xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
10 // srem, urem, frem.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/KnownBits.h"
34 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
35 #include "llvm/Transforms/InstCombine/InstCombiner.h"
36 #include "llvm/Transforms/Utils/BuildLibCalls.h"
37 #include <cassert>
38 #include <cstddef>
39 #include <cstdint>
40 #include <utility>
41 
42 using namespace llvm;
43 using namespace PatternMatch;
44 
45 #define DEBUG_TYPE "instcombine"
46 
47 /// The specific integer value is used in a context where it is known to be
48 /// non-zero.  If this allows us to simplify the computation, do so and return
49 /// the new operand, otherwise return null.
50 static Value *simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC,
51                                         Instruction &CxtI) {
52   // If V has multiple uses, then we would have to do more analysis to determine
53   // if this is safe.  For example, the use could be in dynamically unreached
54   // code.
55   if (!V->hasOneUse()) return nullptr;
56 
57   bool MadeChange = false;
58 
59   // ((1 << A) >>u B) --> (1 << (A-B))
60   // Because V cannot be zero, we know that B is less than A.
61   Value *A = nullptr, *B = nullptr, *One = nullptr;
62   if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
63       match(One, m_One())) {
64     A = IC.Builder.CreateSub(A, B);
65     return IC.Builder.CreateShl(One, A);
66   }
67 
68   // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
69   // inexact.  Similarly for <<.
70   BinaryOperator *I = dyn_cast<BinaryOperator>(V);
71   if (I && I->isLogicalShift() &&
72       IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
73     // We know that this is an exact/nuw shift and that the input is a
74     // non-zero context as well.
75     if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
76       IC.replaceOperand(*I, 0, V2);
77       MadeChange = true;
78     }
79 
80     if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
81       I->setIsExact();
82       MadeChange = true;
83     }
84 
85     if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
86       I->setHasNoUnsignedWrap();
87       MadeChange = true;
88     }
89   }
90 
91   // TODO: Lots more we could do here:
92   //    If V is a phi node, we can call this on each of its operands.
93   //    "select cond, X, 0" can simplify to "X".
94 
95   return MadeChange ? V : nullptr;
96 }
97 
98 // TODO: This is a specific form of a much more general pattern.
99 //       We could detect a select with any binop identity constant, or we
100 //       could use SimplifyBinOp to see if either arm of the select reduces.
101 //       But that needs to be done carefully and/or while removing potential
102 //       reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
103 static Value *foldMulSelectToNegate(BinaryOperator &I,
104                                     InstCombiner::BuilderTy &Builder) {
105   Value *Cond, *OtherOp;
106 
107   // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
108   // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
109   if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())),
110                         m_Value(OtherOp))))
111     return Builder.CreateSelect(Cond, OtherOp, Builder.CreateNeg(OtherOp));
112 
113   // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
114   // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
115   if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())),
116                         m_Value(OtherOp))))
117     return Builder.CreateSelect(Cond, Builder.CreateNeg(OtherOp), OtherOp);
118 
119   // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
120   // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
121   if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0),
122                                            m_SpecificFP(-1.0))),
123                          m_Value(OtherOp)))) {
124     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
125     Builder.setFastMathFlags(I.getFastMathFlags());
126     return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp));
127   }
128 
129   // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
130   // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
131   if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0),
132                                            m_SpecificFP(1.0))),
133                          m_Value(OtherOp)))) {
134     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
135     Builder.setFastMathFlags(I.getFastMathFlags());
136     return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp);
137   }
138 
139   return nullptr;
140 }
141 
142 Instruction *InstCombinerImpl::visitMul(BinaryOperator &I) {
143   if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1),
144                                  SQ.getWithInstruction(&I)))
145     return replaceInstUsesWith(I, V);
146 
147   if (SimplifyAssociativeOrCommutative(I))
148     return &I;
149 
150   if (Instruction *X = foldVectorBinop(I))
151     return X;
152 
153   if (Value *V = SimplifyUsingDistributiveLaws(I))
154     return replaceInstUsesWith(I, V);
155 
156   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
157   unsigned BitWidth = I.getType()->getScalarSizeInBits();
158 
159   // X * -1 == 0 - X
160   if (match(Op1, m_AllOnes())) {
161     BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
162     if (I.hasNoSignedWrap())
163       BO->setHasNoSignedWrap();
164     return BO;
165   }
166 
167   // Also allow combining multiply instructions on vectors.
168   {
169     Value *NewOp;
170     Constant *C1, *C2;
171     const APInt *IVal;
172     if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
173                         m_Constant(C1))) &&
174         match(C1, m_APInt(IVal))) {
175       // ((X << C2)*C1) == (X * (C1 << C2))
176       Constant *Shl = ConstantExpr::getShl(C1, C2);
177       BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
178       BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
179       if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
180         BO->setHasNoUnsignedWrap();
181       if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
182           Shl->isNotMinSignedValue())
183         BO->setHasNoSignedWrap();
184       return BO;
185     }
186 
187     if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
188       // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
189       if (Constant *NewCst = ConstantExpr::getExactLogBase2(C1)) {
190         BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
191 
192         if (I.hasNoUnsignedWrap())
193           Shl->setHasNoUnsignedWrap();
194         if (I.hasNoSignedWrap()) {
195           const APInt *V;
196           if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
197             Shl->setHasNoSignedWrap();
198         }
199 
200         return Shl;
201       }
202     }
203   }
204 
205   if (Op0->hasOneUse() && match(Op1, m_NegatedPower2())) {
206     // Interpret  X * (-1<<C)  as  (-X) * (1<<C)  and try to sink the negation.
207     // The "* (1<<C)" thus becomes a potential shifting opportunity.
208     if (Value *NegOp0 = Negator::Negate(/*IsNegation*/ true, Op0, *this))
209       return BinaryOperator::CreateMul(
210           NegOp0, ConstantExpr::getNeg(cast<Constant>(Op1)), I.getName());
211   }
212 
213   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
214     return FoldedMul;
215 
216   if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
217     return replaceInstUsesWith(I, FoldedMul);
218 
219   // Simplify mul instructions with a constant RHS.
220   if (isa<Constant>(Op1)) {
221     // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
222     Value *X;
223     Constant *C1;
224     if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
225       Value *Mul = Builder.CreateMul(C1, Op1);
226       // Only go forward with the transform if C1*CI simplifies to a tidier
227       // constant.
