1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for load, store and alloca. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/MapVector.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/IR/ConstantRange.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/MDBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Transforms/InstCombine/InstCombiner.h" 27 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 28 #include "llvm/Transforms/Utils/Local.h" 29 using namespace llvm; 30 using namespace PatternMatch; 31 32 #define DEBUG_TYPE "instcombine" 33 34 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 35 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 36 37 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 38 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 39 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 40 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 41 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 42 /// the alloca, and if the source pointer is a pointer to a constant global, we 43 /// can optimize this. 44 static bool 45 isOnlyCopiedFromConstantMemory(AAResults *AA, 46 Value *V, MemTransferInst *&TheCopy, 47 SmallVectorImpl<Instruction *> &ToDelete) { 48 // We track lifetime intrinsics as we encounter them. If we decide to go 49 // ahead and replace the value with the global, this lets the caller quickly 50 // eliminate the markers. 51 52 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 53 ValuesToInspect.emplace_back(V, false); 54 while (!ValuesToInspect.empty()) { 55 auto ValuePair = ValuesToInspect.pop_back_val(); 56 const bool IsOffset = ValuePair.second; 57 for (auto &U : ValuePair.first->uses()) { 58 auto *I = cast<Instruction>(U.getUser()); 59 60 if (auto *LI = dyn_cast<LoadInst>(I)) { 61 // Ignore non-volatile loads, they are always ok. 62 if (!LI->isSimple()) return false; 63 continue; 64 } 65 66 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 67 // If uses of the bitcast are ok, we are ok. 68 ValuesToInspect.emplace_back(I, IsOffset); 69 continue; 70 } 71 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 72 // If the GEP has all zero indices, it doesn't offset the pointer. If it 73 // doesn't, it does. 74 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 75 continue; 76 } 77 78 if (auto *Call = dyn_cast<CallBase>(I)) { 79 // If this is the function being called then we treat it like a load and 80 // ignore it. 81 if (Call->isCallee(&U)) 82 continue; 83 84 unsigned DataOpNo = Call->getDataOperandNo(&U); 85 bool IsArgOperand = Call->isArgOperand(&U); 86 87 // Inalloca arguments are clobbered by the call. 88 if (IsArgOperand && Call->isInAllocaArgument(DataOpNo)) 89 return false; 90 91 // If this is a readonly/readnone call site, then we know it is just a 92 // load (but one that potentially returns the value itself), so we can 93 // ignore it if we know that the value isn't captured. 94 if (Call->onlyReadsMemory() && 95 (Call->use_empty() || Call->doesNotCapture(DataOpNo))) 96 continue; 97 98 // If this is being passed as a byval argument, the caller is making a 99 // copy, so it is only a read of the alloca. 100 if (IsArgOperand && Call->isByValArgument(DataOpNo)) 101 continue; 102 } 103 104 // Lifetime intrinsics can be handled by the caller. 105 if (I->isLifetimeStartOrEnd()) { 106 assert(I->use_empty() && "Lifetime markers have no result to use!"); 107 ToDelete.push_back(I); 108 continue; 109 } 110 111 // If this is isn't our memcpy/memmove, reject it as something we can't 112 // handle. 113 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 114 if (!MI) 115 return false; 116 117 // If the transfer is using the alloca as a source of the transfer, then 118 // ignore it since it is a load (unless the transfer is volatile). 119 if (U.getOperandNo() == 1) { 120 if (MI->isVolatile()) return false; 121 continue; 122 } 123 124 // If we already have seen a copy, reject the second one. 125 if (TheCopy) return false; 126 127 // If the pointer has been offset from the start of the alloca, we can't 128 // safely handle this. 129 if (IsOffset) return false; 130 131 // If the memintrinsic isn't using the alloca as the dest, reject it. 132 if (U.getOperandNo() != 0) return false; 133 134 // If the source of the memcpy/move is not a constant global, reject it. 135 if (!AA->pointsToConstantMemory(MI->getSource())) 136 return false; 137 138 // Otherwise, the transform is safe. Remember the copy instruction. 139 TheCopy = MI; 140 } 141 } 142 return true; 143 } 144 145 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 146 /// modified by a copy from a constant global. If we can prove this, we can 147 /// replace any uses of the alloca with uses of the global directly. 148 static MemTransferInst * 149 isOnlyCopiedFromConstantMemory(AAResults *AA, 150 AllocaInst *AI, 151 SmallVectorImpl<Instruction *> &ToDelete) { 152 MemTransferInst *TheCopy = nullptr; 153 if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete)) 154 return TheCopy; 155 return nullptr; 156 } 157 158 /// Returns true if V is dereferenceable for size of alloca. 159 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, 160 const DataLayout &DL) { 161 if (AI->isArrayAllocation()) 162 return false; 163 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType()); 164 if (!AllocaSize) 165 return false; 166 return isDereferenceableAndAlignedPointer(V, AI->getAlign(), 167 APInt(64, AllocaSize), DL); 168 } 169 170 static Instruction *simplifyAllocaArraySize(InstCombinerImpl &IC, 171 AllocaInst &AI) { 172 // Check for array size of 1 (scalar allocation). 173 if (!AI.isArrayAllocation()) { 174 // i32 1 is the canonical array size for scalar allocations. 175 if (AI.getArraySize()->getType()->isIntegerTy(32)) 176 return nullptr; 177 178 // Canonicalize it. 179 return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1)); 180 } 181 182 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 183 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 184 if (C->getValue().getActiveBits() <= 64) { 185 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 186 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, AI.getAddressSpace(), 187 nullptr, AI.getName()); 188 New->setAlignment(AI.getAlign()); 189 190 // Scan to the end of the allocation instructions, to skip over a block of 191 // allocas if possible...also skip interleaved debug info 192 // 193 BasicBlock::iterator It(New); 194 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 195 ++It; 196 197 // Now that I is pointing to the first non-allocation-inst in the block, 198 // insert our getelementptr instruction... 199 // 200 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 201 Value *NullIdx = Constant::getNullValue(IdxTy); 202 Value *Idx[2] = {NullIdx, NullIdx}; 203 Instruction *GEP = GetElementPtrInst::CreateInBounds( 204 NewTy, New, Idx, New->getName() + ".sub"); 205 IC.InsertNewInstBefore(GEP, *It); 206 207 // Now make everything use the getelementptr instead of the original 208 // allocation. 209 return IC.replaceInstUsesWith(AI, GEP); 210 } 211 } 212 213 if (isa<UndefValue>(AI.getArraySize())) 214 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 215 216 // Ensure that the alloca array size argument has type intptr_t, so that 217 // any casting is exposed early. 