xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp (revision e9e8876a4d6afc1ad5315faaa191b25121a813d7)
1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for load, store and alloca.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/MapVector.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/IR/ConstantRange.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/MDBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Transforms/InstCombine/InstCombiner.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 using namespace llvm;
30 using namespace PatternMatch;
31 
32 #define DEBUG_TYPE "instcombine"
33 
34 STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
35 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
36 
37 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
38 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
39 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
40 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
41 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
42 /// the alloca, and if the source pointer is a pointer to a constant global, we
43 /// can optimize this.
44 static bool
45 isOnlyCopiedFromConstantMemory(AAResults *AA,
46                                Value *V, MemTransferInst *&TheCopy,
47                                SmallVectorImpl<Instruction *> &ToDelete) {
48   // We track lifetime intrinsics as we encounter them.  If we decide to go
49   // ahead and replace the value with the global, this lets the caller quickly
50   // eliminate the markers.
51 
52   SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
53   ValuesToInspect.emplace_back(V, false);
54   while (!ValuesToInspect.empty()) {
55     auto ValuePair = ValuesToInspect.pop_back_val();
56     const bool IsOffset = ValuePair.second;
57     for (auto &U : ValuePair.first->uses()) {
58       auto *I = cast<Instruction>(U.getUser());
59 
60       if (auto *LI = dyn_cast<LoadInst>(I)) {
61         // Ignore non-volatile loads, they are always ok.
62         if (!LI->isSimple()) return false;
63         continue;
64       }
65 
66       if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
67         // If uses of the bitcast are ok, we are ok.
68         ValuesToInspect.emplace_back(I, IsOffset);
69         continue;
70       }
71       if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
72         // If the GEP has all zero indices, it doesn't offset the pointer. If it
73         // doesn't, it does.
74         ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
75         continue;
76       }
77 
78       if (auto *Call = dyn_cast<CallBase>(I)) {
79         // If this is the function being called then we treat it like a load and
80         // ignore it.
81         if (Call->isCallee(&U))
82           continue;
83 
84         unsigned DataOpNo = Call->getDataOperandNo(&U);
85         bool IsArgOperand = Call->isArgOperand(&U);
86 
87         // Inalloca arguments are clobbered by the call.
88         if (IsArgOperand && Call->isInAllocaArgument(DataOpNo))
89           return false;
90 
91         // If this is a readonly/readnone call site, then we know it is just a
92         // load (but one that potentially returns the value itself), so we can
93         // ignore it if we know that the value isn't captured.
94         if (Call->onlyReadsMemory() &&
95             (Call->use_empty() || Call->doesNotCapture(DataOpNo)))
96           continue;
97 
98         // If this is being passed as a byval argument, the caller is making a
99         // copy, so it is only a read of the alloca.
100         if (IsArgOperand && Call->isByValArgument(DataOpNo))
101           continue;
102       }
103 
104       // Lifetime intrinsics can be handled by the caller.
105       if (I->isLifetimeStartOrEnd()) {
106         assert(I->use_empty() && "Lifetime markers have no result to use!");
107         ToDelete.push_back(I);
108         continue;
109       }
110 
111       // If this is isn't our memcpy/memmove, reject it as something we can't
112       // handle.
113       MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
114       if (!MI)
115         return false;
116 
117       // If the transfer is using the alloca as a source of the transfer, then
118       // ignore it since it is a load (unless the transfer is volatile).
119       if (U.getOperandNo() == 1) {
120         if (MI->isVolatile()) return false;
121         continue;
122       }
123 
124       // If we already have seen a copy, reject the second one.
125       if (TheCopy) return false;
126 
127       // If the pointer has been offset from the start of the alloca, we can't
128       // safely handle this.
129       if (IsOffset) return false;
130 
131       // If the memintrinsic isn't using the alloca as the dest, reject it.
132       if (U.getOperandNo() != 0) return false;
133 
134       // If the source of the memcpy/move is not a constant global, reject it.
135       if (!AA->pointsToConstantMemory(MI->getSource()))
136         return false;
137 
138       // Otherwise, the transform is safe.  Remember the copy instruction.
139       TheCopy = MI;
140     }
141   }
142   return true;
143 }
144 
145 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
146 /// modified by a copy from a constant global.  If we can prove this, we can
147 /// replace any uses of the alloca with uses of the global directly.
148 static MemTransferInst *
149 isOnlyCopiedFromConstantMemory(AAResults *AA,
150                                AllocaInst *AI,
151                                SmallVectorImpl<Instruction *> &ToDelete) {
152   MemTransferInst *TheCopy = nullptr;
153   if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete))
154     return TheCopy;
155   return nullptr;
156 }
157 
158 /// Returns true if V is dereferenceable for size of alloca.
159 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
160                                            const DataLayout &DL) {
161   if (AI->isArrayAllocation())
162     return false;
163   uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
164   if (!AllocaSize)
165     return false;
166   return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()),
167                                             APInt(64, AllocaSize), DL);
168 }
169 
170 static Instruction *simplifyAllocaArraySize(InstCombinerImpl &IC,
171                                             AllocaInst &AI) {
172   // Check for array size of 1 (scalar allocation).
173   if (!AI.isArrayAllocation()) {
174     // i32 1 is the canonical array size for scalar allocations.
175     if (AI.getArraySize()->getType()->isIntegerTy(32))
176       return nullptr;
177 
178     // Canonicalize it.
179     return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1));
180   }
181 
182   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
183   if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
184     if (C->getValue().getActiveBits() <= 64) {
185       Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
186       AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName());
187       New->setAlignment(AI.getAlign());
188 
189       // Scan to the end of the allocation instructions, to skip over a block of
190       // allocas if possible...also skip interleaved debug info
191       //
192       BasicBlock::iterator It(New);
193       while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
194         ++It;
195 
196       // Now that I is pointing to the first non-allocation-inst in the block,
197       // insert our getelementptr instruction...
198       //
199       Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
200       Value *NullIdx = Constant::getNullValue(IdxTy);
201       Value *Idx[2] = {NullIdx, NullIdx};
202       Instruction *NewI = GetElementPtrInst::CreateInBounds(
203           NewTy, New, Idx, New->getName() + ".sub");
204       IC.InsertNewInstBefore(NewI, *It);
205 
206       // Gracefully handle allocas in other address spaces.
207       if (AI.getType()->getPointerAddressSpace() !=
208           NewI->getType()->getPointerAddressSpace()) {
209         NewI =
210             CastInst::CreatePointerBitCastOrAddrSpaceCast(NewI, AI.getType());
211         IC.InsertNewInstBefore(NewI, *It);
212       }
213 
214       // Now make everything use the getelementptr instead of the original
215       // allocation.
216       return IC.replaceInstUsesWith(AI, NewI);
217     }
218   }
219 
220   if (isa<UndefValue>(AI.getArraySize()))
221     return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
222 
223   // Ensure that the alloca array size argument has type intptr_t, so that
224   // any casting is exposed early.
225   Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
226   if (AI.getArraySize()->getType() != IntPtrTy) {
227     Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false);
228     return IC.replaceOperand(AI, 0, V);
229   }
230 
231   return nullptr;
232 }
233 
234 namespace {
235 // If I and V are pointers in different address space, it is not allowed to
236 // use replaceAllUsesWith since I and V have different types. A
237 // non-target-specific transformation should not use addrspacecast on V since
238 // the two address space may be disjoint depending on target.