228       if (!match(Mul, m_Mul(m_Value(), m_Value())))
229         return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul);
230     }
231   }
232 
233   // abs(X) * abs(X) -> X * X
234   // nabs(X) * nabs(X) -> X * X
235   if (Op0 == Op1) {
236     Value *X, *Y;
237     SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
238     if (SPF == SPF_ABS || SPF == SPF_NABS)
239       return BinaryOperator::CreateMul(X, X);
240 
241     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
242       return BinaryOperator::CreateMul(X, X);
243   }
244 
245   // -X * C --> X * -C
246   Value *X, *Y;
247   Constant *Op1C;
248   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
249     return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
250 
251   // -X * -Y --> X * Y
252   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
253     auto *NewMul = BinaryOperator::CreateMul(X, Y);
254     if (I.hasNoSignedWrap() &&
255         cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
256         cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
257       NewMul->setHasNoSignedWrap();
258     return NewMul;
259   }
260 
261   // -X * Y --> -(X * Y)
262   // X * -Y --> -(X * Y)
263   if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
264     return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
265 
266   // (X / Y) *  Y = X - (X % Y)
267   // (X / Y) * -Y = (X % Y) - X
268   {
269     Value *Y = Op1;
270     BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
271     if (!Div || (Div->getOpcode() != Instruction::UDiv &&
272                  Div->getOpcode() != Instruction::SDiv)) {
273       Y = Op0;
274       Div = dyn_cast<BinaryOperator>(Op1);
275     }
276     Value *Neg = dyn_castNegVal(Y);
277     if (Div && Div->hasOneUse() &&
278         (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
279         (Div->getOpcode() == Instruction::UDiv ||
280          Div->getOpcode() == Instruction::SDiv)) {
281       Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
282 
283       // If the division is exact, X % Y is zero, so we end up with X or -X.
284       if (Div->isExact()) {
285         if (DivOp1 == Y)
286           return replaceInstUsesWith(I, X);
287         return BinaryOperator::CreateNeg(X);
288       }
289 
290       auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
291                                                           : Instruction::SRem;
292       Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1);
293       if (DivOp1 == Y)
294         return BinaryOperator::CreateSub(X, Rem);
295       return BinaryOperator::CreateSub(Rem, X);
296     }
297   }
298 
299   /// i1 mul -> i1 and.
300   if (I.getType()->isIntOrIntVectorTy(1))
301     return BinaryOperator::CreateAnd(Op0, Op1);
302 
303   // X*(1 << Y) --> X << Y
304   // (1 << Y)*X --> X << Y
305   {
306     Value *Y;
307     BinaryOperator *BO = nullptr;
308     bool ShlNSW = false;
309     if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
310       BO = BinaryOperator::CreateShl(Op1, Y);
311       ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
312     } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
313       BO = BinaryOperator::CreateShl(Op0, Y);
314       ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
315     }
316     if (BO) {
317       if (I.hasNoUnsignedWrap())
318         BO->setHasNoUnsignedWrap();
319       if (I.hasNoSignedWrap() && ShlNSW)
320         BO->setHasNoSignedWrap();
321       return BO;
322     }
323   }
324 
325   // (zext bool X) * (zext bool Y) --> zext (and X, Y)
326   // (sext bool X) * (sext bool Y) --> zext (and X, Y)
327   // Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same)
328   if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
329        (match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
330       X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
331       (Op0->hasOneUse() || Op1->hasOneUse() || X == Y)) {
332     Value *And = Builder.CreateAnd(X, Y, "mulbool");
333     return CastInst::Create(Instruction::ZExt, And, I.getType());
334   }
335   // (sext bool X) * (zext bool Y) --> sext (and X, Y)
336   // (zext bool X) * (sext bool Y) --> sext (and X, Y)
337   // Note: -1 * 1 == 1 * -1  == -1
338   if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
339        (match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
340       X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
341       (Op0->hasOneUse() || Op1->hasOneUse())) {
342     Value *And = Builder.CreateAnd(X, Y, "mulbool");
343     return CastInst::Create(Instruction::SExt, And, I.getType());
344   }
345 
346   // (bool X) * Y --> X ? Y : 0
347   // Y * (bool X) --> X ? Y : 0
348   if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
349     return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0));
350   if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
351     return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0));
352 
353   // (lshr X, 31) * Y --> (ashr X, 31) & Y
354   // Y * (lshr X, 31) --> (ashr X, 31) & Y
355   // TODO: We are not checking one-use because the elimination of the multiply
356   //       is better for analysis?
357   // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be
358   //       more similar to what we're doing above.
359   const APInt *C;
360   if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
361     return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1);
362   if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
363     return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0);
364 
365   // ((ashr X, 31) | 1) * X --> abs(X)
366   // X * ((ashr X, 31) | 1) --> abs(X)
367   if (match(&I, m_c_BinOp(m_Or(m_AShr(m_Value(X),
368                                     m_SpecificIntAllowUndef(BitWidth - 1)),
369                              m_One()),
370                         m_Deferred(X)))) {
371     Value *Abs = Builder.CreateBinaryIntrinsic(
372         Intrinsic::abs, X,
373         ConstantInt::getBool(I.getContext(), I.hasNoSignedWrap()));
374     Abs->takeName(&I);
375     return replaceInstUsesWith(I, Abs);
376   }
377 
378   if (Instruction *Ext = narrowMathIfNoOverflow(I))
379     return Ext;
380 
381   bool Changed = false;
382   if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) {
383     Changed = true;
384     I.setHasNoSignedWrap(true);
385   }
386 
387   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) {
388     Changed = true;
389     I.setHasNoUnsignedWrap(true);
390   }
391 
392   return Changed ? &I : nullptr;
393 }
394 
395 Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) {
396   BinaryOperator::BinaryOps Opcode = I.getOpcode();
397   assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
398          "Expected fmul or fdiv");
399 
400   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
401   Value *X, *Y;
402 
403   // -X * -Y --> X * Y
404   // -X / -Y --> X / Y
405   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
406     return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I);
407 
408   // fabs(X) * fabs(X) -> X * X
409   // fabs(X) / fabs(X) -> X / X
410   if (Op0 == Op1 && match(Op0, m_FAbs(m_Value(X))))
411     return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I);
412 
413   // fabs(X) * fabs(Y) --> fabs(X * Y)
414   // fabs(X) / fabs(Y) --> fabs(X / Y)
415   if (match(Op0, m_FAbs(m_Value(X))) && match(Op1, m_FAbs(m_Value(Y))) &&
416       (Op0->hasOneUse() || Op1->hasOneUse())) {
417     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
418     Builder.setFastMathFlags(I.getFastMathFlags());
419     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
420     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY);
421     Fabs->takeName(&I);
422     return replaceInstUsesWith(I, Fabs);
423   }
424 
425   return nullptr;
426 }
427 
428 Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) {
429   if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1),
430                                   I.getFastMathFlags(),
431                                   SQ.getWithInstruction(&I)))
432     return replaceInstUsesWith(I, V);
433 
434   if (SimplifyAssociativeOrCommutative(I))
435     return &I;
436 
437   if (Instruction *X = foldVectorBinop(I))
438     return X;
439 
440   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
441     return FoldedMul;
442 
443   if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
444     return replaceInstUsesWith(I, FoldedMul);
445 
446   if (Instruction *R = foldFPSignBitOps(I))
447     return R;
448 
449   // X * -1.0 --> -X
450   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
451   if (match(Op1, m_SpecificFP(-1.0)))
452     return UnaryOperator::CreateFNegFMF(Op0, &I);
453 
454   // -X * C --> X * -C
455   Value *X, *Y;
456   Constant *C;
457   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
458     return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
459 
460   // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
461   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
462     return replaceInstUsesWith(I, V);
463 
464   if (I.hasAllowReassoc()) {
465     // Reassociate constant RHS with another constant to form constant
466     // expression.