218 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 219 if (AI.getArraySize()->getType() != IntPtrTy) { 220 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false); 221 return IC.replaceOperand(AI, 0, V); 222 } 223 224 return nullptr; 225 } 226 227 namespace { 228 // If I and V are pointers in different address space, it is not allowed to 229 // use replaceAllUsesWith since I and V have different types. A 230 // non-target-specific transformation should not use addrspacecast on V since 231 // the two address space may be disjoint depending on target. 232 // 233 // This class chases down uses of the old pointer until reaching the load 234 // instructions, then replaces the old pointer in the load instructions with 235 // the new pointer. If during the chasing it sees bitcast or GEP, it will 236 // create new bitcast or GEP with the new pointer and use them in the load 237 // instruction. 238 class PointerReplacer { 239 public: 240 PointerReplacer(InstCombinerImpl &IC) : IC(IC) {} 241 242 bool collectUsers(Instruction &I); 243 void replacePointer(Instruction &I, Value *V); 244 245 private: 246 void replace(Instruction *I); 247 Value *getReplacement(Value *I); 248 249 SmallSetVector<Instruction *, 4> Worklist; 250 MapVector<Value *, Value *> WorkMap; 251 InstCombinerImpl &IC; 252 }; 253 } // end anonymous namespace 254 255 bool PointerReplacer::collectUsers(Instruction &I) { 256 for (auto U : I.users()) { 257 auto *Inst = cast<Instruction>(&*U); 258 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 259 if (Load->isVolatile()) 260 return false; 261 Worklist.insert(Load); 262 } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) { 263 Worklist.insert(Inst); 264 if (!collectUsers(*Inst)) 265 return false; 266 } else if (auto *MI = dyn_cast<MemTransferInst>(Inst)) { 267 if (MI->isVolatile()) 268 return false; 269 Worklist.insert(Inst); 270 } else if (Inst->isLifetimeStartOrEnd()) { 271 continue; 272 } else { 273 LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U << '\n'); 274 return false; 275 } 276 } 277 278 return true; 279 } 280 281 Value *PointerReplacer::getReplacement(Value *V) { return WorkMap.lookup(V); } 282 283 void PointerReplacer::replace(Instruction *I) { 284 if (getReplacement(I)) 285 return; 286 287 if (auto *LT = dyn_cast<LoadInst>(I)) { 288 auto *V = getReplacement(LT->getPointerOperand()); 289 assert(V && "Operand not replaced"); 290 auto *NewI = new LoadInst(LT->getType(), V, "", LT->isVolatile(), 291 LT->getAlign(), LT->getOrdering(), 292 LT->getSyncScopeID()); 293 NewI->takeName(LT); 294 copyMetadataForLoad(*NewI, *LT); 295 296 IC.InsertNewInstWith(NewI, *LT); 297 IC.replaceInstUsesWith(*LT, NewI); 298 WorkMap[LT] = NewI; 299 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 300 auto *V = getReplacement(GEP->getPointerOperand()); 301 assert(V && "Operand not replaced"); 302 SmallVector<Value *, 8> Indices; 303 Indices.append(GEP->idx_begin(), GEP->idx_end()); 304 auto *NewI = 305 GetElementPtrInst::Create(GEP->getSourceElementType(), V, Indices); 306 IC.InsertNewInstWith(NewI, *GEP); 307 NewI->takeName(GEP); 308 WorkMap[GEP] = NewI; 309 } else if (auto *BC = dyn_cast<BitCastInst>(I)) { 310 auto *V = getReplacement(BC->getOperand(0)); 311 assert(V && "Operand not replaced"); 312 auto *NewT = PointerType::getWithSamePointeeType( 313 cast<PointerType>(BC->getType()), 314 V->getType()->getPointerAddressSpace()); 315 auto *NewI = new BitCastInst(V, NewT); 316 IC.InsertNewInstWith(NewI, *BC); 317 NewI->takeName(BC); 318 WorkMap[BC] = NewI; 319 } else if (auto *MemCpy = dyn_cast<MemTransferInst>(I)) { 320 auto *SrcV = getReplacement(MemCpy->getRawSource()); 321 // The pointer may appear in the destination of a copy, but we don't want to 322 // replace it. 323 if (!SrcV) { 324 assert(getReplacement(MemCpy->getRawDest()) && 325 "destination not in replace list"); 326 return; 327 } 328 329 IC.Builder.SetInsertPoint(MemCpy); 330 auto *NewI = IC.Builder.CreateMemTransferInst( 331 MemCpy->getIntrinsicID(), MemCpy->getRawDest(), MemCpy->getDestAlign(), 332 SrcV, MemCpy->getSourceAlign(), MemCpy->getLength(), 333 MemCpy->isVolatile()); 334 AAMDNodes AAMD = MemCpy->getAAMetadata(); 335 if (AAMD) 336 NewI->setAAMetadata(AAMD); 337 338 IC.eraseInstFromFunction(*MemCpy); 339 WorkMap[MemCpy] = NewI; 340 } else { 341 llvm_unreachable("should never reach here"); 342 } 343 } 344 345 void PointerReplacer::replacePointer(Instruction &I, Value *V) { 346 #ifndef NDEBUG 347 auto *PT = cast<PointerType>(I.getType()); 348 auto *NT = cast<PointerType>(V->getType()); 349 assert(PT != NT && PT->hasSameElementTypeAs(NT) && "Invalid usage"); 350 #endif 351 WorkMap[&I] = V; 352 353 for (Instruction *Workitem : Worklist) 354 replace(Workitem); 355 } 356 357 Instruction *InstCombinerImpl::visitAllocaInst(AllocaInst &AI) { 358 if (auto *I = simplifyAllocaArraySize(*this, AI)) 359 return I; 360 361 if (AI.getAllocatedType()->isSized()) { 362 // Move all alloca's of zero byte objects to the entry block and merge them 363 // together. Note that we only do this for alloca's, because malloc should 364 // allocate and return a unique pointer, even for a zero byte allocation. 365 if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinSize() == 0) { 366 // For a zero sized alloca there is no point in doing an array allocation. 367 // This is helpful if the array size is a complicated expression not used 368 // elsewhere. 369 if (AI.isArrayAllocation()) 370 return replaceOperand(AI, 0, 371 ConstantInt::get(AI.getArraySize()->getType(), 1)); 372 373 // Get the first instruction in the entry block. 374 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 375 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 376 if (FirstInst != &AI) { 377 // If the entry block doesn't start with a zero-size alloca then move 378 // this one to the start of the entry block. There is no problem with 379 // dominance as the array size was forced to a constant earlier already. 380 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 381 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 382 DL.getTypeAllocSize(EntryAI->getAllocatedType()) 383 .getKnownMinSize() != 0) { 384 AI.moveBefore(FirstInst); 385 return &AI; 386 } 387 388 // Replace this zero-sized alloca with the one at the start of the entry 389 // block after ensuring that the address will be aligned enough for both 390 // types. 391 const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign()); 392 EntryAI->setAlignment(MaxAlign); 393 if (AI.getType() != EntryAI->getType()) 394 return new BitCastInst(EntryAI, AI.getType()); 395 return replaceInstUsesWith(AI, EntryAI); 396 } 397 } 398 } 399 400 // Check to see if this allocation is only modified by a memcpy/memmove from 401 // a constant whose alignment is equal to or exceeds that of the allocation. 