239 //
240 // This class chases down uses of the old pointer until reaching the load
241 // instructions, then replaces the old pointer in the load instructions with
242 // the new pointer. If during the chasing it sees bitcast or GEP, it will
243 // create new bitcast or GEP with the new pointer and use them in the load
244 // instruction.
245 class PointerReplacer {
246 public:
247   PointerReplacer(InstCombinerImpl &IC) : IC(IC) {}
248 
249   bool collectUsers(Instruction &I);
250   void replacePointer(Instruction &I, Value *V);
251 
252 private:
253   void replace(Instruction *I);
254   Value *getReplacement(Value *I);
255 
256   SmallSetVector<Instruction *, 4> Worklist;
257   MapVector<Value *, Value *> WorkMap;
258   InstCombinerImpl &IC;
259 };
260 } // end anonymous namespace
261 
262 bool PointerReplacer::collectUsers(Instruction &I) {
263   for (auto U : I.users()) {
264     auto *Inst = cast<Instruction>(&*U);
265     if (auto *Load = dyn_cast<LoadInst>(Inst)) {
266       if (Load->isVolatile())
267         return false;
268       Worklist.insert(Load);
269     } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) {
270       Worklist.insert(Inst);
271       if (!collectUsers(*Inst))
272         return false;
273     } else if (auto *MI = dyn_cast<MemTransferInst>(Inst)) {
274       if (MI->isVolatile())
275         return false;
276       Worklist.insert(Inst);
277     } else if (Inst->isLifetimeStartOrEnd()) {
278       continue;
279     } else {
280       LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U << '\n');
281       return false;
282     }
283   }
284 
285   return true;
286 }
287 
288 Value *PointerReplacer::getReplacement(Value *V) { return WorkMap.lookup(V); }
289 
290 void PointerReplacer::replace(Instruction *I) {
291   if (getReplacement(I))
292     return;
293 
294   if (auto *LT = dyn_cast<LoadInst>(I)) {
295     auto *V = getReplacement(LT->getPointerOperand());
296     assert(V && "Operand not replaced");
297     auto *NewI = new LoadInst(LT->getType(), V, "", LT->isVolatile(),
298                               LT->getAlign(), LT->getOrdering(),
299                               LT->getSyncScopeID());
300     NewI->takeName(LT);
301     copyMetadataForLoad(*NewI, *LT);
302 
303     IC.InsertNewInstWith(NewI, *LT);
304     IC.replaceInstUsesWith(*LT, NewI);
305     WorkMap[LT] = NewI;
306   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
307     auto *V = getReplacement(GEP->getPointerOperand());
308     assert(V && "Operand not replaced");
309     SmallVector<Value *, 8> Indices;
310     Indices.append(GEP->idx_begin(), GEP->idx_end());
311     auto *NewI = GetElementPtrInst::Create(
312         V->getType()->getPointerElementType(), V, Indices);
313     IC.InsertNewInstWith(NewI, *GEP);
314     NewI->takeName(GEP);
315     WorkMap[GEP] = NewI;
316   } else if (auto *BC = dyn_cast<BitCastInst>(I)) {
317     auto *V = getReplacement(BC->getOperand(0));
318     assert(V && "Operand not replaced");
319     auto *NewT = PointerType::get(BC->getType()->getPointerElementType(),
320                                   V->getType()->getPointerAddressSpace());
321     auto *NewI = new BitCastInst(V, NewT);
322     IC.InsertNewInstWith(NewI, *BC);
323     NewI->takeName(BC);
324     WorkMap[BC] = NewI;
325   } else if (auto *MemCpy = dyn_cast<MemTransferInst>(I)) {
326     auto *SrcV = getReplacement(MemCpy->getRawSource());
327     // The pointer may appear in the destination of a copy, but we don't want to
328     // replace it.
329     if (!SrcV) {
330       assert(getReplacement(MemCpy->getRawDest()) &&
331              "destination not in replace list");
332       return;
333     }
334 
335     IC.Builder.SetInsertPoint(MemCpy);
336     auto *NewI = IC.Builder.CreateMemTransferInst(
337         MemCpy->getIntrinsicID(), MemCpy->getRawDest(), MemCpy->getDestAlign(),
338         SrcV, MemCpy->getSourceAlign(), MemCpy->getLength(),
339         MemCpy->isVolatile());
340     AAMDNodes AAMD;
341     MemCpy->getAAMetadata(AAMD);
342     if (AAMD)
343       NewI->setAAMetadata(AAMD);
344 
345     IC.eraseInstFromFunction(*MemCpy);
346     WorkMap[MemCpy] = NewI;
347   } else {
348     llvm_unreachable("should never reach here");
349   }
350 }
351 
352 void PointerReplacer::replacePointer(Instruction &I, Value *V) {
353 #ifndef NDEBUG
354   auto *PT = cast<PointerType>(I.getType());
355   auto *NT = cast<PointerType>(V->getType());
356   assert(PT != NT && PT->getElementType() == NT->getElementType() &&
357          "Invalid usage");
358 #endif
359   WorkMap[&I] = V;
360 
361   for (Instruction *Workitem : Worklist)
362     replace(Workitem);
363 }
364 
365 Instruction *InstCombinerImpl::visitAllocaInst(AllocaInst &AI) {
366   if (auto *I = simplifyAllocaArraySize(*this, AI))
367     return I;
368 
369   if (AI.getAllocatedType()->isSized()) {
370     // Move all alloca's of zero byte objects to the entry block and merge them
371     // together.  Note that we only do this for alloca's, because malloc should
372     // allocate and return a unique pointer, even for a zero byte allocation.
373     if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinSize() == 0) {
374       // For a zero sized alloca there is no point in doing an array allocation.
375       // This is helpful if the array size is a complicated expression not used
376       // elsewhere.
377       if (AI.isArrayAllocation())
378         return replaceOperand(AI, 0,
379             ConstantInt::get(AI.getArraySize()->getType(), 1));
380 
381       // Get the first instruction in the entry block.
382       BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
383       Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
384       if (FirstInst != &AI) {
385         // If the entry block doesn't start with a zero-size alloca then move
386         // this one to the start of the entry block.  There is no problem with
387         // dominance as the array size was forced to a constant earlier already.
388         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
389         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
390             DL.getTypeAllocSize(EntryAI->getAllocatedType())
391                     .getKnownMinSize() != 0) {
392           AI.moveBefore(FirstInst);
393           return &AI;
394         }
395 
396         // Replace this zero-sized alloca with the one at the start of the entry
397         // block after ensuring that the address will be aligned enough for both
398         // types.
399         const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign());
400         EntryAI->setAlignment(MaxAlign);
401         if (AI.getType() != EntryAI->getType())
402           return new BitCastInst(EntryAI, AI.getType());
403         return replaceInstUsesWith(AI, EntryAI);
404       }
405     }
406   }
407 
408   // Check to see if this allocation is only modified by a memcpy/memmove from
409   // a constant whose alignment is equal to or exceeds that of the allocation.
410   // If this is the case, we can change all users to use the constant global
411   // instead.  This is commonly produced by the CFE by constructs like "void
412   // foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' is only subsequently
413   // read.
