1144   if (I.isExact() && ((match(Op1, m_Power2()) && match(Op1, m_NonNegative())) ||
1145                       match(Op1, m_NegatedPower2()))) {
1146     bool DivisorWasNegative = match(Op1, m_NegatedPower2());
1147     if (DivisorWasNegative)
1148       Op1 = ConstantExpr::getNeg(cast<Constant>(Op1));
1149     auto *AShr = BinaryOperator::CreateExactAShr(
1150         Op0, ConstantExpr::getExactLogBase2(cast<Constant>(Op1)), I.getName());
1151     if (!DivisorWasNegative)
1152       return AShr;
1153     Builder.Insert(AShr);
1154     AShr->setName(I.getName() + ".neg");
1155     return BinaryOperator::CreateNeg(AShr, I.getName());
1156   }
1157 
1158   const APInt *Op1C;
1159   if (match(Op1, m_APInt(Op1C))) {
1160     // If the dividend is sign-extended and the constant divisor is small enough
1161     // to fit in the source type, shrink the division to the narrower type:
1162     // (sext X) sdiv C --> sext (X sdiv C)
1163     Value *Op0Src;
1164     if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
1165         Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
1166 
1167       // In the general case, we need to make sure that the dividend is not the
1168       // minimum signed value because dividing that by -1 is UB. But here, we
1169       // know that the -1 divisor case is already handled above.
1170 
1171       Constant *NarrowDivisor =
1172           ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
1173       Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
1174       return new SExtInst(NarrowOp, Ty);
1175     }
1176 
1177     // -X / C --> X / -C (if the negation doesn't overflow).
1178     // TODO: This could be enhanced to handle arbitrary vector constants by
1179     //       checking if all elements are not the min-signed-val.
1180     if (!Op1C->isMinSignedValue() &&
1181         match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
1182       Constant *NegC = ConstantInt::get(Ty, -(*Op1C));
1183       Instruction *BO = BinaryOperator::CreateSDiv(X, NegC);
1184       BO->setIsExact(I.isExact());
1185       return BO;
1186     }
1187   }
1188 
1189   // -X / Y --> -(X / Y)
1190   Value *Y;
1191   if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1192     return BinaryOperator::CreateNSWNeg(
1193         Builder.CreateSDiv(X, Y, I.getName(), I.isExact()));
1194 
1195   // abs(X) / X --> X > -1 ? 1 : -1
1196   // X / abs(X) --> X > -1 ? 1 : -1
1197   if (match(&I, m_c_BinOp(
1198                     m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One())),
1199                     m_Deferred(X)))) {
1200     Constant *NegOne = ConstantInt::getAllOnesValue(Ty);
1201     Value *Cond = Builder.CreateICmpSGT(X, NegOne);
1202     return SelectInst::Create(Cond, ConstantInt::get(Ty, 1), NegOne);
1203   }
1204 
1205   // If the sign bits of both operands are zero (i.e. we can prove they are
1206   // unsigned inputs), turn this into a udiv.
1207   APInt Mask(APInt::getSignMask(Ty->getScalarSizeInBits()));
1208   if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
1209     if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
1210       // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
1211       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1212       BO->setIsExact(I.isExact());
1213       return BO;
1214     }
1215 
1216     if (match(Op1, m_NegatedPower2())) {
1217       // X sdiv (-(1 << C)) -> -(X sdiv (1 << C)) ->
1218       //                    -> -(X udiv (1 << C)) -> -(X u>> C)
1219       return BinaryOperator::CreateNeg(Builder.Insert(foldUDivPow2Cst(
1220           Op0, ConstantExpr::getNeg(cast<Constant>(Op1)), I, *this)));
1221     }
1222 
1223     if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1224       // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1225       // Safe because the only negative value (1 << Y) can take on is
1226       // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1227       // the sign bit set.
1228       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1229       BO->setIsExact(I.isExact());
1230       return BO;
1231     }
1232   }
1233 
1234   return nullptr;
1235 }
1236 
1237 /// Remove negation and try to convert division into multiplication.
1238 static Instruction *foldFDivConstantDivisor(BinaryOperator &I) {
1239   Constant *C;
1240   if (!match(I.getOperand(1), m_Constant(C)))
1241     return nullptr;
1242 
1243   // -X / C --> X / -C
1244   Value *X;
1245   if (match(I.getOperand(0), m_FNeg(m_Value(X))))
1246     return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
1247 
1248   // If the constant divisor has an exact inverse, this is always safe. If not,
1249   // then we can still create a reciprocal if fast-math-flags allow it and the
1250   // constant is a regular number (not zero, infinite, or denormal).