402 // If this is the case, we can change all users to use the constant global 403 // instead. This is commonly produced by the CFE by constructs like "void 404 // foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' is only subsequently 405 // read. 406 SmallVector<Instruction *, 4> ToDelete; 407 if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) { 408 Value *TheSrc = Copy->getSource(); 409 Align AllocaAlign = AI.getAlign(); 410 Align SourceAlign = getOrEnforceKnownAlignment( 411 TheSrc, AllocaAlign, DL, &AI, &AC, &DT); 412 if (AllocaAlign <= SourceAlign && 413 isDereferenceableForAllocaSize(TheSrc, &AI, DL) && 414 !isa<Instruction>(TheSrc)) { 415 // FIXME: Can we sink instructions without violating dominance when TheSrc 416 // is an instruction instead of a constant or argument? 417 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 418 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 419 unsigned SrcAddrSpace = TheSrc->getType()->getPointerAddressSpace(); 420 auto *DestTy = PointerType::get(AI.getAllocatedType(), SrcAddrSpace); 421 if (AI.getType()->getAddressSpace() == SrcAddrSpace) { 422 for (Instruction *Delete : ToDelete) 423 eraseInstFromFunction(*Delete); 424 425 Value *Cast = Builder.CreateBitCast(TheSrc, DestTy); 426 Instruction *NewI = replaceInstUsesWith(AI, Cast); 427 eraseInstFromFunction(*Copy); 428 ++NumGlobalCopies; 429 return NewI; 430 } 431 432 PointerReplacer PtrReplacer(*this); 433 if (PtrReplacer.collectUsers(AI)) { 434 for (Instruction *Delete : ToDelete) 435 eraseInstFromFunction(*Delete); 436 437 Value *Cast = Builder.CreateBitCast(TheSrc, DestTy); 438 PtrReplacer.replacePointer(AI, Cast); 439 ++NumGlobalCopies; 440 } 441 } 442 } 443 444 // At last, use the generic allocation site handler to aggressively remove 445 // unused allocas. 446 return visitAllocSite(AI); 447 } 448 449 // Are we allowed to form a atomic load or store of this type? 450 static bool isSupportedAtomicType(Type *Ty) { 451 return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy(); 452 } 453 454 /// Helper to combine a load to a new type. 455 /// 456 /// This just does the work of combining a load to a new type. It handles 457 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 458 /// loaded *value* type. This will convert it to a pointer, cast the operand to 459 /// that pointer type, load it, etc. 460 /// 461 /// Note that this will create all of the instructions with whatever insert 462 /// point the \c InstCombinerImpl currently is using. 463 LoadInst *InstCombinerImpl::combineLoadToNewType(LoadInst &LI, Type *NewTy, 464 const Twine &Suffix) { 465 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 466 "can't fold an atomic load to requested type"); 467 468 Value *Ptr = LI.getPointerOperand(); 469 unsigned AS = LI.getPointerAddressSpace(); 470 Type *NewPtrTy = NewTy->getPointerTo(AS); 471 Value *NewPtr = nullptr; 472 if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) && 473 NewPtr->getType() == NewPtrTy)) 474 NewPtr = Builder.CreateBitCast(Ptr, NewPtrTy); 475 476 LoadInst *NewLoad = Builder.CreateAlignedLoad( 477 NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix); 478 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 479 copyMetadataForLoad(*NewLoad, LI); 480 return NewLoad; 481 } 482 483 /// Combine a store to a new type. 484 /// 485 /// Returns the newly created store instruction. 486 static StoreInst *combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI, 487 Value *V) { 488 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 489 "can't fold an atomic store of requested type"); 490 491 Value *Ptr = SI.getPointerOperand(); 492 unsigned AS = SI.getPointerAddressSpace(); 493 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 494 SI.getAllMetadata(MD); 495 496 StoreInst *NewStore = IC.Builder.CreateAlignedStore( 497 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 498 SI.getAlign(), SI.isVolatile()); 499 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 500 for (const auto &MDPair : MD) { 501 unsigned ID = MDPair.first; 502 MDNode *N = MDPair.second; 503 // Note, essentially every kind of metadata should be preserved here! This 504 // routine is supposed to clone a store instruction changing *only its 505 // type*. The only metadata it makes sense to drop is metadata which is 506 // invalidated when the pointer type changes. This should essentially 507 // never be the case in LLVM, but we explicitly switch over only known 508 // metadata to be conservatively correct. If you are adding metadata to 509 // LLVM which pertains to stores, you almost certainly want to add it 510 // here. 511 switch (ID) { 512 case LLVMContext::MD_dbg: 513 case LLVMContext::MD_tbaa: 514 case LLVMContext::MD_prof: 515 case LLVMContext::MD_fpmath: 516 case LLVMContext::MD_tbaa_struct: 517 case LLVMContext::MD_alias_scope: 518 case LLVMContext::MD_noalias: 519 case LLVMContext::MD_nontemporal: 520 case LLVMContext::MD_mem_parallel_loop_access: 521 case LLVMContext::MD_access_group: 522 // All of these directly apply. 523 NewStore->setMetadata(ID, N); 524 break; 525 case LLVMContext::MD_invariant_load: 526 case LLVMContext::MD_nonnull: 527 case LLVMContext::MD_noundef: 528 case LLVMContext::MD_range: 529 case LLVMContext::MD_align: 530 case LLVMContext::MD_dereferenceable: 531 case LLVMContext::MD_dereferenceable_or_null: 532 // These don't apply for stores. 533 break; 534 } 535 } 536 537 return NewStore; 538 } 539 540 /// Returns true if instruction represent minmax pattern like: 541 /// select ((cmp load V1, load V2), V1, V2). 542 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) { 543 assert(V->getType()->isPointerTy() && "Expected pointer type."); 544 // Ignore possible ty* to ixx* bitcast. 545 V = InstCombiner::peekThroughBitcast(V); 546 // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax 547 // pattern. 548 CmpInst::Predicate Pred; 549 Instruction *L1; 550 Instruction *L2; 551 Value *LHS; 552 Value *RHS; 553 if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)), 554 m_Value(LHS), m_Value(RHS)))) 555 return false; 556 LoadTy = L1->getType(); 557 return (match(L1, m_Load(m_Specific(LHS))) && 558 match(L2, m_Load(m_Specific(RHS)))) || 559 (match(L1, m_Load(m_Specific(RHS))) && 560 match(L2, m_Load(m_Specific(LHS)))); 561 } 562 563 /// Combine loads to match the type of their uses' value after looking 564 /// through intervening bitcasts. 565 /// 566 /// The core idea here is that if the result of a load is used in an operation, 567 /// we should load the type most conducive to that operation. For example, when 568 /// loading an integer and converting that immediately to a pointer, we should 569 /// instead directly load a pointer. 570 /// 571 /// However, this routine must never change the width of a load or the number of 572 /// loads as that would introduce a semantic change. This combine is expected to 573 /// be a semantic no-op which just allows loads to more closely model the types 574 /// of their consuming operations. 575 /// 576 /// Currently, we also refuse to change the precise type used for an atomic load 577 /// or a volatile load. This is debatable, and might be reasonable to change 578 /// later. However, it is risky in case some backend or other part of LLVM is 579 /// relying on the exact type loaded to select appropriate atomic operations. 