414   SmallVector<Instruction *, 4> ToDelete;
415   if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) {
416     Value *TheSrc = Copy->getSource();
417     Align AllocaAlign = AI.getAlign();
418     Align SourceAlign = getOrEnforceKnownAlignment(
419       TheSrc, AllocaAlign, DL, &AI, &AC, &DT);
420     if (AllocaAlign <= SourceAlign &&
421         isDereferenceableForAllocaSize(TheSrc, &AI, DL) &&
422         !isa<Instruction>(TheSrc)) {
423       // FIXME: Can we sink instructions without violating dominance when TheSrc
424       // is an instruction instead of a constant or argument?
425       LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
426       LLVM_DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
427       unsigned SrcAddrSpace = TheSrc->getType()->getPointerAddressSpace();
428       auto *DestTy = PointerType::get(AI.getAllocatedType(), SrcAddrSpace);
429       if (AI.getType()->getAddressSpace() == SrcAddrSpace) {
430         for (Instruction *Delete : ToDelete)
431           eraseInstFromFunction(*Delete);
432 
433         Value *Cast = Builder.CreateBitCast(TheSrc, DestTy);
434         Instruction *NewI = replaceInstUsesWith(AI, Cast);
435         eraseInstFromFunction(*Copy);
436         ++NumGlobalCopies;
437         return NewI;
438       }
439 
440       PointerReplacer PtrReplacer(*this);
441       if (PtrReplacer.collectUsers(AI)) {
442         for (Instruction *Delete : ToDelete)
443           eraseInstFromFunction(*Delete);
444 
445         Value *Cast = Builder.CreateBitCast(TheSrc, DestTy);
446         PtrReplacer.replacePointer(AI, Cast);
447         ++NumGlobalCopies;
448       }
449     }
450   }
451 
452   // At last, use the generic allocation site handler to aggressively remove
453   // unused allocas.
454   return visitAllocSite(AI);
455 }
456 
457 // Are we allowed to form a atomic load or store of this type?
458 static bool isSupportedAtomicType(Type *Ty) {
459   return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
460 }
461 
462 /// Helper to combine a load to a new type.
463 ///
464 /// This just does the work of combining a load to a new type. It handles
465 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
466 /// loaded *value* type. This will convert it to a pointer, cast the operand to
467 /// that pointer type, load it, etc.
468 ///
469 /// Note that this will create all of the instructions with whatever insert
470 /// point the \c InstCombinerImpl currently is using.
471 LoadInst *InstCombinerImpl::combineLoadToNewType(LoadInst &LI, Type *NewTy,
472                                                  const Twine &Suffix) {
473   assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
474          "can't fold an atomic load to requested type");
475 
476   Value *Ptr = LI.getPointerOperand();
477   unsigned AS = LI.getPointerAddressSpace();
478   Type *NewPtrTy = NewTy->getPointerTo(AS);
479   Value *NewPtr = nullptr;
480   if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) &&
481         NewPtr->getType() == NewPtrTy))
482     NewPtr = Builder.CreateBitCast(Ptr, NewPtrTy);
483 
484   LoadInst *NewLoad = Builder.CreateAlignedLoad(
485       NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix);
486   NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
487   copyMetadataForLoad(*NewLoad, LI);
488   return NewLoad;
489 }
490 
491 /// Combine a store to a new type.
492 ///
493 /// Returns the newly created store instruction.
494 static StoreInst *combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI,
495                                          Value *V) {
496   assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
497          "can't fold an atomic store of requested type");
498 
499   Value *Ptr = SI.getPointerOperand();
500   unsigned AS = SI.getPointerAddressSpace();
501   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
502   SI.getAllMetadata(MD);
503 
504   StoreInst *NewStore = IC.Builder.CreateAlignedStore(
505       V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
506       SI.getAlign(), SI.isVolatile());
507   NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
508   for (const auto &MDPair : MD) {
509     unsigned ID = MDPair.first;
510     MDNode *N = MDPair.second;
511     // Note, essentially every kind of metadata should be preserved here! This
512     // routine is supposed to clone a store instruction changing *only its
513     // type*. The only metadata it makes sense to drop is metadata which is
514     // invalidated when the pointer type changes. This should essentially
515     // never be the case in LLVM, but we explicitly switch over only known
516     // metadata to be conservatively correct. If you are adding metadata to
517     // LLVM which pertains to stores, you almost certainly want to add it
518     // here.
519     switch (ID) {
520     case LLVMContext::MD_dbg:
521     case LLVMContext::MD_tbaa:
522     case LLVMContext::MD_prof:
523     case LLVMContext::MD_fpmath:
524     case LLVMContext::MD_tbaa_struct:
525     case LLVMContext::MD_alias_scope:
526     case LLVMContext::MD_noalias:
527     case LLVMContext::MD_nontemporal:
528     case LLVMContext::MD_mem_parallel_loop_access:
529     case LLVMContext::MD_access_group:
530       // All of these directly apply.
531       NewStore->setMetadata(ID, N);
532       break;
533     case LLVMContext::MD_invariant_load:
534     case LLVMContext::MD_nonnull:
535     case LLVMContext::MD_noundef:
536     case LLVMContext::MD_range:
537     case LLVMContext::MD_align:
538     case LLVMContext::MD_dereferenceable:
539     case LLVMContext::MD_dereferenceable_or_null:
540       // These don't apply for stores.
541       break;
542     }
543   }
544 
545   return NewStore;
546 }
547 
548 /// Returns true if instruction represent minmax pattern like:
549 ///   select ((cmp load V1, load V2), V1, V2).
550 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) {
551   assert(V->getType()->isPointerTy() && "Expected pointer type.");
552   // Ignore possible ty* to ixx* bitcast.
553   V = InstCombiner::peekThroughBitcast(V);
554   // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax
555   // pattern.
556   CmpInst::Predicate Pred;
557   Instruction *L1;
558   Instruction *L2;
559   Value *LHS;
560   Value *RHS;
561   if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)),
562                          m_Value(LHS), m_Value(RHS))))
563     return false;
564   LoadTy = L1->getType();
565   return (match(L1, m_Load(m_Specific(LHS))) &&
566           match(L2, m_Load(m_Specific(RHS)))) ||
567          (match(L1, m_Load(m_Specific(RHS))) &&
568           match(L2, m_Load(m_Specific(LHS))));
569 }
570 
571 /// Combine loads to match the type of their uses' value after looking
572 /// through intervening bitcasts.
573 ///
574 /// The core idea here is that if the result of a load is used in an operation,
575 /// we should load the type most conducive to that operation. For example, when
576 /// loading an integer and converting that immediately to a pointer, we should
577 /// instead directly load a pointer.
578 ///
579 /// However, this routine must never change the width of a load or the number of
580 /// loads as that would introduce a semantic change. This combine is expected to
581 /// be a semantic no-op which just allows loads to more closely model the types
582 /// of their consuming operations.
583 ///
584 /// Currently, we also refuse to change the precise type used for an atomic load
585 /// or a volatile load. This is debatable, and might be reasonable to change
586 /// later. However, it is risky in case some backend or other part of LLVM is
587 /// relying on the exact type loaded to select appropriate atomic operations.