467     if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
468       Constant *C1;
469       if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
470         // (C1 / X) * C --> (C * C1) / X
471         Constant *CC1 = ConstantExpr::getFMul(C, C1);
472         if (CC1->isNormalFP())
473           return BinaryOperator::CreateFDivFMF(CC1, X, &I);
474       }
475       if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
476         // (X / C1) * C --> X * (C / C1)
477         Constant *CDivC1 = ConstantExpr::getFDiv(C, C1);
478         if (CDivC1->isNormalFP())
479           return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
480 
481         // If the constant was a denormal, try reassociating differently.
482         // (X / C1) * C --> X / (C1 / C)
483         Constant *C1DivC = ConstantExpr::getFDiv(C1, C);
484         if (Op0->hasOneUse() && C1DivC->isNormalFP())
485           return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
486       }
487 
488       // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
489       // canonicalized to 'fadd X, C'. Distributing the multiply may allow
490       // further folds and (X * C) + C2 is 'fma'.
491       if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
492         // (X + C1) * C --> (X * C) + (C * C1)
493         Constant *CC1 = ConstantExpr::getFMul(C, C1);
494         Value *XC = Builder.CreateFMulFMF(X, C, &I);
495         return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
496       }
497       if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
498         // (C1 - X) * C --> (C * C1) - (X * C)
499         Constant *CC1 = ConstantExpr::getFMul(C, C1);
500         Value *XC = Builder.CreateFMulFMF(X, C, &I);
501         return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
502       }
503     }
504 
505     Value *Z;
506     if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))),
507                            m_Value(Z)))) {
508       // Sink division: (X / Y) * Z --> (X * Z) / Y
509       Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
510       return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
511     }
512 
513     // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
514     // nnan disallows the possibility of returning a number if both operands are
515     // negative (in that case, we should return NaN).
516     if (I.hasNoNaNs() &&
517         match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) &&
518         match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
519       Value *XY = Builder.CreateFMulFMF(X, Y, &I);
520       Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
521       return replaceInstUsesWith(I, Sqrt);
522     }
523 
524     // The following transforms are done irrespective of the number of uses
525     // for the expression "1.0/sqrt(X)".
526     //  1) 1.0/sqrt(X) * X -> X/sqrt(X)
527     //  2) X * 1.0/sqrt(X) -> X/sqrt(X)
528     // We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
529     // has the necessary (reassoc) fast-math-flags.
530     if (I.hasNoSignedZeros() &&
531         match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
532         match(Y, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && Op1 == X)
533       return BinaryOperator::CreateFDivFMF(X, Y, &I);
534     if (I.hasNoSignedZeros() &&
535         match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
536         match(Y, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && Op0 == X)
537       return BinaryOperator::CreateFDivFMF(X, Y, &I);
538 
539     // Like the similar transform in instsimplify, this requires 'nsz' because
540     // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
541     if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 &&
542         Op0->hasNUses(2)) {
543       // Peek through fdiv to find squaring of square root:
544       // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
545       if (match(Op0, m_FDiv(m_Value(X),
546                             m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
547         Value *XX = Builder.CreateFMulFMF(X, X, &I);
548         return BinaryOperator::CreateFDivFMF(XX, Y, &I);
549       }
550       // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
551       if (match(Op0, m_FDiv(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y)),
552                             m_Value(X)))) {
553         Value *XX = Builder.CreateFMulFMF(X, X, &I);
554         return BinaryOperator::CreateFDivFMF(Y, XX, &I);
555       }
556     }
557 
558     if (I.isOnlyUserOfAnyOperand()) {
559       // pow(x, y) * pow(x, z) -> pow(x, y + z)
560       if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
561           match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) {
562         auto *YZ = Builder.CreateFAddFMF(Y, Z, &I);
563         auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I);
564         return replaceInstUsesWith(I, NewPow);
565       }
566 
567       // exp(X) * exp(Y) -> exp(X + Y)
568       if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
569           match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) {
570         Value *XY = Builder.CreateFAddFMF(X, Y, &I);
571         Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
572         return replaceInstUsesWith(I, Exp);
573       }
574 
575       // exp2(X) * exp2(Y) -> exp2(X + Y)
576       if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
577           match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) {
578         Value *XY = Builder.CreateFAddFMF(X, Y, &I);
579         Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
580         return replaceInstUsesWith(I, Exp2);
581       }
582     }
583 
584     // (X*Y) * X => (X*X) * Y where Y != X
585     //  The purpose is two-fold:
586     //   1) to form a power expression (of X).
587     //   2) potentially shorten the critical path: After transformation, the
588     //  latency of the instruction Y is amortized by the expression of X*X,
589     //  and therefore Y is in a "less critical" position compared to what it
590     //  was before the transformation.
591     if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
592         Op1 != Y) {
593       Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
594       return BinaryOperator::CreateFMulFMF(XX, Y, &I);
595     }
596     if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
597         Op0 != Y) {
598       Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
599       return BinaryOperator::CreateFMulFMF(XX, Y, &I);
600     }
601   }
602 
603   // log2(X * 0.5) * Y = log2(X) * Y - Y
604   if (I.isFast()) {
605     IntrinsicInst *Log2 = nullptr;
606     if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
607             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
608       Log2 = cast<IntrinsicInst>(Op0);
609       Y = Op1;
610     }
611     if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
612             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
613       Log2 = cast<IntrinsicInst>(Op1);
614       Y = Op0;
615     }
616     if (Log2) {
617       Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I);
618       Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
619       return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
620     }
621   }
622 
623   return nullptr;
624 }
625 
626 /// Fold a divide or remainder with a select instruction divisor when one of the
627 /// select operands is zero. In that case, we can use the other select operand
628 /// because div/rem by zero is undefined.