580 static Instruction *combineLoadToOperationType(InstCombinerImpl &IC, 581 LoadInst &LI) { 582 // FIXME: We could probably with some care handle both volatile and ordered 583 // atomic loads here but it isn't clear that this is important. 584 if (!LI.isUnordered()) 585 return nullptr; 586 587 if (LI.use_empty()) 588 return nullptr; 589 590 // swifterror values can't be bitcasted. 591 if (LI.getPointerOperand()->isSwiftError()) 592 return nullptr; 593 594 const DataLayout &DL = IC.getDataLayout(); 595 596 // Fold away bit casts of the loaded value by loading the desired type. 597 // Note that we should not do this for pointer<->integer casts, 598 // because that would result in type punning. 599 if (LI.hasOneUse()) { 600 // Don't transform when the type is x86_amx, it makes the pass that lower 601 // x86_amx type happy. 602 if (auto *BC = dyn_cast<BitCastInst>(LI.user_back())) { 603 assert(!LI.getType()->isX86_AMXTy() && 604 "load from x86_amx* should not happen!"); 605 if (BC->getType()->isX86_AMXTy()) 606 return nullptr; 607 } 608 609 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) 610 if (CI->isNoopCast(DL) && LI.getType()->isPtrOrPtrVectorTy() == 611 CI->getDestTy()->isPtrOrPtrVectorTy()) 612 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) { 613 LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy()); 614 CI->replaceAllUsesWith(NewLoad); 615 IC.eraseInstFromFunction(*CI); 616 return &LI; 617 } 618 } 619 620 // FIXME: We should also canonicalize loads of vectors when their elements are 621 // cast to other types. 622 return nullptr; 623 } 624 625 static Instruction *unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI) { 626 // FIXME: We could probably with some care handle both volatile and atomic 627 // stores here but it isn't clear that this is important. 628 if (!LI.isSimple()) 629 return nullptr; 630 631 Type *T = LI.getType(); 632 if (!T->isAggregateType()) 633 return nullptr; 634 635 StringRef Name = LI.getName(); 636 637 if (auto *ST = dyn_cast<StructType>(T)) { 638 // If the struct only have one element, we unpack. 639 auto NumElements = ST->getNumElements(); 640 if (NumElements == 1) { 641 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U), 642 ".unpack"); 643 NewLoad->setAAMetadata(LI.getAAMetadata()); 644 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 645 UndefValue::get(T), NewLoad, 0, Name)); 646 } 647 648 // We don't want to break loads with padding here as we'd loose 649 // the knowledge that padding exists for the rest of the pipeline. 650 const DataLayout &DL = IC.getDataLayout(); 651 auto *SL = DL.getStructLayout(ST); 652 if (SL->hasPadding()) 653 return nullptr; 654 655 const auto Align = LI.getAlign(); 656 auto *Addr = LI.getPointerOperand(); 657 auto *IdxType = Type::getInt32Ty(T->getContext()); 658 auto *Zero = ConstantInt::get(IdxType, 0); 659 660 Value *V = UndefValue::get(T); 661 for (unsigned i = 0; i < NumElements; i++) { 662 Value *Indices[2] = { 663 Zero, 664 ConstantInt::get(IdxType, i), 665 }; 666 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 667 Name + ".elt"); 668 auto *L = IC.Builder.CreateAlignedLoad( 669 ST->getElementType(i), Ptr, 670 commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack"); 671 // Propagate AA metadata. It'll still be valid on the narrowed load. 672 L->setAAMetadata(LI.getAAMetadata()); 673 V = IC.Builder.CreateInsertValue(V, L, i); 674 } 675 676 V->setName(Name); 677 return IC.replaceInstUsesWith(LI, V); 678 } 679 680 if (auto *AT = dyn_cast<ArrayType>(T)) { 681 auto *ET = AT->getElementType(); 682 auto NumElements = AT->getNumElements(); 683 if (NumElements == 1) { 684 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack"); 685 NewLoad->setAAMetadata(LI.getAAMetadata()); 686 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 687 UndefValue::get(T), NewLoad, 0, Name)); 688 } 689 690 // Bail out if the array is too large. Ideally we would like to optimize 691 // arrays of arbitrary size but this has a terrible impact on compile time. 692 // The threshold here is chosen arbitrarily, maybe needs a little bit of 693 // tuning. 694 if (NumElements > IC.MaxArraySizeForCombine) 695 return nullptr; 696 697 const DataLayout &DL = IC.getDataLayout(); 698 auto EltSize = DL.getTypeAllocSize(ET); 699 const auto Align = LI.getAlign(); 700 701 auto *Addr = LI.getPointerOperand(); 702 auto *IdxType = Type::getInt64Ty(T->getContext()); 703 auto *Zero = ConstantInt::get(IdxType, 0); 704 705 Value *V = UndefValue::get(T); 706 uint64_t Offset = 0; 707 for (uint64_t i = 0; i < NumElements; i++) { 708 Value *Indices[2] = { 709 Zero, 710 ConstantInt::get(IdxType, i), 711 }; 712 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 713 Name + ".elt"); 714 auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr, 715 commonAlignment(Align, Offset), 716 Name + ".unpack"); 717 L->setAAMetadata(LI.getAAMetadata()); 718 V = IC.Builder.CreateInsertValue(V, L, i); 719 Offset += EltSize; 720 } 721 722 V->setName(Name); 723 return IC.replaceInstUsesWith(LI, V); 724 } 725 726 return nullptr; 727 } 728 729 // If we can determine that all possible objects pointed to by the provided 730 // pointer value are, not only dereferenceable, but also definitively less than 731 // or equal to the provided maximum size, then return true. Otherwise, return 732 // false (constant global values and allocas fall into this category). 733 // 734 // FIXME: This should probably live in ValueTracking (or similar). 735 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 736 const DataLayout &DL) { 737 SmallPtrSet<Value *, 4> Visited; 738 SmallVector<Value *, 4> Worklist(1, V); 739 740 do { 741 Value *P = Worklist.pop_back_val(); 742 P = P->stripPointerCasts(); 743 744 if (!Visited.insert(P).second) 745 continue; 746 747 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 748 Worklist.push_back(SI->getTrueValue()); 749 Worklist.push_back(SI->getFalseValue()); 750 continue; 751 } 752 753 if (PHINode *PN = dyn_cast<PHINode>(P)) { 754 append_range(Worklist, PN->incoming_values()); 755 continue; 756 } 757 758 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 759 if (GA->isInterposable()) 760 return false; 761 Worklist.push_back(GA->getAliasee()); 762 continue; 763 } 764 765 // If we know how big this object is, and it is less than MaxSize, continue 766 // searching. Otherwise, return false. 767 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 768 if (!AI->getAllocatedType()->isSized()) 769 return false; 770 771 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 772 if (!CS) 773 return false; 774 775 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 776 // Make sure that, even if the multiplication below would wrap as an 777 // uint64_t, we still do the right thing. 778 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 779 return false; 780 continue; 781 } 782 783 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 784 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 785 return false; 786 787 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 788 if (InitSize > MaxSize) 789 return false; 790 continue; 791 } 792 793 return false; 794 } while (!Worklist.empty()); 795 796 return true; 797 } 798 799 // If we're indexing into an object of a known size, and the outer index is 800 // not a constant, but having any value but zero would lead to undefined 801 // behavior, replace it with zero. 802 // 803 // For example, if we have: 804 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 805 // ... 