588 static Instruction *combineLoadToOperationType(InstCombinerImpl &IC,
589                                                LoadInst &LI) {
590   // FIXME: We could probably with some care handle both volatile and ordered
591   // atomic loads here but it isn't clear that this is important.
592   if (!LI.isUnordered())
593     return nullptr;
594 
595   if (LI.use_empty())
596     return nullptr;
597 
598   // swifterror values can't be bitcasted.
599   if (LI.getPointerOperand()->isSwiftError())
600     return nullptr;
601 
602   const DataLayout &DL = IC.getDataLayout();
603 
604   // Fold away bit casts of the loaded value by loading the desired type.
605   // Note that we should not do this for pointer<->integer casts,
606   // because that would result in type punning.
607   if (LI.hasOneUse()) {
608     // Don't transform when the type is x86_amx, it makes the pass that lower
609     // x86_amx type happy.
610     if (auto *BC = dyn_cast<BitCastInst>(LI.user_back())) {
611       assert(!LI.getType()->isX86_AMXTy() &&
612              "load from x86_amx* should not happen!");
613       if (BC->getType()->isX86_AMXTy())
614         return nullptr;
615     }
616 
617     if (auto* CI = dyn_cast<CastInst>(LI.user_back()))
618       if (CI->isNoopCast(DL) && LI.getType()->isPtrOrPtrVectorTy() ==
619                                     CI->getDestTy()->isPtrOrPtrVectorTy())
620         if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) {
621           LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy());
622           CI->replaceAllUsesWith(NewLoad);
623           IC.eraseInstFromFunction(*CI);
624           return &LI;
625         }
626   }
627 
628   // FIXME: We should also canonicalize loads of vectors when their elements are
629   // cast to other types.
630   return nullptr;
631 }
632 
633 static Instruction *unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI) {
634   // FIXME: We could probably with some care handle both volatile and atomic
635   // stores here but it isn't clear that this is important.
636   if (!LI.isSimple())
637     return nullptr;
638 
639   Type *T = LI.getType();
640   if (!T->isAggregateType())
641     return nullptr;
642 
643   StringRef Name = LI.getName();
644   assert(LI.getAlignment() && "Alignment must be set at this point");
645 
646   if (auto *ST = dyn_cast<StructType>(T)) {
647     // If the struct only have one element, we unpack.
648     auto NumElements = ST->getNumElements();
649     if (NumElements == 1) {
650       LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U),
651                                                   ".unpack");
652       AAMDNodes AAMD;
653       LI.getAAMetadata(AAMD);
654       NewLoad->setAAMetadata(AAMD);
655       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
656         UndefValue::get(T), NewLoad, 0, Name));
657     }
658 
659     // We don't want to break loads with padding here as we'd loose
660     // the knowledge that padding exists for the rest of the pipeline.
661     const DataLayout &DL = IC.getDataLayout();
662     auto *SL = DL.getStructLayout(ST);
663     if (SL->hasPadding())
664       return nullptr;
665 
666     const auto Align = LI.getAlign();
667     auto *Addr = LI.getPointerOperand();
668     auto *IdxType = Type::getInt32Ty(T->getContext());
669     auto *Zero = ConstantInt::get(IdxType, 0);
670 
671     Value *V = UndefValue::get(T);
672     for (unsigned i = 0; i < NumElements; i++) {
673       Value *Indices[2] = {
674         Zero,
675         ConstantInt::get(IdxType, i),
676       };
677       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
678                                                Name + ".elt");
679       auto *L = IC.Builder.CreateAlignedLoad(
680           ST->getElementType(i), Ptr,
681           commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack");
682       // Propagate AA metadata. It'll still be valid on the narrowed load.
683       AAMDNodes AAMD;
684       LI.getAAMetadata(AAMD);
685       L->setAAMetadata(AAMD);
686       V = IC.Builder.CreateInsertValue(V, L, i);
687     }
688 
689     V->setName(Name);
690     return IC.replaceInstUsesWith(LI, V);
691   }
692 
693   if (auto *AT = dyn_cast<ArrayType>(T)) {
694     auto *ET = AT->getElementType();
695     auto NumElements = AT->getNumElements();
696     if (NumElements == 1) {
697       LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack");
698       AAMDNodes AAMD;
699       LI.getAAMetadata(AAMD);
700       NewLoad->setAAMetadata(AAMD);
701       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
702         UndefValue::get(T), NewLoad, 0, Name));
703     }
704 
705     // Bail out if the array is too large. Ideally we would like to optimize
706     // arrays of arbitrary size but this has a terrible impact on compile time.
707     // The threshold here is chosen arbitrarily, maybe needs a little bit of
708     // tuning.
709     if (NumElements > IC.MaxArraySizeForCombine)
710       return nullptr;
711 
712     const DataLayout &DL = IC.getDataLayout();
713     auto EltSize = DL.getTypeAllocSize(ET);
714     const auto Align = LI.getAlign();
715 
716     auto *Addr = LI.getPointerOperand();
717     auto *IdxType = Type::getInt64Ty(T->getContext());
718     auto *Zero = ConstantInt::get(IdxType, 0);
719 
720     Value *V = UndefValue::get(T);
721     uint64_t Offset = 0;
722     for (uint64_t i = 0; i < NumElements; i++) {
723       Value *Indices[2] = {
724         Zero,
725         ConstantInt::get(IdxType, i),
726       };
727       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
728                                                Name + ".elt");
729       auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr,
730                                              commonAlignment(Align, Offset),
731                                              Name + ".unpack");
732       AAMDNodes AAMD;
733       LI.getAAMetadata(AAMD);
734       L->setAAMetadata(AAMD);
735       V = IC.Builder.CreateInsertValue(V, L, i);
736       Offset += EltSize;
737     }
738 
739     V->setName(Name);
740     return IC.replaceInstUsesWith(LI, V);
741   }
742 
743   return nullptr;
744 }
745 
746 // If we can determine that all possible objects pointed to by the provided
747 // pointer value are, not only dereferenceable, but also definitively less than
748 // or equal to the provided maximum size, then return true. Otherwise, return
749 // false (constant global values and allocas fall into this category).
750 //
751 // FIXME: This should probably live in ValueTracking (or similar).
752 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
753                                      const DataLayout &DL) {
754   SmallPtrSet<Value *, 4> Visited;
755   SmallVector<Value *, 4> Worklist(1, V);
756 
757   do {
758     Value *P = Worklist.pop_back_val();
759     P = P->stripPointerCasts();
760 
761     if (!Visited.insert(P).second)
762       continue;
763 
764     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
765       Worklist.push_back(SI->getTrueValue());
766       Worklist.push_back(SI->getFalseValue());
767       continue;
768     }
769 
770     if (PHINode *PN = dyn_cast<PHINode>(P)) {
771       append_range(Worklist, PN->incoming_values());
772       continue;
773     }
774 
775     if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
776       if (GA->isInterposable())
777         return false;
778       Worklist.push_back(GA->getAliasee());
779       continue;
780     }
781 
782     // If we know how big this object is, and it is less than MaxSize, continue
783     // searching. Otherwise, return false.