1251   if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
1252     return nullptr;
1253 
1254   // Disallow denormal constants because we don't know what would happen
1255   // on all targets.
1256   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1257   // denorms are flushed?
1258   auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
1259   if (!RecipC->isNormalFP())
1260     return nullptr;
1261 
1262   // X / C --> X * (1 / C)
1263   return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
1264 }
1265 
1266 /// Remove negation and try to reassociate constant math.
1267 static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
1268   Constant *C;
1269   if (!match(I.getOperand(0), m_Constant(C)))
1270     return nullptr;
1271 
1272   // C / -X --> -C / X
1273   Value *X;
1274   if (match(I.getOperand(1), m_FNeg(m_Value(X))))
1275     return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
1276 
1277   if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
1278     return nullptr;
1279 
1280   // Try to reassociate C / X expressions where X includes another constant.
1281   Constant *C2, *NewC = nullptr;
1282   if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
1283     // C / (X * C2) --> (C / C2) / X
1284     NewC = ConstantExpr::getFDiv(C, C2);
1285   } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
1286     // C / (X / C2) --> (C * C2) / X
1287     NewC = ConstantExpr::getFMul(C, C2);
1288   }
1289   // Disallow denormal constants because we don't know what would happen
1290   // on all targets.
1291   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1292   // denorms are flushed?
1293   if (!NewC || !NewC->isNormalFP())
1294     return nullptr;
1295 
1296   return BinaryOperator::CreateFDivFMF(NewC, X, &I);
1297 }
1298 
1299 /// Negate the exponent of pow/exp to fold division-by-pow() into multiply.
1300 static Instruction *foldFDivPowDivisor(BinaryOperator &I,
1301                                        InstCombiner::BuilderTy &Builder) {
1302   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1303   auto *II = dyn_cast<IntrinsicInst>(Op1);
1304   if (!II || !II->hasOneUse() || !I.hasAllowReassoc() ||
1305       !I.hasAllowReciprocal())
1306     return nullptr;
1307 
1308   // Z / pow(X, Y) --> Z * pow(X, -Y)
1309   // Z / exp{2}(Y) --> Z * exp{2}(-Y)
1310   // In the general case, this creates an extra instruction, but fmul allows
1311   // for better canonicalization and optimization than fdiv.
1312   Intrinsic::ID IID = II->getIntrinsicID();
1313   SmallVector<Value *> Args;
1314   switch (IID) {
1315   case Intrinsic::pow:
1316     Args.push_back(II->getArgOperand(0));
1317     Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(1), &I));
1318     break;
1319   case Intrinsic::powi: {
1320     // Require 'ninf' assuming that makes powi(X, -INT_MIN) acceptable.
1321     // That is, X ** (huge negative number) is 0.0, ~1.0, or INF and so
1322     // dividing by that is INF, ~1.0, or 0.0. Code that uses powi allows
1323     // non-standard results, so this corner case should be acceptable if the
1324     // code rules out INF values.
1325     if (!I.hasNoInfs())
1326       return nullptr;
1327     Args.push_back(II->getArgOperand(0));
1328     Args.push_back(Builder.CreateNeg(II->getArgOperand(1)));
1329     Type *Tys[] = {I.getType(), II->getArgOperand(1)->getType()};
1330     Value *Pow = Builder.CreateIntrinsic(IID, Tys, Args, &I);
1331     return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
1332   }
1333   case Intrinsic::exp:
1334   case Intrinsic::exp2:
1335     Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(0), &I));
1336     break;
1337   default:
1338     return nullptr;
1339   }
1340   Value *Pow = Builder.CreateIntrinsic(IID, I.getType(), Args, &I);
1341   return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
1342 }
1343 
1344 Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) {
1345   if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1),
1346                                   I.getFastMathFlags(),
1347                                   SQ.getWithInstruction(&I)))
1348     return replaceInstUsesWith(I, V);
1349 
1350   if (Instruction *X = foldVectorBinop(I))
1351     return X;
1352 
1353   if (Instruction *R = foldFDivConstantDivisor(I))
1354     return R;
1355 
1356   if (Instruction *R = foldFDivConstantDividend(I))
1357     return R;
1358 
1359   if (Instruction *R = foldFPSignBitOps(I))
1360     return R;
1361 
1362   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1363   if (isa<Constant>(Op0))
1364     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1365       if (Instruction *R = FoldOpIntoSelect(I, SI))
1366         return R;
1367 
1368   if (isa<Constant>(Op1))
1369     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1370       if (Instruction *R = FoldOpIntoSelect(I, SI))
1371         return R;
1372 
1373   if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
1374     Value *X, *Y;
1375     if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1376         (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
1377       // (X / Y) / Z => X / (Y * Z)
1378       Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
1379       return BinaryOperator::CreateFDivFMF(X, YZ, &I);
1380     }
1381     if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1382         (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
1383       // Z / (X / Y) => (Y * Z) / X
1384       Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
1385       return BinaryOperator::CreateFDivFMF(YZ, X, &I);
1386     }
1387     // Z / (1.0 / Y) => (Y * Z)
1388     //
1389     // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The
1390     // m_OneUse check is avoided because even in the case of the multiple uses
1391     // for 1.0/Y, the number of instructions remain the same and a division is
1392     // replaced by a multiplication.