806 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 807 // ... = load i32* %arrayidx, align 4 808 // Then we know that we can replace %x in the GEP with i64 0. 809 // 810 // FIXME: We could fold any GEP index to zero that would cause UB if it were 811 // not zero. Currently, we only handle the first such index. Also, we could 812 // also search through non-zero constant indices if we kept track of the 813 // offsets those indices implied. 814 static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC, 815 GetElementPtrInst *GEPI, Instruction *MemI, 816 unsigned &Idx) { 817 if (GEPI->getNumOperands() < 2) 818 return false; 819 820 // Find the first non-zero index of a GEP. If all indices are zero, return 821 // one past the last index. 822 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 823 unsigned I = 1; 824 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 825 Value *V = GEPI->getOperand(I); 826 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 827 if (CI->isZero()) 828 continue; 829 830 break; 831 } 832 833 return I; 834 }; 835 836 // Skip through initial 'zero' indices, and find the corresponding pointer 837 // type. See if the next index is not a constant. 838 Idx = FirstNZIdx(GEPI); 839 if (Idx == GEPI->getNumOperands()) 840 return false; 841 if (isa<Constant>(GEPI->getOperand(Idx))) 842 return false; 843 844 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 845 Type *SourceElementType = GEPI->getSourceElementType(); 846 // Size information about scalable vectors is not available, so we cannot 847 // deduce whether indexing at n is undefined behaviour or not. Bail out. 848 if (isa<ScalableVectorType>(SourceElementType)) 849 return false; 850 851 Type *AllocTy = GetElementPtrInst::getIndexedType(SourceElementType, Ops); 852 if (!AllocTy || !AllocTy->isSized()) 853 return false; 854 const DataLayout &DL = IC.getDataLayout(); 855 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy).getFixedSize(); 856 857 // If there are more indices after the one we might replace with a zero, make 858 // sure they're all non-negative. If any of them are negative, the overall 859 // address being computed might be before the base address determined by the 860 // first non-zero index. 861 auto IsAllNonNegative = [&]() { 862 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 863 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI); 864 if (Known.isNonNegative()) 865 continue; 866 return false; 867 } 868 869 return true; 870 }; 871 872 // FIXME: If the GEP is not inbounds, and there are extra indices after the 873 // one we'll replace, those could cause the address computation to wrap 874 // (rendering the IsAllNonNegative() check below insufficient). We can do 875 // better, ignoring zero indices (and other indices we can prove small 876 // enough not to wrap). 877 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 878 return false; 879 880 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 881 // also known to be dereferenceable. 882 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 883 IsAllNonNegative(); 884 } 885 886 // If we're indexing into an object with a variable index for the memory 887 // access, but the object has only one element, we can assume that the index 888 // will always be zero. If we replace the GEP, return it. 889 template <typename T> 890 static Instruction *replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr, 891 T &MemI) { 892 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 893 unsigned Idx; 894 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 895 Instruction *NewGEPI = GEPI->clone(); 896 NewGEPI->setOperand(Idx, 897 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 898 NewGEPI->insertBefore(GEPI); 899 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 900 return NewGEPI; 901 } 902 } 903 904 return nullptr; 905 } 906 907 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) { 908 if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())) 909 return false; 910 911 auto *Ptr = SI.getPointerOperand(); 912 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) 913 Ptr = GEPI->getOperand(0); 914 return (isa<ConstantPointerNull>(Ptr) && 915 !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())); 916 } 917 918 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { 919 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 920 const Value *GEPI0 = GEPI->getOperand(0); 921 if (isa<ConstantPointerNull>(GEPI0) && 922 !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace())) 923 return true; 924 } 925 if (isa<UndefValue>(Op) || 926 (isa<ConstantPointerNull>(Op) && 927 !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace()))) 928 return true; 929 return false; 930 } 931 932 Instruction *InstCombinerImpl::visitLoadInst(LoadInst &LI) { 933 Value *Op = LI.getOperand(0); 934 935 // Try to canonicalize the loaded type. 936 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 937 return Res; 938 939 // Attempt to improve the alignment. 940 Align KnownAlign = getOrEnforceKnownAlignment( 941 Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT); 942 if (KnownAlign > LI.getAlign()) 943 LI.setAlignment(KnownAlign); 944 945 // Replace GEP indices if possible. 946 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 947 Worklist.push(NewGEPI); 948 return &LI; 949 } 950 951 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 952 return Res; 953 954 // Do really simple store-to-load forwarding and load CSE, to catch cases 955 // where there are several consecutive memory accesses to the same location, 956 // separated by a few arithmetic operations. 957 bool IsLoadCSE = false; 958 if (Value *AvailableVal = FindAvailableLoadedValue(&LI, *AA, &IsLoadCSE)) { 959 if (IsLoadCSE) 960 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false); 961 962 return replaceInstUsesWith( 963 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(), 964 LI.getName() + ".cast")); 965 } 966 967 // None of the following transforms are legal for volatile/ordered atomic 968 // loads. Most of them do apply for unordered atomics. 969 if (!LI.isUnordered()) return nullptr; 970 971 // load(gep null, ...) -> unreachable 972 // load null/undef -> unreachable 973 // TODO: Consider a target hook for valid address spaces for this xforms. 974 if (canSimplifyNullLoadOrGEP(LI, Op)) { 975 // Insert a new store to null instruction before the load to indicate 976 // that this code is not reachable. We do this instead of inserting 977 // an unreachable instruction directly because we cannot modify the 978 // CFG. 979 StoreInst *SI = new StoreInst(PoisonValue::get(LI.getType()), 980 Constant::getNullValue(Op->getType()), &LI); 981 SI->setDebugLoc(LI.getDebugLoc()); 982 return replaceInstUsesWith(LI, PoisonValue::get(LI.getType())); 983 } 984 985 if (Op->hasOneUse()) { 986 // Change select and PHI nodes to select values instead of addresses: this 987 // helps alias analysis out a lot, allows many others simplifications, and 988 // exposes redundancy in the code. 989 // 990 // Note that we cannot do the transformation unless we know that the 991 // introduced loads cannot trap! Something like this is valid as long as 992 // the condition is always false: load (select bool %C, int* null, int* %G), 993 // but it would not be valid if we transformed it to load from null 994 // unconditionally. 