629 bool InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
630   SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
631   if (!SI)
632     return false;
633 
634   int NonNullOperand;
635   if (match(SI->getTrueValue(), m_Zero()))
636     // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
637     NonNullOperand = 2;
638   else if (match(SI->getFalseValue(), m_Zero()))
639     // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
640     NonNullOperand = 1;
641   else
642     return false;
643 
644   // Change the div/rem to use 'Y' instead of the select.
645   replaceOperand(I, 1, SI->getOperand(NonNullOperand));
646 
647   // Okay, we know we replace the operand of the div/rem with 'Y' with no
648   // problem.  However, the select, or the condition of the select may have
649   // multiple uses.  Based on our knowledge that the operand must be non-zero,
650   // propagate the known value for the select into other uses of it, and
651   // propagate a known value of the condition into its other users.
652 
653   // If the select and condition only have a single use, don't bother with this,
654   // early exit.
655   Value *SelectCond = SI->getCondition();
656   if (SI->use_empty() && SelectCond->hasOneUse())
657     return true;
658 
659   // Scan the current block backward, looking for other uses of SI.
660   BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
661   Type *CondTy = SelectCond->getType();
662   while (BBI != BBFront) {
663     --BBI;
664     // If we found an instruction that we can't assume will return, so
665     // information from below it cannot be propagated above it.
666     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
667       break;
668 
669     // Replace uses of the select or its condition with the known values.
670     for (Use &Op : BBI->operands()) {
671       if (Op == SI) {
672         replaceUse(Op, SI->getOperand(NonNullOperand));
673         Worklist.push(&*BBI);
674       } else if (Op == SelectCond) {
675         replaceUse(Op, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
676                                            : ConstantInt::getFalse(CondTy));
677         Worklist.push(&*BBI);
678       }
679     }
680 
681     // If we past the instruction, quit looking for it.
682     if (&*BBI == SI)
683       SI = nullptr;
684     if (&*BBI == SelectCond)
685       SelectCond = nullptr;
686 
687     // If we ran out of things to eliminate, break out of the loop.
688     if (!SelectCond && !SI)
689       break;
690 
691   }
692   return true;
693 }
694 
695 /// True if the multiply can not be expressed in an int this size.
696 static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
697                               bool IsSigned) {
698   bool Overflow;
699   Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
700   return Overflow;
701 }
702 
703 /// True if C1 is a multiple of C2. Quotient contains C1/C2.
704 static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
705                        bool IsSigned) {
706   assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
707 
708   // Bail if we will divide by zero.
709   if (C2.isNullValue())
710     return false;
711 
712   // Bail if we would divide INT_MIN by -1.
713   if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue())
714     return false;
715 
716   APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned);
717   if (IsSigned)
718     APInt::sdivrem(C1, C2, Quotient, Remainder);
719   else
720     APInt::udivrem(C1, C2, Quotient, Remainder);
721 
722   return Remainder.isMinValue();
723 }
724 
725 /// This function implements the transforms common to both integer division
726 /// instructions (udiv and sdiv). It is called by the visitors to those integer
727 /// division instructions.
728 /// Common integer divide transforms
729 Instruction *InstCombinerImpl::commonIDivTransforms(BinaryOperator &I) {
730   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
731   bool IsSigned = I.getOpcode() == Instruction::SDiv;
732   Type *Ty = I.getType();
733 
734   // The RHS is known non-zero.
735   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
736     return replaceOperand(I, 1, V);
737 
738   // Handle cases involving: [su]div X, (select Cond, Y, Z)
739   // This does not apply for fdiv.
740   if (simplifyDivRemOfSelectWithZeroOp(I))
741     return &I;
742 
743   const APInt *C2;
744   if (match(Op1, m_APInt(C2))) {
745     Value *X;
746     const APInt *C1;
747 
748     // (X / C1) / C2  -> X / (C1*C2)
749     if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
750         (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
751       APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
752       if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
753         return BinaryOperator::Create(I.getOpcode(), X,
754                                       ConstantInt::get(Ty, Product));
755     }
756 
757     if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
758         (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
759       APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
760 
761       // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
762       if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
763         auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
764                                               ConstantInt::get(Ty, Quotient));
765         NewDiv->setIsExact(I.isExact());
766         return NewDiv;
767       }
768 
769       // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
770       if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
771         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
772                                            ConstantInt::get(Ty, Quotient));
773         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
774         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
775         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
776         return Mul;
777       }
778     }
779 
780     if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
781          *C1 != C1->getBitWidth() - 1) ||
782         (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))))) {
783       APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
784       APInt C1Shifted = APInt::getOneBitSet(
785           C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
786 
787       // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
788       if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
789         auto *BO = BinaryOperator::Create(I.getOpcode(), X,
790                                           ConstantInt::get(Ty, Quotient));
791         BO->setIsExact(I.isExact());
792         return BO;
793       }
794 
795       // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
796       if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
797         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
798                                            ConstantInt::get(Ty, Quotient));
799         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
800         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
801         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
802         return Mul;
803       }
804     }
805 
806     if (!C2->isNullValue()) // avoid X udiv 0
807       if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
808         return FoldedDiv;
809   }
810 
811   if (match(Op0, m_One())) {
812     assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
813     if (IsSigned) {
814       // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
815       // result is one, if Op1 is -1 then the result is minus one, otherwise
816       // it's zero.
817       Value *Inc = Builder.CreateAdd(Op1, Op0);
818       Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
819       return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0));
820     } else {
821       // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
822       // result is one, otherwise it's zero.
823       return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
824     }
825   }
826 
827   // See if we can fold away this div instruction.
828   if (SimplifyDemandedInstructionBits(I))
829     return &I;
830 
831   // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
832   Value *X, *Z;
833   if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
834     if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
835         (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
836       return BinaryOperator::Create(I.getOpcode(), X, Op1);
837 
838   // (X << Y) / X -> 1 << Y
839   Value *Y;
840   if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
841     return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
842   if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
843     return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
844 
845   // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
846   if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
847     bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
848     bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
849     if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
850       replaceOperand(I, 0, ConstantInt::get(Ty, 1));
851       replaceOperand(I, 1, Y);
852       return &I;
853     }
854   }
855 
856   return nullptr;
857 }
858 
859 static const unsigned MaxDepth = 6;
860 
861 namespace {
862 
863 using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1,
864                                            const BinaryOperator &I,
865                                            InstCombinerImpl &IC);
866 
867 /// Used to maintain state for visitUDivOperand().