784     if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
785       if (!AI->getAllocatedType()->isSized())
786         return false;
787 
788       ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
789       if (!CS)
790         return false;
791 
792       uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
793       // Make sure that, even if the multiplication below would wrap as an
794       // uint64_t, we still do the right thing.
795       if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
796         return false;
797       continue;
798     }
799 
800     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
801       if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
802         return false;
803 
804       uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
805       if (InitSize > MaxSize)
806         return false;
807       continue;
808     }
809 
810     return false;
811   } while (!Worklist.empty());
812 
813   return true;
814 }
815 
816 // If we're indexing into an object of a known size, and the outer index is
817 // not a constant, but having any value but zero would lead to undefined
818 // behavior, replace it with zero.
819 //
820 // For example, if we have:
821 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
822 // ...
823 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
824 // ... = load i32* %arrayidx, align 4
825 // Then we know that we can replace %x in the GEP with i64 0.
826 //
827 // FIXME: We could fold any GEP index to zero that would cause UB if it were
828 // not zero. Currently, we only handle the first such index. Also, we could
829 // also search through non-zero constant indices if we kept track of the
830 // offsets those indices implied.
831 static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC,
832                                      GetElementPtrInst *GEPI, Instruction *MemI,
833                                      unsigned &Idx) {
834   if (GEPI->getNumOperands() < 2)
835     return false;
836 
837   // Find the first non-zero index of a GEP. If all indices are zero, return
838   // one past the last index.
839   auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
840     unsigned I = 1;
841     for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
842       Value *V = GEPI->getOperand(I);
843       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
844         if (CI->isZero())
845           continue;
846 
847       break;
848     }
849 
850     return I;
851   };
852 
853   // Skip through initial 'zero' indices, and find the corresponding pointer
854   // type. See if the next index is not a constant.
855   Idx = FirstNZIdx(GEPI);
856   if (Idx == GEPI->getNumOperands())
857     return false;
858   if (isa<Constant>(GEPI->getOperand(Idx)))
859     return false;
860 
861   SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
862   Type *SourceElementType = GEPI->getSourceElementType();
863   // Size information about scalable vectors is not available, so we cannot
864   // deduce whether indexing at n is undefined behaviour or not. Bail out.
865   if (isa<ScalableVectorType>(SourceElementType))
866     return false;
867 
868   Type *AllocTy = GetElementPtrInst::getIndexedType(SourceElementType, Ops);
869   if (!AllocTy || !AllocTy->isSized())
870     return false;
871   const DataLayout &DL = IC.getDataLayout();
872   uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy).getFixedSize();
873 
874   // If there are more indices after the one we might replace with a zero, make
875   // sure they're all non-negative. If any of them are negative, the overall
876   // address being computed might be before the base address determined by the
877   // first non-zero index.
878   auto IsAllNonNegative = [&]() {
879     for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
880       KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
881       if (Known.isNonNegative())
882         continue;
883       return false;
884     }
885 
886     return true;
887   };
888 
889   // FIXME: If the GEP is not inbounds, and there are extra indices after the
890   // one we'll replace, those could cause the address computation to wrap
891   // (rendering the IsAllNonNegative() check below insufficient). We can do
892   // better, ignoring zero indices (and other indices we can prove small
893   // enough not to wrap).
894   if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
895     return false;
896 
897   // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
898   // also known to be dereferenceable.
899   return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
900          IsAllNonNegative();
901 }
902 
903 // If we're indexing into an object with a variable index for the memory
904 // access, but the object has only one element, we can assume that the index
905 // will always be zero. If we replace the GEP, return it.
906 template <typename T>
907 static Instruction *replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr,
908                                           T &MemI) {
909   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
910     unsigned Idx;
911     if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
912       Instruction *NewGEPI = GEPI->clone();
913       NewGEPI->setOperand(Idx,
914         ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
915       NewGEPI->insertBefore(GEPI);
916       MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
917       return NewGEPI;
918     }
919   }
920 
921   return nullptr;
922 }
923 
924 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
925   if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
926     return false;
927 
928   auto *Ptr = SI.getPointerOperand();
929   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
930     Ptr = GEPI->getOperand(0);
931   return (isa<ConstantPointerNull>(Ptr) &&
932           !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
933 }
934 
935 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
936   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
937     const Value *GEPI0 = GEPI->getOperand(0);
938     if (isa<ConstantPointerNull>(GEPI0) &&
939         !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
940       return true;
941   }
942   if (isa<UndefValue>(Op) ||
943       (isa<ConstantPointerNull>(Op) &&
944        !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
945     return true;
946   return false;
947 }
948 
949 Instruction *InstCombinerImpl::visitLoadInst(LoadInst &LI) {
950   Value *Op = LI.getOperand(0);
951 
952   // Try to canonicalize the loaded type.
953   if (Instruction *Res = combineLoadToOperationType(*this, LI))
954     return Res;
955 
956   // Attempt to improve the alignment.
957   Align KnownAlign = getOrEnforceKnownAlignment(
958       Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT);
959   if (KnownAlign > LI.getAlign())
960     LI.setAlignment(KnownAlign);
961 
962   // Replace GEP indices if possible.
963   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
964       Worklist.push(NewGEPI);
965       return &LI;
966   }
967 
968   if (Instruction *Res = unpackLoadToAggregate(*this, LI))
969     return Res;
970 
971   // Do really simple store-to-load forwarding and load CSE, to catch cases
972   // where there are several consecutive memory accesses to the same location,
973   // separated by a few arithmetic operations.
974   bool IsLoadCSE = false;
975   if (Value *AvailableVal = FindAvailableLoadedValue(&LI, *AA, &IsLoadCSE)) {
976     if (IsLoadCSE)
977       combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false);
978 
979     return replaceInstUsesWith(
980         LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
981                                            LI.getName() + ".cast"));
982   }
983 
984   // None of the following transforms are legal for volatile/ordered atomic
985   // loads.  Most of them do apply for unordered atomics.
986   if (!LI.isUnordered()) return nullptr;
987 
988   // load(gep null, ...) -> unreachable
989   // load null/undef -> unreachable
990   // TODO: Consider a target hook for valid address spaces for this xforms.
991   if (canSimplifyNullLoadOrGEP(LI, Op)) {
992     // Insert a new store to null instruction before the load to indicate
993     // that this code is not reachable.  We do this instead of inserting
994     // an unreachable instruction directly because we cannot modify the
995     // CFG.
996     StoreInst *SI = new StoreInst(PoisonValue::get(LI.getType()),
997                                   Constant::getNullValue(Op->getType()), &LI);
998     SI->setDebugLoc(LI.getDebugLoc());
999     return replaceInstUsesWith(LI, PoisonValue::get(LI.getType()));
1000   }
1001 
1002   if (Op->hasOneUse()) {
1003     // Change select and PHI nodes to select values instead of addresses: this
1004     // helps alias analysis out a lot, allows many others simplifications, and
1005     // exposes redundancy in the code.
1006     //
1007     // Note that we cannot do the transformation unless we know that the
1008     // introduced loads cannot trap!  Something like this is valid as long as
1009     // the condition is always false: load (select bool %C, int* null, int* %G),
1010     // but it would not be valid if we transformed it to load from null
1011     // unconditionally.