995 // 996 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 997 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 998 Align Alignment = LI.getAlign(); 999 if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(), 1000 Alignment, DL, SI) && 1001 isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(), 1002 Alignment, DL, SI)) { 1003 LoadInst *V1 = 1004 Builder.CreateLoad(LI.getType(), SI->getOperand(1), 1005 SI->getOperand(1)->getName() + ".val"); 1006 LoadInst *V2 = 1007 Builder.CreateLoad(LI.getType(), SI->getOperand(2), 1008 SI->getOperand(2)->getName() + ".val"); 1009 assert(LI.isUnordered() && "implied by above"); 1010 V1->setAlignment(Alignment); 1011 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1012 V2->setAlignment(Alignment); 1013 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1014 return SelectInst::Create(SI->getCondition(), V1, V2); 1015 } 1016 1017 // load (select (cond, null, P)) -> load P 1018 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 1019 !NullPointerIsDefined(SI->getFunction(), 1020 LI.getPointerAddressSpace())) 1021 return replaceOperand(LI, 0, SI->getOperand(2)); 1022 1023 // load (select (cond, P, null)) -> load P 1024 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 1025 !NullPointerIsDefined(SI->getFunction(), 1026 LI.getPointerAddressSpace())) 1027 return replaceOperand(LI, 0, SI->getOperand(1)); 1028 } 1029 } 1030 return nullptr; 1031 } 1032 1033 /// Look for extractelement/insertvalue sequence that acts like a bitcast. 1034 /// 1035 /// \returns underlying value that was "cast", or nullptr otherwise. 1036 /// 1037 /// For example, if we have: 1038 /// 1039 /// %E0 = extractelement <2 x double> %U, i32 0 1040 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 1041 /// %E1 = extractelement <2 x double> %U, i32 1 1042 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 1043 /// 1044 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 1045 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 1046 /// Note that %U may contain non-undef values where %V1 has undef. 1047 static Value *likeBitCastFromVector(InstCombinerImpl &IC, Value *V) { 1048 Value *U = nullptr; 1049 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 1050 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 1051 if (!E) 1052 return nullptr; 1053 auto *W = E->getVectorOperand(); 1054 if (!U) 1055 U = W; 1056 else if (U != W) 1057 return nullptr; 1058 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 1059 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 1060 return nullptr; 1061 V = IV->getAggregateOperand(); 1062 } 1063 if (!match(V, m_Undef()) || !U) 1064 return nullptr; 1065 1066 auto *UT = cast<VectorType>(U->getType()); 1067 auto *VT = V->getType(); 1068 // Check that types UT and VT are bitwise isomorphic. 1069 const auto &DL = IC.getDataLayout(); 1070 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 1071 return nullptr; 1072 } 1073 if (auto *AT = dyn_cast<ArrayType>(VT)) { 1074 if (AT->getNumElements() != cast<FixedVectorType>(UT)->getNumElements()) 1075 return nullptr; 1076 } else { 1077 auto *ST = cast<StructType>(VT); 1078 if (ST->getNumElements() != cast<FixedVectorType>(UT)->getNumElements()) 1079 return nullptr; 1080 for (const auto *EltT : ST->elements()) { 1081 if (EltT != UT->getElementType()) 1082 return nullptr; 1083 } 1084 } 1085 return U; 1086 } 1087 1088 /// Combine stores to match the type of value being stored. 1089 /// 1090 /// The core idea here is that the memory does not have any intrinsic type and 1091 /// where we can we should match the type of a store to the type of value being 1092 /// stored. 1093 /// 1094 /// However, this routine must never change the width of a store or the number of 1095 /// stores as that would introduce a semantic change. This combine is expected to 1096 /// be a semantic no-op which just allows stores to more closely model the types 1097 /// of their incoming values. 1098 /// 1099 /// Currently, we also refuse to change the precise type used for an atomic or 1100 /// volatile store. This is debatable, and might be reasonable to change later. 1101 /// However, it is risky in case some backend or other part of LLVM is relying 1102 /// on the exact type stored to select appropriate atomic operations. 1103 /// 1104 /// \returns true if the store was successfully combined away. This indicates 1105 /// the caller must erase the store instruction. We have to let the caller erase 1106 /// the store instruction as otherwise there is no way to signal whether it was 1107 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1108 static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI) { 1109 // FIXME: We could probably with some care handle both volatile and ordered 1110 // atomic stores here but it isn't clear that this is important. 1111 if (!SI.isUnordered()) 1112 return false; 1113 1114 // swifterror values can't be bitcasted. 1115 if (SI.getPointerOperand()->isSwiftError()) 1116 return false; 1117 1118 Value *V = SI.getValueOperand(); 1119 1120 // Fold away bit casts of the stored value by storing the original type. 1121 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1122 assert(!BC->getType()->isX86_AMXTy() && 1123 "store to x86_amx* should not happen!"); 1124 V = BC->getOperand(0); 1125 // Don't transform when the type is x86_amx, it makes the pass that lower 1126 // x86_amx type happy. 1127 if (V->getType()->isX86_AMXTy()) 1128 return false; 1129 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1130 combineStoreToNewValue(IC, SI, V); 1131 return true; 1132 } 1133 } 1134 1135 if (Value *U = likeBitCastFromVector(IC, V)) 1136 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1137 combineStoreToNewValue(IC, SI, U); 1138 return true; 1139 } 1140 1141 // FIXME: We should also canonicalize stores of vectors when their elements 1142 // are cast to other types. 1143 return false; 1144 } 1145 1146 static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI) { 1147 // FIXME: We could probably with some care handle both volatile and atomic 1148 // stores here but it isn't clear that this is important. 1149 if (!SI.isSimple()) 1150 return false; 1151 1152 Value *V = SI.getValueOperand(); 1153 Type *T = V->getType(); 1154 1155 if (!T->isAggregateType()) 1156 return false; 1157 1158 if (auto *ST = dyn_cast<StructType>(T)) { 1159 // If the struct only have one element, we unpack. 1160 unsigned Count = ST->getNumElements(); 1161 if (Count == 1) { 1162 V = IC.Builder.CreateExtractValue(V, 0); 1163 combineStoreToNewValue(IC, SI, V); 1164 return true; 1165 } 1166 1167 // We don't want to break loads with padding here as we'd loose 1168 // the knowledge that padding exists for the rest of the pipeline. 