868 struct UDivFoldAction {
869   /// Informs visitUDiv() how to fold this operand.  This can be zero if this
870   /// action joins two actions together.
871   FoldUDivOperandCb FoldAction;
872 
873   /// Which operand to fold.
874   Value *OperandToFold;
875 
876   union {
877     /// The instruction returned when FoldAction is invoked.
878     Instruction *FoldResult;
879 
880     /// Stores the LHS action index if this action joins two actions together.
881     size_t SelectLHSIdx;
882   };
883 
884   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
885       : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
886   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
887       : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
888 };
889 
890 } // end anonymous namespace
891 
892 // X udiv 2^C -> X >> C
893 static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
894                                     const BinaryOperator &I,
895                                     InstCombinerImpl &IC) {
896   Constant *C1 = ConstantExpr::getExactLogBase2(cast<Constant>(Op1));
897   if (!C1)
898     llvm_unreachable("Failed to constant fold udiv -> logbase2");
899   BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1);
900   if (I.isExact())
901     LShr->setIsExact();
902   return LShr;
903 }
904 
905 // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
906 // X udiv (zext (C1 << N)), where C1 is "1<<C2"  -->  X >> (N+C2)
907 static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
908                                 InstCombinerImpl &IC) {
909   Value *ShiftLeft;
910   if (!match(Op1, m_ZExt(m_Value(ShiftLeft))))
911     ShiftLeft = Op1;
912 
913   Constant *CI;
914   Value *N;
915   if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N))))
916     llvm_unreachable("match should never fail here!");
917   Constant *Log2Base = ConstantExpr::getExactLogBase2(CI);
918   if (!Log2Base)
919     llvm_unreachable("getLogBase2 should never fail here!");
920   N = IC.Builder.CreateAdd(N, Log2Base);
921   if (Op1 != ShiftLeft)
922     N = IC.Builder.CreateZExt(N, Op1->getType());
923   BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
924   if (I.isExact())
925     LShr->setIsExact();
926   return LShr;
927 }
928 
929 // Recursively visits the possible right hand operands of a udiv
930 // instruction, seeing through select instructions, to determine if we can
931 // replace the udiv with something simpler.  If we find that an operand is not
932 // able to simplify the udiv, we abort the entire transformation.
933 static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
934                                SmallVectorImpl<UDivFoldAction> &Actions,
935                                unsigned Depth = 0) {
936   // FIXME: assert that Op1 isn't/doesn't contain undef.
937 
938   // Check to see if this is an unsigned division with an exact power of 2,
939   // if so, convert to a right shift.
940   if (match(Op1, m_Power2())) {
941     Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
942     return Actions.size();
943   }
944 
945   // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
946   if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
947       match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
948     Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
949     return Actions.size();
950   }
951 
952   // The remaining tests are all recursive, so bail out if we hit the limit.
953   if (Depth++ == MaxDepth)
954     return 0;
955 
956   if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
957     // FIXME: missed optimization: if one of the hands of select is/contains
958     //        undef, just directly pick the other one.
959     // FIXME: can both hands contain undef?
960     if (size_t LHSIdx =
961             visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
962       if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
963         Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
964         return Actions.size();
965       }
966 
967   return 0;
968 }
969 
970 /// If we have zero-extended operands of an unsigned div or rem, we may be able
971 /// to narrow the operation (sink the zext below the math).
972 static Instruction *narrowUDivURem(BinaryOperator &I,
973                                    InstCombiner::BuilderTy &Builder) {
974   Instruction::BinaryOps Opcode = I.getOpcode();
975   Value *N = I.getOperand(0);
976   Value *D = I.getOperand(1);
977   Type *Ty = I.getType();
978   Value *X, *Y;
979   if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
980       X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
981     // udiv (zext X), (zext Y) --> zext (udiv X, Y)
982     // urem (zext X), (zext Y) --> zext (urem X, Y)
983     Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
984     return new ZExtInst(NarrowOp, Ty);
985   }
986 
987   Constant *C;
988   if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) ||
989       (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) {
990     // If the constant is the same in the smaller type, use the narrow version.
991     Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
992     if (ConstantExpr::getZExt(TruncC, Ty) != C)
993       return nullptr;
994 
995     // udiv (zext X), C --> zext (udiv X, C')
996     // urem (zext X), C --> zext (urem X, C')
997     // udiv C, (zext X) --> zext (udiv C', X)
998     // urem C, (zext X) --> zext (urem C', X)
999     Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC)
1000                                        : Builder.CreateBinOp(Opcode, TruncC, X);
1001     return new ZExtInst(NarrowOp, Ty);
1002   }
1003 
1004   return nullptr;
1005 }
1006 
1007 Instruction *InstCombinerImpl::visitUDiv(BinaryOperator &I) {
1008   if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1),
1009                                   SQ.getWithInstruction(&I)))
1010     return replaceInstUsesWith(I, V);
1011 
1012   if (Instruction *X = foldVectorBinop(I))
1013     return X;
1014 
1015   // Handle the integer div common cases
1016   if (Instruction *Common = commonIDivTransforms(I))
1017     return Common;
1018 
1019   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1020   Value *X;
1021   const APInt *C1, *C2;
1022   if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
1023     // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
1024     bool Overflow;
1025     APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
1026     if (!Overflow) {
1027       bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
1028       BinaryOperator *BO = BinaryOperator::CreateUDiv(
1029           X, ConstantInt::get(X->getType(), C2ShlC1));
1030       if (IsExact)
1031         BO->setIsExact();
1032       return BO;
1033     }
1034   }
1035 
1036   // Op0 / C where C is large (negative) --> zext (Op0 >= C)
1037   // TODO: Could use isKnownNegative() to handle non-constant values.
1038   Type *Ty = I.getType();
1039   if (match(Op1, m_Negative())) {
1040     Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
1041     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1042   }
1043   // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
1044   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1045     Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1046     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1047   }
1048 
1049   if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
1050     return NarrowDiv;
1051 
1052   // If the udiv operands are non-overflowing multiplies with a common operand,
1053   // then eliminate the common factor:
1054   // (A * B) / (A * X) --> B / X (and commuted variants)
1055   // TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
1056   // TODO: If -reassociation handled this generally, we could remove this.