1012     //
1013     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
1014       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
1015       Align Alignment = LI.getAlign();
1016       if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(),
1017                                       Alignment, DL, SI) &&
1018           isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(),
1019                                       Alignment, DL, SI)) {
1020         LoadInst *V1 =
1021             Builder.CreateLoad(LI.getType(), SI->getOperand(1),
1022                                SI->getOperand(1)->getName() + ".val");
1023         LoadInst *V2 =
1024             Builder.CreateLoad(LI.getType(), SI->getOperand(2),
1025                                SI->getOperand(2)->getName() + ".val");
1026         assert(LI.isUnordered() && "implied by above");
1027         V1->setAlignment(Alignment);
1028         V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1029         V2->setAlignment(Alignment);
1030         V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1031         return SelectInst::Create(SI->getCondition(), V1, V2);
1032       }
1033 
1034       // load (select (cond, null, P)) -> load P
1035       if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
1036           !NullPointerIsDefined(SI->getFunction(),
1037                                 LI.getPointerAddressSpace()))
1038         return replaceOperand(LI, 0, SI->getOperand(2));
1039 
1040       // load (select (cond, P, null)) -> load P
1041       if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
1042           !NullPointerIsDefined(SI->getFunction(),
1043                                 LI.getPointerAddressSpace()))
1044         return replaceOperand(LI, 0, SI->getOperand(1));
1045     }
1046   }
1047   return nullptr;
1048 }
1049 
1050 /// Look for extractelement/insertvalue sequence that acts like a bitcast.
1051 ///
1052 /// \returns underlying value that was "cast", or nullptr otherwise.
1053 ///
1054 /// For example, if we have:
1055 ///
1056 ///     %E0 = extractelement <2 x double> %U, i32 0
1057 ///     %V0 = insertvalue [2 x double] undef, double %E0, 0
1058 ///     %E1 = extractelement <2 x double> %U, i32 1
1059 ///     %V1 = insertvalue [2 x double] %V0, double %E1, 1
1060 ///
1061 /// and the layout of a <2 x double> is isomorphic to a [2 x double],
1062 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
1063 /// Note that %U may contain non-undef values where %V1 has undef.
1064 static Value *likeBitCastFromVector(InstCombinerImpl &IC, Value *V) {
1065   Value *U = nullptr;
1066   while (auto *IV = dyn_cast<InsertValueInst>(V)) {
1067     auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
1068     if (!E)
1069       return nullptr;
1070     auto *W = E->getVectorOperand();
1071     if (!U)
1072       U = W;
1073     else if (U != W)
1074       return nullptr;
1075     auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
1076     if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
1077       return nullptr;
1078     V = IV->getAggregateOperand();
1079   }
1080   if (!match(V, m_Undef()) || !U)
1081     return nullptr;
1082 
1083   auto *UT = cast<VectorType>(U->getType());
1084   auto *VT = V->getType();
1085   // Check that types UT and VT are bitwise isomorphic.
1086   const auto &DL = IC.getDataLayout();
1087   if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
1088     return nullptr;
1089   }
1090   if (auto *AT = dyn_cast<ArrayType>(VT)) {
1091     if (AT->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
1092       return nullptr;
1093   } else {
1094     auto *ST = cast<StructType>(VT);
1095     if (ST->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
1096       return nullptr;
1097     for (const auto *EltT : ST->elements()) {
1098       if (EltT != UT->getElementType())
1099         return nullptr;
1100     }
1101   }
1102   return U;
1103 }
1104 
1105 /// Combine stores to match the type of value being stored.
1106 ///
1107 /// The core idea here is that the memory does not have any intrinsic type and
1108 /// where we can we should match the type of a store to the type of value being
1109 /// stored.
1110 ///
1111 /// However, this routine must never change the width of a store or the number of
1112 /// stores as that would introduce a semantic change. This combine is expected to
1113 /// be a semantic no-op which just allows stores to more closely model the types
1114 /// of their incoming values.
1115 ///
1116 /// Currently, we also refuse to change the precise type used for an atomic or
1117 /// volatile store. This is debatable, and might be reasonable to change later.
1118 /// However, it is risky in case some backend or other part of LLVM is relying
1119 /// on the exact type stored to select appropriate atomic operations.
1120 ///
1121 /// \returns true if the store was successfully combined away. This indicates
1122 /// the caller must erase the store instruction. We have to let the caller erase
1123 /// the store instruction as otherwise there is no way to signal whether it was
1124 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
1125 static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI) {
1126   // FIXME: We could probably with some care handle both volatile and ordered
1127   // atomic stores here but it isn't clear that this is important.
1128   if (!SI.isUnordered())
1129     return false;
1130 
1131   // swifterror values can't be bitcasted.
1132   if (SI.getPointerOperand()->isSwiftError())
1133     return false;
1134 
1135   Value *V = SI.getValueOperand();
1136 
1137   // Fold away bit casts of the stored value by storing the original type.
1138   if (auto *BC = dyn_cast<BitCastInst>(V)) {
1139     assert(!BC->getType()->isX86_AMXTy() &&
1140            "store to x86_amx* should not happen!");
1141     V = BC->getOperand(0);
1142     // Don't transform when the type is x86_amx, it makes the pass that lower
1143     // x86_amx type happy.
1144     if (V->getType()->isX86_AMXTy())
1145       return false;
1146     if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
1147       combineStoreToNewValue(IC, SI, V);
1148       return true;
1149     }
1150   }
1151 
1152   if (Value *U = likeBitCastFromVector(IC, V))
1153     if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
1154       combineStoreToNewValue(IC, SI, U);
1155       return true;
1156     }
1157 
1158   // FIXME: We should also canonicalize stores of vectors when their elements
1159   // are cast to other types.
1160   return false;
1161 }
1162 
1163 static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI) {
1164   // FIXME: We could probably with some care handle both volatile and atomic
1165   // stores here but it isn't clear that this is important.
1166   if (!SI.isSimple())
1167     return false;
1168 
1169   Value *V = SI.getValueOperand();
1170   Type *T = V->getType();
1171 
1172   if (!T->isAggregateType())
1173     return false;
1174 
1175   if (auto *ST = dyn_cast<StructType>(T)) {
1176     // If the struct only have one element, we unpack.
1177     unsigned Count = ST->getNumElements();
1178     if (Count == 1) {
1179       V = IC.Builder.CreateExtractValue(V, 0);
1180       combineStoreToNewValue(IC, SI, V);
1181       return true;
1182     }
1183 
1184     // We don't want to break loads with padding here as we'd loose
1185     // the knowledge that padding exists for the rest of the pipeline.
1186     const DataLayout &DL = IC.getDataLayout();
1187     auto *SL = DL.getStructLayout(ST);
1188     if (SL->hasPadding())
1189       return false;
1190 
1191     const auto Align = SI.getAlign();
1192 
1193     SmallString<16> EltName = V->getName();
1194     EltName += ".elt";
1195     auto *Addr = SI.getPointerOperand();
1196     SmallString<16> AddrName = Addr->getName();
1197     AddrName += ".repack";
1198 
1199     auto *IdxType = Type::getInt32Ty(ST->getContext());
1200     auto *Zero = ConstantInt::get(IdxType, 0);
1201     for (unsigned i = 0; i < Count; i++) {
1202       Value *Indices[2] = {
1203         Zero,
1204         ConstantInt::get(IdxType, i),
1205       };
1206       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
1207                                                AddrName);
1208       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1209       auto EltAlign = commonAlignment(Align, SL->getElementOffset(i));
1210       llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1211       AAMDNodes AAMD;
1212       SI.getAAMetadata(AAMD);
1213       NS->setAAMetadata(AAMD);
1214     }
1215 
1216     return true;
1217   }
1218 
1219   if (auto *AT = dyn_cast<ArrayType>(T)) {
1220     // If the array only have one element, we unpack.