1169 const DataLayout &DL = IC.getDataLayout(); 1170 auto *SL = DL.getStructLayout(ST); 1171 if (SL->hasPadding()) 1172 return false; 1173 1174 const auto Align = SI.getAlign(); 1175 1176 SmallString<16> EltName = V->getName(); 1177 EltName += ".elt"; 1178 auto *Addr = SI.getPointerOperand(); 1179 SmallString<16> AddrName = Addr->getName(); 1180 AddrName += ".repack"; 1181 1182 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1183 auto *Zero = ConstantInt::get(IdxType, 0); 1184 for (unsigned i = 0; i < Count; i++) { 1185 Value *Indices[2] = { 1186 Zero, 1187 ConstantInt::get(IdxType, i), 1188 }; 1189 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1190 AddrName); 1191 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1192 auto EltAlign = commonAlignment(Align, SL->getElementOffset(i)); 1193 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1194 NS->setAAMetadata(SI.getAAMetadata()); 1195 } 1196 1197 return true; 1198 } 1199 1200 if (auto *AT = dyn_cast<ArrayType>(T)) { 1201 // If the array only have one element, we unpack. 1202 auto NumElements = AT->getNumElements(); 1203 if (NumElements == 1) { 1204 V = IC.Builder.CreateExtractValue(V, 0); 1205 combineStoreToNewValue(IC, SI, V); 1206 return true; 1207 } 1208 1209 // Bail out if the array is too large. Ideally we would like to optimize 1210 // arrays of arbitrary size but this has a terrible impact on compile time. 1211 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1212 // tuning. 1213 if (NumElements > IC.MaxArraySizeForCombine) 1214 return false; 1215 1216 const DataLayout &DL = IC.getDataLayout(); 1217 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1218 const auto Align = SI.getAlign(); 1219 1220 SmallString<16> EltName = V->getName(); 1221 EltName += ".elt"; 1222 auto *Addr = SI.getPointerOperand(); 1223 SmallString<16> AddrName = Addr->getName(); 1224 AddrName += ".repack"; 1225 1226 auto *IdxType = Type::getInt64Ty(T->getContext()); 1227 auto *Zero = ConstantInt::get(IdxType, 0); 1228 1229 uint64_t Offset = 0; 1230 for (uint64_t i = 0; i < NumElements; i++) { 1231 Value *Indices[2] = { 1232 Zero, 1233 ConstantInt::get(IdxType, i), 1234 }; 1235 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1236 AddrName); 1237 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1238 auto EltAlign = commonAlignment(Align, Offset); 1239 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1240 NS->setAAMetadata(SI.getAAMetadata()); 1241 Offset += EltSize; 1242 } 1243 1244 return true; 1245 } 1246 1247 return false; 1248 } 1249 1250 /// equivalentAddressValues - Test if A and B will obviously have the same 1251 /// value. This includes recognizing that %t0 and %t1 will have the same 1252 /// value in code like this: 1253 /// %t0 = getelementptr \@a, 0, 3 1254 /// store i32 0, i32* %t0 1255 /// %t1 = getelementptr \@a, 0, 3 1256 /// %t2 = load i32* %t1 1257 /// 1258 static bool equivalentAddressValues(Value *A, Value *B) { 1259 // Test if the values are trivially equivalent. 1260 if (A == B) return true; 1261 1262 // Test if the values come form identical arithmetic instructions. 1263 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1264 // its only used to compare two uses within the same basic block, which 1265 // means that they'll always either have the same value or one of them 1266 // will have an undefined value. 1267 if (isa<BinaryOperator>(A) || 1268 isa<CastInst>(A) || 1269 isa<PHINode>(A) || 1270 isa<GetElementPtrInst>(A)) 1271 if (Instruction *BI = dyn_cast<Instruction>(B)) 1272 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1273 return true; 1274 1275 // Otherwise they may not be equivalent. 1276 return false; 1277 } 1278 1279 /// Converts store (bitcast (load (bitcast (select ...)))) to 1280 /// store (load (select ...)), where select is minmax: 1281 /// select ((cmp load V1, load V2), V1, V2). 1282 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombinerImpl &IC, 1283 StoreInst &SI) { 1284 // bitcast? 1285 if (!match(SI.getPointerOperand(), m_BitCast(m_Value()))) 1286 return false; 1287 // load? integer? 1288 Value *LoadAddr; 1289 if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr))))) 1290 return false; 1291 auto *LI = cast<LoadInst>(SI.getValueOperand()); 1292 if (!LI->getType()->isIntegerTy()) 1293 return false; 1294 Type *CmpLoadTy; 1295 if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy)) 1296 return false; 1297 1298 // Make sure the type would actually change. 1299 // This condition can be hit with chains of bitcasts. 1300 if (LI->getType() == CmpLoadTy) 1301 return false; 1302 1303 // Make sure we're not changing the size of the load/store. 1304 const auto &DL = IC.getDataLayout(); 1305 if (DL.getTypeStoreSizeInBits(LI->getType()) != 1306 DL.getTypeStoreSizeInBits(CmpLoadTy)) 1307 return false; 1308 1309 if (!all_of(LI->users(), [LI, LoadAddr](User *U) { 1310 auto *SI = dyn_cast<StoreInst>(U); 1311 return SI && SI->getPointerOperand() != LI && 1312 InstCombiner::peekThroughBitcast(SI->getPointerOperand()) != 1313 LoadAddr && 1314 !SI->getPointerOperand()->isSwiftError(); 1315 })) 1316 return false; 1317 1318 IC.Builder.SetInsertPoint(LI); 1319 LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy); 1320 // Replace all the stores with stores of the newly loaded value. 1321 for (auto *UI : LI->users()) { 1322 auto *USI = cast<StoreInst>(UI); 1323 IC.Builder.SetInsertPoint(USI); 1324 combineStoreToNewValue(IC, *USI, NewLI); 1325 } 1326 IC.replaceInstUsesWith(*LI, PoisonValue::get(LI->getType())); 1327 IC.eraseInstFromFunction(*LI); 1328 return true; 1329 } 1330 1331 Instruction *InstCombinerImpl::visitStoreInst(StoreInst &SI) { 1332 Value *Val = SI.getOperand(0); 1333 Value *Ptr = SI.getOperand(1); 1334 1335 // Try to canonicalize the stored type. 1336 if (combineStoreToValueType(*this, SI)) 1337 return eraseInstFromFunction(SI); 1338 1339 // Attempt to improve the alignment. 1340 const Align KnownAlign = getOrEnforceKnownAlignment( 1341 Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT); 1342 if (KnownAlign > SI.getAlign()) 1343 SI.setAlignment(KnownAlign); 1344 1345 // Try to canonicalize the stored type. 1346 if (unpackStoreToAggregate(*this, SI)) 1347 return eraseInstFromFunction(SI); 1348 1349 if (removeBitcastsFromLoadStoreOnMinMax(*this, SI)) 1350 return eraseInstFromFunction(SI); 1351 1352 // Replace GEP indices if possible. 1353 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1354 Worklist.push(NewGEPI); 1355 return &SI; 1356 } 1357 1358 // Don't hack volatile/ordered stores. 1359 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1360 if (!SI.isUnordered()) return nullptr; 1361 1362 // If the RHS is an alloca with a single use, zapify the store, making the 1363 // alloca dead. 1364 if (Ptr->hasOneUse()) { 1365 if (isa<AllocaInst>(Ptr)) 1366 return eraseInstFromFunction(SI); 1367 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1368 if (isa<AllocaInst>(GEP->getOperand(0))) { 1369 if (GEP->getOperand(0)->hasOneUse()) 1370 return eraseInstFromFunction(SI); 1371 } 1372 } 1373 } 1374 1375 // If we have a store to a location which is known constant, we can conclude 1376 // that the store must be storing the constant value (else the memory 1377 // wouldn't be constant), and this must be a noop. 1378 if (AA->pointsToConstantMemory(Ptr)) 1379 return eraseInstFromFunction(SI); 1380 1381 // Do really simple DSE, to catch cases where there are several consecutive 1382 // stores to the same location, separated by a few arithmetic operations. This 1383 // situation often occurs with bitfield accesses. 