1057   Value *A, *B;
1058   if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
1059     if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
1060         match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
1061       return BinaryOperator::CreateUDiv(B, X);
1062     if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
1063         match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
1064       return BinaryOperator::CreateUDiv(A, X);
1065   }
1066 
1067   // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
1068   SmallVector<UDivFoldAction, 6> UDivActions;
1069   if (visitUDivOperand(Op0, Op1, I, UDivActions))
1070     for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
1071       FoldUDivOperandCb Action = UDivActions[i].FoldAction;
1072       Value *ActionOp1 = UDivActions[i].OperandToFold;
1073       Instruction *Inst;
1074       if (Action)
1075         Inst = Action(Op0, ActionOp1, I, *this);
1076       else {
1077         // This action joins two actions together.  The RHS of this action is
1078         // simply the last action we processed, we saved the LHS action index in
1079         // the joining action.
1080         size_t SelectRHSIdx = i - 1;
1081         Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
1082         size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
1083         Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
1084         Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
1085                                   SelectLHS, SelectRHS);
1086       }
1087 
1088       // If this is the last action to process, return it to the InstCombiner.
1089       // Otherwise, we insert it before the UDiv and record it so that we may
1090       // use it as part of a joining action (i.e., a SelectInst).
1091       if (e - i != 1) {
1092         Inst->insertBefore(&I);
1093         UDivActions[i].FoldResult = Inst;
1094       } else
1095         return Inst;
1096     }
1097 
1098   return nullptr;
1099 }
1100 
1101 Instruction *InstCombinerImpl::visitSDiv(BinaryOperator &I) {
1102   if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1),
1103                                   SQ.getWithInstruction(&I)))
1104     return replaceInstUsesWith(I, V);
1105 
1106   if (Instruction *X = foldVectorBinop(I))
1107     return X;
1108 
1109   // Handle the integer div common cases
1110   if (Instruction *Common = commonIDivTransforms(I))
1111     return Common;
1112 
1113   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1114   Type *Ty = I.getType();
1115   Value *X;
1116   // sdiv Op0, -1 --> -Op0
1117   // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
1118   if (match(Op1, m_AllOnes()) ||
1119       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1120     return BinaryOperator::CreateNeg(Op0);
1121 
1122   // X / INT_MIN --> X == INT_MIN
1123   if (match(Op1, m_SignMask()))
1124     return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), Ty);
1125 
1126   // sdiv exact X,  1<<C  -->    ashr exact X, C   iff  1<<C  is non-negative
1127   // sdiv exact X, -1<<C  -->  -(ashr exact X, C)
1128   if (I.isExact() && ((match(Op1, m_Power2()) && match(Op1, m_NonNegative())) ||
1129                       match(Op1, m_NegatedPower2()))) {
1130     bool DivisorWasNegative = match(Op1, m_NegatedPower2());
1131     if (DivisorWasNegative)
1132       Op1 = ConstantExpr::getNeg(cast<Constant>(Op1));
1133     auto *AShr = BinaryOperator::CreateExactAShr(
1134         Op0, ConstantExpr::getExactLogBase2(cast<Constant>(Op1)), I.getName());
1135     if (!DivisorWasNegative)
1136       return AShr;
1137     Builder.Insert(AShr);
1138     AShr->setName(I.getName() + ".neg");
1139     return BinaryOperator::CreateNeg(AShr, I.getName());
1140   }
1141 
1142   const APInt *Op1C;
1143   if (match(Op1, m_APInt(Op1C))) {
1144     // If the dividend is sign-extended and the constant divisor is small enough
1145     // to fit in the source type, shrink the division to the narrower type:
1146     // (sext X) sdiv C --> sext (X sdiv C)
1147     Value *Op0Src;
1148     if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
1149         Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
1150 
1151       // In the general case, we need to make sure that the dividend is not the
1152       // minimum signed value because dividing that by -1 is UB. But here, we
1153       // know that the -1 divisor case is already handled above.
1154 
1155       Constant *NarrowDivisor =
1156           ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
1157       Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
1158       return new SExtInst(NarrowOp, Ty);
1159     }
1160 
1161     // -X / C --> X / -C (if the negation doesn't overflow).
1162     // TODO: This could be enhanced to handle arbitrary vector constants by
1163     //       checking if all elements are not the min-signed-val.
1164     if (!Op1C->isMinSignedValue() &&
1165         match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
1166       Constant *NegC = ConstantInt::get(Ty, -(*Op1C));
1167       Instruction *BO = BinaryOperator::CreateSDiv(X, NegC);
1168       BO->setIsExact(I.isExact());
1169       return BO;
1170     }
1171   }
1172 
1173   // -X / Y --> -(X / Y)
1174   Value *Y;
1175   if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1176     return BinaryOperator::CreateNSWNeg(
1177         Builder.CreateSDiv(X, Y, I.getName(), I.isExact()));
1178 
1179   // abs(X) / X --> X > -1 ? 1 : -1
1180   // X / abs(X) --> X > -1 ? 1 : -1
1181   if (match(&I, m_c_BinOp(
1182                     m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One())),
1183                     m_Deferred(X)))) {
1184     Constant *NegOne = ConstantInt::getAllOnesValue(Ty);
1185     Value *Cond = Builder.CreateICmpSGT(X, NegOne);
1186     return SelectInst::Create(Cond, ConstantInt::get(Ty, 1), NegOne);
1187   }
1188 
1189   // If the sign bits of both operands are zero (i.e. we can prove they are
1190   // unsigned inputs), turn this into a udiv.
1191   APInt Mask(APInt::getSignMask(Ty->getScalarSizeInBits()));
1192   if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
1193     if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
1194       // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
1195       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1196       BO->setIsExact(I.isExact());
1197       return BO;
1198     }
1199 
1200     if (match(Op1, m_NegatedPower2())) {
1201       // X sdiv (-(1 << C)) -> -(X sdiv (1 << C)) ->
1202       //                    -> -(X udiv (1 << C)) -> -(X u>> C)
1203       return BinaryOperator::CreateNeg(Builder.Insert(foldUDivPow2Cst(
1204           Op0, ConstantExpr::getNeg(cast<Constant>(Op1)), I, *this)));
1205     }
1206 
1207     if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1208       // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1209       // Safe because the only negative value (1 << Y) can take on is
1210       // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1211       // the sign bit set.
1212       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1213       BO->setIsExact(I.isExact());
1214       return BO;
1215     }
1216   }
1217 
1218   return nullptr;
1219 }
1220 
1221 /// Remove negation and try to convert division into multiplication.
1222 static Instruction *foldFDivConstantDivisor(BinaryOperator &I) {
1223   Constant *C;
1224   if (!match(I.getOperand(1), m_Constant(C)))
1225     return nullptr;
1226 
1227   // -X / C --> X / -C
1228   Value *X;
1229   if (match(I.getOperand(0), m_FNeg(m_Value(X))))
1230     return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
1231 
1232   // If the constant divisor has an exact inverse, this is always safe. If not,
1233   // then we can still create a reciprocal if fast-math-flags allow it and the
1234   // constant is a regular number (not zero, infinite, or denormal).