1221     auto NumElements = AT->getNumElements();
1222     if (NumElements == 1) {
1223       V = IC.Builder.CreateExtractValue(V, 0);
1224       combineStoreToNewValue(IC, SI, V);
1225       return true;
1226     }
1227 
1228     // Bail out if the array is too large. Ideally we would like to optimize
1229     // arrays of arbitrary size but this has a terrible impact on compile time.
1230     // The threshold here is chosen arbitrarily, maybe needs a little bit of
1231     // tuning.
1232     if (NumElements > IC.MaxArraySizeForCombine)
1233       return false;
1234 
1235     const DataLayout &DL = IC.getDataLayout();
1236     auto EltSize = DL.getTypeAllocSize(AT->getElementType());
1237     const auto Align = SI.getAlign();
1238 
1239     SmallString<16> EltName = V->getName();
1240     EltName += ".elt";
1241     auto *Addr = SI.getPointerOperand();
1242     SmallString<16> AddrName = Addr->getName();
1243     AddrName += ".repack";
1244 
1245     auto *IdxType = Type::getInt64Ty(T->getContext());
1246     auto *Zero = ConstantInt::get(IdxType, 0);
1247 
1248     uint64_t Offset = 0;
1249     for (uint64_t i = 0; i < NumElements; i++) {
1250       Value *Indices[2] = {
1251         Zero,
1252         ConstantInt::get(IdxType, i),
1253       };
1254       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
1255                                                AddrName);
1256       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1257       auto EltAlign = commonAlignment(Align, Offset);
1258       Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1259       AAMDNodes AAMD;
1260       SI.getAAMetadata(AAMD);
1261       NS->setAAMetadata(AAMD);
1262       Offset += EltSize;
1263     }
1264 
1265     return true;
1266   }
1267 
1268   return false;
1269 }
1270 
1271 /// equivalentAddressValues - Test if A and B will obviously have the same
1272 /// value. This includes recognizing that %t0 and %t1 will have the same
1273 /// value in code like this:
1274 ///   %t0 = getelementptr \@a, 0, 3
1275 ///   store i32 0, i32* %t0
1276 ///   %t1 = getelementptr \@a, 0, 3
1277 ///   %t2 = load i32* %t1
1278 ///
1279 static bool equivalentAddressValues(Value *A, Value *B) {
1280   // Test if the values are trivially equivalent.
1281   if (A == B) return true;
1282 
1283   // Test if the values come form identical arithmetic instructions.
1284   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1285   // its only used to compare two uses within the same basic block, which
1286   // means that they'll always either have the same value or one of them
1287   // will have an undefined value.
1288   if (isa<BinaryOperator>(A) ||
1289       isa<CastInst>(A) ||
1290       isa<PHINode>(A) ||
1291       isa<GetElementPtrInst>(A))
1292     if (Instruction *BI = dyn_cast<Instruction>(B))
1293       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1294         return true;
1295 
1296   // Otherwise they may not be equivalent.
1297   return false;
1298 }
1299 
1300 /// Converts store (bitcast (load (bitcast (select ...)))) to
1301 /// store (load (select ...)), where select is minmax:
1302 /// select ((cmp load V1, load V2), V1, V2).
1303 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombinerImpl &IC,
1304                                                 StoreInst &SI) {
1305   // bitcast?
1306   if (!match(SI.getPointerOperand(), m_BitCast(m_Value())))
1307     return false;
1308   // load? integer?
1309   Value *LoadAddr;
1310   if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr)))))
1311     return false;
1312   auto *LI = cast<LoadInst>(SI.getValueOperand());
1313   if (!LI->getType()->isIntegerTy())
1314     return false;
1315   Type *CmpLoadTy;
1316   if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy))
1317     return false;
1318 
1319   // Make sure the type would actually change.
1320   // This condition can be hit with chains of bitcasts.
1321   if (LI->getType() == CmpLoadTy)
1322     return false;
1323 
1324   // Make sure we're not changing the size of the load/store.
1325   const auto &DL = IC.getDataLayout();
1326   if (DL.getTypeStoreSizeInBits(LI->getType()) !=
1327       DL.getTypeStoreSizeInBits(CmpLoadTy))
1328     return false;
1329 
1330   if (!all_of(LI->users(), [LI, LoadAddr](User *U) {
1331         auto *SI = dyn_cast<StoreInst>(U);
1332         return SI && SI->getPointerOperand() != LI &&
1333                InstCombiner::peekThroughBitcast(SI->getPointerOperand()) !=
1334                    LoadAddr &&
1335                !SI->getPointerOperand()->isSwiftError();
1336       }))
1337     return false;
1338 
1339   IC.Builder.SetInsertPoint(LI);
1340   LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy);
1341   // Replace all the stores with stores of the newly loaded value.
1342   for (auto *UI : LI->users()) {
1343     auto *USI = cast<StoreInst>(UI);
1344     IC.Builder.SetInsertPoint(USI);
1345     combineStoreToNewValue(IC, *USI, NewLI);
1346   }
1347   IC.replaceInstUsesWith(*LI, PoisonValue::get(LI->getType()));
1348   IC.eraseInstFromFunction(*LI);
1349   return true;
1350 }
1351 
1352 Instruction *InstCombinerImpl::visitStoreInst(StoreInst &SI) {
1353   Value *Val = SI.getOperand(0);
1354   Value *Ptr = SI.getOperand(1);
1355 
1356   // Try to canonicalize the stored type.
1357   if (combineStoreToValueType(*this, SI))
1358     return eraseInstFromFunction(SI);
1359 
1360   // Attempt to improve the alignment.
1361   const Align KnownAlign = getOrEnforceKnownAlignment(
1362       Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT);
1363   if (KnownAlign > SI.getAlign())
1364     SI.setAlignment(KnownAlign);
1365 
1366   // Try to canonicalize the stored type.
1367   if (unpackStoreToAggregate(*this, SI))
1368     return eraseInstFromFunction(SI);
1369 
1370   if (removeBitcastsFromLoadStoreOnMinMax(*this, SI))
1371     return eraseInstFromFunction(SI);
1372 
1373   // Replace GEP indices if possible.
1374   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1375       Worklist.push(NewGEPI);
1376       return &SI;
1377   }
1378 
1379   // Don't hack volatile/ordered stores.
1380   // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1381   if (!SI.isUnordered()) return nullptr;
1382 
1383   // If the RHS is an alloca with a single use, zapify the store, making the
1384   // alloca dead.