1393     if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y))))
1394       return BinaryOperator::CreateFMulFMF(Y, Op0, &I);
1395   }
1396 
1397   if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
1398     // sin(X) / cos(X) -> tan(X)
1399     // cos(X) / sin(X) -> 1/tan(X) (cotangent)
1400     Value *X;
1401     bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
1402                  match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
1403     bool IsCot =
1404         !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
1405                   match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
1406 
1407     if ((IsTan || IsCot) &&
1408         hasFloatFn(&TLI, I.getType(), LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) {
1409       IRBuilder<> B(&I);
1410       IRBuilder<>::FastMathFlagGuard FMFGuard(B);
1411       B.setFastMathFlags(I.getFastMathFlags());
1412       AttributeList Attrs =
1413           cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
1414       Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
1415                                         LibFunc_tanl, B, Attrs);
1416       if (IsCot)
1417         Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
1418       return replaceInstUsesWith(I, Res);
1419     }
1420   }
1421 
1422   // X / (X * Y) --> 1.0 / Y
1423   // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
1424   // We can ignore the possibility that X is infinity because INF/INF is NaN.
1425   Value *X, *Y;
1426   if (I.hasNoNaNs() && I.hasAllowReassoc() &&
1427       match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
1428     replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0));
1429     replaceOperand(I, 1, Y);
1430     return &I;
1431   }
1432 
1433   // X / fabs(X) -> copysign(1.0, X)
1434   // fabs(X) / X -> copysign(1.0, X)
1435   if (I.hasNoNaNs() && I.hasNoInfs() &&
1436       (match(&I, m_FDiv(m_Value(X), m_FAbs(m_Deferred(X)))) ||
1437        match(&I, m_FDiv(m_FAbs(m_Value(X)), m_Deferred(X))))) {
1438     Value *V = Builder.CreateBinaryIntrinsic(
1439         Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I);
1440     return replaceInstUsesWith(I, V);
1441   }
1442 
1443   if (Instruction *Mul = foldFDivPowDivisor(I, Builder))
1444     return Mul;
1445 
1446   return nullptr;
1447 }
1448 
1449 /// This function implements the transforms common to both integer remainder
1450 /// instructions (urem and srem). It is called by the visitors to those integer
1451 /// remainder instructions.
1452 /// Common integer remainder transforms
1453 Instruction *InstCombinerImpl::commonIRemTransforms(BinaryOperator &I) {
1454   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1455 
1456   // The RHS is known non-zero.
1457   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
1458     return replaceOperand(I, 1, V);
1459 
1460   // Handle cases involving: rem X, (select Cond, Y, Z)
1461   if (simplifyDivRemOfSelectWithZeroOp(I))
1462     return &I;
1463 
1464   if (isa<Constant>(Op1)) {
1465     if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1466       if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1467         if (Instruction *R = FoldOpIntoSelect(I, SI))
1468           return R;
1469       } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
1470         const APInt *Op1Int;
1471         if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
1472             (I.getOpcode() == Instruction::URem ||
1473              !Op1Int->isMinSignedValue())) {
1474           // foldOpIntoPhi will speculate instructions to the end of the PHI's
1475           // predecessor blocks, so do this only if we know the srem or urem
1476           // will not fault.
1477           if (Instruction *NV = foldOpIntoPhi(I, PN))
1478             return NV;
1479         }
1480       }
1481 
1482       // See if we can fold away this rem instruction.