1235   if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
1236     return nullptr;
1237 
1238   // Disallow denormal constants because we don't know what would happen
1239   // on all targets.
1240   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1241   // denorms are flushed?
1242   auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
1243   if (!RecipC->isNormalFP())
1244     return nullptr;
1245 
1246   // X / C --> X * (1 / C)
1247   return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
1248 }
1249 
1250 /// Remove negation and try to reassociate constant math.
1251 static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
1252   Constant *C;
1253   if (!match(I.getOperand(0), m_Constant(C)))
1254     return nullptr;
1255 
1256   // C / -X --> -C / X
1257   Value *X;
1258   if (match(I.getOperand(1), m_FNeg(m_Value(X))))
1259     return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
1260 
1261   if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
1262     return nullptr;
1263 
1264   // Try to reassociate C / X expressions where X includes another constant.
1265   Constant *C2, *NewC = nullptr;
1266   if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
1267     // C / (X * C2) --> (C / C2) / X
1268     NewC = ConstantExpr::getFDiv(C, C2);
1269   } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
1270     // C / (X / C2) --> (C * C2) / X
1271     NewC = ConstantExpr::getFMul(C, C2);
1272   }
1273   // Disallow denormal constants because we don't know what would happen
1274   // on all targets.
1275   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1276   // denorms are flushed?
1277   if (!NewC || !NewC->isNormalFP())
1278     return nullptr;
1279 
1280   return BinaryOperator::CreateFDivFMF(NewC, X, &I);
1281 }
1282 
1283 /// Negate the exponent of pow/exp to fold division-by-pow() into multiply.
1284 static Instruction *foldFDivPowDivisor(BinaryOperator &I,
1285                                        InstCombiner::BuilderTy &Builder) {
1286   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1287   auto *II = dyn_cast<IntrinsicInst>(Op1);
1288   if (!II || !II->hasOneUse() || !I.hasAllowReassoc() ||
1289       !I.hasAllowReciprocal())
1290     return nullptr;
1291 
1292   // Z / pow(X, Y) --> Z * pow(X, -Y)
1293   // Z / exp{2}(Y) --> Z * exp{2}(-Y)
1294   // In the general case, this creates an extra instruction, but fmul allows
1295   // for better canonicalization and optimization than fdiv.
1296   Intrinsic::ID IID = II->getIntrinsicID();
1297   SmallVector<Value *> Args;
1298   switch (IID) {
1299   case Intrinsic::pow:
1300     Args.push_back(II->getArgOperand(0));
1301     Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(1), &I));
1302     break;
1303   case Intrinsic::powi: {
1304     // Require 'ninf' assuming that makes powi(X, -INT_MIN) acceptable.
1305     // That is, X ** (huge negative number) is 0.0, ~1.0, or INF and so
1306     // dividing by that is INF, ~1.0, or 0.0. Code that uses powi allows
1307     // non-standard results, so this corner case should be acceptable if the
1308     // code rules out INF values.
1309     if (!I.hasNoInfs())
1310       return nullptr;
1311     Args.push_back(II->getArgOperand(0));
1312     Args.push_back(Builder.CreateNeg(II->getArgOperand(1)));
1313     Type *Tys[] = {I.getType(), II->getArgOperand(1)->getType()};
1314     Value *Pow = Builder.CreateIntrinsic(IID, Tys, Args, &I);
1315     return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
1316   }
1317   case Intrinsic::exp:
1318   case Intrinsic::exp2:
1319     Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(0), &I));
1320     break;
1321   default:
1322     return nullptr;
1323   }
1324   Value *Pow = Builder.CreateIntrinsic(IID, I.getType(), Args, &I);
1325   return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
1326 }
1327 
1328 Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) {
1329   if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1),
1330                                   I.getFastMathFlags(),
1331                                   SQ.getWithInstruction(&I)))
1332     return replaceInstUsesWith(I, V);
1333 
1334   if (Instruction *X = foldVectorBinop(I))
1335     return X;
1336 
1337   if (Instruction *R = foldFDivConstantDivisor(I))
1338     return R;
1339 
1340   if (Instruction *R = foldFDivConstantDividend(I))
1341     return R;
1342 
1343   if (Instruction *R = foldFPSignBitOps(I))
1344     return R;
1345 
1346   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1347   if (isa<Constant>(Op0))
1348     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1349       if (Instruction *R = FoldOpIntoSelect(I, SI))
1350         return R;
1351 
1352   if (isa<Constant>(Op1))
1353     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1354       if (Instruction *R = FoldOpIntoSelect(I, SI))
1355         return R;
1356 
1357   if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
1358     Value *X, *Y;
1359     if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1360         (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
1361       // (X / Y) / Z => X / (Y * Z)
1362       Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
1363       return BinaryOperator::CreateFDivFMF(X, YZ, &I);
1364     }
1365     if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1366         (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
1367       // Z / (X / Y) => (Y * Z) / X
1368       Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
1369       return BinaryOperator::CreateFDivFMF(YZ, X, &I);
1370     }
1371     // Z / (1.0 / Y) => (Y * Z)
1372     //
1373     // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The
1374     // m_OneUse check is avoided because even in the case of the multiple uses
1375     // for 1.0/Y, the number of instructions remain the same and a division is
1376     // replaced by a multiplication.
1377     if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y))))
1378       return BinaryOperator::CreateFMulFMF(Y, Op0, &I);
1379   }
1380 
1381   if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
1382     // sin(X) / cos(X) -> tan(X)
1383     // cos(X) / sin(X) -> 1/tan(X) (cotangent)
1384     Value *X;
1385     bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
1386                  match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
1387     bool IsCot =
1388         !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
1389                   match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
1390 
1391     if ((IsTan || IsCot) &&
1392         hasFloatFn(&TLI, I.getType(), LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) {
1393       IRBuilder<> B(&I);
1394       IRBuilder<>::FastMathFlagGuard FMFGuard(B);
1395       B.setFastMathFlags(I.getFastMathFlags());
1396       AttributeList Attrs =
1397           cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
1398       Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
1399                                         LibFunc_tanl, B, Attrs);
1400       if (IsCot)
1401         Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
1402       return replaceInstUsesWith(I, Res);
1403     }
1404   }
1405 
1406   // X / (X * Y) --> 1.0 / Y
1407   // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
1408   // We can ignore the possibility that X is infinity because INF/INF is NaN.