1385   if (Ptr->hasOneUse()) {
1386     if (isa<AllocaInst>(Ptr))
1387       return eraseInstFromFunction(SI);
1388     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1389       if (isa<AllocaInst>(GEP->getOperand(0))) {
1390         if (GEP->getOperand(0)->hasOneUse())
1391           return eraseInstFromFunction(SI);
1392       }
1393     }
1394   }
1395 
1396   // If we have a store to a location which is known constant, we can conclude
1397   // that the store must be storing the constant value (else the memory
1398   // wouldn't be constant), and this must be a noop.
1399   if (AA->pointsToConstantMemory(Ptr))
1400     return eraseInstFromFunction(SI);
1401 
1402   // Do really simple DSE, to catch cases where there are several consecutive
1403   // stores to the same location, separated by a few arithmetic operations. This
1404   // situation often occurs with bitfield accesses.
1405   BasicBlock::iterator BBI(SI);
1406   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1407        --ScanInsts) {
1408     --BBI;
1409     // Don't count debug info directives, lest they affect codegen,
1410     // and we skip pointer-to-pointer bitcasts, which are NOPs.
1411     if (BBI->isDebugOrPseudoInst() ||
1412         (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1413       ScanInsts++;
1414       continue;
1415     }
1416 
1417     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1418       // Prev store isn't volatile, and stores to the same location?
1419       if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
1420                                                         SI.getOperand(1))) {
1421         ++NumDeadStore;
1422         // Manually add back the original store to the worklist now, so it will
1423         // be processed after the operands of the removed store, as this may
1424         // expose additional DSE opportunities.
1425         Worklist.push(&SI);
1426         eraseInstFromFunction(*PrevSI);
1427         return nullptr;
1428       }
1429       break;
1430     }
1431 
1432     // If this is a load, we have to stop.  However, if the loaded value is from
1433     // the pointer we're loading and is producing the pointer we're storing,
1434     // then *this* store is dead (X = load P; store X -> P).
1435     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1436       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1437         assert(SI.isUnordered() && "can't eliminate ordering operation");
1438         return eraseInstFromFunction(SI);
1439       }
1440 
1441       // Otherwise, this is a load from some other location.  Stores before it
1442       // may not be dead.
1443       break;
1444     }
1445 
1446     // Don't skip over loads, throws or things that can modify memory.
1447     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
1448       break;
1449   }
1450 
1451   // store X, null    -> turns into 'unreachable' in SimplifyCFG
1452   // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
1453   if (canSimplifyNullStoreOrGEP(SI)) {
1454     if (!isa<PoisonValue>(Val))
1455       return replaceOperand(SI, 0, PoisonValue::get(Val->getType()));
1456     return nullptr;  // Do not modify these!
1457   }
1458 
1459   // store undef, Ptr -> noop
1460   if (isa<UndefValue>(Val))
1461     return eraseInstFromFunction(SI);
1462 
1463   return nullptr;
1464 }
1465 
1466 /// Try to transform:
1467 ///   if () { *P = v1; } else { *P = v2 }
1468 /// or:
1469 ///   *P = v1; if () { *P = v2; }
1470 /// into a phi node with a store in the successor.
1471 bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst &SI) {
1472   if (!SI.isUnordered())
1473     return false; // This code has not been audited for volatile/ordered case.
1474 
1475   // Check if the successor block has exactly 2 incoming edges.
1476   BasicBlock *StoreBB = SI.getParent();
1477   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1478   if (!DestBB->hasNPredecessors(2))
1479     return false;
1480 
1481   // Capture the other block (the block that doesn't contain our store).
1482   pred_iterator PredIter = pred_begin(DestBB);
1483   if (*PredIter == StoreBB)
1484     ++PredIter;
1485   BasicBlock *OtherBB = *PredIter;
1486 
1487   // Bail out if all of the relevant blocks aren't distinct. This can happen,
1488   // for example, if SI is in an infinite loop.
1489   if (StoreBB == DestBB || OtherBB == DestBB)
1490     return false;
1491 
1492   // Verify that the other block ends in a branch and is not otherwise empty.
1493   BasicBlock::iterator BBI(OtherBB->getTerminator());
1494   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1495   if (!OtherBr || BBI == OtherBB->begin())
1496     return false;
1497 
1498   // If the other block ends in an unconditional branch, check for the 'if then
1499   // else' case. There is an instruction before the branch.
1500   StoreInst *OtherStore = nullptr;
1501   if (OtherBr->isUnconditional()) {
1502     --BBI;
1503     // Skip over debugging info.
1504     while (isa<DbgInfoIntrinsic>(BBI) ||
1505            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1506       if (BBI==OtherBB->begin())
1507         return false;
1508       --BBI;
1509     }
1510     // If this isn't a store, isn't a store to the same location, or is not the
1511     // right kind of store, bail out.
1512     OtherStore = dyn_cast<StoreInst>(BBI);
1513     if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1514         !SI.isSameOperationAs(OtherStore))
1515       return false;
1516   } else {
1517     // Otherwise, the other block ended with a conditional branch. If one of the
1518     // destinations is StoreBB, then we have the if/then case.
1519     if (OtherBr->getSuccessor(0) != StoreBB &&
1520         OtherBr->getSuccessor(1) != StoreBB)
1521       return false;
1522 
1523     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1524     // if/then triangle. See if there is a store to the same ptr as SI that
1525     // lives in OtherBB.
1526     for (;; --BBI) {
1527       // Check to see if we find the matching store.
1528       if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1529         if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1530             !SI.isSameOperationAs(OtherStore))
1531           return false;
1532         break;
1533       }
1534       // If we find something that may be using or overwriting the stored
1535       // value, or if we run out of instructions, we can't do the transform.
1536       if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
1537           BBI->mayWriteToMemory() || BBI == OtherBB->begin())
1538         return false;
1539     }
1540 
1541     // In order to eliminate the store in OtherBr, we have to make sure nothing
1542     // reads or overwrites the stored value in StoreBB.
1543     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1544       // FIXME: This should really be AA driven.
1545       if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
1546         return false;
1547     }
1548   }
1549 
1550   // Insert a PHI node now if we need it.
1551   Value *MergedVal = OtherStore->getOperand(0);
1552   // The debug locations of the original instructions might differ. Merge them.
1553   DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(),
1554                                                      OtherStore->getDebugLoc());
1555   if (MergedVal != SI.getOperand(0)) {
1556     PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1557     PN->addIncoming(SI.getOperand(0), SI.getParent());
1558     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1559     MergedVal = InsertNewInstBefore(PN, DestBB->front());
1560     PN->setDebugLoc(MergedLoc);
1561   }
1562 
1563   // Advance to a place where it is safe to insert the new store and insert it.
1564   BBI = DestBB->getFirstInsertionPt();
1565   StoreInst *NewSI =
1566       new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(),
1567                     SI.getOrdering(), SI.getSyncScopeID());
1568   InsertNewInstBefore(NewSI, *BBI);
1569   NewSI->setDebugLoc(MergedLoc);
1570 
1571   // If the two stores had AA tags, merge them.
1572   AAMDNodes AATags;
1573   SI.getAAMetadata(AATags);
1574   if (AATags) {
1575     OtherStore->getAAMetadata(AATags, /* Merge = */ true);
1576     NewSI->setAAMetadata(AATags);
1577   }
1578 
1579   // Nuke the old stores.
1580   eraseInstFromFunction(SI);
1581   eraseInstFromFunction(*OtherStore);
1582   return true;
1583 }
1584