1384 BasicBlock::iterator BBI(SI); 1385 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1386 --ScanInsts) { 1387 --BBI; 1388 // Don't count debug info directives, lest they affect codegen, 1389 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1390 if (BBI->isDebugOrPseudoInst() || 1391 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1392 ScanInsts++; 1393 continue; 1394 } 1395 1396 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1397 // Prev store isn't volatile, and stores to the same location? 1398 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1399 SI.getOperand(1))) { 1400 ++NumDeadStore; 1401 // Manually add back the original store to the worklist now, so it will 1402 // be processed after the operands of the removed store, as this may 1403 // expose additional DSE opportunities. 1404 Worklist.push(&SI); 1405 eraseInstFromFunction(*PrevSI); 1406 return nullptr; 1407 } 1408 break; 1409 } 1410 1411 // If this is a load, we have to stop. However, if the loaded value is from 1412 // the pointer we're loading and is producing the pointer we're storing, 1413 // then *this* store is dead (X = load P; store X -> P). 1414 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1415 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1416 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1417 return eraseInstFromFunction(SI); 1418 } 1419 1420 // Otherwise, this is a load from some other location. Stores before it 1421 // may not be dead. 1422 break; 1423 } 1424 1425 // Don't skip over loads, throws or things that can modify memory. 1426 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1427 break; 1428 } 1429 1430 // store X, null -> turns into 'unreachable' in SimplifyCFG 1431 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG 1432 if (canSimplifyNullStoreOrGEP(SI)) { 1433 if (!isa<PoisonValue>(Val)) 1434 return replaceOperand(SI, 0, PoisonValue::get(Val->getType())); 1435 return nullptr; // Do not modify these! 1436 } 1437 1438 // store undef, Ptr -> noop 1439 if (isa<UndefValue>(Val)) 1440 return eraseInstFromFunction(SI); 1441 1442 return nullptr; 1443 } 1444 1445 /// Try to transform: 1446 /// if () { *P = v1; } else { *P = v2 } 1447 /// or: 1448 /// *P = v1; if () { *P = v2; } 1449 /// into a phi node with a store in the successor. 1450 bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst &SI) { 1451 if (!SI.isUnordered()) 1452 return false; // This code has not been audited for volatile/ordered case. 1453 1454 // Check if the successor block has exactly 2 incoming edges. 1455 BasicBlock *StoreBB = SI.getParent(); 1456 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1457 if (!DestBB->hasNPredecessors(2)) 1458 return false; 1459 1460 // Capture the other block (the block that doesn't contain our store). 1461 pred_iterator PredIter = pred_begin(DestBB); 1462 if (*PredIter == StoreBB) 1463 ++PredIter; 1464 BasicBlock *OtherBB = *PredIter; 1465 1466 // Bail out if all of the relevant blocks aren't distinct. This can happen, 1467 // for example, if SI is in an infinite loop. 1468 if (StoreBB == DestBB || OtherBB == DestBB) 1469 return false; 1470 1471 // Verify that the other block ends in a branch and is not otherwise empty. 1472 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1473 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1474 if (!OtherBr || BBI == OtherBB->begin()) 1475 return false; 1476 1477 // If the other block ends in an unconditional branch, check for the 'if then 1478 // else' case. There is an instruction before the branch. 1479 StoreInst *OtherStore = nullptr; 1480 if (OtherBr->isUnconditional()) { 1481 --BBI; 1482 // Skip over debugging info and pseudo probes. 1483 while (BBI->isDebugOrPseudoInst() || 1484 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1485 if (BBI==OtherBB->begin()) 1486 return false; 1487 --BBI; 1488 } 1489 // If this isn't a store, isn't a store to the same location, or is not the 1490 // right kind of store, bail out. 1491 OtherStore = dyn_cast<StoreInst>(BBI); 1492 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1493 !SI.isSameOperationAs(OtherStore)) 1494 return false; 1495 } else { 1496 // Otherwise, the other block ended with a conditional branch. If one of the 1497 // destinations is StoreBB, then we have the if/then case. 1498 if (OtherBr->getSuccessor(0) != StoreBB && 1499 OtherBr->getSuccessor(1) != StoreBB) 1500 return false; 1501 1502 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1503 // if/then triangle. See if there is a store to the same ptr as SI that 1504 // lives in OtherBB. 1505 for (;; --BBI) { 1506 // Check to see if we find the matching store. 1507 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1508 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1509 !SI.isSameOperationAs(OtherStore)) 1510 return false; 1511 break; 1512 } 1513 // If we find something that may be using or overwriting the stored 1514 // value, or if we run out of instructions, we can't do the transform. 1515 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1516 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1517 return false; 1518 } 1519 1520 // In order to eliminate the store in OtherBr, we have to make sure nothing 1521 // reads or overwrites the stored value in StoreBB. 1522 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1523 // FIXME: This should really be AA driven. 1524 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1525 return false; 1526 } 1527 } 1528 1529 // Insert a PHI node now if we need it. 1530 Value *MergedVal = OtherStore->getOperand(0); 1531 // The debug locations of the original instructions might differ. Merge them. 1532 DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(), 1533 OtherStore->getDebugLoc()); 1534 if (MergedVal != SI.getOperand(0)) { 1535 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1536 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1537 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1538 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1539 PN->setDebugLoc(MergedLoc); 1540 } 1541 1542 // Advance to a place where it is safe to insert the new store and insert it. 1543 BBI = DestBB->getFirstInsertionPt(); 1544 StoreInst *NewSI = 1545 new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(), 1546 SI.getOrdering(), SI.getSyncScopeID()); 1547 InsertNewInstBefore(NewSI, *BBI); 1548 NewSI->setDebugLoc(MergedLoc); 1549 1550 // If the two stores had AA tags, merge them. 1551 AAMDNodes AATags = SI.getAAMetadata(); 1552 if (AATags) 1553 NewSI->setAAMetadata(AATags.merge(OtherStore->getAAMetadata())); 1554 1555 // Nuke the old stores. 1556 eraseInstFromFunction(SI); 1557 eraseInstFromFunction(*OtherStore); 1558 return true; 1559 } 1560