1409   Value *X, *Y;
1410   if (I.hasNoNaNs() && I.hasAllowReassoc() &&
1411       match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
1412     replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0));
1413     replaceOperand(I, 1, Y);
1414     return &I;
1415   }
1416 
1417   // X / fabs(X) -> copysign(1.0, X)
1418   // fabs(X) / X -> copysign(1.0, X)
1419   if (I.hasNoNaNs() && I.hasNoInfs() &&
1420       (match(&I, m_FDiv(m_Value(X), m_FAbs(m_Deferred(X)))) ||
1421        match(&I, m_FDiv(m_FAbs(m_Value(X)), m_Deferred(X))))) {
1422     Value *V = Builder.CreateBinaryIntrinsic(
1423         Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I);
1424     return replaceInstUsesWith(I, V);
1425   }
1426 
1427   if (Instruction *Mul = foldFDivPowDivisor(I, Builder))
1428     return Mul;
1429 
1430   return nullptr;
1431 }
1432 
1433 /// This function implements the transforms common to both integer remainder
1434 /// instructions (urem and srem). It is called by the visitors to those integer
1435 /// remainder instructions.
1436 /// Common integer remainder transforms
1437 Instruction *InstCombinerImpl::commonIRemTransforms(BinaryOperator &I) {
1438   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1439 
1440   // The RHS is known non-zero.
1441   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
1442     return replaceOperand(I, 1, V);
1443 
1444   // Handle cases involving: rem X, (select Cond, Y, Z)
1445   if (simplifyDivRemOfSelectWithZeroOp(I))
1446     return &I;
1447 
1448   if (isa<Constant>(Op1)) {
1449     if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1450       if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1451         if (Instruction *R = FoldOpIntoSelect(I, SI))
1452           return R;
1453       } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
1454         const APInt *Op1Int;
1455         if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
1456             (I.getOpcode() == Instruction::URem ||
1457              !Op1Int->isMinSignedValue())) {
1458           // foldOpIntoPhi will speculate instructions to the end of the PHI's
1459           // predecessor blocks, so do this only if we know the srem or urem
1460           // will not fault.
1461           if (Instruction *NV = foldOpIntoPhi(I, PN))
1462             return NV;
1463         }
1464       }
1465 
1466       // See if we can fold away this rem instruction.
1467       if (SimplifyDemandedInstructionBits(I))
1468         return &I;
1469     }
1470   }
1471 
1472   return nullptr;
1473 }
1474 
1475 Instruction *InstCombinerImpl::visitURem(BinaryOperator &I) {
1476   if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1),
1477                                   SQ.getWithInstruction(&I)))
1478     return replaceInstUsesWith(I, V);
1479 
1480   if (Instruction *X = foldVectorBinop(I))
1481     return X;
1482 
1483   if (Instruction *common = commonIRemTransforms(I))
1484     return common;
1485 
1486   if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
1487     return NarrowRem;
1488 
1489   // X urem Y -> X and Y-1, where Y is a power of 2,
1490   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1491   Type *Ty = I.getType();
1492   if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1493     // This may increase instruction count, we don't enforce that Y is a
1494     // constant.
1495     Constant *N1 = Constant::getAllOnesValue(Ty);
1496     Value *Add = Builder.CreateAdd(Op1, N1);
1497     return BinaryOperator::CreateAnd(Op0, Add);
1498   }
1499 
1500   // 1 urem X -> zext(X != 1)
1501   if (match(Op0, m_One())) {
1502     Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1));
1503     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1504   }
1505 
1506   // X urem C -> X < C ? X : X - C, where C >= signbit.
1507   if (match(Op1, m_Negative())) {
1508     Value *Cmp = Builder.CreateICmpULT(Op0, Op1);
1509     Value *Sub = Builder.CreateSub(Op0, Op1);
1510     return SelectInst::Create(Cmp, Op0, Sub);
1511   }
1512 
1513   // If the divisor is a sext of a boolean, then the divisor must be max
1514   // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
1515   // max unsigned value. In that case, the remainder is 0:
1516   // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
1517   Value *X;
1518   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1519     Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1520     return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0);
1521   }
1522 
1523   return nullptr;
1524 }
1525 
1526 Instruction *InstCombinerImpl::visitSRem(BinaryOperator &I) {
1527   if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1),
1528                                   SQ.getWithInstruction(&I)))
1529     return replaceInstUsesWith(I, V);
1530 
1531   if (Instruction *X = foldVectorBinop(I))
1532     return X;
1533 
1534   // Handle the integer rem common cases
1535   if (Instruction *Common = commonIRemTransforms(I))
1536     return Common;
1537 
1538   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1539   {
1540     const APInt *Y;
1541     // X % -Y -> X % Y
1542     if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue())
1543       return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y));
1544   }
1545 
1546   // -X srem Y --> -(X srem Y)
1547   Value *X, *Y;
1548   if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1549     return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y));
1550 
1551   // If the sign bits of both operands are zero (i.e. we can prove they are
1552   // unsigned inputs), turn this into a urem.
1553   APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1554   if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
1555       MaskedValueIsZero(Op0, Mask, 0, &I)) {
1556     // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1557     return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1558   }
1559 
1560   // If it's a constant vector, flip any negative values positive.
1561   if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1562     Constant *C = cast<Constant>(Op1);
1563     unsigned VWidth = cast<FixedVectorType>(C->getType())->getNumElements();
1564 
1565     bool hasNegative = false;
1566     bool hasMissing = false;
1567     for (unsigned i = 0; i != VWidth; ++i) {
1568       Constant *Elt = C->getAggregateElement(i);
1569       if (!Elt) {
1570         hasMissing = true;
1571         break;
1572       }
1573 
1574       if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
1575         if (RHS->isNegative())
1576           hasNegative = true;
1577     }
1578 
1579     if (hasNegative && !hasMissing) {
1580       SmallVector<Constant *, 16> Elts(VWidth);
1581       for (unsigned i = 0; i != VWidth; ++i) {
1582         Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
1583         if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
1584           if (RHS->isNegative())
1585             Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
1586         }
1587       }
1588 
1589       Constant *NewRHSV = ConstantVector::get(Elts);
1590       if (NewRHSV != C)  // Don't loop on -MININT
1591         return replaceOperand(I, 1, NewRHSV);
1592     }
1593   }
1594 
1595   return nullptr;
1596 }
1597 
1598 Instruction *InstCombinerImpl::visitFRem(BinaryOperator &I) {
1599   if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1),
1600                                   I.getFastMathFlags(),
1601                                   SQ.getWithInstruction(&I)))
1602     return replaceInstUsesWith(I, V);
1603 
1604   if (Instruction *X = foldVectorBinop(I))
1605     return X;
1606 
1607   return nullptr;
1608 }
1609