1483       if (SimplifyDemandedInstructionBits(I))
1484         return &I;
1485     }
1486   }
1487 
1488   return nullptr;
1489 }
1490 
1491 Instruction *InstCombinerImpl::visitURem(BinaryOperator &I) {
1492   if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1),
1493                                   SQ.getWithInstruction(&I)))
1494     return replaceInstUsesWith(I, V);
1495 
1496   if (Instruction *X = foldVectorBinop(I))
1497     return X;
1498 
1499   if (Instruction *common = commonIRemTransforms(I))
1500     return common;
1501 
1502   if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
1503     return NarrowRem;
1504 
1505   // X urem Y -> X and Y-1, where Y is a power of 2,
1506   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1507   Type *Ty = I.getType();
1508   if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1509     // This may increase instruction count, we don't enforce that Y is a
1510     // constant.
1511     Constant *N1 = Constant::getAllOnesValue(Ty);
1512     Value *Add = Builder.CreateAdd(Op1, N1);
1513     return BinaryOperator::CreateAnd(Op0, Add);
1514   }
1515 
1516   // 1 urem X -> zext(X != 1)
1517   if (match(Op0, m_One())) {
1518     Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1));
1519     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1520   }
1521 
1522   // X urem C -> X < C ? X : X - C, where C >= signbit.
1523   if (match(Op1, m_Negative())) {
1524     Value *Cmp = Builder.CreateICmpULT(Op0, Op1);
1525     Value *Sub = Builder.CreateSub(Op0, Op1);
1526     return SelectInst::Create(Cmp, Op0, Sub);
1527   }
1528 
1529   // If the divisor is a sext of a boolean, then the divisor must be max
1530   // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
1531   // max unsigned value. In that case, the remainder is 0:
1532   // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
1533   Value *X;
1534   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1535     Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1536     return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0);
1537   }
1538 
1539   return nullptr;
1540 }
1541 
1542 Instruction *InstCombinerImpl::visitSRem(BinaryOperator &I) {
1543   if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1),
1544                                   SQ.getWithInstruction(&I)))
1545     return replaceInstUsesWith(I, V);
1546 
1547   if (Instruction *X = foldVectorBinop(I))
1548     return X;
1549 
1550   // Handle the integer rem common cases
1551   if (Instruction *Common = commonIRemTransforms(I))
1552     return Common;
1553 
1554   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1555   {
1556     const APInt *Y;
1557     // X % -Y -> X % Y
1558     if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue())
1559       return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y));
1560   }
1561 
1562   // -X srem Y --> -(X srem Y)
1563   Value *X, *Y;
1564   if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1565     return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y));
1566 
1567   // If the sign bits of both operands are zero (i.e. we can prove they are
1568   // unsigned inputs), turn this into a urem.
1569   APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1570   if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
1571       MaskedValueIsZero(Op0, Mask, 0, &I)) {
1572     // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1573     return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1574   }
1575 
1576   // If it's a constant vector, flip any negative values positive.
1577   if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1578     Constant *C = cast<Constant>(Op1);
1579     unsigned VWidth = cast<FixedVectorType>(C->getType())->getNumElements();
1580 
1581     bool hasNegative = false;
1582     bool hasMissing = false;
1583     for (unsigned i = 0; i != VWidth; ++i) {
1584       Constant *Elt = C->getAggregateElement(i);
1585       if (!Elt) {
1586         hasMissing = true;
1587         break;
1588       }
1589 
1590       if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
1591         if (RHS->isNegative())
1592           hasNegative = true;
1593     }
1594 
1595     if (hasNegative && !hasMissing) {
1596       SmallVector<Constant *, 16> Elts(VWidth);
1597       for (unsigned i = 0; i != VWidth; ++i) {
1598         Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
1599         if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
1600           if (RHS->isNegative())
1601             Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
1602         }
1603       }
1604 
1605       Constant *NewRHSV = ConstantVector::get(Elts);
1606       if (NewRHSV != C)  // Don't loop on -MININT
1607         return replaceOperand(I, 1, NewRHSV);
1608     }
1609   }
1610 
1611   return nullptr;
1612 }
1613 
1614 Instruction *InstCombinerImpl::visitFRem(BinaryOperator &I) {
1615   if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1),
1616                                   I.getFastMathFlags(),
1617                                   SQ.getWithInstruction(&I)))
1618     return replaceInstUsesWith(I, V);
1619 
1620   if (Instruction *X = foldVectorBinop(I))
1621     return X;
1622 
1623   return nullptr;
1624 }
1625